xref: /qemu/target/arm/internals.h (revision d01c0046)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 #include "tcg/tcg-gvec-desc.h"
30 #include "syndrome.h"
31 
32 /* register banks for CPU modes */
33 #define BANK_USRSYS 0
34 #define BANK_SVC    1
35 #define BANK_ABT    2
36 #define BANK_UND    3
37 #define BANK_IRQ    4
38 #define BANK_FIQ    5
39 #define BANK_HYP    6
40 #define BANK_MON    7
41 
42 static inline bool excp_is_internal(int excp)
43 {
44     /* Return true if this exception number represents a QEMU-internal
45      * exception that will not be passed to the guest.
46      */
47     return excp == EXCP_INTERRUPT
48         || excp == EXCP_HLT
49         || excp == EXCP_DEBUG
50         || excp == EXCP_HALTED
51         || excp == EXCP_EXCEPTION_EXIT
52         || excp == EXCP_KERNEL_TRAP
53         || excp == EXCP_SEMIHOST;
54 }
55 
56 /* Scale factor for generic timers, ie number of ns per tick.
57  * This gives a 62.5MHz timer.
58  */
59 #define GTIMER_SCALE 16
60 
61 /* Bit definitions for the v7M CONTROL register */
62 FIELD(V7M_CONTROL, NPRIV, 0, 1)
63 FIELD(V7M_CONTROL, SPSEL, 1, 1)
64 FIELD(V7M_CONTROL, FPCA, 2, 1)
65 FIELD(V7M_CONTROL, SFPA, 3, 1)
66 
67 /* Bit definitions for v7M exception return payload */
68 FIELD(V7M_EXCRET, ES, 0, 1)
69 FIELD(V7M_EXCRET, RES0, 1, 1)
70 FIELD(V7M_EXCRET, SPSEL, 2, 1)
71 FIELD(V7M_EXCRET, MODE, 3, 1)
72 FIELD(V7M_EXCRET, FTYPE, 4, 1)
73 FIELD(V7M_EXCRET, DCRS, 5, 1)
74 FIELD(V7M_EXCRET, S, 6, 1)
75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
76 
77 /* Minimum value which is a magic number for exception return */
78 #define EXC_RETURN_MIN_MAGIC 0xff000000
79 /* Minimum number which is a magic number for function or exception return
80  * when using v8M security extension
81  */
82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
83 
84 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
85 FIELD(DBGWCR, E, 0, 1)
86 FIELD(DBGWCR, PAC, 1, 2)
87 FIELD(DBGWCR, LSC, 3, 2)
88 FIELD(DBGWCR, BAS, 5, 8)
89 FIELD(DBGWCR, HMC, 13, 1)
90 FIELD(DBGWCR, SSC, 14, 2)
91 FIELD(DBGWCR, LBN, 16, 4)
92 FIELD(DBGWCR, WT, 20, 1)
93 FIELD(DBGWCR, MASK, 24, 5)
94 FIELD(DBGWCR, SSCE, 29, 1)
95 
96 /* We use a few fake FSR values for internal purposes in M profile.
97  * M profile cores don't have A/R format FSRs, but currently our
98  * get_phys_addr() code assumes A/R profile and reports failures via
99  * an A/R format FSR value. We then translate that into the proper
100  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
101  * Mostly the FSR values we use for this are those defined for v7PMSA,
102  * since we share some of that codepath. A few kinds of fault are
103  * only for M profile and have no A/R equivalent, though, so we have
104  * to pick a value from the reserved range (which we never otherwise
105  * generate) to use for these.
106  * These values will never be visible to the guest.
107  */
108 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
109 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
110 
111 /**
112  * raise_exception: Raise the specified exception.
113  * Raise a guest exception with the specified value, syndrome register
114  * and target exception level. This should be called from helper functions,
115  * and never returns because we will longjump back up to the CPU main loop.
116  */
117 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
118                                 uint32_t syndrome, uint32_t target_el);
119 
120 /*
121  * Similarly, but also use unwinding to restore cpu state.
122  */
123 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
124                                       uint32_t syndrome, uint32_t target_el,
125                                       uintptr_t ra);
126 
127 /*
128  * For AArch64, map a given EL to an index in the banked_spsr array.
129  * Note that this mapping and the AArch32 mapping defined in bank_number()
130  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
131  * mandated mapping between each other.
132  */
133 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
134 {
135     static const unsigned int map[4] = {
136         [1] = BANK_SVC, /* EL1.  */
137         [2] = BANK_HYP, /* EL2.  */
138         [3] = BANK_MON, /* EL3.  */
139     };
140     assert(el >= 1 && el <= 3);
141     return map[el];
142 }
143 
144 /* Map CPU modes onto saved register banks.  */
145 static inline int bank_number(int mode)
146 {
147     switch (mode) {
148     case ARM_CPU_MODE_USR:
149     case ARM_CPU_MODE_SYS:
150         return BANK_USRSYS;
151     case ARM_CPU_MODE_SVC:
152         return BANK_SVC;
153     case ARM_CPU_MODE_ABT:
154         return BANK_ABT;
155     case ARM_CPU_MODE_UND:
156         return BANK_UND;
157     case ARM_CPU_MODE_IRQ:
158         return BANK_IRQ;
159     case ARM_CPU_MODE_FIQ:
160         return BANK_FIQ;
161     case ARM_CPU_MODE_HYP:
162         return BANK_HYP;
163     case ARM_CPU_MODE_MON:
164         return BANK_MON;
165     }
166     g_assert_not_reached();
167 }
168 
169 /**
170  * r14_bank_number: Map CPU mode onto register bank for r14
171  *
172  * Given an AArch32 CPU mode, return the index into the saved register
173  * banks to use for the R14 (LR) in that mode. This is the same as
174  * bank_number(), except for the special case of Hyp mode, where
175  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
176  * This should be used as the index into env->banked_r14[], and
177  * bank_number() used for the index into env->banked_r13[] and
178  * env->banked_spsr[].
