xref: /qemu/target/arm/kvm.c (revision 0d31a631)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
6  * Copyright Alex Bennée 2014, Linaro
7  *
8  * This work is licensed under the terms of the GNU GPL, version 2 or later.
9  * See the COPYING file in the top-level directory.
10  *
11  */
12 
13 #include "qemu/osdep.h"
14 #include <sys/ioctl.h>
15 
16 #include <linux/kvm.h>
17 
18 #include "qemu/timer.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qom/object.h"
22 #include "qapi/error.h"
23 #include "sysemu/sysemu.h"
24 #include "sysemu/runstate.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/kvm_int.h"
27 #include "kvm_arm.h"
28 #include "cpu.h"
29 #include "trace.h"
30 #include "internals.h"
31 #include "hw/pci/pci.h"
32 #include "exec/memattrs.h"
33 #include "exec/address-spaces.h"
34 #include "exec/gdbstub.h"
35 #include "hw/boards.h"
36 #include "hw/irq.h"
37 #include "qapi/visitor.h"
38 #include "qemu/log.h"
39 #include "hw/acpi/acpi.h"
40 #include "hw/acpi/ghes.h"
41 
42 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
43     KVM_CAP_LAST_INFO
44 };
45 
46 static bool cap_has_mp_state;
47 static bool cap_has_inject_serror_esr;
48 static bool cap_has_inject_ext_dabt;
49 
50 /**
51  * ARMHostCPUFeatures: information about the host CPU (identified
52  * by asking the host kernel)
53  */
54 typedef struct ARMHostCPUFeatures {
55     ARMISARegisters isar;
56     uint64_t features;
57     uint32_t target;
58     const char *dtb_compatible;
59 } ARMHostCPUFeatures;
60 
61 static ARMHostCPUFeatures arm_host_cpu_features;
62 
63 /**
64  * kvm_arm_vcpu_init:
65  * @cpu: ARMCPU
66  *
67  * Initialize (or reinitialize) the VCPU by invoking the
68  * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
69  * bitmask specified in the CPUState.
70  *
71  * Returns: 0 if success else < 0 error code
72  */
73 static int kvm_arm_vcpu_init(ARMCPU *cpu)
74 {
75     struct kvm_vcpu_init init;
76 
77     init.target = cpu->kvm_target;
78     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
79 
80     return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_INIT, &init);
81 }
82 
83 /**
84  * kvm_arm_vcpu_finalize:
85  * @cpu: ARMCPU
86  * @feature: feature to finalize
87  *
88  * Finalizes the configuration of the specified VCPU feature by
89  * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
90  * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
91  * KVM's API documentation.
92  *
93  * Returns: 0 if success else < 0 error code
94  */
95 static int kvm_arm_vcpu_finalize(ARMCPU *cpu, int feature)
96 {
97     return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_FINALIZE, &feature);
98 }
99 
100 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
101                                       int *fdarray,
102                                       struct kvm_vcpu_init *init)
103 {
104     int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
105     int max_vm_pa_size;
106 
107     kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
108     if (kvmfd < 0) {
109         goto err;
110     }
111     max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
112     if (max_vm_pa_size < 0) {
113         max_vm_pa_size = 0;
114     }
115     do {
116         vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
117     } while (vmfd == -1 && errno == EINTR);
118     if (vmfd < 0) {
119         goto err;
120     }
121     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
122     if (cpufd < 0) {
123         goto err;
124     }
125 
126     if (!init) {
127         /* Caller doesn't want the VCPU to be initialized, so skip it */
128         goto finish;
129     }
130 
131     if (init->target == -1) {
132         struct kvm_vcpu_init preferred;
133 
134         ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
135         if (!ret) {
136             init->target = preferred.target;
137         }
138     }
139     if (ret >= 0) {
140         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
141         if (ret < 0) {
142             goto err;
143         }
144     } else if (cpus_to_try) {
145         /* Old kernel which doesn't know about the
146          * PREFERRED_TARGET ioctl: we know it will only support
147          * creating one kind of guest CPU which is its preferred
148          * CPU type.
149          */
150         struct kvm_vcpu_init try;
151 
152         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
153             try.target = *cpus_to_try++;
154             memcpy(try.features, init->features, sizeof(init->features));
155             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
156             if (ret >= 0) {
157                 break;
158             }
159         }
160         if (ret < 0) {
161             goto err;
162         }
163         init->target = try.target;
164     } else {
165         /* Treat a NULL cpus_to_try argument the same as an empty
166          * list, which means we will fail the call since this must
167          * be an old kernel which doesn't support PREFERRED_TARGET.
168          */
169         goto err;
170     }
171 
172 finish:
173     fdarray[0] = kvmfd;
174     fdarray[1] = vmfd;
175     fdarray[2] = cpufd;
176 
177     return true;
178 
179 err:
180     if (cpufd >= 0) {
181         close(cpufd);
182     }
183     if (vmfd >= 0) {
184         close(vmfd);
185     }
186     if (kvmfd >= 0) {
187         close(kvmfd);
188     }
189 
190     return false;
191 }
192 
193 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
194 {
195     int i;
196 
197     for (i = 2; i >= 0; i--) {
198         close(fdarray[i]);
199     }
200 }
201 
202 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
203 {
204     uint64_t ret;
205     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
206     int err;
207 
208     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
209     err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
210     if (err < 0) {
211         return -1;
212     }
213     *pret = ret;
214     return 0;
215 }
216 
217 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
218 {
219     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
220 
221     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
222     return ioctl(fd, KVM_GET_ONE_REG, &idreg);
223 }
224 
225 static bool kvm_arm_pauth_supported(void)
226 {
227     return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
228             kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
229 }
230 
231 static bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
232 {
233     /* Identify the feature bits corresponding to the host CPU, and
234      * fill out the ARMHostCPUClass fields accordingly. To do this
235      * we have to create a scratch VM, create a single CPU inside it,
236      * and then query that CPU for the relevant ID registers.
237      */
238     int fdarray[3];
239     bool sve_supported;
240     bool pmu_supported = false;
241     uint64_t features = 0;
242     int err;
243 
244     /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
245      * we know these will only support creating one kind of guest CPU,
246      * which is its preferred CPU type. Fortunately these old kernels
247      * support only a very limited number of CPUs.
248      */
249     static const uint32_t cpus_to_try[] = {
250         KVM_ARM_TARGET_AEM_V8,
251         KVM_ARM_TARGET_FOUNDATION_V8,
252         KVM_ARM_TARGET_CORTEX_A57,
253         QEMU_KVM_ARM_TARGET_NONE
254     };
255     /*
256      * target = -1 informs kvm_arm_create_scratch_host_vcpu()
257      * to use the preferred target
258      */
259     struct kvm_vcpu_init init = { .target = -1, };
260 
261     /*
262      * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
263      * which is otherwise RAZ.
264      */
265     sve_supported = kvm_arm_sve_supported();
266     if (sve_supported) {
267         init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
268     }
269 
270     /*
271      * Ask for Pointer Authentication if supported, so that we get
272      * the unsanitized field values for AA64ISAR1_EL1.
273      */
274     if (kvm_arm_pauth_supported()) {
275         init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
276                              1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
277     }
278 
279     if (kvm_arm_pmu_supported()) {
280         init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
281         pmu_supported = true;
282     }
283 
284     if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
285         return false;
286     }
287 
288     ahcf->target = init.target;
289     ahcf->dtb_compatible = "arm,arm-v8";
290 
291     err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
292                          ARM64_SYS_REG(3, 0, 0, 4, 0));
293     if (unlikely(err < 0)) {
294         /*
295          * Before v4.15, the kernel only exposed a limited number of system
296          * registers, not including any of the interesting AArch64 ID regs.
297          * For the most part we could leave these fields as zero with minimal
298          * effect, since this does not affect the values seen by the guest.
299          *
300          * However, it could cause problems down the line for QEMU,
301          * so provide a minimal v8.0 default.
302          *
303          * ??? Could read MIDR and use knowledge from cpu64.c.
304          * ??? Could map a page of memory into our temp guest and
305          *     run the tiniest of hand-crafted kernels to extract
306          *     the values seen by the guest.
307          * ??? Either of these sounds like too much effort just
308          *     to work around running a modern host kernel.
