xref: /qemu/target/arm/internals.h (revision ef291226)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 
30 /* register banks for CPU modes */
31 #define BANK_USRSYS 0
32 #define BANK_SVC    1
33 #define BANK_ABT    2
34 #define BANK_UND    3
35 #define BANK_IRQ    4
36 #define BANK_FIQ    5
37 #define BANK_HYP    6
38 #define BANK_MON    7
39 
40 static inline bool excp_is_internal(int excp)
41 {
42     /* Return true if this exception number represents a QEMU-internal
43      * exception that will not be passed to the guest.
44      */
45     return excp == EXCP_INTERRUPT
46         || excp == EXCP_HLT
47         || excp == EXCP_DEBUG
48         || excp == EXCP_HALTED
49         || excp == EXCP_EXCEPTION_EXIT
50         || excp == EXCP_KERNEL_TRAP
51         || excp == EXCP_SEMIHOST;
52 }
53 
54 /* Exception names for debug logging; note that not all of these
55  * precisely correspond to architectural exceptions.
56  */
57 static const char * const excnames[] = {
58     [EXCP_UDEF] = "Undefined Instruction",
59     [EXCP_SWI] = "SVC",
60     [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
61     [EXCP_DATA_ABORT] = "Data Abort",
62     [EXCP_IRQ] = "IRQ",
63     [EXCP_FIQ] = "FIQ",
64     [EXCP_BKPT] = "Breakpoint",
65     [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
66     [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
67     [EXCP_HVC] = "Hypervisor Call",
68     [EXCP_HYP_TRAP] = "Hypervisor Trap",
69     [EXCP_SMC] = "Secure Monitor Call",
70     [EXCP_VIRQ] = "Virtual IRQ",
71     [EXCP_VFIQ] = "Virtual FIQ",
72     [EXCP_SEMIHOST] = "Semihosting call",
73 };
74 
75 /* Scale factor for generic timers, ie number of ns per tick.
76  * This gives a 62.5MHz timer.
77  */
78 #define GTIMER_SCALE 16
79 
80 /* Bit definitions for the v7M CONTROL register */
81 FIELD(V7M_CONTROL, NPRIV, 0, 1)
82 FIELD(V7M_CONTROL, SPSEL, 1, 1)
83 FIELD(V7M_CONTROL, FPCA, 2, 1)
84 
85 /*
86  * For AArch64, map a given EL to an index in the banked_spsr array.
87  * Note that this mapping and the AArch32 mapping defined in bank_number()
88  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
89  * mandated mapping between each other.
90  */
91 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
92 {
93     static const unsigned int map[4] = {
94         [1] = BANK_SVC, /* EL1.  */
95         [2] = BANK_HYP, /* EL2.  */
96         [3] = BANK_MON, /* EL3.  */
97     };
98     assert(el >= 1 && el <= 3);
99     return map[el];
100 }
101 
102 /* Map CPU modes onto saved register banks.  */
103 static inline int bank_number(int mode)
104 {
105     switch (mode) {
106     case ARM_CPU_MODE_USR:
107     case ARM_CPU_MODE_SYS:
108         return BANK_USRSYS;
109     case ARM_CPU_MODE_SVC:
110         return BANK_SVC;
111     case ARM_CPU_MODE_ABT:
112         return BANK_ABT;
113     case ARM_CPU_MODE_UND:
114         return BANK_UND;
115     case ARM_CPU_MODE_IRQ:
116         return BANK_IRQ;
117     case ARM_CPU_MODE_FIQ:
118         return BANK_FIQ;
119     case ARM_CPU_MODE_HYP:
120         return BANK_HYP;
121     case ARM_CPU_MODE_MON:
122         return BANK_MON;
123     }
124     g_assert_not_reached();
125 }
126 
127 void switch_mode(CPUARMState *, int);
128 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
129 void arm_translate_init(void);
130 
131 enum arm_fprounding {
132     FPROUNDING_TIEEVEN,
133     FPROUNDING_POSINF,
134     FPROUNDING_NEGINF,
135     FPROUNDING_ZERO,
136     FPROUNDING_TIEAWAY,
137     FPROUNDING_ODD
138 };
139 
140 int arm_rmode_to_sf(int rmode);
141 
142 static inline void aarch64_save_sp(CPUARMState *env, int el)
143 {
144     if (env->pstate & PSTATE_SP) {
145         env->sp_el[el] = env->xregs[31];
146     } else {
147         env->sp_el[0] = env->xregs[31];
148     }
149 }
150 
151 static inline void aarch64_restore_sp(CPUARMState *env, int el)
152 {
153     if (env->pstate & PSTATE_SP) {
154         env->xregs[31] = env->sp_el[el];
155     } else {
156         env->xregs[31] = env->sp_el[0];
157     }
158 }
159 
160 static inline void update_spsel(CPUARMState *env, uint32_t imm)
161 {
162     unsigned int cur_el = arm_current_el(env);
163     /* Update PSTATE SPSel bit; this requires us to update the
164      * working stack pointer in xregs[31].