179  */
180 static inline int r14_bank_number(int mode)
181 {
182     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
183 }
184 
185 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
186 void arm_translate_init(void);
187 
188 void arm_restore_state_to_opc(CPUState *cs,
189                               const TranslationBlock *tb,
190                               const uint64_t *data);
191 
192 #ifdef CONFIG_TCG
193 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
194 #endif /* CONFIG_TCG */
195 
196 enum arm_fprounding {
197     FPROUNDING_TIEEVEN,
198     FPROUNDING_POSINF,
199     FPROUNDING_NEGINF,
200     FPROUNDING_ZERO,
201     FPROUNDING_TIEAWAY,
202     FPROUNDING_ODD
203 };
204 
205 int arm_rmode_to_sf(int rmode);
206 
207 static inline void aarch64_save_sp(CPUARMState *env, int el)
208 {
209     if (env->pstate & PSTATE_SP) {
210         env->sp_el[el] = env->xregs[31];
211     } else {
212         env->sp_el[0] = env->xregs[31];
213     }
214 }
215 
216 static inline void aarch64_restore_sp(CPUARMState *env, int el)
217 {
218     if (env->pstate & PSTATE_SP) {
219         env->xregs[31] = env->sp_el[el];
220     } else {
221         env->xregs[31] = env->sp_el[0];
222     }
223 }
224 
225 static inline void update_spsel(CPUARMState *env, uint32_t imm)
226 {
227     unsigned int cur_el = arm_current_el(env);
228     /* Update PSTATE SPSel bit; this requires us to update the
229      * working stack pointer in xregs[31].
230      */
231     if (!((imm ^ env->pstate) & PSTATE_SP)) {
232         return;
233     }
234     aarch64_save_sp(env, cur_el);
235     env->pstate = deposit32(env->pstate, 0, 1, imm);
236 
237     /* We rely on illegal updates to SPsel from EL0 to get trapped
238      * at translation time.
239      */
240     assert(cur_el >= 1 && cur_el <= 3);
241     aarch64_restore_sp(env, cur_el);
242 }
243 
244 /*
245  * arm_pamax
246  * @cpu: ARMCPU
247  *
248  * Returns the implementation defined bit-width of physical addresses.
249  * The ARMv8 reference manuals refer to this as PAMax().
250  */
251 unsigned int arm_pamax(ARMCPU *cpu);
252 
253 /* Return true if extended addresses are enabled.
254  * This is always the case if our translation regime is 64 bit,
255  * but depends on TTBCR.EAE for 32 bit.
256  */
257 static inline bool extended_addresses_enabled(CPUARMState *env)
258 {
259     uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
260     return arm_el_is_aa64(env, 1) ||
261            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
262 }
263 
264 /* Update a QEMU watchpoint based on the information the guest has set in the
265  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
266  */
267 void hw_watchpoint_update(ARMCPU *cpu, int n);
268 /* Update the QEMU watchpoints for every guest watchpoint. This does a
269  * complete delete-and-reinstate of the QEMU watchpoint list and so is
270  * suitable for use after migration or on reset.
271  */
272 void hw_watchpoint_update_all(ARMCPU *cpu);
273 /* Update a QEMU breakpoint based on the information the guest has set in the
274  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
275  */
276 void hw_breakpoint_update(ARMCPU *cpu, int n);
277 /* Update the QEMU breakpoints for every guest breakpoint. This does a
278  * complete delete-and-reinstate of the QEMU breakpoint list and so is
279  * suitable for use after migration or on reset.
280  */
281 void hw_breakpoint_update_all(ARMCPU *cpu);
282 
283 /* Callback function for checking if a breakpoint should trigger. */
284 bool arm_debug_check_breakpoint(CPUState *cs);
285 
286 /* Callback function for checking if a watchpoint should trigger. */
287 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
288 
289 /* Adjust addresses (in BE32 mode) before testing against watchpoint
290  * addresses.
291  */
292 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
293 
294 /* Callback function for when a watchpoint or breakpoint triggers. */
295 void arm_debug_excp_handler(CPUState *cs);
296 
297 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
298 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
299 {
300     return false;
301 }
302 static inline void arm_handle_psci_call(ARMCPU *cpu)
303 {
304     g_assert_not_reached();
305 }
306 #else
307 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
308 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
309 /* Actually handle a PSCI call */
310 void arm_handle_psci_call(ARMCPU *cpu);
311 #endif
312 
313 /**
314  * arm_clear_exclusive: clear the exclusive monitor
315  * @env: CPU env
316  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
317  */
318 static inline void arm_clear_exclusive(CPUARMState *env)
319 {
320     env->exclusive_addr = -1;
321 }
322 
323 /**
324  * ARMFaultType: type of an ARM MMU fault
325  * This corresponds to the v8A pseudocode's Fault enumeration,
326  * with extensions for QEMU internal conditions.