309          */
310         ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
311         err = 0;
312     } else {
313         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
314                               ARM64_SYS_REG(3, 0, 0, 4, 1));
315         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0,
316                               ARM64_SYS_REG(3, 0, 0, 4, 5));
317         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
318                               ARM64_SYS_REG(3, 0, 0, 5, 0));
319         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
320                               ARM64_SYS_REG(3, 0, 0, 5, 1));
321         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
322                               ARM64_SYS_REG(3, 0, 0, 6, 0));
323         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
324                               ARM64_SYS_REG(3, 0, 0, 6, 1));
325         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar2,
326                               ARM64_SYS_REG(3, 0, 0, 6, 2));
327         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
328                               ARM64_SYS_REG(3, 0, 0, 7, 0));
329         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
330                               ARM64_SYS_REG(3, 0, 0, 7, 1));
331         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
332                               ARM64_SYS_REG(3, 0, 0, 7, 2));
333 
334         /*
335          * Note that if AArch32 support is not present in the host,
336          * the AArch32 sysregs are present to be read, but will
337          * return UNKNOWN values.  This is neither better nor worse
338          * than skipping the reads and leaving 0, as we must avoid
339          * considering the values in every case.
340          */
341         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
342                               ARM64_SYS_REG(3, 0, 0, 1, 0));
343         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
344                               ARM64_SYS_REG(3, 0, 0, 1, 1));
345         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
346                               ARM64_SYS_REG(3, 0, 0, 1, 2));
347         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
348                               ARM64_SYS_REG(3, 0, 0, 1, 4));
349         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
350                               ARM64_SYS_REG(3, 0, 0, 1, 5));
351         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
352                               ARM64_SYS_REG(3, 0, 0, 1, 6));
353         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
354                               ARM64_SYS_REG(3, 0, 0, 1, 7));
355         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
356                               ARM64_SYS_REG(3, 0, 0, 2, 0));
357         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
358                               ARM64_SYS_REG(3, 0, 0, 2, 1));
359         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
360                               ARM64_SYS_REG(3, 0, 0, 2, 2));
361         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
362                               ARM64_SYS_REG(3, 0, 0, 2, 3));
363         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
364                               ARM64_SYS_REG(3, 0, 0, 2, 4));
365         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
366                               ARM64_SYS_REG(3, 0, 0, 2, 5));
367         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
368                               ARM64_SYS_REG(3, 0, 0, 2, 6));
369         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
370                               ARM64_SYS_REG(3, 0, 0, 2, 7));
371 
372         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
373                               ARM64_SYS_REG(3, 0, 0, 3, 0));
374         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
375                               ARM64_SYS_REG(3, 0, 0, 3, 1));
376         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
377                               ARM64_SYS_REG(3, 0, 0, 3, 2));
378         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
379                               ARM64_SYS_REG(3, 0, 0, 3, 4));
380         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1,
381                               ARM64_SYS_REG(3, 0, 0, 3, 5));
382         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5,
383                               ARM64_SYS_REG(3, 0, 0, 3, 6));
384 
385         /*
386          * DBGDIDR is a bit complicated because the kernel doesn't
387          * provide an accessor for it in 64-bit mode, which is what this
388          * scratch VM is in, and there's no architected "64-bit sysreg
389          * which reads the same as the 32-bit register" the way there is
390          * for other ID registers. Instead we synthesize a value from the
391          * AArch64 ID_AA64DFR0, the same way the kernel code in
392          * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
393          * We only do this if the CPU supports AArch32 at EL1.
394          */
395         if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
396             int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
397             int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
398             int ctx_cmps =
399                 FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
400             int version = 6; /* ARMv8 debug architecture */
401             bool has_el3 =
402                 !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
403             uint32_t dbgdidr = 0;
404 
405             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
406             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
407             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
408             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
409             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
410             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
411             dbgdidr |= (1 << 15); /* RES1 bit */
412             ahcf->isar.dbgdidr = dbgdidr;
413         }
414 
415         if (pmu_supported) {
416             /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
417             err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0,
418                                   ARM64_SYS_REG(3, 3, 9, 12, 0));
419         }
420 
421         if (sve_supported) {
422             /*
423              * There is a range of kernels between kernel commit 73433762fcae
424              * and f81cb2c3ad41 which have a bug where the kernel doesn't
425              * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
426              * enabled SVE support, which resulted in an error rather than RAZ.
427              * So only read the register if we set KVM_ARM_VCPU_SVE above.
428              */
429             err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
430                                   ARM64_SYS_REG(3, 0, 0, 4, 4));
431         }
432     }
433 
434     kvm_arm_destroy_scratch_host_vcpu(fdarray);
435 
436     if (err < 0) {
437         return false;
438     }
439 
440     /*
441      * We can assume any KVM supporting CPU is at least a v8
442      * with VFPv4+Neon; this in turn implies most of the other
443      * feature bits.
444      */
445     features |= 1ULL << ARM_FEATURE_V8;
446     features |= 1ULL << ARM_FEATURE_NEON;
447     features |= 1ULL << ARM_FEATURE_AARCH64;
448     features |= 1ULL << ARM_FEATURE_PMU;
449     features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
450 
451     ahcf->features = features;
452 
453     return true;
454 }
455 
456 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
457 {
458     CPUARMState *env = &cpu->env;
459 
460     if (!arm_host_cpu_features.dtb_compatible) {
461         if (!kvm_enabled() ||
462             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
463             /* We can't report this error yet, so flag that we need to
464              * in arm_cpu_realizefn().
465              */
466             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
467             cpu->host_cpu_probe_failed = true;
468             return;
469         }
470     }
471 
472     cpu->kvm_target = arm_host_cpu_features.target;
473     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
474     cpu->isar = arm_host_cpu_features.isar;
475     env->features = arm_host_cpu_features.features;
476 }
477 
478 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
479 {
480     return !ARM_CPU(obj)->kvm_adjvtime;
481 }
482 
483 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
484 {
485     ARM_CPU(obj)->kvm_adjvtime = !value;
486 }
487 
488 static bool kvm_steal_time_get(Object *obj, Error **errp)
489 {
490     return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
491 }
492 
493 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
494 {
495     ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
496 }
497 
498 /* KVM VCPU properties should be prefixed with "kvm-". */
499 void kvm_arm_add_vcpu_properties(ARMCPU *cpu)
500 {
501     CPUARMState *env = &cpu->env;
502     Object *obj = OBJECT(cpu);
503 
504     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
505         cpu->kvm_adjvtime = true;
506         object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
507                                  kvm_no_adjvtime_set);
508         object_property_set_description(obj, "kvm-no-adjvtime",
509                                         "Set on to disable the adjustment of "
510                                         "the virtual counter. VM stopped time "
511                                         "will be counted.");
512     }
513 
514     cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
515     object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
516                              kvm_steal_time_set);
517     object_property_set_description(obj, "kvm-steal-time",
518                                     "Set off to disable KVM steal time.");
519 }
520 
521 bool kvm_arm_pmu_supported(void)
522 {
523     return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
524 }
525 
526 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
527 {
528     KVMState *s = KVM_STATE(ms->accelerator);
529     int ret;
530 
531     ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
532     *fixed_ipa = ret <= 0;
533 
534     return ret > 0 ? ret : 40;
535 }
536 
537 int kvm_arch_get_default_type(MachineState *ms)
538 {
539     bool fixed_ipa;
540     int size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
541     return fixed_ipa ? 0 : size;
542 }
543 
544 int kvm_arch_init(MachineState *ms, KVMState *s)
545 {
546     int ret = 0;
547     /* For ARM interrupt delivery is always asynchronous,
548      * whether we are using an in-kernel VGIC or not.
549      */
550     kvm_async_interrupts_allowed = true;
551 
552     /*
553      * PSCI wakes up secondary cores, so we always need to
554      * have vCPUs waiting in kernel space
555      */
556     kvm_halt_in_kernel_allowed = true;
557 
558     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
559 
560     /* Check whether user space can specify guest syndrome value */
561     cap_has_inject_serror_esr =
562         kvm_check_extension(s, KVM_CAP_ARM_INJECT_SERROR_ESR);
563 
564     if (ms->smp.cpus > 256 &&
565         !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
566         error_report("Using more than 256 vcpus requires a host kernel "
567                      "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
568         ret = -EINVAL;
569     }
570 
571     if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
572         if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
573             error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
574         } else {
575             /* Set status for supporting the external dabt injection */
576             cap_has_inject_ext_dabt = kvm_check_extension(s,
577                                     KVM_CAP_ARM_INJECT_EXT_DABT);
578         }
579     }
580 
581     if (s->kvm_eager_split_size) {
582         uint32_t sizes;
583 
584         sizes = kvm_vm_check_extension(s, KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES);
585         if (!sizes) {
586             s->kvm_eager_split_size = 0;
587             warn_report("Eager Page Split support not available");
588         } else if (!(s->kvm_eager_split_size & sizes)) {
589             error_report("Eager Page Split requested chunk size not valid");
590             ret = -EINVAL;
591         } else {
592             ret = kvm_vm_enable_cap(s, KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE, 0,
593                                     s->kvm_eager_split_size);
594             if (ret < 0) {
595                 error_report("Enabling of Eager Page Split failed: %s",
596                              strerror(-ret));
597             }
598         }
599     }
600 
601     max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS);
602     hw_watchpoints = g_array_sized_new(true, true,
603                                        sizeof(HWWatchpoint), max_hw_wps);
604 
605     max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS);
606     hw_breakpoints = g_array_sized_new(true, true,
607                                        sizeof(HWBreakpoint), max_hw_bps);
608 
609     return ret;
610 }
611 
612 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
613 {
614     return cpu->cpu_index;
615 }
616 
617 /* We track all the KVM devices which need their memory addresses
618  * passing to the kernel in a list of these structures.
