xref: /qemu/target/arm/kvm.c (revision b21e2380)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13 
14 #include <linux/kvm.h>
15 
16 #include "qemu-common.h"
17 #include "qemu/timer.h"
18 #include "qemu/error-report.h"
19 #include "qemu/main-loop.h"
20 #include "qom/object.h"
21 #include "qapi/error.h"
22 #include "sysemu/sysemu.h"
23 #include "sysemu/kvm.h"
24 #include "sysemu/kvm_int.h"
25 #include "kvm_arm.h"
26 #include "cpu.h"
27 #include "trace.h"
28 #include "internals.h"
29 #include "hw/pci/pci.h"
30 #include "exec/memattrs.h"
31 #include "exec/address-spaces.h"
32 #include "hw/boards.h"
33 #include "hw/irq.h"
34 #include "qemu/log.h"
35 
36 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
37     KVM_CAP_LAST_INFO
38 };
39 
40 static bool cap_has_mp_state;
41 static bool cap_has_inject_serror_esr;
42 static bool cap_has_inject_ext_dabt;
43 
44 static ARMHostCPUFeatures arm_host_cpu_features;
45 
46 int kvm_arm_vcpu_init(CPUState *cs)
47 {
48     ARMCPU *cpu = ARM_CPU(cs);
49     struct kvm_vcpu_init init;
50 
51     init.target = cpu->kvm_target;
52     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
53 
54     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
55 }
56 
57 int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
58 {
59     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
60 }
61 
62 void kvm_arm_init_serror_injection(CPUState *cs)
63 {
64     cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
65                                     KVM_CAP_ARM_INJECT_SERROR_ESR);
66 }
67 
68 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
69                                       int *fdarray,
70                                       struct kvm_vcpu_init *init)
71 {
72     int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
73     int max_vm_pa_size;
74 
75     kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
76     if (kvmfd < 0) {
77         goto err;
78     }
79     max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
80     if (max_vm_pa_size < 0) {
81         max_vm_pa_size = 0;
82     }
83     vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
84     if (vmfd < 0) {
85         goto err;
86     }
87     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
88     if (cpufd < 0) {
89         goto err;
90     }
91 
92     if (!init) {
93         /* Caller doesn't want the VCPU to be initialized, so skip it */
94         goto finish;
95     }
96 
97     if (init->target == -1) {
98         struct kvm_vcpu_init preferred;
99 
100         ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
101         if (!ret) {
102             init->target = preferred.target;
103         }
104     }
105     if (ret >= 0) {
106         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
107         if (ret < 0) {
108             goto err;
109         }
110     } else if (cpus_to_try) {
111         /* Old kernel which doesn't know about the
112          * PREFERRED_TARGET ioctl: we know it will only support
113          * creating one kind of guest CPU which is its preferred
114          * CPU type.
115          */
116         struct kvm_vcpu_init try;
117 
118         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
119             try.target = *cpus_to_try++;
120             memcpy(try.features, init->features, sizeof(init->features));
121             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
122             if (ret >= 0) {
123                 break;
124             }
125         }
126         if (ret < 0) {
127             goto err;
128         }
129         init->target = try.target;
130     } else {
131         /* Treat a NULL cpus_to_try argument the same as an empty
132          * list, which means we will fail the call since this must
133          * be an old kernel which doesn't support PREFERRED_TARGET.
134          */
135         goto err;
136     }
137 
138 finish:
139     fdarray[0] = kvmfd;
140     fdarray[1] = vmfd;
141     fdarray[2] = cpufd;
142 
143     return true;
144 
145 err:
146     if (cpufd >= 0) {
147         close(cpufd);
148     }
149     if (vmfd >= 0) {
150         close(vmfd);
151     }
152     if (kvmfd >= 0) {
153         close(kvmfd);
154     }
155 
156     return false;
157 }
158 
159 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
160 {
161     int i;
162 
163     for (i = 2; i >= 0; i--) {
164         close(fdarray[i]);
165     }
166 }
167 
168 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
169 {
170     CPUARMState *env = &cpu->env;
171 
172     if (!arm_host_cpu_features.dtb_compatible) {
173         if (!kvm_enabled() ||
174             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
175             /* We can't report this error yet, so flag that we need to
176              * in arm_cpu_realizefn().