327  */
328 typedef enum ARMFaultType {
329     ARMFault_None,
330     ARMFault_AccessFlag,
331     ARMFault_Alignment,
332     ARMFault_Background,
333     ARMFault_Domain,
334     ARMFault_Permission,
335     ARMFault_Translation,
336     ARMFault_AddressSize,
337     ARMFault_SyncExternal,
338     ARMFault_SyncExternalOnWalk,
339     ARMFault_SyncParity,
340     ARMFault_SyncParityOnWalk,
341     ARMFault_AsyncParity,
342     ARMFault_AsyncExternal,
343     ARMFault_Debug,
344     ARMFault_TLBConflict,
345     ARMFault_UnsuppAtomicUpdate,
346     ARMFault_Lockdown,
347     ARMFault_Exclusive,
348     ARMFault_ICacheMaint,
349     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
350     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
351 } ARMFaultType;
352 
353 /**
354  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
355  * @type: Type of fault
356  * @level: Table walk level (for translation, access flag and permission faults)
357  * @domain: Domain of the fault address (for non-LPAE CPUs only)
358  * @s2addr: Address that caused a fault at stage 2
359  * @stage2: True if we faulted at stage 2
360  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
361  * @s1ns: True if we faulted on a non-secure IPA while in secure state
362  * @ea: True if we should set the EA (external abort type) bit in syndrome
363  */
364 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
365 struct ARMMMUFaultInfo {
366     ARMFaultType type;
367     target_ulong s2addr;
368     int level;
369     int domain;
370     bool stage2;
371     bool s1ptw;
372     bool s1ns;
373     bool ea;
374 };
375 
376 /**
377  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
378  * Compare pseudocode EncodeSDFSC(), though unlike that function
379  * we set up a whole FSR-format code including domain field and
380  * putting the high bit of the FSC into bit 10.
381  */
382 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
383 {
384     uint32_t fsc;
385 
386     switch (fi->type) {
387     case ARMFault_None:
388         return 0;
389     case ARMFault_AccessFlag:
390         fsc = fi->level == 1 ? 0x3 : 0x6;
391         break;
392     case ARMFault_Alignment:
393         fsc = 0x1;
394         break;
395     case ARMFault_Permission:
396         fsc = fi->level == 1 ? 0xd : 0xf;
397         break;
398     case ARMFault_Domain:
399         fsc = fi->level == 1 ? 0x9 : 0xb;
400         break;
401     case ARMFault_Translation:
402         fsc = fi->level == 1 ? 0x5 : 0x7;
403         break;
404     case ARMFault_SyncExternal:
405         fsc = 0x8 | (fi->ea << 12);
406         break;
407     case ARMFault_SyncExternalOnWalk:
408         fsc = fi->level == 1 ? 0xc : 0xe;
409         fsc |= (fi->ea << 12);
410         break;
411     case ARMFault_SyncParity:
412         fsc = 0x409;
413         break;
414     case ARMFault_SyncParityOnWalk:
415         fsc = fi->level == 1 ? 0x40c : 0x40e;
416         break;
417     case ARMFault_AsyncParity:
418         fsc = 0x408;
419         break;
420     case ARMFault_AsyncExternal:
421         fsc = 0x406 | (fi->ea << 12);
422         break;
423     case ARMFault_Debug:
424         fsc = 0x2;
425         break;
426     case ARMFault_TLBConflict:
427         fsc = 0x400;
428         break;
429     case ARMFault_Lockdown:
430         fsc = 0x404;
431         break;
432     case ARMFault_Exclusive:
433         fsc = 0x405;
434         break;
435     case ARMFault_ICacheMaint:
436         fsc = 0x4;
437         break;
438     case ARMFault_Background:
439         fsc = 0x0;
440         break;
441     case ARMFault_QEMU_NSCExec:
442         fsc = M_FAKE_FSR_NSC_EXEC;
443         break;
444     case ARMFault_QEMU_SFault:
445         fsc = M_FAKE_FSR_SFAULT;
446         break;
447     default:
448         /* Other faults can't occur in a context that requires a
449          * short-format status code.
450          */
451         g_assert_not_reached();
452     }
453 
454     fsc |= (fi->domain << 4);
455     return fsc;
456 }
457 
458 /**
459  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
460  * Compare pseudocode EncodeLDFSC(), though unlike that function
461  * we fill in also the LPAE bit 9 of a DFSR format.