619  * When board init is complete we run through the list and
620  * tell the kernel the base addresses of the memory regions.
621  * We use a MemoryListener to track mapping and unmapping of
622  * the regions during board creation, so the board models don't
623  * need to do anything special for the KVM case.
624  *
625  * Sometimes the address must be OR'ed with some other fields
626  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
627  * @kda_addr_ormask aims at storing the value of those fields.
628  */
629 typedef struct KVMDevice {
630     struct kvm_arm_device_addr kda;
631     struct kvm_device_attr kdattr;
632     uint64_t kda_addr_ormask;
633     MemoryRegion *mr;
634     QSLIST_ENTRY(KVMDevice) entries;
635     int dev_fd;
636 } KVMDevice;
637 
638 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
639 
640 static void kvm_arm_devlistener_add(MemoryListener *listener,
641                                     MemoryRegionSection *section)
642 {
643     KVMDevice *kd;
644 
645     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
646         if (section->mr == kd->mr) {
647             kd->kda.addr = section->offset_within_address_space;
648         }
649     }
650 }
651 
652 static void kvm_arm_devlistener_del(MemoryListener *listener,
653                                     MemoryRegionSection *section)
654 {
655     KVMDevice *kd;
656 
657     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
658         if (section->mr == kd->mr) {
659             kd->kda.addr = -1;
660         }
661     }
662 }
663 
664 static MemoryListener devlistener = {
665     .name = "kvm-arm",
666     .region_add = kvm_arm_devlistener_add,
667     .region_del = kvm_arm_devlistener_del,
668     .priority = MEMORY_LISTENER_PRIORITY_MIN,
669 };
670 
671 static void kvm_arm_set_device_addr(KVMDevice *kd)
672 {
673     struct kvm_device_attr *attr = &kd->kdattr;
674     int ret;
675 
676     /* If the device control API is available and we have a device fd on the
677      * KVMDevice struct, let's use the newer API
678      */
679     if (kd->dev_fd >= 0) {
680         uint64_t addr = kd->kda.addr;
681 
682         addr |= kd->kda_addr_ormask;
683         attr->addr = (uintptr_t)&addr;
684         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
685     } else {
686         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
687     }
688 
689     if (ret < 0) {
690         fprintf(stderr, "Failed to set device address: %s\n",
691                 strerror(-ret));
692         abort();
693     }
694 }
695 
696 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
697 {
698     KVMDevice *kd, *tkd;
699 
700     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
701         if (kd->kda.addr != -1) {
702             kvm_arm_set_device_addr(kd);
703         }
704         memory_region_unref(kd->mr);
705         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
706         g_free(kd);
707     }
708     memory_listener_unregister(&devlistener);
709 }
710 
711 static Notifier notify = {
712     .notify = kvm_arm_machine_init_done,
713 };
714 
715 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
716                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
717 {
718     KVMDevice *kd;
719 
720     if (!kvm_irqchip_in_kernel()) {
721         return;
722     }
723 
724     if (QSLIST_EMPTY(&kvm_devices_head)) {
725         memory_listener_register(&devlistener, &address_space_memory);
726         qemu_add_machine_init_done_notifier(&notify);
727     }
728     kd = g_new0(KVMDevice, 1);
729     kd->mr = mr;
730     kd->kda.id = devid;
731     kd->kda.addr = -1;
732     kd->kdattr.flags = 0;
733     kd->kdattr.group = group;
734     kd->kdattr.attr = attr;
735     kd->dev_fd = dev_fd;
736     kd->kda_addr_ormask = addr_ormask;
737     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
738     memory_region_ref(kd->mr);
739 }
740 
741 static int compare_u64(const void *a, const void *b)
742 {
743     if (*(uint64_t *)a > *(uint64_t *)b) {
744         return 1;
745     }
746     if (*(uint64_t *)a < *(uint64_t *)b) {
747         return -1;
748     }
749     return 0;
750 }
751 
752 /*
753  * cpreg_values are sorted in ascending order by KVM register ID
754  * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
755  * the storage for a KVM register by ID with a binary search.
756  */
757 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
758 {
759     uint64_t *res;
760 
761     res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
762                   sizeof(uint64_t), compare_u64);
763     assert(res);
764 
765     return &cpu->cpreg_values[res - cpu->cpreg_indexes];
766 }
767 
768 /**
769  * kvm_arm_reg_syncs_via_cpreg_list:
770  * @regidx: KVM register index
771  *
772  * Return true if this KVM register should be synchronized via the
773  * cpreg list of arbitrary system registers, false if it is synchronized
774  * by hand using code in kvm_arch_get/put_registers().
775  */
776 static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
777 {
778     switch (regidx & KVM_REG_ARM_COPROC_MASK) {
779     case KVM_REG_ARM_CORE:
780     case KVM_REG_ARM64_SVE:
781         return false;
782     default:
783         return true;
784     }
785 }
786 
787 /**
788  * kvm_arm_init_cpreg_list:
789  * @cpu: ARMCPU
790  *
791  * Initialize the ARMCPU cpreg list according to the kernel's
792  * definition of what CPU registers it knows about (and throw away
793  * the previous TCG-created cpreg list).
794  *
795  * Returns: 0 if success, else < 0 error code
796  */
797 static int kvm_arm_init_cpreg_list(ARMCPU *cpu)
798 {
799     struct kvm_reg_list rl;
800     struct kvm_reg_list *rlp;
801     int i, ret, arraylen;
802     CPUState *cs = CPU(cpu);
803 
804     rl.n = 0;
805     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
806     if (ret != -E2BIG) {
807         return ret;
808     }
809     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
810     rlp->n = rl.n;
811     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
812     if (ret) {
813         goto out;
814     }
815     /* Sort the list we get back from the kernel, since cpreg_tuples
816      * must be in strictly ascending order.
817      */
818     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
819 
820     for (i = 0, arraylen = 0; i < rlp->n; i++) {
821         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
822             continue;
823         }
824         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
825         case KVM_REG_SIZE_U32:
826         case KVM_REG_SIZE_U64:
827             break;
828         default:
829             fprintf(stderr, "Can't handle size of register in kernel list\n");
830             ret = -EINVAL;
831             goto out;
832         }
833 
834         arraylen++;
835     }
836 
837     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
838     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
839     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
840                                          arraylen);
841     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
842                                         arraylen);
843     cpu->cpreg_array_len = arraylen;
844     cpu->cpreg_vmstate_array_len = arraylen;
845 
846     for (i = 0, arraylen = 0; i < rlp->n; i++) {
847         uint64_t regidx = rlp->reg[i];
848         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
849             continue;
850         }
851         cpu->cpreg_indexes[arraylen] = regidx;
852         arraylen++;
853     }
854     assert(cpu->cpreg_array_len == arraylen);
855 
856     if (!write_kvmstate_to_list(cpu)) {
857         /* Shouldn't happen unless kernel is inconsistent about
858          * what registers exist.
859          */
860         fprintf(stderr, "Initial read of kernel register state failed\n");
861         ret = -EINVAL;
862         goto out;
863     }
864 
865 out:
866     g_free(rlp);
867     return ret;
868 }
869 
870 /**
871  * kvm_arm_cpreg_level:
872  * @regidx: KVM register index
873  *
874  * Return the level of this coprocessor/system register.  Return value is
875  * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
876  */
877 static int kvm_arm_cpreg_level(uint64_t regidx)
878 {
879     /*
880      * All system registers are assumed to be level KVM_PUT_RUNTIME_STATE.