177              */
178             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
179             cpu->host_cpu_probe_failed = true;
180             return;
181         }
182     }
183 
184     cpu->kvm_target = arm_host_cpu_features.target;
185     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
186     cpu->isar = arm_host_cpu_features.isar;
187     env->features = arm_host_cpu_features.features;
188 }
189 
190 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
191 {
192     return !ARM_CPU(obj)->kvm_adjvtime;
193 }
194 
195 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
196 {
197     ARM_CPU(obj)->kvm_adjvtime = !value;
198 }
199 
200 static bool kvm_steal_time_get(Object *obj, Error **errp)
201 {
202     return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
203 }
204 
205 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
206 {
207     ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
208 }
209 
210 /* KVM VCPU properties should be prefixed with "kvm-". */
211 void kvm_arm_add_vcpu_properties(Object *obj)
212 {
213     ARMCPU *cpu = ARM_CPU(obj);
214     CPUARMState *env = &cpu->env;
215 
216     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
217         cpu->kvm_adjvtime = true;
218         object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
219                                  kvm_no_adjvtime_set);
220         object_property_set_description(obj, "kvm-no-adjvtime",
221                                         "Set on to disable the adjustment of "
222                                         "the virtual counter. VM stopped time "
223                                         "will be counted.");
224     }
225 
226     cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
227     object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
228                              kvm_steal_time_set);
229     object_property_set_description(obj, "kvm-steal-time",
230                                     "Set off to disable KVM steal time.");
231 }
232 
233 bool kvm_arm_pmu_supported(void)
234 {
235     return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
236 }
237 
238 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
239 {
240     KVMState *s = KVM_STATE(ms->accelerator);
241     int ret;
242 
243     ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
244     *fixed_ipa = ret <= 0;
245 
246     return ret > 0 ? ret : 40;
247 }
248 
249 int kvm_arch_init(MachineState *ms, KVMState *s)
250 {
251     int ret = 0;
252     /* For ARM interrupt delivery is always asynchronous,
253      * whether we are using an in-kernel VGIC or not.
254      */
255     kvm_async_interrupts_allowed = true;
256 
257     /*
258      * PSCI wakes up secondary cores, so we always need to
259      * have vCPUs waiting in kernel space
260      */
261     kvm_halt_in_kernel_allowed = true;
262 
263     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
264 
265     if (ms->smp.cpus > 256 &&
266         !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
267         error_report("Using more than 256 vcpus requires a host kernel "
268                      "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
269         ret = -EINVAL;
270     }
271 
272     if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
273         if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
274             error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
275         } else {
276             /* Set status for supporting the external dabt injection */
277             cap_has_inject_ext_dabt = kvm_check_extension(s,
278                                     KVM_CAP_ARM_INJECT_EXT_DABT);
279         }
280     }
281 
282     return ret;
283 }
284 
285 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
286 {
287     return cpu->cpu_index;
288 }
289 
290 /* We track all the KVM devices which need their memory addresses
291  * passing to the kernel in a list of these structures.
292  * When board init is complete we run through the list and
293  * tell the kernel the base addresses of the memory regions.
294  * We use a MemoryListener to track mapping and unmapping of
295  * the regions during board creation, so the board models don't
296  * need to do anything special for the KVM case.
297  *
298  * Sometimes the address must be OR'ed with some other fields
299  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
300  * @kda_addr_ormask aims at storing the value of those fields.