462  */
463 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
464 {
465     uint32_t fsc;
466 
467     switch (fi->type) {
468     case ARMFault_None:
469         return 0;
470     case ARMFault_AddressSize:
471         assert(fi->level >= -1 && fi->level <= 3);
472         if (fi->level < 0) {
473             fsc = 0b101001;
474         } else {
475             fsc = fi->level;
476         }
477         break;
478     case ARMFault_AccessFlag:
479         assert(fi->level >= 0 && fi->level <= 3);
480         fsc = 0b001000 | fi->level;
481         break;
482     case ARMFault_Permission:
483         assert(fi->level >= 0 && fi->level <= 3);
484         fsc = 0b001100 | fi->level;
485         break;
486     case ARMFault_Translation:
487         assert(fi->level >= -1 && fi->level <= 3);
488         if (fi->level < 0) {
489             fsc = 0b101011;
490         } else {
491             fsc = 0b000100 | fi->level;
492         }
493         break;
494     case ARMFault_SyncExternal:
495         fsc = 0x10 | (fi->ea << 12);
496         break;
497     case ARMFault_SyncExternalOnWalk:
498         assert(fi->level >= -1 && fi->level <= 3);
499         if (fi->level < 0) {
500             fsc = 0b010011;
501         } else {
502             fsc = 0b010100 | fi->level;
503         }
504         fsc |= fi->ea << 12;
505         break;
506     case ARMFault_SyncParity:
507         fsc = 0x18;
508         break;
509     case ARMFault_SyncParityOnWalk:
510         assert(fi->level >= -1 && fi->level <= 3);
511         if (fi->level < 0) {
512             fsc = 0b011011;
513         } else {
514             fsc = 0b011100 | fi->level;
515         }
516         break;
517     case ARMFault_AsyncParity:
518         fsc = 0x19;
519         break;
520     case ARMFault_AsyncExternal:
521         fsc = 0x11 | (fi->ea << 12);
522         break;
523     case ARMFault_Alignment:
524         fsc = 0x21;
525         break;
526     case ARMFault_Debug:
527         fsc = 0x22;
528         break;
529     case ARMFault_TLBConflict:
530         fsc = 0x30;
531         break;
532     case ARMFault_UnsuppAtomicUpdate:
533         fsc = 0x31;
534         break;
535     case ARMFault_Lockdown:
536         fsc = 0x34;
537         break;
538     case ARMFault_Exclusive:
539         fsc = 0x35;
540         break;
541     default:
542         /* Other faults can't occur in a context that requires a
543          * long-format status code.
544          */
545         g_assert_not_reached();
546     }
547 
548     fsc |= 1 << 9;
549     return fsc;
550 }
551 
552 static inline bool arm_extabort_type(MemTxResult result)
553 {
554     /* The EA bit in syndromes and fault status registers is an
555      * IMPDEF classification of external aborts. ARM implementations
556      * usually use this to indicate AXI bus Decode error (0) or
557      * Slave error (1); in QEMU we follow that.
558      */
559     return result != MEMTX_DECODE_ERROR;
560 }
561 
562 #ifdef CONFIG_USER_ONLY
563 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
564                             MMUAccessType access_type,
565                             bool maperr, uintptr_t ra);
566 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
567                            MMUAccessType access_type, uintptr_t ra);
568 #else
569 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
570                       MMUAccessType access_type, int mmu_idx,
571                       bool probe, uintptr_t retaddr);
572 #endif
573 
574 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
575 {
576     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
577 }
578 
579 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
580 {
581     if (arm_feature(env, ARM_FEATURE_M)) {
582         return mmu_idx | ARM_MMU_IDX_M;
583     } else {
584         return mmu_idx | ARM_MMU_IDX_A;
585     }
586 }
587 
588 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
589 {
590     /* AArch64 is always a-profile. */
591     return mmu_idx | ARM_MMU_IDX_A;
592 }
593 
594 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
595 
596 /*
597  * Return the MMU index for a v7M CPU with all relevant information
598  * manually specified.
599  */
600 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
601                               bool secstate, bool priv, bool negpri);
602 
603 /*
604  * Return the MMU index for a v7M CPU in the specified security and
605  * privilege state.
606  */
607 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
608                                                 bool secstate, bool priv);
609 
610 /* Return the MMU index for a v7M CPU in the specified security state */
611 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
612 
613 /* Return true if the translation regime is using LPAE format page tables */
614 bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
615 
616 /*
617  * Return true if the stage 1 translation regime is using LPAE
618  * format page tables
619  */
620 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
621 
622 /* Raise a data fault alignment exception for the specified virtual address */
623 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
624                                             MMUAccessType access_type,
625                                             int mmu_idx, uintptr_t retaddr);
626 
627 /* arm_cpu_do_transaction_failed: handle a memory system error response
628  * (eg "no device/memory present at address") by raising an external abort
629  * exception
630  */
631 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
632                                    vaddr addr, unsigned size,
633                                    MMUAccessType access_type,
634                                    int mmu_idx, MemTxAttrs attrs,
635                                    MemTxResult response, uintptr_t retaddr);
636 
637 /* Call any registered EL change hooks */
638 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
639 {
640     ARMELChangeHook *hook, *next;
641     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
642         hook->hook(cpu, hook->opaque);
643     }
644 }
645 static inline void arm_call_el_change_hook(ARMCPU *cpu)
646 {
647     ARMELChangeHook *hook, *next;
648     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
649         hook->hook(cpu, hook->opaque);
650     }
651 }
652 
653 /* Return true if this address translation regime has two ranges.  */
654 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
655 {
656     switch (mmu_idx) {
657     case ARMMMUIdx_Stage1_E0:
658     case ARMMMUIdx_Stage1_E1:
659     case ARMMMUIdx_Stage1_E1_PAN:
660     case ARMMMUIdx_E10_0:
661     case ARMMMUIdx_E10_1:
662     case ARMMMUIdx_E10_1_PAN:
663     case ARMMMUIdx_E20_0:
664     case ARMMMUIdx_E20_2:
665     case ARMMMUIdx_E20_2_PAN:
666         return true;
667     default:
668         return false;
669     }
670 }
671 
672 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
673 {
674     switch (mmu_idx) {
675     case ARMMMUIdx_Stage1_E1_PAN:
676     case ARMMMUIdx_E10_1_PAN:
677     case ARMMMUIdx_E20_2_PAN:
678         return true;
679     default:
680         return false;
681     }
682 }
683 
684 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
685 {
686     return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
687 }
688 
689 /* Return the exception level which controls this address translation regime */
690 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
691 {
692     switch (mmu_idx) {
693     case ARMMMUIdx_E20_0:
694     case ARMMMUIdx_E20_2:
695     case ARMMMUIdx_E20_2_PAN:
696     case ARMMMUIdx_Stage2:
697     case ARMMMUIdx_Stage2_S:
698     case ARMMMUIdx_E2:
699         return 2;
700     case ARMMMUIdx_E3:
701         return 3;
702     case ARMMMUIdx_E10_0:
703     case ARMMMUIdx_Stage1_E0:
704         return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3;
705     case ARMMMUIdx_Stage1_E1:
706     case ARMMMUIdx_Stage1_E1_PAN:
707     case ARMMMUIdx_E10_1:
708     case ARMMMUIdx_E10_1_PAN:
709     case ARMMMUIdx_MPrivNegPri:
710     case ARMMMUIdx_MUserNegPri:
711     case ARMMMUIdx_MPriv:
712     case ARMMMUIdx_MUser:
713     case ARMMMUIdx_MSPrivNegPri:
714     case ARMMMUIdx_MSUserNegPri:
715     case ARMMMUIdx_MSPriv:
716     case ARMMMUIdx_MSUser:
717         return 1;
718     default:
719         g_assert_not_reached();
720     }
721 }
722 
723 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
724 {
725     switch (mmu_idx) {
726     case ARMMMUIdx_E20_0:
727     case ARMMMUIdx_Stage1_E0:
728     case ARMMMUIdx_MUser:
729     case ARMMMUIdx_MSUser:
730     case ARMMMUIdx_MUserNegPri:
731     case ARMMMUIdx_MSUserNegPri:
732         return true;
733     default:
734         return false;
735     case ARMMMUIdx_E10_0:
736     case ARMMMUIdx_E10_1:
737     case ARMMMUIdx_E10_1_PAN:
738         g_assert_not_reached();
739     }
740 }
741 
742 /* Return the SCTLR value which controls this address translation regime */
743 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
744 {
745     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
746 }
747 
748 /*
749  * These are the fields in VTCR_EL2 which affect both the Secure stage 2
750  * and the Non-Secure stage 2 translation regimes (and hence which are
751  * not present in VSTCR_EL2).
752  */
753 #define VTCR_SHARED_FIELD_MASK \
754     (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
755      R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
756      R_VTCR_DS_MASK)
757 
758 /* Return the value of the TCR controlling this translation regime */
759 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
760 {
761     if (mmu_idx == ARMMMUIdx_Stage2) {
762         return env->cp15.vtcr_el2;
763     }
764     if (mmu_idx == ARMMMUIdx_Stage2_S) {
765         /*
766          * Secure stage 2 shares fields from VTCR_EL2. We merge those
767          * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
768          * value so the callers don't need to special case this.
769          *
770          * If a future architecture change defines bits in VSTCR_EL2 that
771          * overlap with these VTCR_EL2 fields we may need to revisit this.
772          */
773         uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
774         v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
775         return v;
776     }
777     return env->cp15.tcr_el[regime_el(env, mmu_idx)];
778 }
779 
780 /**
781  * arm_num_brps: Return number of implemented breakpoints.
782  * Note that the ID register BRPS field is "number of bps - 1",
783  * and we return the actual number of breakpoints.
784  */
785 static inline int arm_num_brps(ARMCPU *cpu)
786 {
787     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
788         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
789     } else {
790         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
791     }
792 }
793 
794 /**
795  * arm_num_wrps: Return number of implemented watchpoints.
796  * Note that the ID register WRPS field is "number of wps - 1",
797  * and we return the actual number of watchpoints.
798  */
799 static inline int arm_num_wrps(ARMCPU *cpu)
800 {
801     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
802         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
803     } else {
804         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
805     }
806 }
807 
808 /**
809  * arm_num_ctx_cmps: Return number of implemented context comparators.
810  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
811  * and we return the actual number of comparators.
812  */
813 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
814 {
815     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
816         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
817     } else {
818         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
819     }
820 }
821 
822 /**
823  * v7m_using_psp: Return true if using process stack pointer
824  * Return true if the CPU is currently using the process stack
825  * pointer, or false if it is using the main stack pointer.
826  */
827 static inline bool v7m_using_psp(CPUARMState *env)
828 {
829     /* Handler mode always uses the main stack; for thread mode
830      * the CONTROL.SPSEL bit determines the answer.
831      * Note that in v7M it is not possible to be in Handler mode with
832      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
833      */
834     return !arm_v7m_is_handler_mode(env) &&
835         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
836 }
837 
838 /**
839  * v7m_sp_limit: Return SP limit for current CPU state
840  * Return the SP limit value for the current CPU security state
841  * and stack pointer.
842  */
843 static inline uint32_t v7m_sp_limit(CPUARMState *env)
844 {
845     if (v7m_using_psp(env)) {
846         return env->v7m.psplim[env->v7m.secure];
847     } else {
848         return env->v7m.msplim[env->v7m.secure];
849     }
850 }
851 
852 /**
853  * v7m_cpacr_pass:
854  * Return true if the v7M CPACR permits access to the FPU for the specified
855  * security state and privilege level.
