xref: /qemu/target/arm/internals.h (revision ac06724a)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 
30 /* register banks for CPU modes */
31 #define BANK_USRSYS 0
32 #define BANK_SVC    1
33 #define BANK_ABT    2
34 #define BANK_UND    3
35 #define BANK_IRQ    4
36 #define BANK_FIQ    5
37 #define BANK_HYP    6
38 #define BANK_MON    7
39 
40 static inline bool excp_is_internal(int excp)
41 {
42     /* Return true if this exception number represents a QEMU-internal
43      * exception that will not be passed to the guest.
44      */
45     return excp == EXCP_INTERRUPT
46         || excp == EXCP_HLT
47         || excp == EXCP_DEBUG
48         || excp == EXCP_HALTED
49         || excp == EXCP_EXCEPTION_EXIT
50         || excp == EXCP_KERNEL_TRAP
51         || excp == EXCP_SEMIHOST;
52 }
53 
54 /* Scale factor for generic timers, ie number of ns per tick.
55  * This gives a 62.5MHz timer.
56  */
57 #define GTIMER_SCALE 16
58 
59 /* Bit definitions for the v7M CONTROL register */
60 FIELD(V7M_CONTROL, NPRIV, 0, 1)
61 FIELD(V7M_CONTROL, SPSEL, 1, 1)
62 FIELD(V7M_CONTROL, FPCA, 2, 1)
63 
64 /*
65  * For AArch64, map a given EL to an index in the banked_spsr array.
66  * Note that this mapping and the AArch32 mapping defined in bank_number()
67  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
68  * mandated mapping between each other.
69  */
70 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
71 {
72     static const unsigned int map[4] = {
73         [1] = BANK_SVC, /* EL1.  */
74         [2] = BANK_HYP, /* EL2.  */
75         [3] = BANK_MON, /* EL3.  */
76     };
77     assert(el >= 1 && el <= 3);
78     return map[el];
79 }
80 
81 /* Map CPU modes onto saved register banks.  */
82 static inline int bank_number(int mode)
83 {
84     switch (mode) {
85     case ARM_CPU_MODE_USR:
86     case ARM_CPU_MODE_SYS:
87         return BANK_USRSYS;
88     case ARM_CPU_MODE_SVC:
89         return BANK_SVC;
90     case ARM_CPU_MODE_ABT:
91         return BANK_ABT;
92     case ARM_CPU_MODE_UND:
93         return BANK_UND;
94     case ARM_CPU_MODE_IRQ:
95         return BANK_IRQ;
96     case ARM_CPU_MODE_FIQ:
97         return BANK_FIQ;
98     case ARM_CPU_MODE_HYP:
99         return BANK_HYP;
100     case ARM_CPU_MODE_MON:
101         return BANK_MON;
102     }
103     g_assert_not_reached();
104 }
105 
106 void switch_mode(CPUARMState *, int);
107 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
108 void arm_translate_init(void);
109 
110 enum arm_fprounding {
111     FPROUNDING_TIEEVEN,
112     FPROUNDING_POSINF,
113     FPROUNDING_NEGINF,
114     FPROUNDING_ZERO,
115     FPROUNDING_TIEAWAY,
116     FPROUNDING_ODD
117 };
118 
119 int arm_rmode_to_sf(int rmode);
120 
121 static inline void aarch64_save_sp(CPUARMState *env, int el)
122 {
123     if (env->pstate & PSTATE_SP) {
124         env->sp_el[el] = env->xregs[31];
125     } else {
126         env->sp_el[0] = env->xregs[31];
127     }
128 }
129 
130 static inline void aarch64_restore_sp(CPUARMState *env, int el)
131 {
132     if (env->pstate & PSTATE_SP) {
133         env->xregs[31] = env->sp_el[el];
134     } else {
135         env->xregs[31] = env->sp_el[0];
136     }
137 }
138 
139 static inline void update_spsel(CPUARMState *env, uint32_t imm)
140 {
141     unsigned int cur_el = arm_current_el(env);
142     /* Update PSTATE SPSel bit; this requires us to update the
143      * working stack pointer in xregs[31].
144      */
145     if (!((imm ^ env->pstate) & PSTATE_SP)) {
146         return;
147     }
148     aarch64_save_sp(env, cur_el);
149     env->pstate = deposit32(env->pstate, 0, 1, imm);
150 
151     /* We rely on illegal updates to SPsel from EL0 to get trapped
152      * at translation time.
153      */
154     assert(cur_el >= 1 && cur_el <= 3);
155     aarch64_restore_sp(env, cur_el);
156 }
157 
158 /*
159  * arm_pamax
160  * @cpu: ARMCPU
161  *
162  * Returns the implementation defined bit-width of physical addresses.
163  * The ARMv8 reference manuals refer to this as PAMax().
