xref: /qemu/target/arm/internals.h (revision cbc94d97)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 #include "tcg/tcg-gvec-desc.h"
30 #include "syndrome.h"
31 
32 /* register banks for CPU modes */
33 #define BANK_USRSYS 0
34 #define BANK_SVC    1
35 #define BANK_ABT    2
36 #define BANK_UND    3
37 #define BANK_IRQ    4
38 #define BANK_FIQ    5
39 #define BANK_HYP    6
40 #define BANK_MON    7
41 
42 static inline bool excp_is_internal(int excp)
43 {
44     /* Return true if this exception number represents a QEMU-internal
45      * exception that will not be passed to the guest.
46      */
47     return excp == EXCP_INTERRUPT
48         || excp == EXCP_HLT
49         || excp == EXCP_DEBUG
50         || excp == EXCP_HALTED
51         || excp == EXCP_EXCEPTION_EXIT
52         || excp == EXCP_KERNEL_TRAP
53         || excp == EXCP_SEMIHOST;
54 }
55 
56 /* Scale factor for generic timers, ie number of ns per tick.
57  * This gives a 62.5MHz timer.
58  */
59 #define GTIMER_SCALE 16
60 
61 /* Bit definitions for the v7M CONTROL register */
62 FIELD(V7M_CONTROL, NPRIV, 0, 1)
63 FIELD(V7M_CONTROL, SPSEL, 1, 1)
64 FIELD(V7M_CONTROL, FPCA, 2, 1)
65 FIELD(V7M_CONTROL, SFPA, 3, 1)
66 
67 /* Bit definitions for v7M exception return payload */
68 FIELD(V7M_EXCRET, ES, 0, 1)
69 FIELD(V7M_EXCRET, RES0, 1, 1)
70 FIELD(V7M_EXCRET, SPSEL, 2, 1)
71 FIELD(V7M_EXCRET, MODE, 3, 1)
72 FIELD(V7M_EXCRET, FTYPE, 4, 1)
73 FIELD(V7M_EXCRET, DCRS, 5, 1)
74 FIELD(V7M_EXCRET, S, 6, 1)
75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
76 
77 /* Minimum value which is a magic number for exception return */
78 #define EXC_RETURN_MIN_MAGIC 0xff000000
79 /* Minimum number which is a magic number for function or exception return
80  * when using v8M security extension
81  */
82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
83 
84 /* We use a few fake FSR values for internal purposes in M profile.
85  * M profile cores don't have A/R format FSRs, but currently our
86  * get_phys_addr() code assumes A/R profile and reports failures via
87  * an A/R format FSR value. We then translate that into the proper
88  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
89  * Mostly the FSR values we use for this are those defined for v7PMSA,
90  * since we share some of that codepath. A few kinds of fault are
91  * only for M profile and have no A/R equivalent, though, so we have
92  * to pick a value from the reserved range (which we never otherwise
93  * generate) to use for these.
94  * These values will never be visible to the guest.
95  */
96 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
97 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
98 
99 /**
100  * raise_exception: Raise the specified exception.
101  * Raise a guest exception with the specified value, syndrome register
102  * and target exception level. This should be called from helper functions,
103  * and never returns because we will longjump back up to the CPU main loop.
104  */
105 void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
106                                    uint32_t syndrome, uint32_t target_el);
107 
108 /*
109  * Similarly, but also use unwinding to restore cpu state.
110  */
111 void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp,
112                                       uint32_t syndrome, uint32_t target_el,
113                                       uintptr_t ra);
114 
115 /*
116  * For AArch64, map a given EL to an index in the banked_spsr array.
117  * Note that this mapping and the AArch32 mapping defined in bank_number()
118  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
119  * mandated mapping between each other.
120  */
121 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
122 {
123     static const unsigned int map[4] = {
124         [1] = BANK_SVC, /* EL1.  */
125         [2] = BANK_HYP, /* EL2.  */
126         [3] = BANK_MON, /* EL3.  */
127     };
128     assert(el >= 1 && el <= 3);
129     return map[el];
130 }
131 
132 /* Map CPU modes onto saved register banks.  */
133 static inline int bank_number(int mode)
134 {
135     switch (mode) {
136     case ARM_CPU_MODE_USR:
137     case ARM_CPU_MODE_SYS:
138         return BANK_USRSYS;
139     case ARM_CPU_MODE_SVC:
140         return BANK_SVC;
141     case ARM_CPU_MODE_ABT:
142         return BANK_ABT;
143     case ARM_CPU_MODE_UND:
144         return BANK_UND;
145     case ARM_CPU_MODE_IRQ:
146         return BANK_IRQ;
147     case ARM_CPU_MODE_FIQ:
148         return BANK_FIQ;
149     case ARM_CPU_MODE_HYP:
150         return BANK_HYP;
151     case ARM_CPU_MODE_MON:
152         return BANK_MON;
153     }
154     g_assert_not_reached();
155 }
156 
157 /**
158  * r14_bank_number: Map CPU mode onto register bank for r14
159  *
160  * Given an AArch32 CPU mode, return the index into the saved register
161  * banks to use for the R14 (LR) in that mode. This is the same as
162  * bank_number(), except for the special case of Hyp mode, where
163  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
164  * This should be used as the index into env->banked_r14[], and
165  * bank_number() used for the index into env->banked_r13[] and
166  * env->banked_spsr[].
