xref: /qemu/target/arm/internals.h (revision bd2142c3)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 #include "tcg/tcg-gvec-desc.h"
30 #include "syndrome.h"
31 
32 /* register banks for CPU modes */
33 #define BANK_USRSYS 0
34 #define BANK_SVC    1
35 #define BANK_ABT    2
36 #define BANK_UND    3
37 #define BANK_IRQ    4
38 #define BANK_FIQ    5
39 #define BANK_HYP    6
40 #define BANK_MON    7
41 
42 static inline bool excp_is_internal(int excp)
43 {
44     /* Return true if this exception number represents a QEMU-internal
45      * exception that will not be passed to the guest.
46      */
47     return excp == EXCP_INTERRUPT
48         || excp == EXCP_HLT
49         || excp == EXCP_DEBUG
50         || excp == EXCP_HALTED
51         || excp == EXCP_EXCEPTION_EXIT
52         || excp == EXCP_KERNEL_TRAP
53         || excp == EXCP_SEMIHOST;
54 }
55 
56 /* Scale factor for generic timers, ie number of ns per tick.
57  * This gives a 62.5MHz timer.
58  */
59 #define GTIMER_SCALE 16
60 
61 /* Bit definitions for the v7M CONTROL register */
62 FIELD(V7M_CONTROL, NPRIV, 0, 1)
63 FIELD(V7M_CONTROL, SPSEL, 1, 1)
64 FIELD(V7M_CONTROL, FPCA, 2, 1)
65 FIELD(V7M_CONTROL, SFPA, 3, 1)
66 
67 /* Bit definitions for v7M exception return payload */
68 FIELD(V7M_EXCRET, ES, 0, 1)
69 FIELD(V7M_EXCRET, RES0, 1, 1)
70 FIELD(V7M_EXCRET, SPSEL, 2, 1)
71 FIELD(V7M_EXCRET, MODE, 3, 1)
72 FIELD(V7M_EXCRET, FTYPE, 4, 1)
73 FIELD(V7M_EXCRET, DCRS, 5, 1)
74 FIELD(V7M_EXCRET, S, 6, 1)
75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
76 
77 /* Minimum value which is a magic number for exception return */
78 #define EXC_RETURN_MIN_MAGIC 0xff000000
79 /* Minimum number which is a magic number for function or exception return
80  * when using v8M security extension
81  */
82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
83 
84 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
85 FIELD(DBGWCR, E, 0, 1)
86 FIELD(DBGWCR, PAC, 1, 2)
87 FIELD(DBGWCR, LSC, 3, 2)
88 FIELD(DBGWCR, BAS, 5, 8)
89 FIELD(DBGWCR, HMC, 13, 1)
90 FIELD(DBGWCR, SSC, 14, 2)
91 FIELD(DBGWCR, LBN, 16, 4)
92 FIELD(DBGWCR, WT, 20, 1)
93 FIELD(DBGWCR, MASK, 24, 5)
94 FIELD(DBGWCR, SSCE, 29, 1)
95 
96 /* We use a few fake FSR values for internal purposes in M profile.
97  * M profile cores don't have A/R format FSRs, but currently our
98  * get_phys_addr() code assumes A/R profile and reports failures via
99  * an A/R format FSR value. We then translate that into the proper
100  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
101  * Mostly the FSR values we use for this are those defined for v7PMSA,
102  * since we share some of that codepath. A few kinds of fault are
103  * only for M profile and have no A/R equivalent, though, so we have
104  * to pick a value from the reserved range (which we never otherwise
105  * generate) to use for these.
106  * These values will never be visible to the guest.
107  */
108 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
109 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
110 
111 /**
112  * raise_exception: Raise the specified exception.
113  * Raise a guest exception with the specified value, syndrome register
114  * and target exception level. This should be called from helper functions,
115  * and never returns because we will longjump back up to the CPU main loop.
116  */
117 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
118                                 uint32_t syndrome, uint32_t target_el);
119 
120 /*
121  * Similarly, but also use unwinding to restore cpu state.
122  */
123 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
124                                       uint32_t syndrome, uint32_t target_el,
125                                       uintptr_t ra);
126 
127 /*
128  * For AArch64, map a given EL to an index in the banked_spsr array.
129  * Note that this mapping and the AArch32 mapping defined in bank_number()
130  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
131  * mandated mapping between each other.
132  */
133 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
134 {
135     static const unsigned int map[4] = {
136         [1] = BANK_SVC, /* EL1.  */
137         [2] = BANK_HYP, /* EL2.  */
138         [3] = BANK_MON, /* EL3.  */
139     };
140     assert(el >= 1 && el <= 3);
141     return map[el];
142 }
143 
144 /* Map CPU modes onto saved register banks.  */
145 static inline int bank_number(int mode)
146 {
147     switch (mode) {
148     case ARM_CPU_MODE_USR:
149     case ARM_CPU_MODE_SYS:
150         return BANK_USRSYS;
151     case ARM_CPU_MODE_SVC:
152         return BANK_SVC;
153     case ARM_CPU_MODE_ABT:
154         return BANK_ABT;
155     case ARM_CPU_MODE_UND:
156         return BANK_UND;
157     case ARM_CPU_MODE_IRQ:
158         return BANK_IRQ;
159     case ARM_CPU_MODE_FIQ:
160         return BANK_FIQ;
161     case ARM_CPU_MODE_HYP:
162         return BANK_HYP;
163     case ARM_CPU_MODE_MON:
164         return BANK_MON;
165     }
166     g_assert_not_reached();
167 }
168 
169 /**
170  * r14_bank_number: Map CPU mode onto register bank for r14
171  *
172  * Given an AArch32 CPU mode, return the index into the saved register
173  * banks to use for the R14 (LR) in that mode. This is the same as
174  * bank_number(), except for the special case of Hyp mode, where
175  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
176  * This should be used as the index into env->banked_r14[], and
177  * bank_number() used for the index into env->banked_r13[] and
178  * env->banked_spsr[].