301  */
302 typedef struct KVMDevice {
303     struct kvm_arm_device_addr kda;
304     struct kvm_device_attr kdattr;
305     uint64_t kda_addr_ormask;
306     MemoryRegion *mr;
307     QSLIST_ENTRY(KVMDevice) entries;
308     int dev_fd;
309 } KVMDevice;
310 
311 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
312 
313 static void kvm_arm_devlistener_add(MemoryListener *listener,
314                                     MemoryRegionSection *section)
315 {
316     KVMDevice *kd;
317 
318     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
319         if (section->mr == kd->mr) {
320             kd->kda.addr = section->offset_within_address_space;
321         }
322     }
323 }
324 
325 static void kvm_arm_devlistener_del(MemoryListener *listener,
326                                     MemoryRegionSection *section)
327 {
328     KVMDevice *kd;
329 
330     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
331         if (section->mr == kd->mr) {
332             kd->kda.addr = -1;
333         }
334     }
335 }
336 
337 static MemoryListener devlistener = {
338     .name = "kvm-arm",
339     .region_add = kvm_arm_devlistener_add,
340     .region_del = kvm_arm_devlistener_del,
341 };
342 
343 static void kvm_arm_set_device_addr(KVMDevice *kd)
344 {
345     struct kvm_device_attr *attr = &kd->kdattr;
346     int ret;
347 
348     /* If the device control API is available and we have a device fd on the
349      * KVMDevice struct, let's use the newer API
350      */
351     if (kd->dev_fd >= 0) {
352         uint64_t addr = kd->kda.addr;
353 
354         addr |= kd->kda_addr_ormask;
355         attr->addr = (uintptr_t)&addr;
356         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
357     } else {
358         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
359     }
360 
361     if (ret < 0) {
362         fprintf(stderr, "Failed to set device address: %s\n",
363                 strerror(-ret));
364         abort();
365     }
366 }
367 
368 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
369 {
370     KVMDevice *kd, *tkd;
371 
372     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
373         if (kd->kda.addr != -1) {
374             kvm_arm_set_device_addr(kd);
375         }
376         memory_region_unref(kd->mr);
377         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
378         g_free(kd);
379     }
380     memory_listener_unregister(&devlistener);
381 }
382 
383 static Notifier notify = {
384     .notify = kvm_arm_machine_init_done,
385 };
386 
387 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
388                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
389 {
390     KVMDevice *kd;
391 
392     if (!kvm_irqchip_in_kernel()) {
393         return;
394     }
395 
396     if (QSLIST_EMPTY(&kvm_devices_head)) {
397         memory_listener_register(&devlistener, &address_space_memory);
398         qemu_add_machine_init_done_notifier(&notify);
399     }
400     kd = g_new0(KVMDevice, 1);
401     kd->mr = mr;
402     kd->kda.id = devid;
403     kd->kda.addr = -1;
404     kd->kdattr.flags = 0;
405     kd->kdattr.group = group;
406     kd->kdattr.attr = attr;
407     kd->dev_fd = dev_fd;
408     kd->kda_addr_ormask = addr_ormask;
409     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
410     memory_region_ref(kd->mr);
411 }
412 
413 static int compare_u64(const void *a, const void *b)
414 {
415     if (*(uint64_t *)a > *(uint64_t *)b) {
416         return 1;
417     }
418     if (*(uint64_t *)a < *(uint64_t *)b) {
419         return -1;
420     }
421     return 0;
422 }
423 
424 /*
425  * cpreg_values are sorted in ascending order by KVM register ID
426  * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
427  * the storage for a KVM register by ID with a binary search.
428  */
429 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
430 {
431     uint64_t *res;
432 
433     res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
434                   sizeof(uint64_t), compare_u64);
435     assert(res);
436 
437     return &cpu->cpreg_values[res - cpu->cpreg_indexes];
438 }
439 
440 /* Initialize the ARMCPU cpreg list according to the kernel's
441  * definition of what CPU registers it knows about (and throw away
442  * the previous TCG-created cpreg list).
443  */
444 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
445 {
446     struct kvm_reg_list rl;
447     struct kvm_reg_list *rlp;
448     int i, ret, arraylen;
449     CPUState *cs = CPU(cpu);
450 
451     rl.n = 0;
452     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
453     if (ret != -E2BIG) {
454         return ret;
455     }
456     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
457     rlp->n = rl.n;
458     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
459     if (ret) {
460         goto out;
461     }
462     /* Sort the list we get back from the kernel, since cpreg_tuples
463      * must be in strictly ascending order.
