xref: /qemu/target/arm/internals.h (revision d201cf7a)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 #include "tcg/tcg-gvec-desc.h"
30 #include "syndrome.h"
31 
32 /* register banks for CPU modes */
33 #define BANK_USRSYS 0
34 #define BANK_SVC    1
35 #define BANK_ABT    2
36 #define BANK_UND    3
37 #define BANK_IRQ    4
38 #define BANK_FIQ    5
39 #define BANK_HYP    6
40 #define BANK_MON    7
41 
42 static inline bool excp_is_internal(int excp)
43 {
44     /* Return true if this exception number represents a QEMU-internal
45      * exception that will not be passed to the guest.
46      */
47     return excp == EXCP_INTERRUPT
48         || excp == EXCP_HLT
49         || excp == EXCP_DEBUG
50         || excp == EXCP_HALTED
51         || excp == EXCP_EXCEPTION_EXIT
52         || excp == EXCP_KERNEL_TRAP
53         || excp == EXCP_SEMIHOST;
54 }
55 
56 /* Scale factor for generic timers, ie number of ns per tick.
57  * This gives a 62.5MHz timer.
58  */
59 #define GTIMER_SCALE 16
60 
61 /* Bit definitions for the v7M CONTROL register */
62 FIELD(V7M_CONTROL, NPRIV, 0, 1)
63 FIELD(V7M_CONTROL, SPSEL, 1, 1)
64 FIELD(V7M_CONTROL, FPCA, 2, 1)
65 FIELD(V7M_CONTROL, SFPA, 3, 1)
66 
67 /* Bit definitions for v7M exception return payload */
68 FIELD(V7M_EXCRET, ES, 0, 1)
69 FIELD(V7M_EXCRET, RES0, 1, 1)
70 FIELD(V7M_EXCRET, SPSEL, 2, 1)
71 FIELD(V7M_EXCRET, MODE, 3, 1)
72 FIELD(V7M_EXCRET, FTYPE, 4, 1)
73 FIELD(V7M_EXCRET, DCRS, 5, 1)
74 FIELD(V7M_EXCRET, S, 6, 1)
75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
76 
77 /* Minimum value which is a magic number for exception return */
78 #define EXC_RETURN_MIN_MAGIC 0xff000000
79 /* Minimum number which is a magic number for function or exception return
80  * when using v8M security extension
81  */
82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
83 
84 /* We use a few fake FSR values for internal purposes in M profile.
85  * M profile cores don't have A/R format FSRs, but currently our
86  * get_phys_addr() code assumes A/R profile and reports failures via
87  * an A/R format FSR value. We then translate that into the proper
88  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
89  * Mostly the FSR values we use for this are those defined for v7PMSA,
90  * since we share some of that codepath. A few kinds of fault are
91  * only for M profile and have no A/R equivalent, though, so we have
92  * to pick a value from the reserved range (which we never otherwise
93  * generate) to use for these.
94  * These values will never be visible to the guest.
95  */
96 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
97 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
98 
99 /**
100  * raise_exception: Raise the specified exception.
101  * Raise a guest exception with the specified value, syndrome register
102  * and target exception level. This should be called from helper functions,
103  * and never returns because we will longjump back up to the CPU main loop.
104  */
105 void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
106                                    uint32_t syndrome, uint32_t target_el);
107 
108 /*
109  * Similarly, but also use unwinding to restore cpu state.
110  */
111 void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp,
112                                       uint32_t syndrome, uint32_t target_el,
113                                       uintptr_t ra);
114 
115 /*
116  * For AArch64, map a given EL to an index in the banked_spsr array.
117  * Note that this mapping and the AArch32 mapping defined in bank_number()
118  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
119  * mandated mapping between each other.
120  */
121 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
122 {
123     static const unsigned int map[4] = {
124         [1] = BANK_SVC, /* EL1.  */
125         [2] = BANK_HYP, /* EL2.  */
126         [3] = BANK_MON, /* EL3.  */
127     };
128     assert(el >= 1 && el <= 3);
129     return map[el];
130 }
131 
132 /* Map CPU modes onto saved register banks.  */
133 static inline int bank_number(int mode)
134 {
135     switch (mode) {
136     case ARM_CPU_MODE_USR:
137     case ARM_CPU_MODE_SYS:
138         return BANK_USRSYS;
139     case ARM_CPU_MODE_SVC:
140         return BANK_SVC;
141     case ARM_CPU_MODE_ABT:
142         return BANK_ABT;
143     case ARM_CPU_MODE_UND:
144         return BANK_UND;
145     case ARM_CPU_MODE_IRQ:
146         return BANK_IRQ;
147     case ARM_CPU_MODE_FIQ:
148         return BANK_FIQ;
149     case ARM_CPU_MODE_HYP:
150         return BANK_HYP;
151     case ARM_CPU_MODE_MON:
152         return BANK_MON;
153     }
154     g_assert_not_reached();
155 }
156 
157 /**
158  * r14_bank_number: Map CPU mode onto register bank for r14
159  *
160  * Given an AArch32 CPU mode, return the index into the saved register
161  * banks to use for the R14 (LR) in that mode. This is the same as
162  * bank_number(), except for the special case of Hyp mode, where
163  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
164  * This should be used as the index into env->banked_r14[], and
165  * bank_number() used for the index into env->banked_r13[] and
166  * env->banked_spsr[].