167  */
168 static inline int r14_bank_number(int mode)
169 {
170     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
171 }
172 
173 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
174 void arm_translate_init(void);
175 
176 #ifdef CONFIG_TCG
177 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
178 #endif /* CONFIG_TCG */
179 
180 
181 enum arm_fprounding {
182     FPROUNDING_TIEEVEN,
183     FPROUNDING_POSINF,
184     FPROUNDING_NEGINF,
185     FPROUNDING_ZERO,
186     FPROUNDING_TIEAWAY,
187     FPROUNDING_ODD
188 };
189 
190 int arm_rmode_to_sf(int rmode);
191 
192 static inline void aarch64_save_sp(CPUARMState *env, int el)
193 {
194     if (env->pstate & PSTATE_SP) {
195         env->sp_el[el] = env->xregs[31];
196     } else {
197         env->sp_el[0] = env->xregs[31];
198     }
199 }
200 
201 static inline void aarch64_restore_sp(CPUARMState *env, int el)
202 {
203     if (env->pstate & PSTATE_SP) {
204         env->xregs[31] = env->sp_el[el];
205     } else {
206         env->xregs[31] = env->sp_el[0];
207     }
208 }
209 
210 static inline void update_spsel(CPUARMState *env, uint32_t imm)
211 {
212     unsigned int cur_el = arm_current_el(env);
213     /* Update PSTATE SPSel bit; this requires us to update the
214      * working stack pointer in xregs[31].
215      */
216     if (!((imm ^ env->pstate) & PSTATE_SP)) {
217         return;
218     }
219     aarch64_save_sp(env, cur_el);
220     env->pstate = deposit32(env->pstate, 0, 1, imm);
221 
222     /* We rely on illegal updates to SPsel from EL0 to get trapped
223      * at translation time.
224      */
225     assert(cur_el >= 1 && cur_el <= 3);
226     aarch64_restore_sp(env, cur_el);
227 }
228 
229 /*
230  * arm_pamax
231  * @cpu: ARMCPU
232  *
233  * Returns the implementation defined bit-width of physical addresses.
234  * The ARMv8 reference manuals refer to this as PAMax().
235  */
236 static inline unsigned int arm_pamax(ARMCPU *cpu)
237 {
238     static const unsigned int pamax_map[] = {
239         [0] = 32,
240         [1] = 36,
241         [2] = 40,
242         [3] = 42,
243         [4] = 44,
244         [5] = 48,
245     };
246     unsigned int parange =
247         FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
248 
249     /* id_aa64mmfr0 is a read-only register so values outside of the
250      * supported mappings can be considered an implementation error.  */
251     assert(parange < ARRAY_SIZE(pamax_map));
252     return pamax_map[parange];
253 }
254 
255 /* Return true if extended addresses are enabled.
256  * This is always the case if our translation regime is 64 bit,
257  * but depends on TTBCR.EAE for 32 bit.
258  */
259 static inline bool extended_addresses_enabled(CPUARMState *env)
260 {
261     TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
262     return arm_el_is_aa64(env, 1) ||
263            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
264 }
265 
266 /* Update a QEMU watchpoint based on the information the guest has set in the
267  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
268  */
269 void hw_watchpoint_update(ARMCPU *cpu, int n);
270 /* Update the QEMU watchpoints for every guest watchpoint. This does a
271  * complete delete-and-reinstate of the QEMU watchpoint list and so is
272  * suitable for use after migration or on reset.
273  */
274 void hw_watchpoint_update_all(ARMCPU *cpu);
275 /* Update a QEMU breakpoint based on the information the guest has set in the
276  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
277  */
278 void hw_breakpoint_update(ARMCPU *cpu, int n);
279 /* Update the QEMU breakpoints for every guest breakpoint. This does a
280  * complete delete-and-reinstate of the QEMU breakpoint list and so is
281  * suitable for use after migration or on reset.
282  */
283 void hw_breakpoint_update_all(ARMCPU *cpu);
284 
285 /* Callback function for checking if a breakpoint should trigger. */
286 bool arm_debug_check_breakpoint(CPUState *cs);
287 
288 /* Callback function for checking if a watchpoint should trigger. */
289 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
290 
291 /* Adjust addresses (in BE32 mode) before testing against watchpoint
292  * addresses.