179  */
180 static inline int r14_bank_number(int mode)
181 {
182     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
183 }
184 
185 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
186 void arm_translate_init(void);
187 
188 #ifdef CONFIG_TCG
189 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
190 #endif /* CONFIG_TCG */
191 
192 /**
193  * aarch64_sve_zcr_get_valid_len:
194  * @cpu: cpu context
195  * @start_len: maximum len to consider
196  *
197  * Return the maximum supported sve vector length <= @start_len.
198  * Note that both @start_len and the return value are in units
199  * of ZCR_ELx.LEN, so the vector bit length is (x + 1) * 128.
200  */
201 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len);
202 
203 enum arm_fprounding {
204     FPROUNDING_TIEEVEN,
205     FPROUNDING_POSINF,
206     FPROUNDING_NEGINF,
207     FPROUNDING_ZERO,
208     FPROUNDING_TIEAWAY,
209     FPROUNDING_ODD
210 };
211 
212 int arm_rmode_to_sf(int rmode);
213 
214 static inline void aarch64_save_sp(CPUARMState *env, int el)
215 {
216     if (env->pstate & PSTATE_SP) {
217         env->sp_el[el] = env->xregs[31];
218     } else {
219         env->sp_el[0] = env->xregs[31];
220     }
221 }
222 
223 static inline void aarch64_restore_sp(CPUARMState *env, int el)
224 {
225     if (env->pstate & PSTATE_SP) {
226         env->xregs[31] = env->sp_el[el];
227     } else {
228         env->xregs[31] = env->sp_el[0];
229     }
230 }
231 
232 static inline void update_spsel(CPUARMState *env, uint32_t imm)
233 {
234     unsigned int cur_el = arm_current_el(env);
235     /* Update PSTATE SPSel bit; this requires us to update the
236      * working stack pointer in xregs[31].
237      */
238     if (!((imm ^ env->pstate) & PSTATE_SP)) {
239         return;
240     }
241     aarch64_save_sp(env, cur_el);
242     env->pstate = deposit32(env->pstate, 0, 1, imm);
243 
244     /* We rely on illegal updates to SPsel from EL0 to get trapped
245      * at translation time.
246      */
247     assert(cur_el >= 1 && cur_el <= 3);
248     aarch64_restore_sp(env, cur_el);
249 }
250 
251 /*
252  * arm_pamax
253  * @cpu: ARMCPU
254  *
255  * Returns the implementation defined bit-width of physical addresses.
256  * The ARMv8 reference manuals refer to this as PAMax().
257  */
258 unsigned int arm_pamax(ARMCPU *cpu);
259 
260 /* Return true if extended addresses are enabled.
261  * This is always the case if our translation regime is 64 bit,
262  * but depends on TTBCR.EAE for 32 bit.
263  */
264 static inline bool extended_addresses_enabled(CPUARMState *env)
265 {
266     TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
267     return arm_el_is_aa64(env, 1) ||
268            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
269 }
270 
271 /* Update a QEMU watchpoint based on the information the guest has set in the
272  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
273  */
274 void hw_watchpoint_update(ARMCPU *cpu, int n);
275 /* Update the QEMU watchpoints for every guest watchpoint. This does a
276  * complete delete-and-reinstate of the QEMU watchpoint list and so is
277  * suitable for use after migration or on reset.
278  */
279 void hw_watchpoint_update_all(ARMCPU *cpu);
280 /* Update a QEMU breakpoint based on the information the guest has set in the
281  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
282  */
283 void hw_breakpoint_update(ARMCPU *cpu, int n);
284 /* Update the QEMU breakpoints for every guest breakpoint. This does a
285  * complete delete-and-reinstate of the QEMU breakpoint list and so is
286  * suitable for use after migration or on reset.
287  */
288 void hw_breakpoint_update_all(ARMCPU *cpu);
289 
290 /* Callback function for checking if a breakpoint should trigger. */
291 bool arm_debug_check_breakpoint(CPUState *cs);
292 
293 /* Callback function for checking if a watchpoint should trigger. */
294 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
295 
296 /* Adjust addresses (in BE32 mode) before testing against watchpoint
297  * addresses.