881      * If a register should be written less often, you must add it here
882      * with a state of either KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
883      */
884     switch (regidx) {
885     case KVM_REG_ARM_TIMER_CNT:
886     case KVM_REG_ARM_PTIMER_CNT:
887         return KVM_PUT_FULL_STATE;
888     }
889     return KVM_PUT_RUNTIME_STATE;
890 }
891 
892 bool write_kvmstate_to_list(ARMCPU *cpu)
893 {
894     CPUState *cs = CPU(cpu);
895     int i;
896     bool ok = true;
897 
898     for (i = 0; i < cpu->cpreg_array_len; i++) {
899         uint64_t regidx = cpu->cpreg_indexes[i];
900         uint32_t v32;
901         int ret;
902 
903         switch (regidx & KVM_REG_SIZE_MASK) {
904         case KVM_REG_SIZE_U32:
905             ret = kvm_get_one_reg(cs, regidx, &v32);
906             if (!ret) {
907                 cpu->cpreg_values[i] = v32;
908             }
909             break;
910         case KVM_REG_SIZE_U64:
911             ret = kvm_get_one_reg(cs, regidx, cpu->cpreg_values + i);
912             break;
913         default:
914             g_assert_not_reached();
915         }
916         if (ret) {
917             ok = false;
918         }
919     }
920     return ok;
921 }
922 
923 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
924 {
925     CPUState *cs = CPU(cpu);
926     int i;
927     bool ok = true;
928 
929     for (i = 0; i < cpu->cpreg_array_len; i++) {
930         uint64_t regidx = cpu->cpreg_indexes[i];
931         uint32_t v32;
932         int ret;
933 
934         if (kvm_arm_cpreg_level(regidx) > level) {
935             continue;
936         }
937 
938         switch (regidx & KVM_REG_SIZE_MASK) {
939         case KVM_REG_SIZE_U32:
940             v32 = cpu->cpreg_values[i];
941             ret = kvm_set_one_reg(cs, regidx, &v32);
942             break;
943         case KVM_REG_SIZE_U64:
944             ret = kvm_set_one_reg(cs, regidx, cpu->cpreg_values + i);
945             break;
946         default:
947             g_assert_not_reached();
948         }
949         if (ret) {
950             /* We might fail for "unknown register" and also for
951              * "you tried to set a register which is constant with
952              * a different value from what it actually contains".
953              */
954             ok = false;
955         }
956     }
957     return ok;
958 }
959 
960 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
961 {
962     /* KVM virtual time adjustment */
963     if (cpu->kvm_vtime_dirty) {
964         *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
965     }
966 }
967 
968 void kvm_arm_cpu_post_load(ARMCPU *cpu)
969 {
970     /* KVM virtual time adjustment */
971     if (cpu->kvm_adjvtime) {
972         cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
973         cpu->kvm_vtime_dirty = true;
974     }
975 }
976 
977 void kvm_arm_reset_vcpu(ARMCPU *cpu)
978 {
979     int ret;
980 
981     /* Re-init VCPU so that all registers are set to
982      * their respective reset values.
983      */
984     ret = kvm_arm_vcpu_init(cpu);
985     if (ret < 0) {
986         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
987         abort();
988     }
989     if (!write_kvmstate_to_list(cpu)) {
990         fprintf(stderr, "write_kvmstate_to_list failed\n");
991         abort();
992     }
993     /*
994      * Sync the reset values also into the CPUState. This is necessary
995      * because the next thing we do will be a kvm_arch_put_registers()
996      * which will update the list values from the CPUState before copying
997      * the list values back to KVM. It's OK to ignore failure returns here
998      * for the same reason we do so in kvm_arch_get_registers().
999      */
1000     write_list_to_cpustate(cpu);
1001 }
1002 
1003 /*
1004  * Update KVM's MP_STATE based on what QEMU thinks it is
1005  */
1006 static int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
1007 {
1008     if (cap_has_mp_state) {
1009         struct kvm_mp_state mp_state = {
1010             .mp_state = (cpu->power_state == PSCI_OFF) ?
1011             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
1012         };
1013         return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1014     }
1015     return 0;
1016 }
1017 
1018 /*
1019  * Sync the KVM MP_STATE into QEMU
1020  */
1021 static int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
1022 {
1023     if (cap_has_mp_state) {
1024         struct kvm_mp_state mp_state;
1025         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
1026         if (ret) {
1027             return ret;
1028         }
1029         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
1030             PSCI_OFF : PSCI_ON;
1031     }
1032     return 0;
1033 }
1034 
1035 /**
1036  * kvm_arm_get_virtual_time:
1037  * @cs: CPUState
1038  *
1039  * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
1040  */
1041 static void kvm_arm_get_virtual_time(CPUState *cs)
1042 {
1043     ARMCPU *cpu = ARM_CPU(cs);
1044     int ret;
1045 
1046     if (cpu->kvm_vtime_dirty) {
1047         return;
1048     }
1049 
1050     ret = kvm_get_one_reg(cs, KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1051     if (ret) {
1052         error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
1053         abort();
1054     }
1055 
1056     cpu->kvm_vtime_dirty = true;
1057 }
1058 
1059 /**
1060  * kvm_arm_put_virtual_time:
1061  * @cs: CPUState
1062  *
1063  * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
1064  */
1065 static void kvm_arm_put_virtual_time(CPUState *cs)
1066 {
1067     ARMCPU *cpu = ARM_CPU(cs);
1068     int ret;
1069 
1070     if (!cpu->kvm_vtime_dirty) {
1071         return;
1072     }
1073 
1074     ret = kvm_set_one_reg(cs, KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1075     if (ret) {
1076         error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
1077         abort();
1078     }
1079 
1080     cpu->kvm_vtime_dirty = false;
1081 }
1082 
1083 /**
1084  * kvm_put_vcpu_events:
1085  * @cpu: ARMCPU
1086  *
1087  * Put VCPU related state to kvm.
1088  *
1089  * Returns: 0 if success else < 0 error code
1090  */
1091 static int kvm_put_vcpu_events(ARMCPU *cpu)
1092 {
1093     CPUARMState *env = &cpu->env;
1094     struct kvm_vcpu_events events;
1095     int ret;
1096 
1097     if (!kvm_has_vcpu_events()) {
1098         return 0;
1099     }
1100 
1101     memset(&events, 0, sizeof(events));
1102     events.exception.serror_pending = env->serror.pending;
1103 
1104     /* Inject SError to guest with specified syndrome if host kernel
1105      * supports it, otherwise inject SError without syndrome.
1106      */
1107     if (cap_has_inject_serror_esr) {
1108         events.exception.serror_has_esr = env->serror.has_esr;
1109         events.exception.serror_esr = env->serror.esr;
1110     }
1111 
1112     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1113     if (ret) {
1114         error_report("failed to put vcpu events");
1115     }
1116 
1117     return ret;
1118 }
1119 
1120 /**
1121  * kvm_get_vcpu_events:
1122  * @cpu: ARMCPU
1123  *
1124  * Get VCPU related state from kvm.
1125  *
1126  * Returns: 0 if success else < 0 error code
1127  */
1128 static int kvm_get_vcpu_events(ARMCPU *cpu)
1129 {
1130     CPUARMState *env = &cpu->env;
1131     struct kvm_vcpu_events events;
1132     int ret;
1133 
1134     if (!kvm_has_vcpu_events()) {
1135         return 0;
1136     }
1137 
1138     memset(&events, 0, sizeof(events));
1139     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1140     if (ret) {
1141         error_report("failed to get vcpu events");
1142         return ret;
1143     }
1144 
1145     env->serror.pending = events.exception.serror_pending;
1146     env->serror.has_esr = events.exception.serror_has_esr;
1147     env->serror.esr = events.exception.serror_esr;
1148 
1149     return 0;
1150 }
1151 
1152 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1153 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1154 
1155 /*
1156  * ESR_EL1
1157  * ISS encoding
1158  * AARCH64: DFSC,   bits [5:0]
1159  * AARCH32:
1160  *      TTBCR.EAE == 0
1161  *          FS[4]   - DFSR[10]
1162  *          FS[3:0] - DFSR[3:0]
1163  *      TTBCR.EAE == 1
1164  *          FS, bits [5:0]
1165  */
1166 #define ESR_DFSC(aarch64, lpae, v)        \
1167     ((aarch64 || (lpae)) ? ((v) & 0x3F)   \
1168                : (((v) >> 6) | ((v) & 0x1F)))
1169 
1170 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1171     ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1172 
1173 /**
1174  * kvm_arm_verify_ext_dabt_pending:
1175  * @cs: CPUState
1176  *
1177  * Verify the fault status code wrt the Ext DABT injection
1178  *
1179  * Returns: true if the fault status code is as expected, false otherwise
1180  */
1181 static bool kvm_arm_verify_ext_dabt_pending(CPUState *cs)
1182 {
1183     uint64_t dfsr_val;
1184 
1185     if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
1186         ARMCPU *cpu = ARM_CPU(cs);
1187         CPUARMState *env = &cpu->env;
1188         int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
1189         int lpae = 0;
1190 
1191         if (!aarch64_mode) {
1192             uint64_t ttbcr;
1193 
1194             if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
1195                 lpae = arm_feature(env, ARM_FEATURE_LPAE)
1196                         && (ttbcr & TTBCR_EAE);
1197             }
1198         }
1199         /*
1200          * The verification here is based on the DFSC bits
1201          * of the ESR_EL1 reg only
1202          */
1203          return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
1204                 ESR_DFSC_EXTABT(aarch64_mode, lpae));
1205     }
1206     return false;
1207 }
1208 
1209 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1210 {
1211     ARMCPU *cpu = ARM_CPU(cs);
1212     CPUARMState *env = &cpu->env;
1213 
1214     if (unlikely(env->ext_dabt_raised)) {
1215         /*
1216          * Verifying that the ext DABT has been properly injected,
1217          * otherwise risking indefinitely re-running the faulting instruction
1218          * Covering a very narrow case for kernels 5.5..5.5.4
1219          * when injected abort was misconfigured to be
1220          * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
1221          */
1222         if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
1223             unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
1224 
1225             error_report("Data abort exception with no valid ISS generated by "
1226                    "guest memory access. KVM unable to emulate faulting "
1227                    "instruction. Failed to inject an external data abort "
1228                    "into the guest.");
1229             abort();
1230        }
1231        /* Clear the status */
1232        env->ext_dabt_raised = 0;
1233     }
1234 }
1235 
1236 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1237 {
1238     ARMCPU *cpu;
1239     uint32_t switched_level;
1240 
1241     if (kvm_irqchip_in_kernel()) {
1242         /*
1243          * We only need to sync timer states with user-space interrupt
1244          * controllers, so return early and save cycles if we don't.