856  */
857 static inline bool v7m_cpacr_pass(CPUARMState *env,
858                                   bool is_secure, bool is_priv)
859 {
860     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
861     case 0:
862     case 2: /* UNPREDICTABLE: we treat like 0 */
863         return false;
864     case 1:
865         return is_priv;
866     case 3:
867         return true;
868     default:
869         g_assert_not_reached();
870     }
871 }
872 
873 /**
874  * aarch32_mode_name(): Return name of the AArch32 CPU mode
875  * @psr: Program Status Register indicating CPU mode
876  *
877  * Returns, for debug logging purposes, a printable representation
878  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
879  * the low bits of the specified PSR.
880  */
881 static inline const char *aarch32_mode_name(uint32_t psr)
882 {
883     static const char cpu_mode_names[16][4] = {
884         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
885         "???", "???", "hyp", "und", "???", "???", "???", "sys"
886     };
887 
888     return cpu_mode_names[psr & 0xf];
889 }
890 
891 /**
892  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
893  *
894  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
895  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
896  * Must be called with the iothread lock held.
897  */
898 void arm_cpu_update_virq(ARMCPU *cpu);
899 
900 /**
901  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
902  *
903  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
904  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
905  * Must be called with the iothread lock held.
906  */
907 void arm_cpu_update_vfiq(ARMCPU *cpu);
908 
909 /**
910  * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
911  *
912  * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
913  * following a change to the HCR_EL2.VSE bit.
914  */
915 void arm_cpu_update_vserr(ARMCPU *cpu);
916 
917 /**
918  * arm_mmu_idx_el:
919  * @env: The cpu environment
920  * @el: The EL to use.
921  *
922  * Return the full ARMMMUIdx for the translation regime for EL.
923  */
924 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
925 
926 /**
927  * arm_mmu_idx:
928  * @env: The cpu environment
929  *
930  * Return the full ARMMMUIdx for the current translation regime.
931  */
932 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
933 
934 /**
935  * arm_stage1_mmu_idx:
936  * @env: The cpu environment
937  *
938  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
939  */
940 #ifdef CONFIG_USER_ONLY
941 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
942 {
943     return ARMMMUIdx_Stage1_E0;
944 }
945 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
946 {
947     return ARMMMUIdx_Stage1_E0;
948 }
949 #else
950 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
951 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
952 #endif
953 
954 /**
955  * arm_mmu_idx_is_stage1_of_2:
956  * @mmu_idx: The ARMMMUIdx to test
957  *
958  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
959  * first stage of a two stage regime.
960  */
961 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
962 {
963     switch (mmu_idx) {
964     case ARMMMUIdx_Stage1_E0:
965     case ARMMMUIdx_Stage1_E1:
966     case ARMMMUIdx_Stage1_E1_PAN:
967         return true;
968     default:
969         return false;
970     }
971 }
972 
973 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
974                                                const ARMISARegisters *id)
975 {
976     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
977 
978     if ((features >> ARM_FEATURE_V4T) & 1) {
979         valid |= CPSR_T;
980     }
981     if ((features >> ARM_FEATURE_V5) & 1) {
982         valid |= CPSR_Q; /* V5TE in reality*/
983     }
984     if ((features >> ARM_FEATURE_V6) & 1) {
985         valid |= CPSR_E | CPSR_GE;
986     }
987     if ((features >> ARM_FEATURE_THUMB2) & 1) {
988         valid |= CPSR_IT;
989     }
990     if (isar_feature_aa32_jazelle(id)) {
991         valid |= CPSR_J;
992     }
993     if (isar_feature_aa32_pan(id)) {
994         valid |= CPSR_PAN;
995     }
996     if (isar_feature_aa32_dit(id)) {
997         valid |= CPSR_DIT;
998     }
999     if (isar_feature_aa32_ssbs(id)) {
1000         valid |= CPSR_SSBS;
1001     }
1002 
1003     return valid;
1004 }
1005 
1006 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1007 {
1008     uint32_t valid;
1009 
1010     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1011     if (isar_feature_aa64_bti(id)) {
1012         valid |= PSTATE_BTYPE;
1013     }
1014     if (isar_feature_aa64_pan(id)) {
1015         valid |= PSTATE_PAN;
1016     }
1017     if (isar_feature_aa64_uao(id)) {
1018         valid |= PSTATE_UAO;
1019     }
1020     if (isar_feature_aa64_dit(id)) {
1021         valid |= PSTATE_DIT;
1022     }
1023     if (isar_feature_aa64_ssbs(id)) {
1024         valid |= PSTATE_SSBS;
1025     }
1026     if (isar_feature_aa64_mte(id)) {
1027         valid |= PSTATE_TCO;
1028     }
1029 
1030     return valid;
1031 }
1032 
1033 /* Granule size (i.e. page size) */
1034 typedef enum ARMGranuleSize {
1035     /* Same order as TG0 encoding */
1036     Gran4K,
1037     Gran64K,
1038     Gran16K,
1039     GranInvalid,
1040 } ARMGranuleSize;
1041 
1042 /**
1043  * arm_granule_bits: Return address size of the granule in bits
1044  *
1045  * Return the address size of the granule in bits. This corresponds
1046  * to the pseudocode TGxGranuleBits().