298  */
299 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
300 
301 /* Callback function for when a watchpoint or breakpoint triggers. */
302 void arm_debug_excp_handler(CPUState *cs);
303 
304 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
305 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
306 {
307     return false;
308 }
309 static inline void arm_handle_psci_call(ARMCPU *cpu)
310 {
311     g_assert_not_reached();
312 }
313 #else
314 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
315 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
316 /* Actually handle a PSCI call */
317 void arm_handle_psci_call(ARMCPU *cpu);
318 #endif
319 
320 /**
321  * arm_clear_exclusive: clear the exclusive monitor
322  * @env: CPU env
323  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
324  */
325 static inline void arm_clear_exclusive(CPUARMState *env)
326 {
327     env->exclusive_addr = -1;
328 }
329 
330 /**
331  * ARMFaultType: type of an ARM MMU fault
332  * This corresponds to the v8A pseudocode's Fault enumeration,
333  * with extensions for QEMU internal conditions.
334  */
335 typedef enum ARMFaultType {
336     ARMFault_None,
337     ARMFault_AccessFlag,
338     ARMFault_Alignment,
339     ARMFault_Background,
340     ARMFault_Domain,
341     ARMFault_Permission,
342     ARMFault_Translation,
343     ARMFault_AddressSize,
344     ARMFault_SyncExternal,
345     ARMFault_SyncExternalOnWalk,
346     ARMFault_SyncParity,
347     ARMFault_SyncParityOnWalk,
348     ARMFault_AsyncParity,
349     ARMFault_AsyncExternal,
350     ARMFault_Debug,
351     ARMFault_TLBConflict,
352     ARMFault_Lockdown,
353     ARMFault_Exclusive,
354     ARMFault_ICacheMaint,
355     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
356     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
357 } ARMFaultType;
358 
359 /**
360  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
361  * @type: Type of fault
362  * @level: Table walk level (for translation, access flag and permission faults)
363  * @domain: Domain of the fault address (for non-LPAE CPUs only)
364  * @s2addr: Address that caused a fault at stage 2
365  * @stage2: True if we faulted at stage 2
366  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
367  * @s1ns: True if we faulted on a non-secure IPA while in secure state
368  * @ea: True if we should set the EA (external abort type) bit in syndrome
369  */
370 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
371 struct ARMMMUFaultInfo {
372     ARMFaultType type;
373     target_ulong s2addr;
374     int level;
375     int domain;
376     bool stage2;
377     bool s1ptw;
378     bool s1ns;
379     bool ea;
380 };
381 
382 /**
383  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
384  * Compare pseudocode EncodeSDFSC(), though unlike that function
385  * we set up a whole FSR-format code including domain field and
386  * putting the high bit of the FSC into bit 10.
387  */
388 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
389 {
390     uint32_t fsc;
391 
392     switch (fi->type) {
393     case ARMFault_None:
394         return 0;
395     case ARMFault_AccessFlag:
396         fsc = fi->level == 1 ? 0x3 : 0x6;
397         break;
398     case ARMFault_Alignment:
399         fsc = 0x1;
400         break;
401     case ARMFault_Permission:
402         fsc = fi->level == 1 ? 0xd : 0xf;
403         break;
404     case ARMFault_Domain:
405         fsc = fi->level == 1 ? 0x9 : 0xb;
406         break;
407     case ARMFault_Translation:
408         fsc = fi->level == 1 ? 0x5 : 0x7;
409         break;
410     case ARMFault_SyncExternal:
411         fsc = 0x8 | (fi->ea << 12);
412         break;
413     case ARMFault_SyncExternalOnWalk:
414         fsc = fi->level == 1 ? 0xc : 0xe;
415         fsc |= (fi->ea << 12);
416         break;
417     case ARMFault_SyncParity:
418         fsc = 0x409;
419         break;
420     case ARMFault_SyncParityOnWalk:
421         fsc = fi->level == 1 ? 0x40c : 0x40e;
422         break;
423     case ARMFault_AsyncParity:
424         fsc = 0x408;
425         break;
426     case ARMFault_AsyncExternal:
427         fsc = 0x406 | (fi->ea << 12);
428         break;
429     case ARMFault_Debug:
430         fsc = 0x2;
431         break;
432     case ARMFault_TLBConflict:
433         fsc = 0x400;
434         break;
435     case ARMFault_Lockdown:
436         fsc = 0x404;
437         break;
438     case ARMFault_Exclusive:
439         fsc = 0x405;
440         break;
441     case ARMFault_ICacheMaint:
442         fsc = 0x4;
443         break;
444     case ARMFault_Background:
445         fsc = 0x0;
446         break;
447     case ARMFault_QEMU_NSCExec:
448         fsc = M_FAKE_FSR_NSC_EXEC;
449         break;
450     case ARMFault_QEMU_SFault:
451         fsc = M_FAKE_FSR_SFAULT;
452         break;
453     default:
454         /* Other faults can't occur in a context that requires a
455          * short-format status code.
456          */
457         g_assert_not_reached();
458     }
459 
460     fsc |= (fi->domain << 4);
461     return fsc;
462 }
463 
464 /**
465  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
466  * Compare pseudocode EncodeLDFSC(), though unlike that function
467  * we fill in also the LPAE bit 9 of a DFSR format.