1245          */
1246         return MEMTXATTRS_UNSPECIFIED;
1247     }
1248 
1249     cpu = ARM_CPU(cs);
1250 
1251     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
1252     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
1253         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
1254 
1255         qemu_mutex_lock_iothread();
1256 
1257         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
1258             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
1259                          !!(run->s.regs.device_irq_level &
1260                             KVM_ARM_DEV_EL1_VTIMER));
1261             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
1262         }
1263 
1264         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
1265             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
1266                          !!(run->s.regs.device_irq_level &
1267                             KVM_ARM_DEV_EL1_PTIMER));
1268             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
1269         }
1270 
1271         if (switched_level & KVM_ARM_DEV_PMU) {
1272             qemu_set_irq(cpu->pmu_interrupt,
1273                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
1274             switched_level &= ~KVM_ARM_DEV_PMU;
1275         }
1276 
1277         if (switched_level) {
1278             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
1279                           __func__, switched_level);
1280         }
1281 
1282         /* We also mark unknown levels as processed to not waste cycles */
1283         cpu->device_irq_level = run->s.regs.device_irq_level;
1284         qemu_mutex_unlock_iothread();
1285     }
1286 
1287     return MEMTXATTRS_UNSPECIFIED;
1288 }
1289 
1290 static void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
1291 {
1292     CPUState *cs = opaque;
1293     ARMCPU *cpu = ARM_CPU(cs);
1294 
1295     if (running) {
1296         if (cpu->kvm_adjvtime) {
1297             kvm_arm_put_virtual_time(cs);
1298         }
1299     } else {
1300         if (cpu->kvm_adjvtime) {
1301             kvm_arm_get_virtual_time(cs);
1302         }
1303     }
1304 }
1305 
1306 /**
1307  * kvm_arm_handle_dabt_nisv:
1308  * @cs: CPUState
1309  * @esr_iss: ISS encoding (limited) for the exception from Data Abort
1310  *           ISV bit set to '0b0' -> no valid instruction syndrome
1311  * @fault_ipa: faulting address for the synchronous data abort
1312  *
1313  * Returns: 0 if the exception has been handled, < 0 otherwise
1314  */
1315 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
1316                                     uint64_t fault_ipa)
1317 {
1318     ARMCPU *cpu = ARM_CPU(cs);
1319     CPUARMState *env = &cpu->env;
1320     /*
1321      * Request KVM to inject the external data abort into the guest
1322      */
1323     if (cap_has_inject_ext_dabt) {
1324         struct kvm_vcpu_events events = { };
1325         /*
1326          * The external data abort event will be handled immediately by KVM
1327          * using the address fault that triggered the exit on given VCPU.
1328          * Requesting injection of the external data abort does not rely
1329          * on any other VCPU state. Therefore, in this particular case, the VCPU
1330          * synchronization can be exceptionally skipped.
1331          */
1332         events.exception.ext_dabt_pending = 1;
1333         /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
1334         if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
1335             env->ext_dabt_raised = 1;
1336             return 0;
1337         }
1338     } else {
1339         error_report("Data abort exception triggered by guest memory access "
1340                      "at physical address: 0x"  TARGET_FMT_lx,
1341                      (target_ulong)fault_ipa);
1342         error_printf("KVM unable to emulate faulting instruction.\n");
1343     }
1344     return -1;
1345 }
1346 
1347 /**
1348  * kvm_arm_handle_debug:
1349  * @cs: CPUState
1350  * @debug_exit: debug part of the KVM exit structure
1351  *
1352  * Returns: TRUE if the debug exception was handled.
1353  *
1354  * See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1355  *
1356  * To minimise translating between kernel and user-space the kernel
1357  * ABI just provides user-space with the full exception syndrome
1358  * register value to be decoded in QEMU.
1359  */
1360 static bool kvm_arm_handle_debug(CPUState *cs,
1361                                  struct kvm_debug_exit_arch *debug_exit)
1362 {
1363     int hsr_ec = syn_get_ec(debug_exit->hsr);
1364     ARMCPU *cpu = ARM_CPU(cs);
1365     CPUARMState *env = &cpu->env;
1366 
1367     /* Ensure PC is synchronised */
1368     kvm_cpu_synchronize_state(cs);
1369 
1370     switch (hsr_ec) {
1371     case EC_SOFTWARESTEP:
1372         if (cs->singlestep_enabled) {
1373             return true;
1374         } else {
1375             /*
1376              * The kernel should have suppressed the guest's ability to
1377              * single step at this point so something has gone wrong.
1378              */
1379             error_report("%s: guest single-step while debugging unsupported"
1380                          " (%"PRIx64", %"PRIx32")",
1381                          __func__, env->pc, debug_exit->hsr);
1382             return false;
1383         }
1384         break;
1385     case EC_AA64_BKPT:
1386         if (kvm_find_sw_breakpoint(cs, env->pc)) {
1387             return true;
1388         }
1389         break;
1390     case EC_BREAKPOINT:
1391         if (find_hw_breakpoint(cs, env->pc)) {
1392             return true;
1393         }
1394         break;
1395     case EC_WATCHPOINT:
1396     {
1397         CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1398         if (wp) {
1399             cs->watchpoint_hit = wp;
1400             return true;
1401         }
1402         break;
1403     }
1404     default:
1405         error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1406                      __func__, debug_exit->hsr, env->pc);
1407     }
1408 
1409     /* If we are not handling the debug exception it must belong to
1410      * the guest. Let's re-use the existing TCG interrupt code to set
1411      * everything up properly.
1412      */
1413     cs->exception_index = EXCP_BKPT;
1414     env->exception.syndrome = debug_exit->hsr;
1415     env->exception.vaddress = debug_exit->far;
1416     env->exception.target_el = 1;
1417     qemu_mutex_lock_iothread();
1418     arm_cpu_do_interrupt(cs);
1419     qemu_mutex_unlock_iothread();
1420 
1421     return false;
1422 }
1423 
1424 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1425 {
1426     int ret = 0;
1427 
1428     switch (run->exit_reason) {
1429     case KVM_EXIT_DEBUG:
1430         if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
1431             ret = EXCP_DEBUG;
1432         } /* otherwise return to guest */
1433         break;
1434     case KVM_EXIT_ARM_NISV:
1435         /* External DABT with no valid iss to decode */
1436         ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
1437                                        run->arm_nisv.fault_ipa);
1438         break;
1439     default:
1440         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
1441                       __func__, run->exit_reason);
1442         break;
1443     }
1444     return ret;
1445 }
1446 
1447 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
1448 {
1449     return true;
1450 }
1451 
1452 int kvm_arch_process_async_events(CPUState *cs)
1453 {
1454     return 0;
1455 }
1456 
1457 /**
1458  * kvm_arm_hw_debug_active:
1459  * @cs: CPU State
1460  *
1461  * Return: TRUE if any hardware breakpoints in use.
1462  */
1463 static bool kvm_arm_hw_debug_active(CPUState *cs)
1464 {
1465     return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
1466 }
1467 
1468 /**
1469  * kvm_arm_copy_hw_debug_data:
1470  * @ptr: kvm_guest_debug_arch structure
1471  *
1472  * Copy the architecture specific debug registers into the
1473  * kvm_guest_debug ioctl structure.