1047  */
1048 static inline int arm_granule_bits(ARMGranuleSize gran)
1049 {
1050     switch (gran) {
1051     case Gran64K:
1052         return 16;
1053     case Gran16K:
1054         return 14;
1055     case Gran4K:
1056         return 12;
1057     default:
1058         g_assert_not_reached();
1059     }
1060 }
1061 
1062 /*
1063  * Parameters of a given virtual address, as extracted from the
1064  * translation control register (TCR) for a given regime.
1065  */
1066 typedef struct ARMVAParameters {
1067     unsigned tsz    : 8;
1068     unsigned ps     : 3;
1069     unsigned sh     : 2;
1070     unsigned select : 1;
1071     bool tbi        : 1;
1072     bool epd        : 1;
1073     bool hpd        : 1;
1074     bool tsz_oob    : 1;  /* tsz has been clamped to legal range */
1075     bool ds         : 1;
1076     bool ha         : 1;
1077     bool hd         : 1;
1078     ARMGranuleSize gran : 2;
1079 } ARMVAParameters;
1080 
1081 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1082                                    ARMMMUIdx mmu_idx, bool data);
1083 
1084 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1085 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1086 
1087 /* Determine if allocation tags are available.  */
1088 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1089                                                  uint64_t sctlr)
1090 {
1091     if (el < 3
1092         && arm_feature(env, ARM_FEATURE_EL3)
1093         && !(env->cp15.scr_el3 & SCR_ATA)) {
1094         return false;
1095     }
1096     if (el < 2 && arm_is_el2_enabled(env)) {
1097         uint64_t hcr = arm_hcr_el2_eff(env);
1098         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1099             return false;
1100         }
1101     }
1102     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1103     return sctlr != 0;
1104 }
1105 
1106 #ifndef CONFIG_USER_ONLY
1107 
1108 /* Security attributes for an address, as returned by v8m_security_lookup. */
1109 typedef struct V8M_SAttributes {
1110     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1111     bool ns;
1112     bool nsc;
1113     uint8_t sregion;
1114     bool srvalid;
1115     uint8_t iregion;
1116     bool irvalid;
1117 } V8M_SAttributes;
1118 
1119 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1120                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1121                          bool secure, V8M_SAttributes *sattrs);
1122 
1123 /* Cacheability and shareability attributes for a memory access */
1124 typedef struct ARMCacheAttrs {
1125     /*
1126      * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1127      * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1128      */
1129     unsigned int attrs:8;
1130     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1131     bool is_s2_format:1;
1132     bool guarded:1;              /* guarded bit of the v8-64 PTE */
1133 } ARMCacheAttrs;
1134 
1135 /* Fields that are valid upon success. */
1136 typedef struct GetPhysAddrResult {
1137     CPUTLBEntryFull f;
1138     ARMCacheAttrs cacheattrs;
1139 } GetPhysAddrResult;
1140 
1141 /**
1142  * get_phys_addr_with_secure: get the physical address for a virtual address
1143  * @env: CPUARMState
1144  * @address: virtual address to get physical address for
1145  * @access_type: 0 for read, 1 for write, 2 for execute
1146  * @mmu_idx: MMU index indicating required translation regime
1147  * @is_secure: security state for the access
1148  * @result: set on translation success.
1149  * @fi: set to fault info if the translation fails
1150  *
1151  * Find the physical address corresponding to the given virtual address,
1152  * by doing a translation table walk on MMU based systems or using the
1153  * MPU state on MPU based systems.
1154  *
1155  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1156  * prot and page_size may not be filled in, and the populated fsr value provides
1157  * information on why the translation aborted, in the format of a
1158  * DFSR/IFSR fault register, with the following caveats:
1159  *  * we honour the short vs long DFSR format differences.
1160  *  * the WnR bit is never set (the caller must do this).
1161  *  * for PSMAv5 based systems we don't bother to return a full FSR format
1162  *    value.
1163  */
1164 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
1165                                MMUAccessType access_type,
1166                                ARMMMUIdx mmu_idx, bool is_secure,
1167                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1168     __attribute__((nonnull));
1169 
1170 /**
1171  * get_phys_addr: get the physical address for a virtual address
1172  * @env: CPUARMState
1173  * @address: virtual address to get physical address for
1174  * @access_type: 0 for read, 1 for write, 2 for execute
1175  * @mmu_idx: MMU index indicating required translation regime
1176  * @result: set on translation success.
1177  * @fi: set to fault info if the translation fails
1178  *
1179  * Similarly, but use the security regime of @mmu_idx.
1180  */
1181 bool get_phys_addr(CPUARMState *env, target_ulong address,
1182                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
1183                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1184     __attribute__((nonnull));
1185 
1186 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1187                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1188                        bool is_secure, GetPhysAddrResult *result,
1189                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1190 
1191 void arm_log_exception(CPUState *cs);
1192 
1193 #endif /* !CONFIG_USER_ONLY */
1194 
1195 /*
1196  * The log2 of the words in the tag block, for GMID_EL1.BS.
1197  * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1198  */
1199 #define GMID_EL1_BS  6
1200 
1201 /*
1202  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1203  * the same simd_desc() encoding due to restrictions on size.
1204  * Use these instead.