468  */
469 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
470 {
471     uint32_t fsc;
472 
473     switch (fi->type) {
474     case ARMFault_None:
475         return 0;
476     case ARMFault_AddressSize:
477         assert(fi->level >= -1 && fi->level <= 3);
478         if (fi->level < 0) {
479             fsc = 0b101001;
480         } else {
481             fsc = fi->level;
482         }
483         break;
484     case ARMFault_AccessFlag:
485         assert(fi->level >= 0 && fi->level <= 3);
486         fsc = 0b001000 | fi->level;
487         break;
488     case ARMFault_Permission:
489         assert(fi->level >= 0 && fi->level <= 3);
490         fsc = 0b001100 | fi->level;
491         break;
492     case ARMFault_Translation:
493         assert(fi->level >= -1 && fi->level <= 3);
494         if (fi->level < 0) {
495             fsc = 0b101011;
496         } else {
497             fsc = 0b000100 | fi->level;
498         }
499         break;
500     case ARMFault_SyncExternal:
501         fsc = 0x10 | (fi->ea << 12);
502         break;
503     case ARMFault_SyncExternalOnWalk:
504         assert(fi->level >= -1 && fi->level <= 3);
505         if (fi->level < 0) {
506             fsc = 0b010011;
507         } else {
508             fsc = 0b010100 | fi->level;
509         }
510         fsc |= fi->ea << 12;
511         break;
512     case ARMFault_SyncParity:
513         fsc = 0x18;
514         break;
515     case ARMFault_SyncParityOnWalk:
516         assert(fi->level >= -1 && fi->level <= 3);
517         if (fi->level < 0) {
518             fsc = 0b011011;
519         } else {
520             fsc = 0b011100 | fi->level;
521         }
522         break;
523     case ARMFault_AsyncParity:
524         fsc = 0x19;
525         break;
526     case ARMFault_AsyncExternal:
527         fsc = 0x11 | (fi->ea << 12);
528         break;
529     case ARMFault_Alignment:
530         fsc = 0x21;
531         break;
532     case ARMFault_Debug:
533         fsc = 0x22;
534         break;
535     case ARMFault_TLBConflict:
536         fsc = 0x30;
537         break;
538     case ARMFault_Lockdown:
539         fsc = 0x34;
540         break;
541     case ARMFault_Exclusive:
542         fsc = 0x35;
543         break;
544     default:
545         /* Other faults can't occur in a context that requires a
546          * long-format status code.
547          */
548         g_assert_not_reached();
549     }
550 
551     fsc |= 1 << 9;
552     return fsc;
553 }
554 
555 static inline bool arm_extabort_type(MemTxResult result)
556 {
557     /* The EA bit in syndromes and fault status registers is an
558      * IMPDEF classification of external aborts. ARM implementations
559      * usually use this to indicate AXI bus Decode error (0) or
560      * Slave error (1); in QEMU we follow that.
561      */
562     return result != MEMTX_DECODE_ERROR;
563 }
564 
565 #ifdef CONFIG_USER_ONLY
566 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
567                             MMUAccessType access_type,
568                             bool maperr, uintptr_t ra);
569 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
570                            MMUAccessType access_type, uintptr_t ra);
571 #else
572 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
573                       MMUAccessType access_type, int mmu_idx,
574                       bool probe, uintptr_t retaddr);
575 #endif
576 
577 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
578 {
579     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
580 }
581 
582 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
583 {
584     if (arm_feature(env, ARM_FEATURE_M)) {
585         return mmu_idx | ARM_MMU_IDX_M;
586     } else {
587         return mmu_idx | ARM_MMU_IDX_A;
588     }
589 }
590 
591 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
592 {
593     /* AArch64 is always a-profile. */
594     return mmu_idx | ARM_MMU_IDX_A;
595 }
596 
597 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
598 
599 /*
600  * Return the MMU index for a v7M CPU with all relevant information
601  * manually specified.
602  */
603 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
604                               bool secstate, bool priv, bool negpri);
605 
606 /*
607  * Return the MMU index for a v7M CPU in the specified security and
608  * privilege state.