164  */
165 static inline unsigned int arm_pamax(ARMCPU *cpu)
166 {
167     static const unsigned int pamax_map[] = {
168         [0] = 32,
169         [1] = 36,
170         [2] = 40,
171         [3] = 42,
172         [4] = 44,
173         [5] = 48,
174     };
175     unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
176 
177     /* id_aa64mmfr0 is a read-only register so values outside of the
178      * supported mappings can be considered an implementation error.  */
179     assert(parange < ARRAY_SIZE(pamax_map));
180     return pamax_map[parange];
181 }
182 
183 /* Return true if extended addresses are enabled.
184  * This is always the case if our translation regime is 64 bit,
185  * but depends on TTBCR.EAE for 32 bit.
186  */
187 static inline bool extended_addresses_enabled(CPUARMState *env)
188 {
189     TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
190     return arm_el_is_aa64(env, 1) ||
191            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
192 }
193 
194 /* Valid Syndrome Register EC field values */
195 enum arm_exception_class {
196     EC_UNCATEGORIZED          = 0x00,
197     EC_WFX_TRAP               = 0x01,
198     EC_CP15RTTRAP             = 0x03,
199     EC_CP15RRTTRAP            = 0x04,
200     EC_CP14RTTRAP             = 0x05,
201     EC_CP14DTTRAP             = 0x06,
202     EC_ADVSIMDFPACCESSTRAP    = 0x07,
203     EC_FPIDTRAP               = 0x08,
204     EC_CP14RRTTRAP            = 0x0c,
205     EC_ILLEGALSTATE           = 0x0e,
206     EC_AA32_SVC               = 0x11,
207     EC_AA32_HVC               = 0x12,
208     EC_AA32_SMC               = 0x13,
209     EC_AA64_SVC               = 0x15,
210     EC_AA64_HVC               = 0x16,
211     EC_AA64_SMC               = 0x17,
212     EC_SYSTEMREGISTERTRAP     = 0x18,
213     EC_INSNABORT              = 0x20,
214     EC_INSNABORT_SAME_EL      = 0x21,
215     EC_PCALIGNMENT            = 0x22,
216     EC_DATAABORT              = 0x24,
217     EC_DATAABORT_SAME_EL      = 0x25,
218     EC_SPALIGNMENT            = 0x26,
219     EC_AA32_FPTRAP            = 0x28,
220     EC_AA64_FPTRAP            = 0x2c,
221     EC_SERROR                 = 0x2f,
222     EC_BREAKPOINT             = 0x30,
223     EC_BREAKPOINT_SAME_EL     = 0x31,
224     EC_SOFTWARESTEP           = 0x32,
225     EC_SOFTWARESTEP_SAME_EL   = 0x33,
226     EC_WATCHPOINT             = 0x34,
227     EC_WATCHPOINT_SAME_EL     = 0x35,
228     EC_AA32_BKPT              = 0x38,
229     EC_VECTORCATCH            = 0x3a,
230     EC_AA64_BKPT              = 0x3c,
231 };
232 
233 #define ARM_EL_EC_SHIFT 26
234 #define ARM_EL_IL_SHIFT 25
235 #define ARM_EL_ISV_SHIFT 24
236 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
237 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
238 
239 /* Utility functions for constructing various kinds of syndrome value.
240  * Note that in general we follow the AArch64 syndrome values; in a
241  * few cases the value in HSR for exceptions taken to AArch32 Hyp
242  * mode differs slightly, so if we ever implemented Hyp mode then the
243  * syndrome value would need some massaging on exception entry.
244  * (One example of this is that AArch64 defaults to IL bit set for
245  * exceptions which don't specifically indicate information about the
246  * trapping instruction, whereas AArch32 defaults to IL bit clear.)