167  */
168 static inline int r14_bank_number(int mode)
169 {
170     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
171 }
172 
173 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
174 void arm_translate_init(void);
175 
176 #ifdef CONFIG_TCG
177 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
178 #endif /* CONFIG_TCG */
179 
180 /**
181  * aarch64_sve_zcr_get_valid_len:
182  * @cpu: cpu context
183  * @start_len: maximum len to consider
184  *
185  * Return the maximum supported sve vector length <= @start_len.
186  * Note that both @start_len and the return value are in units
187  * of ZCR_ELx.LEN, so the vector bit length is (x + 1) * 128.
188  */
189 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len);
190 
191 enum arm_fprounding {
192     FPROUNDING_TIEEVEN,
193     FPROUNDING_POSINF,
194     FPROUNDING_NEGINF,
195     FPROUNDING_ZERO,
196     FPROUNDING_TIEAWAY,
197     FPROUNDING_ODD
198 };
199 
200 int arm_rmode_to_sf(int rmode);
201 
202 static inline void aarch64_save_sp(CPUARMState *env, int el)
203 {
204     if (env->pstate & PSTATE_SP) {
205         env->sp_el[el] = env->xregs[31];
206     } else {
207         env->sp_el[0] = env->xregs[31];
208     }
209 }
210 
211 static inline void aarch64_restore_sp(CPUARMState *env, int el)
212 {
213     if (env->pstate & PSTATE_SP) {
214         env->xregs[31] = env->sp_el[el];
215     } else {
216         env->xregs[31] = env->sp_el[0];
217     }
218 }
219 
220 static inline void update_spsel(CPUARMState *env, uint32_t imm)
221 {
222     unsigned int cur_el = arm_current_el(env);
223     /* Update PSTATE SPSel bit; this requires us to update the
224      * working stack pointer in xregs[31].
225      */
226     if (!((imm ^ env->pstate) & PSTATE_SP)) {
227         return;
228     }
229     aarch64_save_sp(env, cur_el);
230     env->pstate = deposit32(env->pstate, 0, 1, imm);
231 
232     /* We rely on illegal updates to SPsel from EL0 to get trapped
233      * at translation time.
234      */
235     assert(cur_el >= 1 && cur_el <= 3);
236     aarch64_restore_sp(env, cur_el);
237 }
238 
239 /*
240  * arm_pamax
241  * @cpu: ARMCPU
242  *
243  * Returns the implementation defined bit-width of physical addresses.
244  * The ARMv8 reference manuals refer to this as PAMax().
245  */
246 static inline unsigned int arm_pamax(ARMCPU *cpu)
247 {
248     static const unsigned int pamax_map[] = {
249         [0] = 32,
250         [1] = 36,
251         [2] = 40,
252         [3] = 42,
253         [4] = 44,
254         [5] = 48,
255     };
256     unsigned int parange =
257         FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
258 
259     /* id_aa64mmfr0 is a read-only register so values outside of the
260      * supported mappings can be considered an implementation error.  */
261     assert(parange < ARRAY_SIZE(pamax_map));
262     return pamax_map[parange];
263 }
264 
265 /* Return true if extended addresses are enabled.
266  * This is always the case if our translation regime is 64 bit,
267  * but depends on TTBCR.EAE for 32 bit.
268  */
269 static inline bool extended_addresses_enabled(CPUARMState *env)
270 {
271     TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
272     return arm_el_is_aa64(env, 1) ||
273            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
274 }
275 
276 /* Update a QEMU watchpoint based on the information the guest has set in the
277  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
278  */
279 void hw_watchpoint_update(ARMCPU *cpu, int n);
280 /* Update the QEMU watchpoints for every guest watchpoint. This does a
281  * complete delete-and-reinstate of the QEMU watchpoint list and so is
282  * suitable for use after migration or on reset.
283  */
284 void hw_watchpoint_update_all(ARMCPU *cpu);
285 /* Update a QEMU breakpoint based on the information the guest has set in the
286  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
287  */
288 void hw_breakpoint_update(ARMCPU *cpu, int n);
289 /* Update the QEMU breakpoints for every guest breakpoint. This does a
290  * complete delete-and-reinstate of the QEMU breakpoint list and so is
291  * suitable for use after migration or on reset.
292  */
293 void hw_breakpoint_update_all(ARMCPU *cpu);
294 
295 /* Callback function for checking if a breakpoint should trigger. */
296 bool arm_debug_check_breakpoint(CPUState *cs);
297 
298 /* Callback function for checking if a watchpoint should trigger. */
299 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
300 
301 /* Adjust addresses (in BE32 mode) before testing against watchpoint
302  * addresses.