293  */
294 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
295 
296 /* Callback function for when a watchpoint or breakpoint triggers. */
297 void arm_debug_excp_handler(CPUState *cs);
298 
299 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
300 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
301 {
302     return false;
303 }
304 static inline void arm_handle_psci_call(ARMCPU *cpu)
305 {
306     g_assert_not_reached();
307 }
308 #else
309 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
310 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
311 /* Actually handle a PSCI call */
312 void arm_handle_psci_call(ARMCPU *cpu);
313 #endif
314 
315 /**
316  * arm_clear_exclusive: clear the exclusive monitor
317  * @env: CPU env
318  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
319  */
320 static inline void arm_clear_exclusive(CPUARMState *env)
321 {
322     env->exclusive_addr = -1;
323 }
324 
325 /**
326  * ARMFaultType: type of an ARM MMU fault
327  * This corresponds to the v8A pseudocode's Fault enumeration,
328  * with extensions for QEMU internal conditions.
329  */
330 typedef enum ARMFaultType {
331     ARMFault_None,
332     ARMFault_AccessFlag,
333     ARMFault_Alignment,
334     ARMFault_Background,
335     ARMFault_Domain,
336     ARMFault_Permission,
337     ARMFault_Translation,
338     ARMFault_AddressSize,
339     ARMFault_SyncExternal,
340     ARMFault_SyncExternalOnWalk,
341     ARMFault_SyncParity,
342     ARMFault_SyncParityOnWalk,
343     ARMFault_AsyncParity,
344     ARMFault_AsyncExternal,
345     ARMFault_Debug,
346     ARMFault_TLBConflict,
347     ARMFault_Lockdown,
348     ARMFault_Exclusive,
349     ARMFault_ICacheMaint,
350     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
351     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
352 } ARMFaultType;
353 
354 /**
355  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
356  * @type: Type of fault
357  * @level: Table walk level (for translation, access flag and permission faults)
358  * @domain: Domain of the fault address (for non-LPAE CPUs only)
359  * @s2addr: Address that caused a fault at stage 2
360  * @stage2: True if we faulted at stage 2
361  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
362  * @s1ns: True if we faulted on a non-secure IPA while in secure state
363  * @ea: True if we should set the EA (external abort type) bit in syndrome
364  */
365 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
366 struct ARMMMUFaultInfo {
367     ARMFaultType type;
368     target_ulong s2addr;
369     int level;
370     int domain;
371     bool stage2;
372     bool s1ptw;
373     bool s1ns;
374     bool ea;
375 };
376 
377 /**
378  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
379  * Compare pseudocode EncodeSDFSC(), though unlike that function
380  * we set up a whole FSR-format code including domain field and
381  * putting the high bit of the FSC into bit 10.
382  */
383 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
384 {
385     uint32_t fsc;
386 
387     switch (fi->type) {
388     case ARMFault_None:
389         return 0;
390     case ARMFault_AccessFlag:
391         fsc = fi->level == 1 ? 0x3 : 0x6;
392         break;
393     case ARMFault_Alignment:
394         fsc = 0x1;
395         break;
396     case ARMFault_Permission:
397         fsc = fi->level == 1 ? 0xd : 0xf;
398         break;
399     case ARMFault_Domain:
400         fsc = fi->level == 1 ? 0x9 : 0xb;
401         break;
402     case ARMFault_Translation:
403         fsc = fi->level == 1 ? 0x5 : 0x7;
404         break;
405     case ARMFault_SyncExternal:
406         fsc = 0x8 | (fi->ea << 12);
407         break;
408     case ARMFault_SyncExternalOnWalk:
409         fsc = fi->level == 1 ? 0xc : 0xe;
410         fsc |= (fi->ea << 12);
411         break;
412     case ARMFault_SyncParity:
413         fsc = 0x409;
414         break;
415     case ARMFault_SyncParityOnWalk:
416         fsc = fi->level == 1 ? 0x40c : 0x40e;
417         break;
418     case ARMFault_AsyncParity:
419         fsc = 0x408;
420         break;
421     case ARMFault_AsyncExternal:
422         fsc = 0x406 | (fi->ea << 12);
423         break;
424     case ARMFault_Debug:
425         fsc = 0x2;
426         break;
427     case ARMFault_TLBConflict:
428         fsc = 0x400;
429         break;
430     case ARMFault_Lockdown:
431         fsc = 0x404;
432         break;
433     case ARMFault_Exclusive:
434         fsc = 0x405;
435         break;
436     case ARMFault_ICacheMaint:
437         fsc = 0x4;
438         break;
439     case ARMFault_Background:
440         fsc = 0x0;
441         break;
442     case ARMFault_QEMU_NSCExec:
443         fsc = M_FAKE_FSR_NSC_EXEC;
444         break;
445     case ARMFault_QEMU_SFault:
446         fsc = M_FAKE_FSR_SFAULT;
447         break;
448     default:
449         /* Other faults can't occur in a context that requires a
450          * short-format status code.