464      */
465     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
466 
467     for (i = 0, arraylen = 0; i < rlp->n; i++) {
468         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
469             continue;
470         }
471         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
472         case KVM_REG_SIZE_U32:
473         case KVM_REG_SIZE_U64:
474             break;
475         default:
476             fprintf(stderr, "Can't handle size of register in kernel list\n");
477             ret = -EINVAL;
478             goto out;
479         }
480 
481         arraylen++;
482     }
483 
484     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
485     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
486     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
487                                          arraylen);
488     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
489                                         arraylen);
490     cpu->cpreg_array_len = arraylen;
491     cpu->cpreg_vmstate_array_len = arraylen;
492 
493     for (i = 0, arraylen = 0; i < rlp->n; i++) {
494         uint64_t regidx = rlp->reg[i];
495         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
496             continue;
497         }
498         cpu->cpreg_indexes[arraylen] = regidx;
499         arraylen++;
500     }
501     assert(cpu->cpreg_array_len == arraylen);
502 
503     if (!write_kvmstate_to_list(cpu)) {
504         /* Shouldn't happen unless kernel is inconsistent about
505          * what registers exist.
506          */
507         fprintf(stderr, "Initial read of kernel register state failed\n");
508         ret = -EINVAL;
509         goto out;
510     }
511 
512 out:
513     g_free(rlp);
514     return ret;
515 }
516 
517 bool write_kvmstate_to_list(ARMCPU *cpu)
518 {
519     CPUState *cs = CPU(cpu);
520     int i;
521     bool ok = true;
522 
523     for (i = 0; i < cpu->cpreg_array_len; i++) {
524         struct kvm_one_reg r;
525         uint64_t regidx = cpu->cpreg_indexes[i];
526         uint32_t v32;
527         int ret;
528 
529         r.id = regidx;
530 
531         switch (regidx & KVM_REG_SIZE_MASK) {
532         case KVM_REG_SIZE_U32:
533             r.addr = (uintptr_t)&v32;
534             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
535             if (!ret) {
536                 cpu->cpreg_values[i] = v32;
537             }
538             break;
539         case KVM_REG_SIZE_U64:
540             r.addr = (uintptr_t)(cpu->cpreg_values + i);
541             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
542             break;
543         default:
544             abort();
545         }
546         if (ret) {
547             ok = false;
548         }
549     }
550     return ok;
551 }
552 
553 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
554 {
555     CPUState *cs = CPU(cpu);
556     int i;
557     bool ok = true;
558 
559     for (i = 0; i < cpu->cpreg_array_len; i++) {
560         struct kvm_one_reg r;
561         uint64_t regidx = cpu->cpreg_indexes[i];
562         uint32_t v32;
563         int ret;
564 
565         if (kvm_arm_cpreg_level(regidx) > level) {
566             continue;
567         }
568 
569         r.id = regidx;
570         switch (regidx & KVM_REG_SIZE_MASK) {
571         case KVM_REG_SIZE_U32:
572             v32 = cpu->cpreg_values[i];
573             r.addr = (uintptr_t)&v32;
574             break;
575         case KVM_REG_SIZE_U64:
576             r.addr = (uintptr_t)(cpu->cpreg_values + i);
577             break;
578         default:
579             abort();
580         }
581         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
582         if (ret) {
583             /* We might fail for "unknown register" and also for
584              * "you tried to set a register which is constant with
585              * a different value from what it actually contains".
586              */
587             ok = false;
588         }
589     }
590     return ok;
591 }
592 
593 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
594 {
595     /* KVM virtual time adjustment */
596     if (cpu->kvm_vtime_dirty) {
597         *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
598     }
599 }
600 
601 void kvm_arm_cpu_post_load(ARMCPU *cpu)
602 {
603     /* KVM virtual time adjustment */
604     if (cpu->kvm_adjvtime) {
605         cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
606         cpu->kvm_vtime_dirty = true;
607     }
608 }
609 
610 void kvm_arm_reset_vcpu(ARMCPU *cpu)
611 {
612     int ret;
613 
614     /* Re-init VCPU so that all registers are set to
615      * their respective reset values.