247  */
248 static inline uint32_t syn_uncategorized(void)
249 {
250     return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
251 }
252 
253 static inline uint32_t syn_aa64_svc(uint32_t imm16)
254 {
255     return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
256 }
257 
258 static inline uint32_t syn_aa64_hvc(uint32_t imm16)
259 {
260     return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
261 }
262 
263 static inline uint32_t syn_aa64_smc(uint32_t imm16)
264 {
265     return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
266 }
267 
268 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
269 {
270     return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
271         | (is_16bit ? 0 : ARM_EL_IL);
272 }
273 
274 static inline uint32_t syn_aa32_hvc(uint32_t imm16)
275 {
276     return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
277 }
278 
279 static inline uint32_t syn_aa32_smc(void)
280 {
281     return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
282 }
283 
284 static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
285 {
286     return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
287 }
288 
289 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
290 {
291     return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
292         | (is_16bit ? 0 : ARM_EL_IL);
293 }
294 
295 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
296                                            int crn, int crm, int rt,
297                                            int isread)
298 {
299     return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
300         | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
301         | (crm << 1) | isread;
302 }
303 
304 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
305                                         int crn, int crm, int rt, int isread,
306                                         bool is_16bit)
307 {
308     return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
309         | (is_16bit ? 0 : ARM_EL_IL)
310         | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
311         | (crn << 10) | (rt << 5) | (crm << 1) | isread;
312 }
313 
314 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
315                                         int crn, int crm, int rt, int isread,
316                                         bool is_16bit)
317 {
318     return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
319         | (is_16bit ? 0 : ARM_EL_IL)
320         | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
321         | (crn << 10) | (rt << 5) | (crm << 1) | isread;
322 }
323 
324 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
325                                          int rt, int rt2, int isread,
326                                          bool is_16bit)
327 {
328     return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
329         | (is_16bit ? 0 : ARM_EL_IL)
330         | (cv << 24) | (cond << 20) | (opc1 << 16)
331         | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
332 }
333 
334 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
335                                          int rt, int rt2, int isread,
336                                          bool is_16bit)
337 {
338     return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
339         | (is_16bit ? 0 : ARM_EL_IL)
340         | (cv << 24) | (cond << 20) | (opc1 << 16)
341         | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
342 }
343 
344 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
345 {
346     return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
347         | (is_16bit ? 0 : ARM_EL_IL)
348         | (cv << 24) | (cond << 20);
349 }
350 
351 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
352 {
353     return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
354         | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
355 }
356 
357 static inline uint32_t syn_data_abort_no_iss(int same_el,
358                                              int ea, int cm, int s1ptw,
359                                              int wnr, int fsc)
360 {
361     return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
362            | ARM_EL_IL
363            | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
364 }
365 
366 static inline uint32_t syn_data_abort_with_iss(int same_el,
367                                                int sas, int sse, int srt,
368                                                int sf, int ar,
369                                                int ea, int cm, int s1ptw,
370                                                int wnr, int fsc,
371                                                bool is_16bit)
372 {
373     return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
374            | (is_16bit ? 0 : ARM_EL_IL)
375            | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
376            | (sf << 15) | (ar << 14)
377            | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
378 }
379 
380 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
381 {
382     return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
383         | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
384 }
385 
386 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
387 {
388     return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
389         | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
390 }
391 
392 static inline uint32_t syn_breakpoint(int same_el)
393 {
394     return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
395         | ARM_EL_IL | 0x22;
396 }
397 
398 static inline uint32_t syn_wfx(int cv, int cond, int ti)
399 {
400     return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
401            (cv << 24) | (cond << 20) | ti;
402 }
403 
404 /* Update a QEMU watchpoint based on the information the guest has set in the
405  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
406  */
407 void hw_watchpoint_update(ARMCPU *cpu, int n);
408 /* Update the QEMU watchpoints for every guest watchpoint. This does a
409  * complete delete-and-reinstate of the QEMU watchpoint list and so is
410  * suitable for use after migration or on reset.
411  */
412 void hw_watchpoint_update_all(ARMCPU *cpu);
413 /* Update a QEMU breakpoint based on the information the guest has set in the
414  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
415  */
416 void hw_breakpoint_update(ARMCPU *cpu, int n);
417 /* Update the QEMU breakpoints for every guest breakpoint. This does a
418  * complete delete-and-reinstate of the QEMU breakpoint list and so is
419  * suitable for use after migration or on reset.
420  */
421 void hw_breakpoint_update_all(ARMCPU *cpu);
422 
423 /* Callback function for checking if a watchpoint should trigger. */
424 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
425 
426 /* Adjust addresses (in BE32 mode) before testing against watchpoint
427  * addresses.
428  */
429 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
430 
431 /* Callback function for when a watchpoint or breakpoint triggers. */
432 void arm_debug_excp_handler(CPUState *cs);
433 
434 #ifdef CONFIG_USER_ONLY
435 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
436 {
437     return false;
438 }
439 #else
440 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
441 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
442 /* Actually handle a PSCI call */
443 void arm_handle_psci_call(ARMCPU *cpu);
444 #endif
445 
446 /**
447  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
448  * @s2addr: Address that caused a fault at stage 2
449  * @stage2: True if we faulted at stage 2
450  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
451  */
452 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
453 struct ARMMMUFaultInfo {
454     target_ulong s2addr;
455     bool stage2;
456     bool s1ptw;
457 };
458 
459 /* Do a page table walk and add page to TLB if possible */
460 bool arm_tlb_fill(CPUState *cpu, vaddr address, int rw, int mmu_idx,
461                   uint32_t *fsr, ARMMMUFaultInfo *fi);
462 
463 /* Return true if the stage 1 translation regime is using LPAE format page
464  * tables */
465 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
466 
467 /* Raise a data fault alignment exception for the specified virtual address */
468 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
469                                  MMUAccessType access_type,
470                                  int mmu_idx, uintptr_t retaddr);
471 
472 /* Call the EL change hook if one has been registered */
473 static inline void arm_call_el_change_hook(ARMCPU *cpu)
474 {
475     if (cpu->el_change_hook) {
476         cpu->el_change_hook(cpu, cpu->el_change_hook_opaque);
477     }
478 }
479 
480 #endif
481