451          */
452         g_assert_not_reached();
453     }
454 
455     fsc |= (fi->domain << 4);
456     return fsc;
457 }
458 
459 /**
460  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
461  * Compare pseudocode EncodeLDFSC(), though unlike that function
462  * we fill in also the LPAE bit 9 of a DFSR format.
463  */
464 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
465 {
466     uint32_t fsc;
467 
468     switch (fi->type) {
469     case ARMFault_None:
470         return 0;
471     case ARMFault_AddressSize:
472         fsc = fi->level & 3;
473         break;
474     case ARMFault_AccessFlag:
475         fsc = (fi->level & 3) | (0x2 << 2);
476         break;
477     case ARMFault_Permission:
478         fsc = (fi->level & 3) | (0x3 << 2);
479         break;
480     case ARMFault_Translation:
481         fsc = (fi->level & 3) | (0x1 << 2);
482         break;
483     case ARMFault_SyncExternal:
484         fsc = 0x10 | (fi->ea << 12);
485         break;
486     case ARMFault_SyncExternalOnWalk:
487         fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
488         break;
489     case ARMFault_SyncParity:
490         fsc = 0x18;
491         break;
492     case ARMFault_SyncParityOnWalk:
493         fsc = (fi->level & 3) | (0x7 << 2);
494         break;
495     case ARMFault_AsyncParity:
496         fsc = 0x19;
497         break;
498     case ARMFault_AsyncExternal:
499         fsc = 0x11 | (fi->ea << 12);
500         break;
501     case ARMFault_Alignment:
502         fsc = 0x21;
503         break;
504     case ARMFault_Debug:
505         fsc = 0x22;
506         break;
507     case ARMFault_TLBConflict:
508         fsc = 0x30;
509         break;
510     case ARMFault_Lockdown:
511         fsc = 0x34;
512         break;
513     case ARMFault_Exclusive:
514         fsc = 0x35;
515         break;
516     default:
517         /* Other faults can't occur in a context that requires a
518          * long-format status code.
519          */
520         g_assert_not_reached();
521     }
522 
523     fsc |= 1 << 9;
524     return fsc;
525 }
526 
527 static inline bool arm_extabort_type(MemTxResult result)
528 {
529     /* The EA bit in syndromes and fault status registers is an
530      * IMPDEF classification of external aborts. ARM implementations
531      * usually use this to indicate AXI bus Decode error (0) or
532      * Slave error (1); in QEMU we follow that.
533      */
534     return result != MEMTX_DECODE_ERROR;
535 }
536 
537 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
538                       MMUAccessType access_type, int mmu_idx,
539                       bool probe, uintptr_t retaddr);
540 
541 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
542 {
543     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
544 }
545 
546 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
547 {
548     if (arm_feature(env, ARM_FEATURE_M)) {
549         return mmu_idx | ARM_MMU_IDX_M;
550     } else {
551         return mmu_idx | ARM_MMU_IDX_A;
552     }
553 }
554 
555 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
556 {
557     /* AArch64 is always a-profile. */
558     return mmu_idx | ARM_MMU_IDX_A;
559 }
560 
561 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
562 
563 /*
564  * Return the MMU index for a v7M CPU with all relevant information
565  * manually specified.
566  */
567 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
568                               bool secstate, bool priv, bool negpri);
569 
570 /*
571  * Return the MMU index for a v7M CPU in the specified security and
572  * privilege state.