609  */
610 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
611                                                 bool secstate, bool priv);
612 
613 /* Return the MMU index for a v7M CPU in the specified security state */
614 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
615 
616 /* Return true if the stage 1 translation regime is using LPAE format page
617  * tables */
618 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
619 
620 /* Raise a data fault alignment exception for the specified virtual address */
621 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
622                                             MMUAccessType access_type,
623                                             int mmu_idx, uintptr_t retaddr);
624 
625 /* arm_cpu_do_transaction_failed: handle a memory system error response
626  * (eg "no device/memory present at address") by raising an external abort
627  * exception
628  */
629 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
630                                    vaddr addr, unsigned size,
631                                    MMUAccessType access_type,
632                                    int mmu_idx, MemTxAttrs attrs,
633                                    MemTxResult response, uintptr_t retaddr);
634 
635 /* Call any registered EL change hooks */
636 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
637 {
638     ARMELChangeHook *hook, *next;
639     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
640         hook->hook(cpu, hook->opaque);
641     }
642 }
643 static inline void arm_call_el_change_hook(ARMCPU *cpu)
644 {
645     ARMELChangeHook *hook, *next;
646     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
647         hook->hook(cpu, hook->opaque);
648     }
649 }
650 
651 /* Return true if this address translation regime has two ranges.  */
652 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
653 {
654     switch (mmu_idx) {
655     case ARMMMUIdx_Stage1_E0:
656     case ARMMMUIdx_Stage1_E1:
657     case ARMMMUIdx_Stage1_E1_PAN:
658     case ARMMMUIdx_Stage1_SE0:
659     case ARMMMUIdx_Stage1_SE1:
660     case ARMMMUIdx_Stage1_SE1_PAN:
661     case ARMMMUIdx_E10_0:
662     case ARMMMUIdx_E10_1:
663     case ARMMMUIdx_E10_1_PAN:
664     case ARMMMUIdx_E20_0:
665     case ARMMMUIdx_E20_2:
666     case ARMMMUIdx_E20_2_PAN:
667     case ARMMMUIdx_SE10_0:
668     case ARMMMUIdx_SE10_1:
669     case ARMMMUIdx_SE10_1_PAN:
670     case ARMMMUIdx_SE20_0:
671     case ARMMMUIdx_SE20_2:
672     case ARMMMUIdx_SE20_2_PAN:
673         return true;
674     default:
675         return false;
676     }
677 }
678 
679 /* Return true if this address translation regime is secure */
680 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
681 {
682     switch (mmu_idx) {
683     case ARMMMUIdx_E10_0:
684     case ARMMMUIdx_E10_1:
685     case ARMMMUIdx_E10_1_PAN:
686     case ARMMMUIdx_E20_0:
687     case ARMMMUIdx_E20_2:
688     case ARMMMUIdx_E20_2_PAN:
689     case ARMMMUIdx_Stage1_E0:
690     case ARMMMUIdx_Stage1_E1:
691     case ARMMMUIdx_Stage1_E1_PAN:
692     case ARMMMUIdx_E2:
693     case ARMMMUIdx_Stage2:
694     case ARMMMUIdx_MPrivNegPri:
695     case ARMMMUIdx_MUserNegPri:
696     case ARMMMUIdx_MPriv:
697     case ARMMMUIdx_MUser:
698         return false;
699     case ARMMMUIdx_SE3:
700     case ARMMMUIdx_SE10_0:
701     case ARMMMUIdx_SE10_1:
702     case ARMMMUIdx_SE10_1_PAN:
703     case ARMMMUIdx_SE20_0:
704     case ARMMMUIdx_SE20_2:
705     case ARMMMUIdx_SE20_2_PAN:
706     case ARMMMUIdx_Stage1_SE0:
707     case ARMMMUIdx_Stage1_SE1:
708     case ARMMMUIdx_Stage1_SE1_PAN:
709     case ARMMMUIdx_SE2:
710     case ARMMMUIdx_Stage2_S:
711     case ARMMMUIdx_MSPrivNegPri:
712     case ARMMMUIdx_MSUserNegPri:
713     case ARMMMUIdx_MSPriv:
714     case ARMMMUIdx_MSUser:
715         return true;
716     default:
717         g_assert_not_reached();
718     }
719 }
720 
721 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
722 {
723     switch (mmu_idx) {
724     case ARMMMUIdx_Stage1_E1_PAN:
725     case ARMMMUIdx_Stage1_SE1_PAN:
726     case ARMMMUIdx_E10_1_PAN:
727     case ARMMMUIdx_E20_2_PAN:
728     case ARMMMUIdx_SE10_1_PAN:
729     case ARMMMUIdx_SE20_2_PAN:
730         return true;
731     default:
732         return false;
733     }
734 }
735 
736 /* Return the exception level which controls this address translation regime */
737 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
738 {
739     switch (mmu_idx) {
740     case ARMMMUIdx_SE20_0:
741     case ARMMMUIdx_SE20_2:
742     case ARMMMUIdx_SE20_2_PAN:
743     case ARMMMUIdx_E20_0:
744     case ARMMMUIdx_E20_2:
745     case ARMMMUIdx_E20_2_PAN:
746     case ARMMMUIdx_Stage2:
747     case ARMMMUIdx_Stage2_S:
748     case ARMMMUIdx_SE2:
749     case ARMMMUIdx_E2:
750         return 2;
751     case ARMMMUIdx_SE3:
752         return 3;
753     case ARMMMUIdx_SE10_0:
754     case ARMMMUIdx_Stage1_SE0:
755         return arm_el_is_aa64(env, 3) ? 1 : 3;
756     case ARMMMUIdx_SE10_1:
757     case ARMMMUIdx_SE10_1_PAN:
758     case ARMMMUIdx_Stage1_E0:
759     case ARMMMUIdx_Stage1_E1:
760     case ARMMMUIdx_Stage1_E1_PAN:
761     case ARMMMUIdx_Stage1_SE1:
762     case ARMMMUIdx_Stage1_SE1_PAN:
763     case ARMMMUIdx_E10_0:
764     case ARMMMUIdx_E10_1:
765     case ARMMMUIdx_E10_1_PAN:
766     case ARMMMUIdx_MPrivNegPri:
767     case ARMMMUIdx_MUserNegPri:
768     case ARMMMUIdx_MPriv:
769     case ARMMMUIdx_MUser:
770     case ARMMMUIdx_MSPrivNegPri:
771     case ARMMMUIdx_MSUserNegPri:
772     case ARMMMUIdx_MSPriv:
773     case ARMMMUIdx_MSUser:
774         return 1;
775     default:
776         g_assert_not_reached();
777     }
778 }
779 
780 /* Return the TCR controlling this translation regime */
781 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
782 {
783     if (mmu_idx == ARMMMUIdx_Stage2) {
784         return &env->cp15.vtcr_el2;
785     }
786     if (mmu_idx == ARMMMUIdx_Stage2_S) {
787         /*
788          * Note: Secure stage 2 nominally shares fields from VTCR_EL2, but
789          * those are not currently used by QEMU, so just return VSTCR_EL2.