303  */
304 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
305 
306 /* Callback function for when a watchpoint or breakpoint triggers. */
307 void arm_debug_excp_handler(CPUState *cs);
308 
309 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
310 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
311 {
312     return false;
313 }
314 static inline void arm_handle_psci_call(ARMCPU *cpu)
315 {
316     g_assert_not_reached();
317 }
318 #else
319 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
320 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
321 /* Actually handle a PSCI call */
322 void arm_handle_psci_call(ARMCPU *cpu);
323 #endif
324 
325 /**
326  * arm_clear_exclusive: clear the exclusive monitor
327  * @env: CPU env
328  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
329  */
330 static inline void arm_clear_exclusive(CPUARMState *env)
331 {
332     env->exclusive_addr = -1;
333 }
334 
335 /**
336  * ARMFaultType: type of an ARM MMU fault
337  * This corresponds to the v8A pseudocode's Fault enumeration,
338  * with extensions for QEMU internal conditions.
339  */
340 typedef enum ARMFaultType {
341     ARMFault_None,
342     ARMFault_AccessFlag,
343     ARMFault_Alignment,
344     ARMFault_Background,
345     ARMFault_Domain,
346     ARMFault_Permission,
347     ARMFault_Translation,
348     ARMFault_AddressSize,
349     ARMFault_SyncExternal,
350     ARMFault_SyncExternalOnWalk,
351     ARMFault_SyncParity,
352     ARMFault_SyncParityOnWalk,
353     ARMFault_AsyncParity,
354     ARMFault_AsyncExternal,
355     ARMFault_Debug,
356     ARMFault_TLBConflict,
357     ARMFault_Lockdown,
358     ARMFault_Exclusive,
359     ARMFault_ICacheMaint,
360     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
361     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
362 } ARMFaultType;
363 
364 /**
365  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
366  * @type: Type of fault
367  * @level: Table walk level (for translation, access flag and permission faults)
368  * @domain: Domain of the fault address (for non-LPAE CPUs only)
369  * @s2addr: Address that caused a fault at stage 2
370  * @stage2: True if we faulted at stage 2
371  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
372  * @s1ns: True if we faulted on a non-secure IPA while in secure state
373  * @ea: True if we should set the EA (external abort type) bit in syndrome
374  */
375 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
376 struct ARMMMUFaultInfo {
377     ARMFaultType type;
378     target_ulong s2addr;
379     int level;
380     int domain;
381     bool stage2;
382     bool s1ptw;
383     bool s1ns;
384     bool ea;
385 };
386 
387 /**
388  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
389  * Compare pseudocode EncodeSDFSC(), though unlike that function
390  * we set up a whole FSR-format code including domain field and
391  * putting the high bit of the FSC into bit 10.
392  */
393 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
394 {
395     uint32_t fsc;
396 
397     switch (fi->type) {
398     case ARMFault_None:
399         return 0;
400     case ARMFault_AccessFlag:
401         fsc = fi->level == 1 ? 0x3 : 0x6;
402         break;
403     case ARMFault_Alignment:
404         fsc = 0x1;
405         break;
406     case ARMFault_Permission:
407         fsc = fi->level == 1 ? 0xd : 0xf;
408         break;
409     case ARMFault_Domain:
410         fsc = fi->level == 1 ? 0x9 : 0xb;
411         break;
412     case ARMFault_Translation:
413         fsc = fi->level == 1 ? 0x5 : 0x7;
414         break;
415     case ARMFault_SyncExternal:
416         fsc = 0x8 | (fi->ea << 12);
417         break;
418     case ARMFault_SyncExternalOnWalk:
419         fsc = fi->level == 1 ? 0xc : 0xe;
420         fsc |= (fi->ea << 12);
421         break;
422     case ARMFault_SyncParity:
423         fsc = 0x409;
424         break;
425     case ARMFault_SyncParityOnWalk:
426         fsc = fi->level == 1 ? 0x40c : 0x40e;
427         break;
428     case ARMFault_AsyncParity:
429         fsc = 0x408;
430         break;
431     case ARMFault_AsyncExternal:
432         fsc = 0x406 | (fi->ea << 12);
433         break;
434     case ARMFault_Debug:
435         fsc = 0x2;
436         break;
437     case ARMFault_TLBConflict:
438         fsc = 0x400;
439         break;
440     case ARMFault_Lockdown:
441         fsc = 0x404;
442         break;
443     case ARMFault_Exclusive:
444         fsc = 0x405;
445         break;
446     case ARMFault_ICacheMaint:
447         fsc = 0x4;
448         break;
449     case ARMFault_Background:
450         fsc = 0x0;
451         break;
452     case ARMFault_QEMU_NSCExec:
453         fsc = M_FAKE_FSR_NSC_EXEC;
454         break;
455     case ARMFault_QEMU_SFault:
456         fsc = M_FAKE_FSR_SFAULT;
457         break;
458     default:
459         /* Other faults can't occur in a context that requires a
460          * short-format status code.
461          */
462         g_assert_not_reached();
463     }
464 
465     fsc |= (fi->domain << 4);
466     return fsc;
467 }
468 
469 /**
470  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
471  * Compare pseudocode EncodeLDFSC(), though unlike that function
472  * we fill in also the LPAE bit 9 of a DFSR format.