616      */
617     ret = kvm_arm_vcpu_init(CPU(cpu));
618     if (ret < 0) {
619         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
620         abort();
621     }
622     if (!write_kvmstate_to_list(cpu)) {
623         fprintf(stderr, "write_kvmstate_to_list failed\n");
624         abort();
625     }
626     /*
627      * Sync the reset values also into the CPUState. This is necessary
628      * because the next thing we do will be a kvm_arch_put_registers()
629      * which will update the list values from the CPUState before copying
630      * the list values back to KVM. It's OK to ignore failure returns here
631      * for the same reason we do so in kvm_arch_get_registers().
632      */
633     write_list_to_cpustate(cpu);
634 }
635 
636 /*
637  * Update KVM's MP_STATE based on what QEMU thinks it is
638  */
639 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
640 {
641     if (cap_has_mp_state) {
642         struct kvm_mp_state mp_state = {
643             .mp_state = (cpu->power_state == PSCI_OFF) ?
644             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
645         };
646         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
647         if (ret) {
648             fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
649                     __func__, ret, strerror(-ret));
650             return -1;
651         }
652     }
653 
654     return 0;
655 }
656 
657 /*
658  * Sync the KVM MP_STATE into QEMU
659  */
660 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
661 {
662     if (cap_has_mp_state) {
663         struct kvm_mp_state mp_state;
664         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
665         if (ret) {
666             fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
667                     __func__, ret, strerror(-ret));
668             abort();
669         }
670         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
671             PSCI_OFF : PSCI_ON;
672     }
673 
674     return 0;
675 }
676 
677 void kvm_arm_get_virtual_time(CPUState *cs)
678 {
679     ARMCPU *cpu = ARM_CPU(cs);
680     struct kvm_one_reg reg = {
681         .id = KVM_REG_ARM_TIMER_CNT,
682         .addr = (uintptr_t)&cpu->kvm_vtime,
683     };
684     int ret;
685 
686     if (cpu->kvm_vtime_dirty) {
687         return;
688     }
689 
690     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
691     if (ret) {
692         error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
693         abort();
694     }
695 
696     cpu->kvm_vtime_dirty = true;
697 }
698 
699 void kvm_arm_put_virtual_time(CPUState *cs)
700 {
701     ARMCPU *cpu = ARM_CPU(cs);
702     struct kvm_one_reg reg = {
703         .id = KVM_REG_ARM_TIMER_CNT,
704         .addr = (uintptr_t)&cpu->kvm_vtime,
705     };
706     int ret;
707 
708     if (!cpu->kvm_vtime_dirty) {
709         return;
710     }
711 
712     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
713     if (ret) {
714         error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
715         abort();
716     }
717 
718     cpu->kvm_vtime_dirty = false;
719 }
720 
721 int kvm_put_vcpu_events(ARMCPU *cpu)
722 {
723     CPUARMState *env = &cpu->env;
724     struct kvm_vcpu_events events;
725     int ret;
726 
727     if (!kvm_has_vcpu_events()) {
728         return 0;
729     }
730 
731     memset(&events, 0, sizeof(events));
732     events.exception.serror_pending = env->serror.pending;
733 
734     /* Inject SError to guest with specified syndrome if host kernel
735      * supports it, otherwise inject SError without syndrome.