790          */
791         return &env->cp15.vstcr_el2;
792     }
793     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
794 }
795 
796 /* Return the FSR value for a debug exception (watchpoint, hardware
797  * breakpoint or BKPT insn) targeting the specified exception level.
798  */
799 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
800 {
801     ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
802     int target_el = arm_debug_target_el(env);
803     bool using_lpae = false;
804 
805     if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
806         using_lpae = true;
807     } else {
808         if (arm_feature(env, ARM_FEATURE_LPAE) &&
809             (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
810             using_lpae = true;
811         }
812     }
813 
814     if (using_lpae) {
815         return arm_fi_to_lfsc(&fi);
816     } else {
817         return arm_fi_to_sfsc(&fi);
818     }
819 }
820 
821 /**
822  * arm_num_brps: Return number of implemented breakpoints.
823  * Note that the ID register BRPS field is "number of bps - 1",
824  * and we return the actual number of breakpoints.
825  */
826 static inline int arm_num_brps(ARMCPU *cpu)
827 {
828     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
829         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
830     } else {
831         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
832     }
833 }
834 
835 /**
836  * arm_num_wrps: Return number of implemented watchpoints.
837  * Note that the ID register WRPS field is "number of wps - 1",
838  * and we return the actual number of watchpoints.
839  */
840 static inline int arm_num_wrps(ARMCPU *cpu)
841 {
842     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
843         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
844     } else {
845         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
846     }
847 }
848 
849 /**
850  * arm_num_ctx_cmps: Return number of implemented context comparators.
851  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
852  * and we return the actual number of comparators.
853  */
854 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
855 {
856     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
857         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
858     } else {
859         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
860     }
861 }
862 
863 /**
864  * v7m_using_psp: Return true if using process stack pointer
865  * Return true if the CPU is currently using the process stack
866  * pointer, or false if it is using the main stack pointer.
867  */
868 static inline bool v7m_using_psp(CPUARMState *env)
869 {
870     /* Handler mode always uses the main stack; for thread mode
871      * the CONTROL.SPSEL bit determines the answer.
872      * Note that in v7M it is not possible to be in Handler mode with
873      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
874      */
875     return !arm_v7m_is_handler_mode(env) &&
876         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
877 }
878 
879 /**
880  * v7m_sp_limit: Return SP limit for current CPU state
881  * Return the SP limit value for the current CPU security state
882  * and stack pointer.
883  */
884 static inline uint32_t v7m_sp_limit(CPUARMState *env)
885 {
886     if (v7m_using_psp(env)) {
887         return env->v7m.psplim[env->v7m.secure];
888     } else {
889         return env->v7m.msplim[env->v7m.secure];
890     }
891 }
892 
893 /**
894  * v7m_cpacr_pass:
895  * Return true if the v7M CPACR permits access to the FPU for the specified
896  * security state and privilege level.
897  */
898 static inline bool v7m_cpacr_pass(CPUARMState *env,
899                                   bool is_secure, bool is_priv)
900 {
901     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
902     case 0:
903     case 2: /* UNPREDICTABLE: we treat like 0 */
904         return false;
905     case 1:
906         return is_priv;
907     case 3:
908         return true;
909     default:
910         g_assert_not_reached();
911     }
912 }
913 
914 /**
915  * aarch32_mode_name(): Return name of the AArch32 CPU mode
916  * @psr: Program Status Register indicating CPU mode
917  *
918  * Returns, for debug logging purposes, a printable representation
919  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
920  * the low bits of the specified PSR.
921  */
922 static inline const char *aarch32_mode_name(uint32_t psr)
923 {
924     static const char cpu_mode_names[16][4] = {
925         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
926         "???", "???", "hyp", "und", "???", "???", "???", "sys"
927     };
928 
929     return cpu_mode_names[psr & 0xf];
930 }
931 
932 /**
933  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
934  *
935  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
936  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
937  * Must be called with the iothread lock held.
938  */
939 void arm_cpu_update_virq(ARMCPU *cpu);
940 
941 /**
942  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
943  *
944  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
945  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
946  * Must be called with the iothread lock held.
947  */
948 void arm_cpu_update_vfiq(ARMCPU *cpu);
949 
950 /**
951  * arm_mmu_idx_el:
952  * @env: The cpu environment
953  * @el: The EL to use.
954  *
955  * Return the full ARMMMUIdx for the translation regime for EL.
956  */
957 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
958 
959 /**
960  * arm_mmu_idx:
961  * @env: The cpu environment
962  *
963  * Return the full ARMMMUIdx for the current translation regime.
964  */
965 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
966 
967 /**
968  * arm_stage1_mmu_idx:
969  * @env: The cpu environment
970  *
971  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
972  */
973 #ifdef CONFIG_USER_ONLY
974 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
975 {
976     return ARMMMUIdx_Stage1_E0;
977 }
978 #else
979 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
980 #endif
981 
982 /**
983  * arm_mmu_idx_is_stage1_of_2:
984  * @mmu_idx: The ARMMMUIdx to test
985  *
986  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
987  * first stage of a two stage regime.