473  */
474 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
475 {
476     uint32_t fsc;
477 
478     switch (fi->type) {
479     case ARMFault_None:
480         return 0;
481     case ARMFault_AddressSize:
482         fsc = fi->level & 3;
483         break;
484     case ARMFault_AccessFlag:
485         fsc = (fi->level & 3) | (0x2 << 2);
486         break;
487     case ARMFault_Permission:
488         fsc = (fi->level & 3) | (0x3 << 2);
489         break;
490     case ARMFault_Translation:
491         fsc = (fi->level & 3) | (0x1 << 2);
492         break;
493     case ARMFault_SyncExternal:
494         fsc = 0x10 | (fi->ea << 12);
495         break;
496     case ARMFault_SyncExternalOnWalk:
497         fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
498         break;
499     case ARMFault_SyncParity:
500         fsc = 0x18;
501         break;
502     case ARMFault_SyncParityOnWalk:
503         fsc = (fi->level & 3) | (0x7 << 2);
504         break;
505     case ARMFault_AsyncParity:
506         fsc = 0x19;
507         break;
508     case ARMFault_AsyncExternal:
509         fsc = 0x11 | (fi->ea << 12);
510         break;
511     case ARMFault_Alignment:
512         fsc = 0x21;
513         break;
514     case ARMFault_Debug:
515         fsc = 0x22;
516         break;
517     case ARMFault_TLBConflict:
518         fsc = 0x30;
519         break;
520     case ARMFault_Lockdown:
521         fsc = 0x34;
522         break;
523     case ARMFault_Exclusive:
524         fsc = 0x35;
525         break;
526     default:
527         /* Other faults can't occur in a context that requires a
528          * long-format status code.
529          */
530         g_assert_not_reached();
531     }
532 
533     fsc |= 1 << 9;
534     return fsc;
535 }
536 
537 static inline bool arm_extabort_type(MemTxResult result)
538 {
539     /* The EA bit in syndromes and fault status registers is an
540      * IMPDEF classification of external aborts. ARM implementations
541      * usually use this to indicate AXI bus Decode error (0) or
542      * Slave error (1); in QEMU we follow that.
543      */
544     return result != MEMTX_DECODE_ERROR;
545 }
546 
547 #ifdef CONFIG_USER_ONLY
548 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
549                             MMUAccessType access_type,
550                             bool maperr, uintptr_t ra);
551 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
552                            MMUAccessType access_type, uintptr_t ra);
553 #else
554 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
555                       MMUAccessType access_type, int mmu_idx,
556                       bool probe, uintptr_t retaddr);
557 #endif
558 
559 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
560 {
561     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
562 }
563 
564 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
565 {
566     if (arm_feature(env, ARM_FEATURE_M)) {
567         return mmu_idx | ARM_MMU_IDX_M;
568     } else {
569         return mmu_idx | ARM_MMU_IDX_A;
570     }
571 }
572 
573 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
574 {
575     /* AArch64 is always a-profile. */
576     return mmu_idx | ARM_MMU_IDX_A;
577 }
578 
579 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
580 
581 /*
582  * Return the MMU index for a v7M CPU with all relevant information
583  * manually specified.
584  */
585 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
586                               bool secstate, bool priv, bool negpri);
587 
588 /*
589  * Return the MMU index for a v7M CPU in the specified security and
590  * privilege state.
591  */
592 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
593                                                 bool secstate, bool priv);
594 
595 /* Return the MMU index for a v7M CPU in the specified security state */
596 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
597 
598 /* Return true if the stage 1 translation regime is using LPAE format page
599  * tables */
600 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
601 
602 /* Raise a data fault alignment exception for the specified virtual address */
603 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
604                                  MMUAccessType access_type,
605                                  int mmu_idx, uintptr_t retaddr) QEMU_NORETURN;
606 
607 /* arm_cpu_do_transaction_failed: handle a memory system error response
608  * (eg "no device/memory present at address") by raising an external abort
609  * exception
610  */
611 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
612                                    vaddr addr, unsigned size,
613                                    MMUAccessType access_type,
614                                    int mmu_idx, MemTxAttrs attrs,
615                                    MemTxResult response, uintptr_t retaddr);