1474  */
1475 static void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
1476 {
1477     int i;
1478     memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
1479 
1480     for (i = 0; i < max_hw_wps; i++) {
1481         HWWatchpoint *wp = get_hw_wp(i);
1482         ptr->dbg_wcr[i] = wp->wcr;
1483         ptr->dbg_wvr[i] = wp->wvr;
1484     }
1485     for (i = 0; i < max_hw_bps; i++) {
1486         HWBreakpoint *bp = get_hw_bp(i);
1487         ptr->dbg_bcr[i] = bp->bcr;
1488         ptr->dbg_bvr[i] = bp->bvr;
1489     }
1490 }
1491 
1492 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1493 {
1494     if (kvm_sw_breakpoints_active(cs)) {
1495         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1496     }
1497     if (kvm_arm_hw_debug_active(cs)) {
1498         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
1499         kvm_arm_copy_hw_debug_data(&dbg->arch);
1500     }
1501 }
1502 
1503 void kvm_arch_init_irq_routing(KVMState *s)
1504 {
1505 }
1506 
1507 int kvm_arch_irqchip_create(KVMState *s)
1508 {
1509     if (kvm_kernel_irqchip_split()) {
1510         error_report("-machine kernel_irqchip=split is not supported on ARM.");
1511         exit(1);
1512     }
1513 
1514     /* If we can create the VGIC using the newer device control API, we
1515      * let the device do this when it initializes itself, otherwise we
1516      * fall back to the old API */
1517     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
1518 }
1519 
1520 int kvm_arm_vgic_probe(void)
1521 {
1522     int val = 0;
1523 
1524     if (kvm_create_device(kvm_state,
1525                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
1526         val |= KVM_ARM_VGIC_V3;
1527     }
1528     if (kvm_create_device(kvm_state,
1529                           KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
1530         val |= KVM_ARM_VGIC_V2;
1531     }
1532     return val;
1533 }
1534 
1535 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
1536 {
1537     int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
1538     int cpu_idx1 = cpu % 256;
1539     int cpu_idx2 = cpu / 256;
1540 
1541     kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
1542                (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
1543 
1544     return kvm_set_irq(kvm_state, kvm_irq, !!level);
1545 }
1546 
1547 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1548                              uint64_t address, uint32_t data, PCIDevice *dev)
1549 {
1550     AddressSpace *as = pci_device_iommu_address_space(dev);
1551     hwaddr xlat, len, doorbell_gpa;
1552     MemoryRegionSection mrs;
1553     MemoryRegion *mr;
1554 
1555     if (as == &address_space_memory) {
1556         return 0;
1557     }
1558 
1559     /* MSI doorbell address is translated by an IOMMU */
1560 
1561     RCU_READ_LOCK_GUARD();
1562 
1563     mr = address_space_translate(as, address, &xlat, &len, true,
1564                                  MEMTXATTRS_UNSPECIFIED);
1565 
1566     if (!mr) {
1567         return 1;
1568     }
1569 
1570     mrs = memory_region_find(mr, xlat, 1);
1571 
1572     if (!mrs.mr) {
1573         return 1;
1574     }
1575 
1576     doorbell_gpa = mrs.offset_within_address_space;
1577     memory_region_unref(mrs.mr);
1578 
1579     route->u.msi.address_lo = doorbell_gpa;
1580     route->u.msi.address_hi = doorbell_gpa >> 32;
1581 
1582     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1583 
1584     return 0;
1585 }
1586 
1587 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1588                                 int vector, PCIDevice *dev)
1589 {
1590     return 0;
1591 }
1592 
1593 int kvm_arch_release_virq_post(int virq)
1594 {
1595     return 0;
1596 }
1597 
1598 int kvm_arch_msi_data_to_gsi(uint32_t data)
1599 {
1600     return (data - 32) & 0xffff;
1601 }
1602 
1603 bool kvm_arch_cpu_check_are_resettable(void)
1604 {
1605     return true;
1606 }
1607 
1608 static void kvm_arch_get_eager_split_size(Object *obj, Visitor *v,
1609                                           const char *name, void *opaque,
1610                                           Error **errp)
1611 {
1612     KVMState *s = KVM_STATE(obj);
1613     uint64_t value = s->kvm_eager_split_size;
1614 
1615     visit_type_size(v, name, &value, errp);
1616 }
1617 
1618 static void kvm_arch_set_eager_split_size(Object *obj, Visitor *v,
1619                                           const char *name, void *opaque,
1620                                           Error **errp)
1621 {
1622     KVMState *s = KVM_STATE(obj);
1623     uint64_t value;
1624 
1625     if (s->fd != -1) {
1626         error_setg(errp, "Unable to set early-split-size after KVM has been initialized");
1627         return;
1628     }
1629 
1630     if (!visit_type_size(v, name, &value, errp)) {
1631         return;
1632     }
1633 
1634     if (value && !is_power_of_2(value)) {
1635         error_setg(errp, "early-split-size must be a power of two");
1636         return;
1637     }
1638 
1639     s->kvm_eager_split_size = value;
1640 }
1641 
1642 void kvm_arch_accel_class_init(ObjectClass *oc)
1643 {
1644     object_class_property_add(oc, "eager-split-size", "size",
1645                               kvm_arch_get_eager_split_size,
1646                               kvm_arch_set_eager_split_size, NULL, NULL);
1647 
1648     object_class_property_set_description(oc, "eager-split-size",
1649         "Eager Page Split chunk size for hugepages. (default: 0, disabled)");
1650 }
1651 
1652 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
1653 {
1654     switch (type) {
1655     case GDB_BREAKPOINT_HW:
1656         return insert_hw_breakpoint(addr);
1657         break;
1658     case GDB_WATCHPOINT_READ:
1659     case GDB_WATCHPOINT_WRITE:
1660     case GDB_WATCHPOINT_ACCESS:
1661         return insert_hw_watchpoint(addr, len, type);
1662     default:
1663         return -ENOSYS;
1664     }
1665 }
1666 
1667 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
1668 {
1669     switch (type) {
1670     case GDB_BREAKPOINT_HW:
1671         return delete_hw_breakpoint(addr);
1672     case GDB_WATCHPOINT_READ:
1673     case GDB_WATCHPOINT_WRITE:
1674     case GDB_WATCHPOINT_ACCESS:
1675         return delete_hw_watchpoint(addr, len, type);
1676     default:
1677         return -ENOSYS;
1678     }
1679 }
1680 
1681 void kvm_arch_remove_all_hw_breakpoints(void)
1682 {
1683     if (cur_hw_wps > 0) {
1684         g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
1685     }
1686     if (cur_hw_bps > 0) {
1687         g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
1688     }
1689 }
1690 
1691 static bool kvm_arm_set_device_attr(ARMCPU *cpu, struct kvm_device_attr *attr,
1692                                     const char *name)
1693 {
1694     int err;
1695 
1696     err = kvm_vcpu_ioctl(CPU(cpu), KVM_HAS_DEVICE_ATTR, attr);
1697     if (err != 0) {
1698         error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
1699         return false;
1700     }
1701 
1702     err = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEVICE_ATTR, attr);
1703     if (err != 0) {
1704         error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
1705         return false;
1706     }
1707 
1708     return true;
1709 }
1710 
1711 void kvm_arm_pmu_init(ARMCPU *cpu)
1712 {
1713     struct kvm_device_attr attr = {
1714         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1715         .attr = KVM_ARM_VCPU_PMU_V3_INIT,
1716     };
1717 
1718     if (!cpu->has_pmu) {
1719         return;
1720     }
1721     if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1722         error_report("failed to init PMU");
1723         abort();
1724     }
1725 }
1726 
1727 void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq)
1728 {
1729     struct kvm_device_attr attr = {
1730         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1731         .addr = (intptr_t)&irq,
1732         .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
1733     };
1734 
1735     if (!cpu->has_pmu) {
1736         return;
1737     }
1738     if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1739         error_report("failed to set irq for PMU");
1740         abort();
1741     }
1742 }
1743 
1744 void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa)
1745 {
1746     struct kvm_device_attr attr = {
1747         .group = KVM_ARM_VCPU_PVTIME_CTRL,
1748         .attr = KVM_ARM_VCPU_PVTIME_IPA,
1749         .addr = (uint64_t)&ipa,
1750     };
1751 
1752     if (cpu->kvm_steal_time == ON_OFF_AUTO_OFF) {
1753         return;
1754     }
1755     if (!kvm_arm_set_device_attr(cpu, &attr, "PVTIME IPA")) {
1756         error_report("failed to init PVTIME IPA");
1757         abort();
1758     }
1759 }
1760 
1761 void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
1762 {
1763     bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
1764 
1765     if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
1766         if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1767             cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
1768         } else {
1769             cpu->kvm_steal_time = ON_OFF_AUTO_ON;
1770         }
1771     } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
1772         if (!has_steal_time) {
1773             error_setg(errp, "'kvm-steal-time' cannot be enabled "
1774                              "on this host");
1775             return;
1776         } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1777             /*
1778              * DEN0057A chapter 2 says "This specification only covers
1779              * systems in which the Execution state of the hypervisor
1780              * as well as EL1 of virtual machines is AArch64.". And,
1781              * to ensure that, the smc/hvc calls are only specified as
1782              * smc64/hvc64.