573  */
574 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
575                                                 bool secstate, bool priv);
576 
577 /* Return the MMU index for a v7M CPU in the specified security state */
578 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
579 
580 /* Return true if the stage 1 translation regime is using LPAE format page
581  * tables */
582 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
583 
584 /* Raise a data fault alignment exception for the specified virtual address */
585 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
586                                  MMUAccessType access_type,
587                                  int mmu_idx, uintptr_t retaddr);
588 
589 /* arm_cpu_do_transaction_failed: handle a memory system error response
590  * (eg "no device/memory present at address") by raising an external abort
591  * exception
592  */
593 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
594                                    vaddr addr, unsigned size,
595                                    MMUAccessType access_type,
596                                    int mmu_idx, MemTxAttrs attrs,
597                                    MemTxResult response, uintptr_t retaddr);
598 
599 /* Call any registered EL change hooks */
600 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
601 {
602     ARMELChangeHook *hook, *next;
603     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
604         hook->hook(cpu, hook->opaque);
605     }
606 }
607 static inline void arm_call_el_change_hook(ARMCPU *cpu)
608 {
609     ARMELChangeHook *hook, *next;
610     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
611         hook->hook(cpu, hook->opaque);
612     }
613 }
614 
615 /* Return true if this address translation regime has two ranges.  */
616 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
617 {
618     switch (mmu_idx) {
619     case ARMMMUIdx_Stage1_E0:
620     case ARMMMUIdx_Stage1_E1:
621     case ARMMMUIdx_Stage1_E1_PAN:
622     case ARMMMUIdx_Stage1_SE0:
623     case ARMMMUIdx_Stage1_SE1:
624     case ARMMMUIdx_Stage1_SE1_PAN:
625     case ARMMMUIdx_E10_0:
626     case ARMMMUIdx_E10_1:
627     case ARMMMUIdx_E10_1_PAN:
628     case ARMMMUIdx_E20_0:
629     case ARMMMUIdx_E20_2:
630     case ARMMMUIdx_E20_2_PAN:
631     case ARMMMUIdx_SE10_0:
632     case ARMMMUIdx_SE10_1:
633     case ARMMMUIdx_SE10_1_PAN:
634     case ARMMMUIdx_SE20_0:
635     case ARMMMUIdx_SE20_2:
636     case ARMMMUIdx_SE20_2_PAN:
637         return true;
638     default:
639         return false;
640     }
641 }
642 
643 /* Return true if this address translation regime is secure */
644 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
645 {
646     switch (mmu_idx) {
647     case ARMMMUIdx_E10_0:
648     case ARMMMUIdx_E10_1:
649     case ARMMMUIdx_E10_1_PAN:
650     case ARMMMUIdx_E20_0:
651     case ARMMMUIdx_E20_2:
652     case ARMMMUIdx_E20_2_PAN:
653     case ARMMMUIdx_Stage1_E0:
654     case ARMMMUIdx_Stage1_E1:
655     case ARMMMUIdx_Stage1_E1_PAN:
656     case ARMMMUIdx_E2:
657     case ARMMMUIdx_Stage2:
658     case ARMMMUIdx_MPrivNegPri:
659     case ARMMMUIdx_MUserNegPri:
660     case ARMMMUIdx_MPriv:
661     case ARMMMUIdx_MUser:
662         return false;
663     case ARMMMUIdx_SE3:
664     case ARMMMUIdx_SE10_0:
665     case ARMMMUIdx_SE10_1:
666     case ARMMMUIdx_SE10_1_PAN:
667     case ARMMMUIdx_SE20_0:
668     case ARMMMUIdx_SE20_2:
669     case ARMMMUIdx_SE20_2_PAN:
670     case ARMMMUIdx_Stage1_SE0:
671     case ARMMMUIdx_Stage1_SE1:
672     case ARMMMUIdx_Stage1_SE1_PAN:
673     case ARMMMUIdx_SE2:
674     case ARMMMUIdx_Stage2_S:
675     case ARMMMUIdx_MSPrivNegPri:
676     case ARMMMUIdx_MSUserNegPri:
677     case ARMMMUIdx_MSPriv:
678     case ARMMMUIdx_MSUser:
679         return true;
680     default:
681         g_assert_not_reached();
682     }
683 }
684 
685 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
686 {
687     switch (mmu_idx) {
688     case ARMMMUIdx_Stage1_E1_PAN:
689     case ARMMMUIdx_Stage1_SE1_PAN:
690     case ARMMMUIdx_E10_1_PAN:
691     case ARMMMUIdx_E20_2_PAN:
692     case ARMMMUIdx_SE10_1_PAN:
693     case ARMMMUIdx_SE20_2_PAN:
694         return true;
695     default:
696         return false;
697     }
698 }
699 
700 /* Return the exception level which controls this address translation regime */
701 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
702 {
703     switch (mmu_idx) {
704     case ARMMMUIdx_SE20_0:
705     case ARMMMUIdx_SE20_2:
706     case ARMMMUIdx_SE20_2_PAN:
707     case ARMMMUIdx_E20_0:
708     case ARMMMUIdx_E20_2:
709     case ARMMMUIdx_E20_2_PAN:
710     case ARMMMUIdx_Stage2:
711     case ARMMMUIdx_Stage2_S:
712     case ARMMMUIdx_SE2:
713     case ARMMMUIdx_E2:
714         return 2;
715     case ARMMMUIdx_SE3:
716         return 3;
717     case ARMMMUIdx_SE10_0:
718     case ARMMMUIdx_Stage1_SE0:
719         return arm_el_is_aa64(env, 3) ? 1 : 3;
720     case ARMMMUIdx_SE10_1:
721     case ARMMMUIdx_SE10_1_PAN:
722     case ARMMMUIdx_Stage1_E0:
723     case ARMMMUIdx_Stage1_E1:
724     case ARMMMUIdx_Stage1_E1_PAN:
725     case ARMMMUIdx_Stage1_SE1:
726     case ARMMMUIdx_Stage1_SE1_PAN:
727     case ARMMMUIdx_E10_0:
728     case ARMMMUIdx_E10_1:
729     case ARMMMUIdx_E10_1_PAN:
730     case ARMMMUIdx_MPrivNegPri:
731     case ARMMMUIdx_MUserNegPri:
732     case ARMMMUIdx_MPriv:
733     case ARMMMUIdx_MUser:
734     case ARMMMUIdx_MSPrivNegPri:
735     case ARMMMUIdx_MSUserNegPri:
736     case ARMMMUIdx_MSPriv:
737     case ARMMMUIdx_MSUser:
738         return 1;
739     default:
740         g_assert_not_reached();
741     }
742 }
743 
744 /* Return the TCR controlling this translation regime */
745 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
746 {
747     if (mmu_idx == ARMMMUIdx_Stage2) {
748         return &env->cp15.vtcr_el2;
749     }
750     if (mmu_idx == ARMMMUIdx_Stage2_S) {
751         /*
752          * Note: Secure stage 2 nominally shares fields from VTCR_EL2, but
753          * those are not currently used by QEMU, so just return VSTCR_EL2.