616 
617 /* Call any registered EL change hooks */
618 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
619 {
620     ARMELChangeHook *hook, *next;
621     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
622         hook->hook(cpu, hook->opaque);
623     }
624 }
625 static inline void arm_call_el_change_hook(ARMCPU *cpu)
626 {
627     ARMELChangeHook *hook, *next;
628     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
629         hook->hook(cpu, hook->opaque);
630     }
631 }
632 
633 /* Return true if this address translation regime has two ranges.  */
634 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
635 {
636     switch (mmu_idx) {
637     case ARMMMUIdx_Stage1_E0:
638     case ARMMMUIdx_Stage1_E1:
639     case ARMMMUIdx_Stage1_E1_PAN:
640     case ARMMMUIdx_Stage1_SE0:
641     case ARMMMUIdx_Stage1_SE1:
642     case ARMMMUIdx_Stage1_SE1_PAN:
643     case ARMMMUIdx_E10_0:
644     case ARMMMUIdx_E10_1:
645     case ARMMMUIdx_E10_1_PAN:
646     case ARMMMUIdx_E20_0:
647     case ARMMMUIdx_E20_2:
648     case ARMMMUIdx_E20_2_PAN:
649     case ARMMMUIdx_SE10_0:
650     case ARMMMUIdx_SE10_1:
651     case ARMMMUIdx_SE10_1_PAN:
652     case ARMMMUIdx_SE20_0:
653     case ARMMMUIdx_SE20_2:
654     case ARMMMUIdx_SE20_2_PAN:
655         return true;
656     default:
657         return false;
658     }
659 }
660 
661 /* Return true if this address translation regime is secure */
662 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
663 {
664     switch (mmu_idx) {
665     case ARMMMUIdx_E10_0:
666     case ARMMMUIdx_E10_1:
667     case ARMMMUIdx_E10_1_PAN:
668     case ARMMMUIdx_E20_0:
669     case ARMMMUIdx_E20_2:
670     case ARMMMUIdx_E20_2_PAN:
671     case ARMMMUIdx_Stage1_E0:
672     case ARMMMUIdx_Stage1_E1:
673     case ARMMMUIdx_Stage1_E1_PAN:
674     case ARMMMUIdx_E2:
675     case ARMMMUIdx_Stage2:
676     case ARMMMUIdx_MPrivNegPri:
677     case ARMMMUIdx_MUserNegPri:
678     case ARMMMUIdx_MPriv:
679     case ARMMMUIdx_MUser:
680         return false;
681     case ARMMMUIdx_SE3:
682     case ARMMMUIdx_SE10_0:
683     case ARMMMUIdx_SE10_1:
684     case ARMMMUIdx_SE10_1_PAN:
685     case ARMMMUIdx_SE20_0:
686     case ARMMMUIdx_SE20_2:
687     case ARMMMUIdx_SE20_2_PAN:
688     case ARMMMUIdx_Stage1_SE0:
689     case ARMMMUIdx_Stage1_SE1:
690     case ARMMMUIdx_Stage1_SE1_PAN:
691     case ARMMMUIdx_SE2:
692     case ARMMMUIdx_Stage2_S:
693     case ARMMMUIdx_MSPrivNegPri:
694     case ARMMMUIdx_MSUserNegPri:
695     case ARMMMUIdx_MSPriv:
696     case ARMMMUIdx_MSUser:
697         return true;
698     default:
699         g_assert_not_reached();
700     }
701 }
702 
703 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
704 {
705     switch (mmu_idx) {
706     case ARMMMUIdx_Stage1_E1_PAN:
707     case ARMMMUIdx_Stage1_SE1_PAN:
708     case ARMMMUIdx_E10_1_PAN:
709     case ARMMMUIdx_E20_2_PAN:
710     case ARMMMUIdx_SE10_1_PAN:
711     case ARMMMUIdx_SE20_2_PAN:
712         return true;
713     default:
714         return false;
715     }
716 }
717 
718 /* Return the exception level which controls this address translation regime */
719 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
720 {
721     switch (mmu_idx) {
722     case ARMMMUIdx_SE20_0:
723     case ARMMMUIdx_SE20_2:
724     case ARMMMUIdx_SE20_2_PAN:
725     case ARMMMUIdx_E20_0:
726     case ARMMMUIdx_E20_2:
727     case ARMMMUIdx_E20_2_PAN:
728     case ARMMMUIdx_Stage2:
729     case ARMMMUIdx_Stage2_S:
730     case ARMMMUIdx_SE2:
731     case ARMMMUIdx_E2:
732         return 2;
733     case ARMMMUIdx_SE3:
734         return 3;
735     case ARMMMUIdx_SE10_0:
736     case ARMMMUIdx_Stage1_SE0:
737         return arm_el_is_aa64(env, 3) ? 1 : 3;
738     case ARMMMUIdx_SE10_1:
739     case ARMMMUIdx_SE10_1_PAN:
740     case ARMMMUIdx_Stage1_E0:
741     case ARMMMUIdx_Stage1_E1:
742     case ARMMMUIdx_Stage1_E1_PAN:
743     case ARMMMUIdx_Stage1_SE1:
744     case ARMMMUIdx_Stage1_SE1_PAN:
745     case ARMMMUIdx_E10_0:
746     case ARMMMUIdx_E10_1:
747     case ARMMMUIdx_E10_1_PAN:
748     case ARMMMUIdx_MPrivNegPri:
749     case ARMMMUIdx_MUserNegPri:
750     case ARMMMUIdx_MPriv:
751     case ARMMMUIdx_MUser:
752     case ARMMMUIdx_MSPrivNegPri:
753     case ARMMMUIdx_MSUserNegPri:
754     case ARMMMUIdx_MSPriv:
755     case ARMMMUIdx_MSUser:
756         return 1;
757     default:
758         g_assert_not_reached();
759     }
760 }
761 
762 /* Return the TCR controlling this translation regime */
763 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
764 {
765     if (mmu_idx == ARMMMUIdx_Stage2) {
766         return &env->cp15.vtcr_el2;
767     }
768     if (mmu_idx == ARMMMUIdx_Stage2_S) {
769         /*
770          * Note: Secure stage 2 nominally shares fields from VTCR_EL2, but
771          * those are not currently used by QEMU, so just return VSTCR_EL2.