1783              */
1784             error_setg(errp, "'kvm-steal-time' cannot be enabled "
1785                              "for AArch32 guests");
1786             return;
1787         }
1788     }
1789 }
1790 
1791 bool kvm_arm_aarch32_supported(void)
1792 {
1793     return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
1794 }
1795 
1796 bool kvm_arm_sve_supported(void)
1797 {
1798     return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
1799 }
1800 
1801 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
1802 
1803 uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu)
1804 {
1805     /* Only call this function if kvm_arm_sve_supported() returns true. */
1806     static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
1807     static bool probed;
1808     uint32_t vq = 0;
1809     int i;
1810 
1811     /*
1812      * KVM ensures all host CPUs support the same set of vector lengths.
1813      * So we only need to create the scratch VCPUs once and then cache
1814      * the results.
1815      */
1816     if (!probed) {
1817         struct kvm_vcpu_init init = {
1818             .target = -1,
1819             .features[0] = (1 << KVM_ARM_VCPU_SVE),
1820         };
1821         struct kvm_one_reg reg = {
1822             .id = KVM_REG_ARM64_SVE_VLS,
1823             .addr = (uint64_t)&vls[0],
1824         };
1825         int fdarray[3], ret;
1826 
1827         probed = true;
1828 
1829         if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
1830             error_report("failed to create scratch VCPU with SVE enabled");
1831             abort();
1832         }
1833         ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
1834         kvm_arm_destroy_scratch_host_vcpu(fdarray);
1835         if (ret) {
1836             error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
1837                          strerror(errno));
1838             abort();
1839         }
1840 
1841         for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
1842             if (vls[i]) {
1843                 vq = 64 - clz64(vls[i]) + i * 64;
1844                 break;
1845             }
1846         }
1847         if (vq > ARM_MAX_VQ) {
1848             warn_report("KVM supports vector lengths larger than "
1849                         "QEMU can enable");
1850             vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
1851         }
1852     }
1853 
1854     return vls[0];
1855 }
1856 
1857 static int kvm_arm_sve_set_vls(ARMCPU *cpu)
1858 {
1859     uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
1860 
1861     assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
1862 
1863     return kvm_set_one_reg(CPU(cpu), KVM_REG_ARM64_SVE_VLS, &vls[0]);
1864 }
1865 
1866 #define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
1867 
1868 int kvm_arch_init_vcpu(CPUState *cs)
1869 {
1870     int ret;
1871     uint64_t mpidr;
1872     ARMCPU *cpu = ARM_CPU(cs);
1873     CPUARMState *env = &cpu->env;
1874     uint64_t psciver;
1875 
1876     if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
1877         !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
1878         error_report("KVM is not supported for this guest CPU type");
1879         return -EINVAL;
1880     }
1881 
1882     qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs);
1883 
1884     /* Determine init features for this CPU */
1885     memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
1886     if (cs->start_powered_off) {
1887         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
1888     }
1889     if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
1890         cpu->psci_version = QEMU_PSCI_VERSION_0_2;
1891         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
1892     }
1893     if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1894         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
1895     }
1896     if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
1897         cpu->has_pmu = false;
1898     }
1899     if (cpu->has_pmu) {
1900         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
1901     } else {
1902         env->features &= ~(1ULL << ARM_FEATURE_PMU);
1903     }
1904     if (cpu_isar_feature(aa64_sve, cpu)) {
1905         assert(kvm_arm_sve_supported());
1906         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
1907     }
1908     if (cpu_isar_feature(aa64_pauth, cpu)) {
1909         cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
1910                                       1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
1911     }
1912 
1913     /* Do KVM_ARM_VCPU_INIT ioctl */
1914     ret = kvm_arm_vcpu_init(cpu);
1915     if (ret) {
1916         return ret;
1917     }
1918 
1919     if (cpu_isar_feature(aa64_sve, cpu)) {
1920         ret = kvm_arm_sve_set_vls(cpu);
1921         if (ret) {
1922             return ret;
1923         }
1924         ret = kvm_arm_vcpu_finalize(cpu, KVM_ARM_VCPU_SVE);
1925         if (ret) {
1926             return ret;
1927         }
1928     }
1929 
1930     /*
1931      * KVM reports the exact PSCI version it is implementing via a
1932      * special sysreg. If it is present, use its contents to determine
1933      * what to report to the guest in the dtb (it is the PSCI version,
1934      * in the same 15-bits major 16-bits minor format that PSCI_VERSION
1935      * returns).
1936      */
1937     if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
1938         cpu->psci_version = psciver;
1939     }
1940 
1941     /*
1942      * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
1943      * Currently KVM has its own idea about MPIDR assignment, so we
1944      * override our defaults with what we get from KVM.
1945      */
1946     ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
1947     if (ret) {
1948         return ret;
1949     }
1950     cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
1951 
1952     return kvm_arm_init_cpreg_list(cpu);
1953 }
1954 
1955 int kvm_arch_destroy_vcpu(CPUState *cs)
1956 {
1957     return 0;
1958 }
1959 
1960 /* Callers must hold the iothread mutex lock */
1961 static void kvm_inject_arm_sea(CPUState *c)
1962 {
1963     ARMCPU *cpu = ARM_CPU(c);
1964     CPUARMState *env = &cpu->env;
1965     uint32_t esr;
1966     bool same_el;
1967 
1968     c->exception_index = EXCP_DATA_ABORT;
1969     env->exception.target_el = 1;
1970 
1971     /*
1972      * Set the DFSC to synchronous external abort and set FnV to not valid,
1973      * this will tell guest the FAR_ELx is UNKNOWN for this abort.
1974      */
1975     same_el = arm_current_el(env) == env->exception.target_el;
1976     esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
1977 
1978     env->exception.syndrome = esr;
1979 
1980     arm_cpu_do_interrupt(c);
1981 }
1982 
1983 #define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
1984                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1985 
1986 #define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
1987                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1988 
1989 #define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
1990                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1991 
1992 static int kvm_arch_put_fpsimd(CPUState *cs)
1993 {
1994     CPUARMState *env = &ARM_CPU(cs)->env;
1995     int i, ret;
1996 
1997     for (i = 0; i < 32; i++) {
1998         uint64_t *q = aa64_vfp_qreg(env, i);
1999 #if HOST_BIG_ENDIAN
2000         uint64_t fp_val[2] = { q[1], q[0] };
2001         ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
2002                                                         fp_val);
2003 #else
2004         ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2005 #endif
2006         if (ret) {
2007             return ret;
2008         }
2009     }
2010 
2011     return 0;
2012 }
2013 
2014 /*
2015  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2016  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2017  * code the slice index to zero for now as it's unlikely we'll need more than
2018  * one slice for quite some time.
2019  */
2020 static int kvm_arch_put_sve(CPUState *cs)
2021 {
2022     ARMCPU *cpu = ARM_CPU(cs);
2023     CPUARMState *env = &cpu->env;
2024     uint64_t tmp[ARM_MAX_VQ * 2];
2025     uint64_t *r;
2026     int n, ret;
2027 
2028     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2029         r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
2030         ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2031         if (ret) {
2032             return ret;
2033         }
2034     }
2035 
2036     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2037         r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
2038                         DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2039         ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2040         if (ret) {
2041             return ret;
2042         }
2043     }
2044 
2045     r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
2046                     DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2047     ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2048     if (ret) {
2049         return ret;
2050     }
2051 
2052     return 0;
2053 }
2054 
2055 int kvm_arch_put_registers(CPUState *cs, int level)
2056 {
2057     uint64_t val;
2058     uint32_t fpr;
2059     int i, ret;
2060     unsigned int el;
2061 
2062     ARMCPU *cpu = ARM_CPU(cs);
2063     CPUARMState *env = &cpu->env;
2064 
2065     /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
2066      * AArch64 registers before pushing them out to 64-bit KVM.
2067      */
2068     if (!is_a64(env)) {
2069         aarch64_sync_32_to_64(env);
2070     }
2071 
2072     for (i = 0; i < 31; i++) {
2073         ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2074                               &env->xregs[i]);
2075         if (ret) {
2076             return ret;
2077         }
2078     }
2079 
2080     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2081      * QEMU side we keep the current SP in xregs[31] as well.
2082      */
2083     aarch64_save_sp(env, 1);
2084 
2085     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2086     if (ret) {
2087         return ret;
2088     }
2089 
2090     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2091     if (ret) {
2092         return ret;
2093     }
2094 
2095     /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
2096     if (is_a64(env)) {
2097         val = pstate_read(env);
2098     } else {
2099         val = cpsr_read(env);
2100     }
2101     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2102     if (ret) {
2103         return ret;
2104     }
2105 
2106     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2107     if (ret) {
2108         return ret;
2109     }
2110 
2111     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2112     if (ret) {
2113         return ret;
2114     }
2115 
2116     /* Saved Program State Registers
2117      *
2118      * Before we restore from the banked_spsr[] array we need to
2119      * ensure that any modifications to env->spsr are correctly
2120      * reflected in the banks.