754          */
755         return &env->cp15.vstcr_el2;
756     }
757     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
758 }
759 
760 /* Return the FSR value for a debug exception (watchpoint, hardware
761  * breakpoint or BKPT insn) targeting the specified exception level.
762  */
763 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
764 {
765     ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
766     int target_el = arm_debug_target_el(env);
767     bool using_lpae = false;
768 
769     if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
770         using_lpae = true;
771     } else {
772         if (arm_feature(env, ARM_FEATURE_LPAE) &&
773             (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
774             using_lpae = true;
775         }
776     }
777 
778     if (using_lpae) {
779         return arm_fi_to_lfsc(&fi);
780     } else {
781         return arm_fi_to_sfsc(&fi);
782     }
783 }
784 
785 /**
786  * arm_num_brps: Return number of implemented breakpoints.
787  * Note that the ID register BRPS field is "number of bps - 1",
788  * and we return the actual number of breakpoints.
789  */
790 static inline int arm_num_brps(ARMCPU *cpu)
791 {
792     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
793         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
794     } else {
795         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
796     }
797 }
798 
799 /**
800  * arm_num_wrps: Return number of implemented watchpoints.
801  * Note that the ID register WRPS field is "number of wps - 1",
802  * and we return the actual number of watchpoints.
803  */
804 static inline int arm_num_wrps(ARMCPU *cpu)
805 {
806     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
807         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
808     } else {
809         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
810     }
811 }
812 
813 /**
814  * arm_num_ctx_cmps: Return number of implemented context comparators.
815  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
816  * and we return the actual number of comparators.
817  */
818 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
819 {
820     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
821         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
822     } else {
823         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
824     }
825 }
826 
827 /**
828  * v7m_using_psp: Return true if using process stack pointer
829  * Return true if the CPU is currently using the process stack
830  * pointer, or false if it is using the main stack pointer.
831  */
832 static inline bool v7m_using_psp(CPUARMState *env)
833 {
834     /* Handler mode always uses the main stack; for thread mode
835      * the CONTROL.SPSEL bit determines the answer.
836      * Note that in v7M it is not possible to be in Handler mode with
837      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
838      */
839     return !arm_v7m_is_handler_mode(env) &&
840         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
841 }
842 
843 /**
844  * v7m_sp_limit: Return SP limit for current CPU state
845  * Return the SP limit value for the current CPU security state
846  * and stack pointer.
847  */
848 static inline uint32_t v7m_sp_limit(CPUARMState *env)
849 {
850     if (v7m_using_psp(env)) {
851         return env->v7m.psplim[env->v7m.secure];
852     } else {
853         return env->v7m.msplim[env->v7m.secure];
854     }
855 }
856 
857 /**
858  * v7m_cpacr_pass:
859  * Return true if the v7M CPACR permits access to the FPU for the specified
860  * security state and privilege level.
861  */
862 static inline bool v7m_cpacr_pass(CPUARMState *env,
863                                   bool is_secure, bool is_priv)
864 {
865     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
866     case 0:
867     case 2: /* UNPREDICTABLE: we treat like 0 */
868         return false;
869     case 1:
870         return is_priv;
871     case 3:
872         return true;
873     default:
874         g_assert_not_reached();
875     }
876 }
877 
878 /**
879  * aarch32_mode_name(): Return name of the AArch32 CPU mode
880  * @psr: Program Status Register indicating CPU mode
881  *
882  * Returns, for debug logging purposes, a printable representation
883  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
884  * the low bits of the specified PSR.
885  */
886 static inline const char *aarch32_mode_name(uint32_t psr)
887 {
888     static const char cpu_mode_names[16][4] = {
889         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
890         "???", "???", "hyp", "und", "???", "???", "???", "sys"
891     };
892 
893     return cpu_mode_names[psr & 0xf];
894 }
895 
896 /**
897  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
898  *
899  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
900  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
901  * Must be called with the iothread lock held.