772          */
773         return &env->cp15.vstcr_el2;
774     }
775     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
776 }
777 
778 /* Return the FSR value for a debug exception (watchpoint, hardware
779  * breakpoint or BKPT insn) targeting the specified exception level.
780  */
781 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
782 {
783     ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
784     int target_el = arm_debug_target_el(env);
785     bool using_lpae = false;
786 
787     if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
788         using_lpae = true;
789     } else {
790         if (arm_feature(env, ARM_FEATURE_LPAE) &&
791             (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
792             using_lpae = true;
793         }
794     }
795 
796     if (using_lpae) {
797         return arm_fi_to_lfsc(&fi);
798     } else {
799         return arm_fi_to_sfsc(&fi);
800     }
801 }
802 
803 /**
804  * arm_num_brps: Return number of implemented breakpoints.
805  * Note that the ID register BRPS field is "number of bps - 1",
806  * and we return the actual number of breakpoints.
807  */
808 static inline int arm_num_brps(ARMCPU *cpu)
809 {
810     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
811         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
812     } else {
813         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
814     }
815 }
816 
817 /**
818  * arm_num_wrps: Return number of implemented watchpoints.
819  * Note that the ID register WRPS field is "number of wps - 1",
820  * and we return the actual number of watchpoints.
821  */
822 static inline int arm_num_wrps(ARMCPU *cpu)
823 {
824     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
825         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
826     } else {
827         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
828     }
829 }
830 
831 /**
832  * arm_num_ctx_cmps: Return number of implemented context comparators.
833  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
834  * and we return the actual number of comparators.
835  */
836 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
837 {
838     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
839         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
840     } else {
841         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
842     }
843 }
844 
845 /**
846  * v7m_using_psp: Return true if using process stack pointer
847  * Return true if the CPU is currently using the process stack
848  * pointer, or false if it is using the main stack pointer.
849  */
850 static inline bool v7m_using_psp(CPUARMState *env)
851 {
852     /* Handler mode always uses the main stack; for thread mode
853      * the CONTROL.SPSEL bit determines the answer.
854      * Note that in v7M it is not possible to be in Handler mode with
855      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
856      */
857     return !arm_v7m_is_handler_mode(env) &&
858         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
859 }
860 
861 /**
862  * v7m_sp_limit: Return SP limit for current CPU state
863  * Return the SP limit value for the current CPU security state
864  * and stack pointer.
865  */
866 static inline uint32_t v7m_sp_limit(CPUARMState *env)
867 {
868     if (v7m_using_psp(env)) {
869         return env->v7m.psplim[env->v7m.secure];
870     } else {
871         return env->v7m.msplim[env->v7m.secure];
872     }
873 }
874 
875 /**
876  * v7m_cpacr_pass:
877  * Return true if the v7M CPACR permits access to the FPU for the specified
878  * security state and privilege level.
879  */
880 static inline bool v7m_cpacr_pass(CPUARMState *env,
881                                   bool is_secure, bool is_priv)
882 {
883     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
884     case 0:
885     case 2: /* UNPREDICTABLE: we treat like 0 */
886         return false;
887     case 1:
888         return is_priv;
889     case 3:
890         return true;
891     default:
892         g_assert_not_reached();
893     }
894 }
895 
896 /**
897  * aarch32_mode_name(): Return name of the AArch32 CPU mode
898  * @psr: Program Status Register indicating CPU mode
899  *
900  * Returns, for debug logging purposes, a printable representation
901  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
902  * the low bits of the specified PSR.
903  */
904 static inline const char *aarch32_mode_name(uint32_t psr)
905 {
906     static const char cpu_mode_names[16][4] = {
907         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
908         "???", "???", "hyp", "und", "???", "???", "???", "sys"
909     };
910 
911     return cpu_mode_names[psr & 0xf];
912 }
913 
914 /**
915  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
916  *
917  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
918  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
919  * Must be called with the iothread lock held.
920  */
921 void arm_cpu_update_virq(ARMCPU *cpu);
922 
923 /**
924  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
925  *
926  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
927  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
928  * Must be called with the iothread lock held.
929  */
930 void arm_cpu_update_vfiq(ARMCPU *cpu);
931 
932 /**
933  * arm_mmu_idx_el:
934  * @env: The cpu environment
935  * @el: The EL to use.
936  *
937  * Return the full ARMMMUIdx for the translation regime for EL.
938  */
939 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
940 
941 /**
942  * arm_mmu_idx:
943  * @env: The cpu environment
944  *
945  * Return the full ARMMMUIdx for the current translation regime.