165      */
166     if (!((imm ^ env->pstate) & PSTATE_SP)) {
167         return;
168     }
169     aarch64_save_sp(env, cur_el);
170     env->pstate = deposit32(env->pstate, 0, 1, imm);
171 
172     /* We rely on illegal updates to SPsel from EL0 to get trapped
173      * at translation time.
174      */
175     assert(cur_el >= 1 && cur_el <= 3);
176     aarch64_restore_sp(env, cur_el);
177 }
178 
179 /*
180  * arm_pamax
181  * @cpu: ARMCPU
182  *
183  * Returns the implementation defined bit-width of physical addresses.
184  * The ARMv8 reference manuals refer to this as PAMax().
185  */
186 static inline unsigned int arm_pamax(ARMCPU *cpu)
187 {
188     static const unsigned int pamax_map[] = {
189         [0] = 32,
190         [1] = 36,
191         [2] = 40,
192         [3] = 42,
193         [4] = 44,
194         [5] = 48,
195     };
196     unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
197 
198     /* id_aa64mmfr0 is a read-only register so values outside of the
199      * supported mappings can be considered an implementation error.  */
200     assert(parange < ARRAY_SIZE(pamax_map));
201     return pamax_map[parange];
202 }
203 
204 /* Return true if extended addresses are enabled.
205  * This is always the case if our translation regime is 64 bit,
206  * but depends on TTBCR.EAE for 32 bit.
207  */
208 static inline bool extended_addresses_enabled(CPUARMState *env)
209 {
210     TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
211     return arm_el_is_aa64(env, 1) ||
212            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
213 }
214 
215 /* Valid Syndrome Register EC field values */
216 enum arm_exception_class {
217     EC_UNCATEGORIZED          = 0x00,
218     EC_WFX_TRAP               = 0x01,
219     EC_CP15RTTRAP             = 0x03,
220     EC_CP15RRTTRAP            = 0x04,
221     EC_CP14RTTRAP             = 0x05,
222     EC_CP14DTTRAP             = 0x06,
223     EC_ADVSIMDFPACCESSTRAP    = 0x07,
224     EC_FPIDTRAP               = 0x08,
225     EC_CP14RRTTRAP            = 0x0c,
226     EC_ILLEGALSTATE           = 0x0e,
227     EC_AA32_SVC               = 0x11,
228     EC_AA32_HVC               = 0x12,
229     EC_AA32_SMC               = 0x13,
230     EC_AA64_SVC               = 0x15,
231     EC_AA64_HVC               = 0x16,
232     EC_AA64_SMC               = 0x17,
233     EC_SYSTEMREGISTERTRAP     = 0x18,
234     EC_INSNABORT              = 0x20,
235     EC_INSNABORT_SAME_EL      = 0x21,
236     EC_PCALIGNMENT            = 0x22,
237     EC_DATAABORT              = 0x24,
238     EC_DATAABORT_SAME_EL      = 0x25,
239     EC_SPALIGNMENT            = 0x26,
240     EC_AA32_FPTRAP            = 0x28,
241     EC_AA64_FPTRAP            = 0x2c,
242     EC_SERROR                 = 0x2f,
243     EC_BREAKPOINT             = 0x30,
244     EC_BREAKPOINT_SAME_EL     = 0x31,
245     EC_SOFTWARESTEP           = 0x32,
246     EC_SOFTWARESTEP_SAME_EL   = 0x33,
247     EC_WATCHPOINT             = 0x34,
248     EC_WATCHPOINT_SAME_EL     = 0x35,
249     EC_AA32_BKPT              = 0x38,
250     EC_VECTORCATCH            = 0x3a,
251     EC_AA64_BKPT              = 0x3c,
252 };
253 
254 #define ARM_EL_EC_SHIFT 26
255 #define ARM_EL_IL_SHIFT 25
256 #define ARM_EL_ISV_SHIFT 24
257 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
258 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
259 
260 /* Utility functions for constructing various kinds of syndrome value.
261  * Note that in general we follow the AArch64 syndrome values; in a
262  * few cases the value in HSR for exceptions taken to AArch32 Hyp
263  * mode differs slightly, so if we ever implemented Hyp mode then the
264  * syndrome value would need some massaging on exception entry.
265  * (One example of this is that AArch64 defaults to IL bit set for
266  * exceptions which don't specifically indicate information about the
267  * trapping instruction, whereas AArch32 defaults to IL bit clear.)
268  */
269 static inline uint32_t syn_uncategorized(void)
270 {
271     return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
272 }
273 
274 static inline uint32_t syn_aa64_svc(uint32_t imm16)
275 {
276     return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