988  */
989 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
990 {
991     switch (mmu_idx) {
992     case ARMMMUIdx_Stage1_E0:
993     case ARMMMUIdx_Stage1_E1:
994     case ARMMMUIdx_Stage1_E1_PAN:
995     case ARMMMUIdx_Stage1_SE0:
996     case ARMMMUIdx_Stage1_SE1:
997     case ARMMMUIdx_Stage1_SE1_PAN:
998         return true;
999     default:
1000         return false;
1001     }
1002 }
1003 
1004 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
1005                                                const ARMISARegisters *id)
1006 {
1007     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
1008 
1009     if ((features >> ARM_FEATURE_V4T) & 1) {
1010         valid |= CPSR_T;
1011     }
1012     if ((features >> ARM_FEATURE_V5) & 1) {
1013         valid |= CPSR_Q; /* V5TE in reality*/
1014     }
1015     if ((features >> ARM_FEATURE_V6) & 1) {
1016         valid |= CPSR_E | CPSR_GE;
1017     }
1018     if ((features >> ARM_FEATURE_THUMB2) & 1) {
1019         valid |= CPSR_IT;
1020     }
1021     if (isar_feature_aa32_jazelle(id)) {
1022         valid |= CPSR_J;
1023     }
1024     if (isar_feature_aa32_pan(id)) {
1025         valid |= CPSR_PAN;
1026     }
1027     if (isar_feature_aa32_dit(id)) {
1028         valid |= CPSR_DIT;
1029     }
1030     if (isar_feature_aa32_ssbs(id)) {
1031         valid |= CPSR_SSBS;
1032     }
1033 
1034     return valid;
1035 }
1036 
1037 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1038 {
1039     uint32_t valid;
1040 
1041     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1042     if (isar_feature_aa64_bti(id)) {
1043         valid |= PSTATE_BTYPE;
1044     }
1045     if (isar_feature_aa64_pan(id)) {
1046         valid |= PSTATE_PAN;
1047     }
1048     if (isar_feature_aa64_uao(id)) {
1049         valid |= PSTATE_UAO;
1050     }
1051     if (isar_feature_aa64_dit(id)) {
1052         valid |= PSTATE_DIT;
1053     }
1054     if (isar_feature_aa64_ssbs(id)) {
1055         valid |= PSTATE_SSBS;
1056     }
1057     if (isar_feature_aa64_mte(id)) {
1058         valid |= PSTATE_TCO;
1059     }
1060 
1061     return valid;
1062 }
1063 
1064 /*
1065  * Parameters of a given virtual address, as extracted from the
1066  * translation control register (TCR) for a given regime.
1067  */
1068 typedef struct ARMVAParameters {
1069     unsigned tsz    : 8;
1070     unsigned ps     : 3;
1071     unsigned sh     : 2;
1072     unsigned select : 1;
1073     bool tbi        : 1;
1074     bool epd        : 1;
1075     bool hpd        : 1;
1076     bool using16k   : 1;
1077     bool using64k   : 1;
1078     bool tsz_oob    : 1;  /* tsz has been clamped to legal range */
1079     bool ds         : 1;
1080 } ARMVAParameters;
1081 
1082 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1083                                    ARMMMUIdx mmu_idx, bool data);
1084 
1085 static inline int exception_target_el(CPUARMState *env)
1086 {
1087     int target_el = MAX(1, arm_current_el(env));
1088 
1089     /*
1090      * No such thing as secure EL1 if EL3 is aarch32,
1091      * so update the target EL to EL3 in this case.
1092      */
1093     if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
1094         target_el = 3;
1095     }
1096 
1097     return target_el;
1098 }
1099 
1100 /* Determine if allocation tags are available.  */
1101 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1102                                                  uint64_t sctlr)
1103 {
1104     if (el < 3
1105         && arm_feature(env, ARM_FEATURE_EL3)
1106         && !(env->cp15.scr_el3 & SCR_ATA)) {
1107         return false;
1108     }
1109     if (el < 2 && arm_is_el2_enabled(env)) {
1110         uint64_t hcr = arm_hcr_el2_eff(env);
1111         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1112             return false;
1113         }
1114     }
1115     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1116     return sctlr != 0;
1117 }
1118 
1119 #ifndef CONFIG_USER_ONLY
1120 
1121 /* Security attributes for an address, as returned by v8m_security_lookup. */
1122 typedef struct V8M_SAttributes {
1123     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1124     bool ns;
1125     bool nsc;
1126     uint8_t sregion;
1127     bool srvalid;
1128     uint8_t iregion;
1129     bool irvalid;
1130 } V8M_SAttributes;
1131 
1132 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1133                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1134                          V8M_SAttributes *sattrs);
1135 
1136 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1137                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1138                        hwaddr *phys_ptr, MemTxAttrs *txattrs,
1139                        int *prot, bool *is_subpage,
1140                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1141 
1142 /* Cacheability and shareability attributes for a memory access */
1143 typedef struct ARMCacheAttrs {
1144     unsigned int attrs:8; /* as in the MAIR register encoding */
1145     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1146 } ARMCacheAttrs;
1147 
1148 bool get_phys_addr(CPUARMState *env, target_ulong address,
1149                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
1150                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
1151                    target_ulong *page_size,
1152                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
1153     __attribute__((nonnull));
1154 
1155 void arm_log_exception(CPUState *cs);
1156 
1157 #endif /* !CONFIG_USER_ONLY */
1158 
1159 /*
1160  * The log2 of the words in the tag block, for GMID_EL1.BS.