1205  */
1206 FIELD(PREDDESC, OPRSZ, 0, 6)
1207 FIELD(PREDDESC, ESZ, 6, 2)
1208 FIELD(PREDDESC, DATA, 8, 24)
1209 
1210 /*
1211  * The SVE simd_data field, for memory ops, contains either
1212  * rd (5 bits) or a shift count (2 bits).
1213  */
1214 #define SVE_MTEDESC_SHIFT 5
1215 
1216 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1217 FIELD(MTEDESC, MIDX,  0, 4)
1218 FIELD(MTEDESC, TBI,   4, 2)
1219 FIELD(MTEDESC, TCMA,  6, 2)
1220 FIELD(MTEDESC, WRITE, 8, 1)
1221 FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9)  /* size - 1 */
1222 
1223 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1224 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1225 
1226 static inline int allocation_tag_from_addr(uint64_t ptr)
1227 {
1228     return extract64(ptr, 56, 4);
1229 }
1230 
1231 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1232 {
1233     return deposit64(ptr, 56, 4, rtag);
1234 }
1235 
1236 /* Return true if tbi bits mean that the access is checked.  */
1237 static inline bool tbi_check(uint32_t desc, int bit55)
1238 {
1239     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1240 }
1241 
1242 /* Return true if tcma bits mean that the access is unchecked.  */
1243 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1244 {
1245     /*
1246      * We had extracted bit55 and ptr_tag for other reasons, so fold
1247      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1248      */
1249     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1250     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1251     return tcma && match;
1252 }
1253 
1254 /*
1255  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1256  * for the tag to be present in the FAR_ELx register.  But for user-only
1257  * mode, we do not have a TLB with which to implement this, so we must
1258  * remove the top byte.
1259  */
1260 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1261 {
1262 #ifdef CONFIG_USER_ONLY
1263     /* TBI0 is known to be enabled, while TBI1 is disabled. */
1264     ptr &= sextract64(ptr, 0, 56);
1265 #endif
1266     return ptr;
1267 }
1268 
1269 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1270 {
1271 #ifdef CONFIG_USER_ONLY
1272     int64_t clean_ptr = sextract64(ptr, 0, 56);
1273     if (tbi_check(desc, clean_ptr < 0)) {
1274         ptr = clean_ptr;
1275     }
1276 #endif
1277     return ptr;
1278 }
1279 
1280 /* Values for M-profile PSR.ECI for MVE insns */
1281 enum MVEECIState {
1282     ECI_NONE = 0, /* No completed beats */
1283     ECI_A0 = 1, /* Completed: A0 */
1284     ECI_A0A1 = 2, /* Completed: A0, A1 */
1285     /* 3 is reserved */
1286     ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1287     ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1288     /* All other values reserved */
1289 };
1290 
1291 /* Definitions for the PMU registers */
1292 #define PMCRN_MASK  0xf800
1293 #define PMCRN_SHIFT 11
1294 #define PMCRLP  0x80
1295 #define PMCRLC  0x40
1296 #define PMCRDP  0x20
1297 #define PMCRX   0x10
1298 #define PMCRD   0x8
1299 #define PMCRC   0x4
1300 #define PMCRP   0x2
1301 #define PMCRE   0x1
1302 /*
1303  * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1304  * which can be written as 1 to trigger behaviour but which stay RAZ).
1305  */
1306 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1307 
1308 #define PMXEVTYPER_P          0x80000000
1309 #define PMXEVTYPER_U          0x40000000
1310 #define PMXEVTYPER_NSK        0x20000000
1311 #define PMXEVTYPER_NSU        0x10000000
1312 #define PMXEVTYPER_NSH        0x08000000
1313 #define PMXEVTYPER_M          0x04000000
1314 #define PMXEVTYPER_MT         0x02000000
1315 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1316 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1317                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1318                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1319                                PMXEVTYPER_EVTCOUNT)
1320 
1321 #define PMCCFILTR             0xf8000000
1322 #define PMCCFILTR_M           PMXEVTYPER_M
1323 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1324 
1325 static inline uint32_t pmu_num_counters(CPUARMState *env)
1326 {
1327     ARMCPU *cpu = env_archcpu(env);
1328 
1329     return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1330 }
1331 
1332 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1333 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1334 {
1335   return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
1336 }
1337 
1338 #ifdef TARGET_AARCH64
1339 int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg);
1340 int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg);
1341 int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg);
1342 int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg);
1343 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1344 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1345 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1346 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1347 #endif
1348 
1349 #ifdef CONFIG_USER_ONLY
1350 static inline void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu) { }
1351 #else
1352 void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu);
1353 #endif
1354 
1355 bool el_is_in_host(CPUARMState *env, int el);
1356 
1357 void aa32_max_features(ARMCPU *cpu);
1358 int exception_target_el(CPUARMState *env);
1359 bool arm_singlestep_active(CPUARMState *env);
1360 bool arm_generate_debug_exceptions(CPUARMState *env);
1361 
1362 /* Add the cpreg definitions for debug related system registers */
1363 void define_debug_regs(ARMCPU *cpu);
1364 
1365 /* Effective value of MDCR_EL2 */
1366 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1367 {
1368     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1369 }
1370 
1371 /* Powers of 2 for sve_vq_map et al. */
1372 #define SVE_VQ_POW2_MAP                                 \
1373     ((1 << (1 - 1)) | (1 << (2 - 1)) |                  \
1374      (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1375 
1376 #endif
1377