277 }
278 
279 static inline uint32_t syn_aa64_hvc(uint32_t imm16)
280 {
281     return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
282 }
283 
284 static inline uint32_t syn_aa64_smc(uint32_t imm16)
285 {
286     return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
287 }
288 
289 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
290 {
291     return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
292         | (is_16bit ? 0 : ARM_EL_IL);
293 }
294 
295 static inline uint32_t syn_aa32_hvc(uint32_t imm16)
296 {
297     return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
298 }
299 
300 static inline uint32_t syn_aa32_smc(void)
301 {
302     return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
303 }
304 
305 static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
306 {
307     return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
308 }
309 
310 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
311 {
312     return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
313         | (is_16bit ? 0 : ARM_EL_IL);
314 }
315 
316 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
317                                            int crn, int crm, int rt,
318                                            int isread)
319 {
320     return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
321         | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
322         | (crm << 1) | isread;
323 }
324 
325 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
326                                         int crn, int crm, int rt, int isread,
327                                         bool is_16bit)
328 {
329     return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
330         | (is_16bit ? 0 : ARM_EL_IL)
331         | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
332         | (crn << 10) | (rt << 5) | (crm << 1) | isread;
333 }
334 
335 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
336                                         int crn, int crm, int rt, int isread,
337                                         bool is_16bit)
338 {
339     return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
340         | (is_16bit ? 0 : ARM_EL_IL)
341         | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
342         | (crn << 10) | (rt << 5) | (crm << 1) | isread;
343 }
344 
345 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
346                                          int rt, int rt2, int isread,
347                                          bool is_16bit)
348 {
349     return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
350         | (is_16bit ? 0 : ARM_EL_IL)
351         | (cv << 24) | (cond << 20) | (opc1 << 16)
352         | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
353 }
354 
355 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
356                                          int rt, int rt2, int isread,
357                                          bool is_16bit)
358 {
359     return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
360         | (is_16bit ? 0 : ARM_EL_IL)
361         | (cv << 24) | (cond << 20) | (opc1 << 16)
362         | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
363 }
364 
365 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
366 {
367     return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
368         | (is_16bit ? 0 : ARM_EL_IL)
369         | (cv << 24) | (cond << 20);
370 }
371 
372 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
373 {
374     return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
375         | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
376 }
377 
378 static inline uint32_t syn_data_abort_no_iss(int same_el,
379                                              int ea, int cm, int s1ptw,
380                                              int wnr, int fsc)
381 {
382     return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
383            | ARM_EL_IL
384            | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
385 }
386 
387 static inline uint32_t syn_data_abort_with_iss(int same_el,
388                                                int sas, int sse, int srt,