902  */
903 void arm_cpu_update_virq(ARMCPU *cpu);
904 
905 /**
906  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
907  *
908  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
909  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
910  * Must be called with the iothread lock held.
911  */
912 void arm_cpu_update_vfiq(ARMCPU *cpu);
913 
914 /**
915  * arm_mmu_idx_el:
916  * @env: The cpu environment
917  * @el: The EL to use.
918  *
919  * Return the full ARMMMUIdx for the translation regime for EL.
920  */
921 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
922 
923 /**
924  * arm_mmu_idx:
925  * @env: The cpu environment
926  *
927  * Return the full ARMMMUIdx for the current translation regime.
928  */
929 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
930 
931 /**
932  * arm_stage1_mmu_idx:
933  * @env: The cpu environment
934  *
935  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
936  */
937 #ifdef CONFIG_USER_ONLY
938 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
939 {
940     return ARMMMUIdx_Stage1_E0;
941 }
942 #else
943 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
944 #endif
945 
946 /**
947  * arm_mmu_idx_is_stage1_of_2:
948  * @mmu_idx: The ARMMMUIdx to test
949  *
950  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
951  * first stage of a two stage regime.
952  */
953 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
954 {
955     switch (mmu_idx) {
956     case ARMMMUIdx_Stage1_E0:
957     case ARMMMUIdx_Stage1_E1:
958     case ARMMMUIdx_Stage1_E1_PAN:
959     case ARMMMUIdx_Stage1_SE0:
960     case ARMMMUIdx_Stage1_SE1:
961     case ARMMMUIdx_Stage1_SE1_PAN:
962         return true;
963     default:
964         return false;
965     }
966 }
967 
968 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
969                                                const ARMISARegisters *id)
970 {
971     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
972 
973     if ((features >> ARM_FEATURE_V4T) & 1) {
974         valid |= CPSR_T;
975     }
976     if ((features >> ARM_FEATURE_V5) & 1) {
977         valid |= CPSR_Q; /* V5TE in reality*/
978     }
979     if ((features >> ARM_FEATURE_V6) & 1) {
980         valid |= CPSR_E | CPSR_GE;
981     }
982     if ((features >> ARM_FEATURE_THUMB2) & 1) {
983         valid |= CPSR_IT;
984     }
985     if (isar_feature_aa32_jazelle(id)) {
986         valid |= CPSR_J;
987     }
988     if (isar_feature_aa32_pan(id)) {
989         valid |= CPSR_PAN;
990     }
991     if (isar_feature_aa32_dit(id)) {
992         valid |= CPSR_DIT;
993     }
994     if (isar_feature_aa32_ssbs(id)) {
995         valid |= CPSR_SSBS;
996     }
997 
998     return valid;
999 }
1000 
1001 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1002 {
1003     uint32_t valid;
1004 
1005     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1006     if (isar_feature_aa64_bti(id)) {
1007         valid |= PSTATE_BTYPE;
1008     }
1009     if (isar_feature_aa64_pan(id)) {
1010         valid |= PSTATE_PAN;
1011     }
1012     if (isar_feature_aa64_uao(id)) {
1013         valid |= PSTATE_UAO;
1014     }
1015     if (isar_feature_aa64_dit(id)) {
1016         valid |= PSTATE_DIT;
1017     }
1018     if (isar_feature_aa64_ssbs(id)) {
1019         valid |= PSTATE_SSBS;
1020     }
1021     if (isar_feature_aa64_mte(id)) {
1022         valid |= PSTATE_TCO;
1023     }
1024 
1025     return valid;
1026 }
1027 
1028 /*
1029  * Parameters of a given virtual address, as extracted from the
1030  * translation control register (TCR) for a given regime.
1031  */
1032 typedef struct ARMVAParameters {
1033     unsigned tsz    : 8;
1034     unsigned select : 1;
1035     bool tbi        : 1;
1036     bool epd        : 1;
1037     bool hpd        : 1;
1038     bool using16k   : 1;
1039     bool using64k   : 1;
1040 } ARMVAParameters;
1041 
1042 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1043                                    ARMMMUIdx mmu_idx, bool data);
1044 
1045 static inline int exception_target_el(CPUARMState *env)
1046 {
1047     int target_el = MAX(1, arm_current_el(env));
1048 
1049     /*
1050      * No such thing as secure EL1 if EL3 is aarch32,
1051      * so update the target EL to EL3 in this case.