2121      */
2122     el = arm_current_el(env);
2123     if (el > 0 && !is_a64(env)) {
2124         i = bank_number(env->uncached_cpsr & CPSR_M);
2125         env->banked_spsr[i] = env->spsr;
2126     }
2127 
2128     /* KVM 0-4 map to QEMU banks 1-5 */
2129     for (i = 0; i < KVM_NR_SPSR; i++) {
2130         ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2131                               &env->banked_spsr[i + 1]);
2132         if (ret) {
2133             return ret;
2134         }
2135     }
2136 
2137     if (cpu_isar_feature(aa64_sve, cpu)) {
2138         ret = kvm_arch_put_sve(cs);
2139     } else {
2140         ret = kvm_arch_put_fpsimd(cs);
2141     }
2142     if (ret) {
2143         return ret;
2144     }
2145 
2146     fpr = vfp_get_fpsr(env);
2147     ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2148     if (ret) {
2149         return ret;
2150     }
2151 
2152     fpr = vfp_get_fpcr(env);
2153     ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2154     if (ret) {
2155         return ret;
2156     }
2157 
2158     write_cpustate_to_list(cpu, true);
2159 
2160     if (!write_list_to_kvmstate(cpu, level)) {
2161         return -EINVAL;
2162     }
2163 
2164    /*
2165     * Setting VCPU events should be triggered after syncing the registers
2166     * to avoid overwriting potential changes made by KVM upon calling
2167     * KVM_SET_VCPU_EVENTS ioctl
2168     */
2169     ret = kvm_put_vcpu_events(cpu);
2170     if (ret) {
2171         return ret;
2172     }
2173 
2174     return kvm_arm_sync_mpstate_to_kvm(cpu);
2175 }
2176 
2177 static int kvm_arch_get_fpsimd(CPUState *cs)
2178 {
2179     CPUARMState *env = &ARM_CPU(cs)->env;
2180     int i, ret;
2181 
2182     for (i = 0; i < 32; i++) {
2183         uint64_t *q = aa64_vfp_qreg(env, i);
2184         ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2185         if (ret) {
2186             return ret;
2187         } else {
2188 #if HOST_BIG_ENDIAN
2189             uint64_t t;
2190             t = q[0], q[0] = q[1], q[1] = t;
2191 #endif
2192         }
2193     }
2194 
2195     return 0;
2196 }
2197 
2198 /*
2199  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2200  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2201  * code the slice index to zero for now as it's unlikely we'll need more than
2202  * one slice for quite some time.
2203  */
2204 static int kvm_arch_get_sve(CPUState *cs)
2205 {
2206     ARMCPU *cpu = ARM_CPU(cs);
2207     CPUARMState *env = &cpu->env;
2208     uint64_t *r;
2209     int n, ret;
2210 
2211     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2212         r = &env->vfp.zregs[n].d[0];
2213         ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2214         if (ret) {
2215             return ret;
2216         }
2217         sve_bswap64(r, r, cpu->sve_max_vq * 2);
2218     }
2219 
2220     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2221         r = &env->vfp.pregs[n].p[0];
2222         ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2223         if (ret) {
2224             return ret;
2225         }
2226         sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2227     }
2228 
2229     r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
2230     ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2231     if (ret) {
2232         return ret;
2233     }
2234     sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2235 
2236     return 0;
2237 }
2238 
2239 int kvm_arch_get_registers(CPUState *cs)
2240 {
2241     uint64_t val;
2242     unsigned int el;
2243     uint32_t fpr;
2244     int i, ret;
2245 
2246     ARMCPU *cpu = ARM_CPU(cs);
2247     CPUARMState *env = &cpu->env;
2248 
2249     for (i = 0; i < 31; i++) {
2250         ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2251                               &env->xregs[i]);
2252         if (ret) {
2253             return ret;
2254         }
2255     }
2256 
2257     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2258     if (ret) {
2259         return ret;
2260     }
2261 
2262     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2263     if (ret) {
2264         return ret;
2265     }
2266 
2267     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2268     if (ret) {
2269         return ret;
2270     }
2271 
2272     env->aarch64 = ((val & PSTATE_nRW) == 0);
2273     if (is_a64(env)) {
2274         pstate_write(env, val);
2275     } else {
2276         cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
2277     }
2278 
2279     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2280      * QEMU side we keep the current SP in xregs[31] as well.
2281      */
2282     aarch64_restore_sp(env, 1);
2283 
2284     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2285     if (ret) {
2286         return ret;
2287     }
2288 
2289     /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
2290      * incoming AArch64 regs received from 64-bit KVM.
2291      * We must perform this after all of the registers have been acquired from
2292      * the kernel.
2293      */
2294     if (!is_a64(env)) {
2295         aarch64_sync_64_to_32(env);
2296     }
2297 
2298     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2299     if (ret) {
2300         return ret;
2301     }
2302 
2303     /* Fetch the SPSR registers
2304      *
2305      * KVM SPSRs 0-4 map to QEMU banks 1-5
2306      */
2307     for (i = 0; i < KVM_NR_SPSR; i++) {
2308         ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2309                               &env->banked_spsr[i + 1]);
2310         if (ret) {
2311             return ret;
2312         }
2313     }
2314 
2315     el = arm_current_el(env);
2316     if (el > 0 && !is_a64(env)) {
2317         i = bank_number(env->uncached_cpsr & CPSR_M);
2318         env->spsr = env->banked_spsr[i];
2319     }
2320 
2321     if (cpu_isar_feature(aa64_sve, cpu)) {
2322         ret = kvm_arch_get_sve(cs);
2323     } else {
2324         ret = kvm_arch_get_fpsimd(cs);
2325     }
2326     if (ret) {
2327         return ret;
2328     }
2329 
2330     ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2331     if (ret) {
2332         return ret;
2333     }
2334     vfp_set_fpsr(env, fpr);
2335 
2336     ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2337     if (ret) {
2338         return ret;
2339     }
2340     vfp_set_fpcr(env, fpr);
2341 
2342     ret = kvm_get_vcpu_events(cpu);
2343     if (ret) {
2344         return ret;
2345     }
2346 
2347     if (!write_kvmstate_to_list(cpu)) {
2348         return -EINVAL;
2349     }
2350     /* Note that it's OK to have registers which aren't in CPUState,
2351      * so we can ignore a failure return here.
2352      */
2353     write_list_to_cpustate(cpu);
2354 
2355     ret = kvm_arm_sync_mpstate_to_qemu(cpu);
2356 
2357     /* TODO: other registers */
2358     return ret;
2359 }
2360 
2361 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
2362 {
2363     ram_addr_t ram_addr;
2364     hwaddr paddr;
2365 
2366     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
2367 
2368     if (acpi_ghes_present() && addr) {
2369         ram_addr = qemu_ram_addr_from_host(addr);
2370         if (ram_addr != RAM_ADDR_INVALID &&
2371             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
2372             kvm_hwpoison_page_add(ram_addr);
2373             /*
2374              * If this is a BUS_MCEERR_AR, we know we have been called
2375              * synchronously from the vCPU thread, so we can easily
2376              * synchronize the state and inject an error.
2377              *
2378              * TODO: we currently don't tell the guest at all about
2379              * BUS_MCEERR_AO. In that case we might either be being
2380              * called synchronously from the vCPU thread, or a bit
2381              * later from the main thread, so doing the injection of
2382              * the error would be more complicated.
2383              */
2384             if (code == BUS_MCEERR_AR) {
2385                 kvm_cpu_synchronize_state(c);
2386                 if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
2387                     kvm_inject_arm_sea(c);
2388                 } else {
2389                     error_report("failed to record the error");
2390                     abort();
2391                 }
2392             }
2393             return;
2394         }
2395         if (code == BUS_MCEERR_AO) {
2396             error_report("Hardware memory error at addr %p for memory used by "
2397                 "QEMU itself instead of guest system!", addr);
2398         }
2399     }
2400 
2401     if (code == BUS_MCEERR_AR) {
2402         error_report("Hardware memory error!");
2403         exit(1);
2404     }
2405 }
2406 
2407 /* C6.6.29 BRK instruction */
2408 static const uint32_t brk_insn = 0xd4200000;
2409 
2410 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2411 {
2412     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2413         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2414         return -EINVAL;
2415     }
2416     return 0;
2417 }
2418 
2419 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2420 {
2421     static uint32_t brk;
2422 
2423     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
2424         brk != brk_insn ||
2425         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2426         return -EINVAL;
2427     }
2428     return 0;
2429 }
2430