389                                                int sf, int ar,
390                                                int ea, int cm, int s1ptw,
391                                                int wnr, int fsc,
392                                                bool is_16bit)
393 {
394     return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
395            | (is_16bit ? 0 : ARM_EL_IL)
396            | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
397            | (sf << 15) | (ar << 14)
398            | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
399 }
400 
401 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
402 {
403     return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
404         | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
405 }
406 
407 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
408 {
409     return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
410         | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
411 }
412 
413 static inline uint32_t syn_breakpoint(int same_el)
414 {
415     return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
416         | ARM_EL_IL | 0x22;
417 }
418 
419 static inline uint32_t syn_wfx(int cv, int cond, int ti)
420 {
421     return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
422            (cv << 24) | (cond << 20) | ti;
423 }
424 
425 /* Update a QEMU watchpoint based on the information the guest has set in the
426  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
427  */
428 void hw_watchpoint_update(ARMCPU *cpu, int n);
429 /* Update the QEMU watchpoints for every guest watchpoint. This does a
430  * complete delete-and-reinstate of the QEMU watchpoint list and so is
431  * suitable for use after migration or on reset.
432  */
433 void hw_watchpoint_update_all(ARMCPU *cpu);
434 /* Update a QEMU breakpoint based on the information the guest has set in the
435  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
436  */
437 void hw_breakpoint_update(ARMCPU *cpu, int n);
438 /* Update the QEMU breakpoints for every guest breakpoint. This does a
439  * complete delete-and-reinstate of the QEMU breakpoint list and so is
440  * suitable for use after migration or on reset.
441  */
442 void hw_breakpoint_update_all(ARMCPU *cpu);
443 
444 /* Callback function for checking if a watchpoint should trigger. */
445 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
446 
447 /* Callback function for when a watchpoint or breakpoint triggers. */
448 void arm_debug_excp_handler(CPUState *cs);
449 
450 #ifdef CONFIG_USER_ONLY
451 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
452 {
453     return false;
454 }
455 #else
456 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
457 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
458 /* Actually handle a PSCI call */
459 void arm_handle_psci_call(ARMCPU *cpu);
460 #endif
461 
462 /**
463  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
464  * @s2addr: Address that caused a fault at stage 2
465  * @stage2: True if we faulted at stage 2
466  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
467  */
468 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
469 struct ARMMMUFaultInfo {
470     target_ulong s2addr;
471     bool stage2;
472     bool s1ptw;
473 };
474 
475 /* Do a page table walk and add page to TLB if possible */
476 bool arm_tlb_fill(CPUState *cpu, vaddr address, int rw, int mmu_idx,
477                   uint32_t *fsr, ARMMMUFaultInfo *fi);
478 
479 /* Return true if the stage 1 translation regime is using LPAE format page
480  * tables */
481 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
482 
483 /* Raise a data fault alignment exception for the specified virtual address */
484 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
485                                  MMUAccessType access_type,
486                                  int mmu_idx, uintptr_t retaddr);
487 
488 /* Call the EL change hook if one has been registered */
489 static inline void arm_call_el_change_hook(ARMCPU *cpu)
490 {
491     if (cpu->el_change_hook) {
492         cpu->el_change_hook(cpu, cpu->el_change_hook_opaque);
493     }
494 }
495 
496 #endif
497