736      */
737     if (cap_has_inject_serror_esr) {
738         events.exception.serror_has_esr = env->serror.has_esr;
739         events.exception.serror_esr = env->serror.esr;
740     }
741 
742     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
743     if (ret) {
744         error_report("failed to put vcpu events");
745     }
746 
747     return ret;
748 }
749 
750 int kvm_get_vcpu_events(ARMCPU *cpu)
751 {
752     CPUARMState *env = &cpu->env;
753     struct kvm_vcpu_events events;
754     int ret;
755 
756     if (!kvm_has_vcpu_events()) {
757         return 0;
758     }
759 
760     memset(&events, 0, sizeof(events));
761     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
762     if (ret) {
763         error_report("failed to get vcpu events");
764         return ret;
765     }
766 
767     env->serror.pending = events.exception.serror_pending;
768     env->serror.has_esr = events.exception.serror_has_esr;
769     env->serror.esr = events.exception.serror_esr;
770 
771     return 0;
772 }
773 
774 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
775 {
776     ARMCPU *cpu = ARM_CPU(cs);
777     CPUARMState *env = &cpu->env;
778 
779     if (unlikely(env->ext_dabt_raised)) {
780         /*
781          * Verifying that the ext DABT has been properly injected,
782          * otherwise risking indefinitely re-running the faulting instruction
783          * Covering a very narrow case for kernels 5.5..5.5.4
784          * when injected abort was misconfigured to be
785          * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
786          */
787         if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
788             unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
789 
790             error_report("Data abort exception with no valid ISS generated by "
791                    "guest memory access. KVM unable to emulate faulting "
792                    "instruction. Failed to inject an external data abort "
793                    "into the guest.");
794             abort();
795        }
796        /* Clear the status */
797        env->ext_dabt_raised = 0;
798     }
799 }
800 
801 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
802 {
803     ARMCPU *cpu;
804     uint32_t switched_level;
805 
806     if (kvm_irqchip_in_kernel()) {
807         /*
808          * We only need to sync timer states with user-space interrupt
809          * controllers, so return early and save cycles if we don't.
810          */
811         return MEMTXATTRS_UNSPECIFIED;
812     }
813 
814     cpu = ARM_CPU(cs);
815 
816     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
817     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
818         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
819 
820         qemu_mutex_lock_iothread();
821 
822         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
823             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
824                          !!(run->s.regs.device_irq_level &
825                             KVM_ARM_DEV_EL1_VTIMER));
826             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
827         }
828 
829         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
830             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
831                          !!(run->s.regs.device_irq_level &
832                             KVM_ARM_DEV_EL1_PTIMER));
833             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
834         }
835 
836         if (switched_level & KVM_ARM_DEV_PMU) {
837             qemu_set_irq(cpu->pmu_interrupt,
838                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
839             switched_level &= ~KVM_ARM_DEV_PMU;
840         }
841 
842         if (switched_level) {
843             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
844                           __func__, switched_level);
845         }
846 
847         /* We also mark unknown levels as processed to not waste cycles */
848         cpu->device_irq_level = run->s.regs.device_irq_level;
849         qemu_mutex_unlock_iothread();
850     }
851 
852     return MEMTXATTRS_UNSPECIFIED;
853 }
854 
855 void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
856 {
857     CPUState *cs = opaque;
858     ARMCPU *cpu = ARM_CPU(cs);
859 
860     if (running) {
861         if (cpu->kvm_adjvtime) {
862             kvm_arm_put_virtual_time(cs);
863         }
864     } else {
865         if (cpu->kvm_adjvtime) {
866             kvm_arm_get_virtual_time(cs);
867         }
868     }
869 }
870 
871 /**
872  * kvm_arm_handle_dabt_nisv:
873  * @cs: CPUState
874  * @esr_iss: ISS encoding (limited) for the exception from Data Abort
875  *           ISV bit set to '0b0' -> no valid instruction syndrome
876  * @fault_ipa: faulting address for the synchronous data abort
877  *
878  * Returns: 0 if the exception has been handled, < 0 otherwise
879  */
880 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
881                                     uint64_t fault_ipa)
882 {
883     ARMCPU *cpu = ARM_CPU(cs);
884     CPUARMState *env = &cpu->env;
885     /*
886      * Request KVM to inject the external data abort into the guest
887      */
888     if (cap_has_inject_ext_dabt) {
889         struct kvm_vcpu_events events = { };
890         /*
891          * The external data abort event will be handled immediately by KVM
892          * using the address fault that triggered the exit on given VCPU.
893          * Requesting injection of the external data abort does not rely
894          * on any other VCPU state. Therefore, in this particular case, the VCPU
895          * synchronization can be exceptionally skipped.