1161  * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1162  */
1163 #define GMID_EL1_BS  6
1164 
1165 /* We associate one allocation tag per 16 bytes, the minimum.  */
1166 #define LOG2_TAG_GRANULE 4
1167 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
1168 
1169 /*
1170  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1171  * the same simd_desc() encoding due to restrictions on size.
1172  * Use these instead.
1173  */
1174 FIELD(PREDDESC, OPRSZ, 0, 6)
1175 FIELD(PREDDESC, ESZ, 6, 2)
1176 FIELD(PREDDESC, DATA, 8, 24)
1177 
1178 /*
1179  * The SVE simd_data field, for memory ops, contains either
1180  * rd (5 bits) or a shift count (2 bits).
1181  */
1182 #define SVE_MTEDESC_SHIFT 5
1183 
1184 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1185 FIELD(MTEDESC, MIDX,  0, 4)
1186 FIELD(MTEDESC, TBI,   4, 2)
1187 FIELD(MTEDESC, TCMA,  6, 2)
1188 FIELD(MTEDESC, WRITE, 8, 1)
1189 FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9)  /* size - 1 */
1190 
1191 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1192 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1193 
1194 static inline int allocation_tag_from_addr(uint64_t ptr)
1195 {
1196     return extract64(ptr, 56, 4);
1197 }
1198 
1199 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1200 {
1201     return deposit64(ptr, 56, 4, rtag);
1202 }
1203 
1204 /* Return true if tbi bits mean that the access is checked.  */
1205 static inline bool tbi_check(uint32_t desc, int bit55)
1206 {
1207     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1208 }
1209 
1210 /* Return true if tcma bits mean that the access is unchecked.  */
1211 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1212 {
1213     /*
1214      * We had extracted bit55 and ptr_tag for other reasons, so fold
1215      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1216      */
1217     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1218     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1219     return tcma && match;
1220 }
1221 
1222 /*
1223  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1224  * for the tag to be present in the FAR_ELx register.  But for user-only
1225  * mode, we do not have a TLB with which to implement this, so we must
1226  * remove the top byte.
1227  */
1228 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1229 {
1230 #ifdef CONFIG_USER_ONLY
1231     /* TBI0 is known to be enabled, while TBI1 is disabled. */
1232     ptr &= sextract64(ptr, 0, 56);
1233 #endif
1234     return ptr;
1235 }
1236 
1237 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1238 {
1239 #ifdef CONFIG_USER_ONLY
1240     int64_t clean_ptr = sextract64(ptr, 0, 56);
1241     if (tbi_check(desc, clean_ptr < 0)) {
1242         ptr = clean_ptr;
1243     }
1244 #endif
1245     return ptr;
1246 }
1247 
1248 /* Values for M-profile PSR.ECI for MVE insns */
1249 enum MVEECIState {
1250     ECI_NONE = 0, /* No completed beats */
1251     ECI_A0 = 1, /* Completed: A0 */
1252     ECI_A0A1 = 2, /* Completed: A0, A1 */
1253     /* 3 is reserved */
1254     ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1255     ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1256     /* All other values reserved */
1257 };
1258 
1259 /* Definitions for the PMU registers */
1260 #define PMCRN_MASK  0xf800
1261 #define PMCRN_SHIFT 11
1262 #define PMCRLC  0x40
1263 #define PMCRDP  0x20
1264 #define PMCRX   0x10
1265 #define PMCRD   0x8
1266 #define PMCRC   0x4
1267 #define PMCRP   0x2
1268 #define PMCRE   0x1
1269 /*
1270  * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1271  * which can be written as 1 to trigger behaviour but which stay RAZ).
1272  */
1273 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1274 
1275 #define PMXEVTYPER_P          0x80000000
1276 #define PMXEVTYPER_U          0x40000000
1277 #define PMXEVTYPER_NSK        0x20000000
1278 #define PMXEVTYPER_NSU        0x10000000
1279 #define PMXEVTYPER_NSH        0x08000000
1280 #define PMXEVTYPER_M          0x04000000
1281 #define PMXEVTYPER_MT         0x02000000
1282 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1283 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1284                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1285                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1286                                PMXEVTYPER_EVTCOUNT)
1287 
1288 #define PMCCFILTR             0xf8000000
1289 #define PMCCFILTR_M           PMXEVTYPER_M
1290 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1291 
1292 static inline uint32_t pmu_num_counters(CPUARMState *env)
1293 {
1294   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1295 }
1296 
1297 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1298 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1299 {
1300   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1301 }
1302 
1303 #ifdef TARGET_AARCH64
1304 int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg);
1305 int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg);
1306 int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg);
1307 int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg);
1308 #endif
1309 
1310 #endif
1311