1052      */
1053     if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
1054         target_el = 3;
1055     }
1056 
1057     return target_el;
1058 }
1059 
1060 /* Determine if allocation tags are available.  */
1061 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1062                                                  uint64_t sctlr)
1063 {
1064     if (el < 3
1065         && arm_feature(env, ARM_FEATURE_EL3)
1066         && !(env->cp15.scr_el3 & SCR_ATA)) {
1067         return false;
1068     }
1069     if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
1070         uint64_t hcr = arm_hcr_el2_eff(env);
1071         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1072             return false;
1073         }
1074     }
1075     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1076     return sctlr != 0;
1077 }
1078 
1079 #ifndef CONFIG_USER_ONLY
1080 
1081 /* Security attributes for an address, as returned by v8m_security_lookup. */
1082 typedef struct V8M_SAttributes {
1083     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1084     bool ns;
1085     bool nsc;
1086     uint8_t sregion;
1087     bool srvalid;
1088     uint8_t iregion;
1089     bool irvalid;
1090 } V8M_SAttributes;
1091 
1092 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1093                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1094                          V8M_SAttributes *sattrs);
1095 
1096 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1097                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1098                        hwaddr *phys_ptr, MemTxAttrs *txattrs,
1099                        int *prot, bool *is_subpage,
1100                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1101 
1102 /* Cacheability and shareability attributes for a memory access */
1103 typedef struct ARMCacheAttrs {
1104     unsigned int attrs:8; /* as in the MAIR register encoding */
1105     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1106 } ARMCacheAttrs;
1107 
1108 bool get_phys_addr(CPUARMState *env, target_ulong address,
1109                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
1110                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
1111                    target_ulong *page_size,
1112                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
1113     __attribute__((nonnull));
1114 
1115 void arm_log_exception(int idx);
1116 
1117 #endif /* !CONFIG_USER_ONLY */
1118 
1119 /*
1120  * The log2 of the words in the tag block, for GMID_EL1.BS.
1121  * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1122  */
1123 #define GMID_EL1_BS  6
1124 
1125 /* We associate one allocation tag per 16 bytes, the minimum.  */
1126 #define LOG2_TAG_GRANULE 4
1127 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
1128 
1129 /*
1130  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1131  * the same simd_desc() encoding due to restrictions on size.
1132  * Use these instead.
1133  */
1134 FIELD(PREDDESC, OPRSZ, 0, 6)
1135 FIELD(PREDDESC, ESZ, 6, 2)
1136 FIELD(PREDDESC, DATA, 8, 24)
1137 
1138 /*
1139  * The SVE simd_data field, for memory ops, contains either
1140  * rd (5 bits) or a shift count (2 bits).
1141  */
1142 #define SVE_MTEDESC_SHIFT 5
1143 
1144 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1145 FIELD(MTEDESC, MIDX,  0, 4)
1146 FIELD(MTEDESC, TBI,   4, 2)
1147 FIELD(MTEDESC, TCMA,  6, 2)
1148 FIELD(MTEDESC, WRITE, 8, 1)
1149 FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9)  /* size - 1 */
1150 
1151 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1152 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1153 
1154 static inline int allocation_tag_from_addr(uint64_t ptr)
1155 {
1156     return extract64(ptr, 56, 4);
1157 }
1158 
1159 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1160 {
1161     return deposit64(ptr, 56, 4, rtag);
1162 }
1163 
1164 /* Return true if tbi bits mean that the access is checked.  */
1165 static inline bool tbi_check(uint32_t desc, int bit55)
1166 {
1167     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1168 }
1169 
1170 /* Return true if tcma bits mean that the access is unchecked.  */
1171 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1172 {
1173     /*
1174      * We had extracted bit55 and ptr_tag for other reasons, so fold
1175      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1176      */
1177     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1178     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1179     return tcma && match;
1180 }
1181 
1182 /*
1183  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1184  * for the tag to be present in the FAR_ELx register.  But for user-only
1185  * mode, we do not have a TLB with which to implement this, so we must
1186  * remove the top byte.
1187  */
1188 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1189 {
1190 #ifdef CONFIG_USER_ONLY
1191     /* TBI0 is known to be enabled, while TBI1 is disabled. */
1192     ptr &= sextract64(ptr, 0, 56);
1193 #endif
1194     return ptr;
1195 }
1196 
1197 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1198 {
1199 #ifdef CONFIG_USER_ONLY
1200     int64_t clean_ptr = sextract64(ptr, 0, 56);
1201     if (tbi_check(desc, clean_ptr < 0)) {
1202         ptr = clean_ptr;
1203     }
1204 #endif
1205     return ptr;
1206 }
1207 
1208 /* Values for M-profile PSR.ECI for MVE insns */
1209 enum MVEECIState {
1210     ECI_NONE = 0, /* No completed beats */
1211     ECI_A0 = 1, /* Completed: A0 */
1212     ECI_A0A1 = 2, /* Completed: A0, A1 */
1213     /* 3 is reserved */
1214     ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1215     ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1216     /* All other values reserved */
1217 };
1218 
1219 #endif
1220