946  */
947 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
948 
949 /**
950  * arm_stage1_mmu_idx:
951  * @env: The cpu environment
952  *
953  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
954  */
955 #ifdef CONFIG_USER_ONLY
956 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
957 {
958     return ARMMMUIdx_Stage1_E0;
959 }
960 #else
961 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
962 #endif
963 
964 /**
965  * arm_mmu_idx_is_stage1_of_2:
966  * @mmu_idx: The ARMMMUIdx to test
967  *
968  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
969  * first stage of a two stage regime.
970  */
971 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
972 {
973     switch (mmu_idx) {
974     case ARMMMUIdx_Stage1_E0:
975     case ARMMMUIdx_Stage1_E1:
976     case ARMMMUIdx_Stage1_E1_PAN:
977     case ARMMMUIdx_Stage1_SE0:
978     case ARMMMUIdx_Stage1_SE1:
979     case ARMMMUIdx_Stage1_SE1_PAN:
980         return true;
981     default:
982         return false;
983     }
984 }
985 
986 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
987                                                const ARMISARegisters *id)
988 {
989     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
990 
991     if ((features >> ARM_FEATURE_V4T) & 1) {
992         valid |= CPSR_T;
993     }
994     if ((features >> ARM_FEATURE_V5) & 1) {
995         valid |= CPSR_Q; /* V5TE in reality*/
996     }
997     if ((features >> ARM_FEATURE_V6) & 1) {
998         valid |= CPSR_E | CPSR_GE;
999     }
1000     if ((features >> ARM_FEATURE_THUMB2) & 1) {
1001         valid |= CPSR_IT;
1002     }
1003     if (isar_feature_aa32_jazelle(id)) {
1004         valid |= CPSR_J;
1005     }
1006     if (isar_feature_aa32_pan(id)) {
1007         valid |= CPSR_PAN;
1008     }
1009     if (isar_feature_aa32_dit(id)) {
1010         valid |= CPSR_DIT;
1011     }
1012     if (isar_feature_aa32_ssbs(id)) {
1013         valid |= CPSR_SSBS;
1014     }
1015 
1016     return valid;
1017 }
1018 
1019 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1020 {
1021     uint32_t valid;
1022 
1023     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1024     if (isar_feature_aa64_bti(id)) {
1025         valid |= PSTATE_BTYPE;
1026     }
1027     if (isar_feature_aa64_pan(id)) {
1028         valid |= PSTATE_PAN;
1029     }
1030     if (isar_feature_aa64_uao(id)) {
1031         valid |= PSTATE_UAO;
1032     }
1033     if (isar_feature_aa64_dit(id)) {
1034         valid |= PSTATE_DIT;
1035     }
1036     if (isar_feature_aa64_ssbs(id)) {
1037         valid |= PSTATE_SSBS;
1038     }
1039     if (isar_feature_aa64_mte(id)) {
1040         valid |= PSTATE_TCO;
1041     }
1042 
1043     return valid;
1044 }
1045 
1046 /*
1047  * Parameters of a given virtual address, as extracted from the
1048  * translation control register (TCR) for a given regime.
1049  */
1050 typedef struct ARMVAParameters {
1051     unsigned tsz    : 8;
1052     unsigned select : 1;
1053     bool tbi        : 1;
1054     bool epd        : 1;
1055     bool hpd        : 1;
1056     bool using16k   : 1;
1057     bool using64k   : 1;
1058 } ARMVAParameters;
1059 
1060 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1061                                    ARMMMUIdx mmu_idx, bool data);
1062 
1063 static inline int exception_target_el(CPUARMState *env)
1064 {
1065     int target_el = MAX(1, arm_current_el(env));
1066 
1067     /*
1068      * No such thing as secure EL1 if EL3 is aarch32,
1069      * so update the target EL to EL3 in this case.
1070      */
1071     if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
1072         target_el = 3;
1073     }
1074 
1075     return target_el;
1076 }
1077 
1078 /* Determine if allocation tags are available.  */
1079 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1080                                                  uint64_t sctlr)
1081 {
1082     if (el < 3
1083         && arm_feature(env, ARM_FEATURE_EL3)
1084         && !(env->cp15.scr_el3 & SCR_ATA)) {
1085         return false;
1086     }
1087     if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
1088         uint64_t hcr = arm_hcr_el2_eff(env);
1089         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1090             return false;
1091         }
1092     }
1093     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1094     return sctlr != 0;
1095 }
1096 
1097 #ifndef CONFIG_USER_ONLY
1098 
1099 /* Security attributes for an address, as returned by v8m_security_lookup. */
1100 typedef struct V8M_SAttributes {
1101     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1102     bool ns;
1103     bool nsc;
1104     uint8_t sregion;
1105     bool srvalid;
1106     uint8_t iregion;
1107     bool irvalid;
1108 } V8M_SAttributes;
1109 
1110 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1111                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1112                          V8M_SAttributes *sattrs);
1113 
1114 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1115                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1116                        hwaddr *phys_ptr, MemTxAttrs *txattrs,
1117                        int *prot, bool *is_subpage,
1118                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1119 
1120 /* Cacheability and shareability attributes for a memory access */
1121 typedef struct ARMCacheAttrs {
1122     unsigned int attrs:8; /* as in the MAIR register encoding */
1123     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1124 } ARMCacheAttrs;
1125 
1126 bool get_phys_addr(CPUARMState *env, target_ulong address,
1127                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
1128                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
1129                    target_ulong *page_size,
1130                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
1131     __attribute__((nonnull));
1132 
1133 void arm_log_exception(CPUState *cs);
1134 
1135 #endif /* !CONFIG_USER_ONLY */
1136 
1137 /*
1138  * The log2 of the words in the tag block, for GMID_EL1.BS.