896          */
897         events.exception.ext_dabt_pending = 1;
898         /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
899         if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
900             env->ext_dabt_raised = 1;
901             return 0;
902         }
903     } else {
904         error_report("Data abort exception triggered by guest memory access "
905                      "at physical address: 0x"  TARGET_FMT_lx,
906                      (target_ulong)fault_ipa);
907         error_printf("KVM unable to emulate faulting instruction.\n");
908     }
909     return -1;
910 }
911 
912 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
913 {
914     int ret = 0;
915 
916     switch (run->exit_reason) {
917     case KVM_EXIT_DEBUG:
918         if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
919             ret = EXCP_DEBUG;
920         } /* otherwise return to guest */
921         break;
922     case KVM_EXIT_ARM_NISV:
923         /* External DABT with no valid iss to decode */
924         ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
925                                        run->arm_nisv.fault_ipa);
926         break;
927     default:
928         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
929                       __func__, run->exit_reason);
930         break;
931     }
932     return ret;
933 }
934 
935 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
936 {
937     return true;
938 }
939 
940 int kvm_arch_process_async_events(CPUState *cs)
941 {
942     return 0;
943 }
944 
945 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
946 {
947     if (kvm_sw_breakpoints_active(cs)) {
948         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
949     }
950     if (kvm_arm_hw_debug_active(cs)) {
951         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
952         kvm_arm_copy_hw_debug_data(&dbg->arch);
953     }
954 }
955 
956 void kvm_arch_init_irq_routing(KVMState *s)
957 {
958 }
959 
960 int kvm_arch_irqchip_create(KVMState *s)
961 {
962     if (kvm_kernel_irqchip_split()) {
963         perror("-machine kernel_irqchip=split is not supported on ARM.");
964         exit(1);
965     }
966 
967     /* If we can create the VGIC using the newer device control API, we
968      * let the device do this when it initializes itself, otherwise we
969      * fall back to the old API */
970     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
971 }
972 
973 int kvm_arm_vgic_probe(void)
974 {
975     int val = 0;
976 
977     if (kvm_create_device(kvm_state,
978                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
979         val |= KVM_ARM_VGIC_V3;
980     }
981     if (kvm_create_device(kvm_state,
982                           KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
983         val |= KVM_ARM_VGIC_V2;
984     }
985     return val;
986 }
987 
988 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
989 {
990     int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
991     int cpu_idx1 = cpu % 256;
992     int cpu_idx2 = cpu / 256;
993 
994     kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
995                (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
996 
997     return kvm_set_irq(kvm_state, kvm_irq, !!level);
998 }
999 
1000 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1001                              uint64_t address, uint32_t data, PCIDevice *dev)
1002 {
1003     AddressSpace *as = pci_device_iommu_address_space(dev);
1004     hwaddr xlat, len, doorbell_gpa;
1005     MemoryRegionSection mrs;
1006     MemoryRegion *mr;
1007 
1008     if (as == &address_space_memory) {
1009         return 0;
1010     }
1011 
1012     /* MSI doorbell address is translated by an IOMMU */
1013 
1014     RCU_READ_LOCK_GUARD();
1015 
1016     mr = address_space_translate(as, address, &xlat, &len, true,
1017                                  MEMTXATTRS_UNSPECIFIED);
1018 
1019     if (!mr) {
1020         return 1;
1021     }
1022 
1023     mrs = memory_region_find(mr, xlat, 1);
1024 
1025     if (!mrs.mr) {
1026         return 1;
1027     }
1028 
1029     doorbell_gpa = mrs.offset_within_address_space;
1030     memory_region_unref(mrs.mr);
1031 
1032     route->u.msi.address_lo = doorbell_gpa;
1033     route->u.msi.address_hi = doorbell_gpa >> 32;
1034 
1035     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1036 
1037     return 0;
1038 }
1039 
1040 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1041                                 int vector, PCIDevice *dev)
1042 {
1043     return 0;
1044 }
1045 
1046 int kvm_arch_release_virq_post(int virq)
1047 {
1048     return 0;
1049 }
1050 
1051 int kvm_arch_msi_data_to_gsi(uint32_t data)
1052 {
1053     return (data - 32) & 0xffff;
1054 }
1055 
1056 bool kvm_arch_cpu_check_are_resettable(void)
1057 {
1058     return true;
1059 }
1060