1139  * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1140  */
1141 #define GMID_EL1_BS  6
1142 
1143 /* We associate one allocation tag per 16 bytes, the minimum.  */
1144 #define LOG2_TAG_GRANULE 4
1145 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
1146 
1147 /*
1148  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1149  * the same simd_desc() encoding due to restrictions on size.
1150  * Use these instead.
1151  */
1152 FIELD(PREDDESC, OPRSZ, 0, 6)
1153 FIELD(PREDDESC, ESZ, 6, 2)
1154 FIELD(PREDDESC, DATA, 8, 24)
1155 
1156 /*
1157  * The SVE simd_data field, for memory ops, contains either
1158  * rd (5 bits) or a shift count (2 bits).
1159  */
1160 #define SVE_MTEDESC_SHIFT 5
1161 
1162 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1163 FIELD(MTEDESC, MIDX,  0, 4)
1164 FIELD(MTEDESC, TBI,   4, 2)
1165 FIELD(MTEDESC, TCMA,  6, 2)
1166 FIELD(MTEDESC, WRITE, 8, 1)
1167 FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9)  /* size - 1 */
1168 
1169 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1170 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1171 
1172 static inline int allocation_tag_from_addr(uint64_t ptr)
1173 {
1174     return extract64(ptr, 56, 4);
1175 }
1176 
1177 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1178 {
1179     return deposit64(ptr, 56, 4, rtag);
1180 }
1181 
1182 /* Return true if tbi bits mean that the access is checked.  */
1183 static inline bool tbi_check(uint32_t desc, int bit55)
1184 {
1185     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1186 }
1187 
1188 /* Return true if tcma bits mean that the access is unchecked.  */
1189 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1190 {
1191     /*
1192      * We had extracted bit55 and ptr_tag for other reasons, so fold
1193      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1194      */
1195     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1196     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1197     return tcma && match;
1198 }
1199 
1200 /*
1201  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1202  * for the tag to be present in the FAR_ELx register.  But for user-only
1203  * mode, we do not have a TLB with which to implement this, so we must
1204  * remove the top byte.
1205  */
1206 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1207 {
1208 #ifdef CONFIG_USER_ONLY
1209     /* TBI0 is known to be enabled, while TBI1 is disabled. */
1210     ptr &= sextract64(ptr, 0, 56);
1211 #endif
1212     return ptr;
1213 }
1214 
1215 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1216 {
1217 #ifdef CONFIG_USER_ONLY
1218     int64_t clean_ptr = sextract64(ptr, 0, 56);
1219     if (tbi_check(desc, clean_ptr < 0)) {
1220         ptr = clean_ptr;
1221     }
1222 #endif
1223     return ptr;
1224 }
1225 
1226 /* Values for M-profile PSR.ECI for MVE insns */
1227 enum MVEECIState {
1228     ECI_NONE = 0, /* No completed beats */
1229     ECI_A0 = 1, /* Completed: A0 */
1230     ECI_A0A1 = 2, /* Completed: A0, A1 */
1231     /* 3 is reserved */
1232     ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1233     ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1234     /* All other values reserved */
1235 };
1236 
1237 /* Definitions for the PMU registers */
1238 #define PMCRN_MASK  0xf800
1239 #define PMCRN_SHIFT 11
1240 #define PMCRLC  0x40
1241 #define PMCRDP  0x20
1242 #define PMCRX   0x10
1243 #define PMCRD   0x8
1244 #define PMCRC   0x4
1245 #define PMCRP   0x2
1246 #define PMCRE   0x1
1247 /*
1248  * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1249  * which can be written as 1 to trigger behaviour but which stay RAZ).
1250  */
1251 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1252 
1253 #define PMXEVTYPER_P          0x80000000
1254 #define PMXEVTYPER_U          0x40000000
1255 #define PMXEVTYPER_NSK        0x20000000
1256 #define PMXEVTYPER_NSU        0x10000000
1257 #define PMXEVTYPER_NSH        0x08000000
1258 #define PMXEVTYPER_M          0x04000000
1259 #define PMXEVTYPER_MT         0x02000000
1260 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1261 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1262                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1263                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1264                                PMXEVTYPER_EVTCOUNT)
1265 
1266 #define PMCCFILTR             0xf8000000
1267 #define PMCCFILTR_M           PMXEVTYPER_M
1268 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1269 
1270 static inline uint32_t pmu_num_counters(CPUARMState *env)
1271 {
1272   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1273 }
1274 
1275 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1276 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1277 {
1278   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1279 }
1280 
1281 #ifdef TARGET_AARCH64
1282 int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg);
1283 int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg);
1284 int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg);
1285 int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg);
1286 #endif
1287 
1288 #endif
1289