xref: /qemu/target/arm/kvm.c (revision bc1b09b3)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
6  * Copyright Alex Bennée 2014, Linaro
7  *
8  * This work is licensed under the terms of the GNU GPL, version 2 or later.
9  * See the COPYING file in the top-level directory.
10  *
11  */
12 
13 #include "qemu/osdep.h"
14 #include <sys/ioctl.h>
15 
16 #include <linux/kvm.h>
17 
18 #include "qemu/timer.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qom/object.h"
22 #include "qapi/error.h"
23 #include "sysemu/sysemu.h"
24 #include "sysemu/runstate.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/kvm_int.h"
27 #include "kvm_arm.h"
28 #include "cpu.h"
29 #include "trace.h"
30 #include "internals.h"
31 #include "hw/pci/pci.h"
32 #include "exec/memattrs.h"
33 #include "exec/address-spaces.h"
34 #include "exec/gdbstub.h"
35 #include "hw/boards.h"
36 #include "hw/irq.h"
37 #include "qapi/visitor.h"
38 #include "qemu/log.h"
39 #include "hw/acpi/acpi.h"
40 #include "hw/acpi/ghes.h"
41 
42 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
43     KVM_CAP_LAST_INFO
44 };
45 
46 static bool cap_has_mp_state;
47 static bool cap_has_inject_serror_esr;
48 static bool cap_has_inject_ext_dabt;
49 
50 /**
51  * ARMHostCPUFeatures: information about the host CPU (identified
52  * by asking the host kernel)
53  */
54 typedef struct ARMHostCPUFeatures {
55     ARMISARegisters isar;
56     uint64_t features;
57     uint32_t target;
58     const char *dtb_compatible;
59 } ARMHostCPUFeatures;
60 
61 static ARMHostCPUFeatures arm_host_cpu_features;
62 
63 /**
64  * kvm_arm_vcpu_init:
65  * @cs: CPUState
66  *
67  * Initialize (or reinitialize) the VCPU by invoking the
68  * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
69  * bitmask specified in the CPUState.
70  *
71  * Returns: 0 if success else < 0 error code
72  */
73 static int kvm_arm_vcpu_init(CPUState *cs)
74 {
75     ARMCPU *cpu = ARM_CPU(cs);
76     struct kvm_vcpu_init init;
77 
78     init.target = cpu->kvm_target;
79     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
80 
81     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
82 }
83 
84 /**
85  * kvm_arm_vcpu_finalize:
86  * @cs: CPUState
87  * @feature: feature to finalize
88  *
89  * Finalizes the configuration of the specified VCPU feature by
90  * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
91  * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
92  * KVM's API documentation.
93  *
94  * Returns: 0 if success else < 0 error code
95  */
96 static int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
97 {
98     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
99 }
100 
101 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
102                                       int *fdarray,
103                                       struct kvm_vcpu_init *init)
104 {
105     int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
106     int max_vm_pa_size;
107 
108     kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
109     if (kvmfd < 0) {
110         goto err;
111     }
112     max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
113     if (max_vm_pa_size < 0) {
114         max_vm_pa_size = 0;
115     }
116     do {
117         vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
118     } while (vmfd == -1 && errno == EINTR);
119     if (vmfd < 0) {
120         goto err;
121     }
122     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
123     if (cpufd < 0) {
124         goto err;
125     }
126 
127     if (!init) {
128         /* Caller doesn't want the VCPU to be initialized, so skip it */
129         goto finish;
130     }
131 
132     if (init->target == -1) {
133         struct kvm_vcpu_init preferred;
134 
135         ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
136         if (!ret) {
137             init->target = preferred.target;
138         }
139     }
140     if (ret >= 0) {
141         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
142         if (ret < 0) {
143             goto err;
144         }
145     } else if (cpus_to_try) {
146         /* Old kernel which doesn't know about the
147          * PREFERRED_TARGET ioctl: we know it will only support
148          * creating one kind of guest CPU which is its preferred
149          * CPU type.
150          */
151         struct kvm_vcpu_init try;
152 
153         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
154             try.target = *cpus_to_try++;
155             memcpy(try.features, init->features, sizeof(init->features));
156             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
157             if (ret >= 0) {
158                 break;
159             }
160         }
161         if (ret < 0) {
162             goto err;
163         }
164         init->target = try.target;
165     } else {
166         /* Treat a NULL cpus_to_try argument the same as an empty
167          * list, which means we will fail the call since this must
168          * be an old kernel which doesn't support PREFERRED_TARGET.
169          */
170         goto err;
171     }
172 
173 finish:
174     fdarray[0] = kvmfd;
175     fdarray[1] = vmfd;
176     fdarray[2] = cpufd;
177 
178     return true;
179 
180 err:
181     if (cpufd >= 0) {
182         close(cpufd);
183     }
184     if (vmfd >= 0) {
185         close(vmfd);
186     }
187     if (kvmfd >= 0) {
188         close(kvmfd);
189     }
190 
191     return false;
192 }
193 
194 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
195 {
196     int i;
197 
198     for (i = 2; i >= 0; i--) {
199         close(fdarray[i]);
200     }
201 }
202 
203 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
204 {
205     uint64_t ret;
206     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
207     int err;
208 
209     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
210     err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
211     if (err < 0) {
212         return -1;
213     }
214     *pret = ret;
215     return 0;
216 }
217 
218 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
219 {
220     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
221 
222     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
223     return ioctl(fd, KVM_GET_ONE_REG, &idreg);
224 }
225 
226 static bool kvm_arm_pauth_supported(void)
227 {
228     return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
229             kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
230 }
231 
232 static bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
233 {
234     /* Identify the feature bits corresponding to the host CPU, and
235      * fill out the ARMHostCPUClass fields accordingly. To do this
236      * we have to create a scratch VM, create a single CPU inside it,
237      * and then query that CPU for the relevant ID registers.
238      */
239     int fdarray[3];
240     bool sve_supported;
241     bool pmu_supported = false;
242     uint64_t features = 0;
243     int err;
244 
245     /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
246      * we know these will only support creating one kind of guest CPU,
247      * which is its preferred CPU type. Fortunately these old kernels
248      * support only a very limited number of CPUs.
249      */
250     static const uint32_t cpus_to_try[] = {
251         KVM_ARM_TARGET_AEM_V8,
252         KVM_ARM_TARGET_FOUNDATION_V8,
253         KVM_ARM_TARGET_CORTEX_A57,
254         QEMU_KVM_ARM_TARGET_NONE
255     };
256     /*
257      * target = -1 informs kvm_arm_create_scratch_host_vcpu()
258      * to use the preferred target
259      */
260     struct kvm_vcpu_init init = { .target = -1, };
261 
262     /*
263      * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
264      * which is otherwise RAZ.
265      */
266     sve_supported = kvm_arm_sve_supported();
267     if (sve_supported) {
268         init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
269     }
270 
271     /*
272      * Ask for Pointer Authentication if supported, so that we get
273      * the unsanitized field values for AA64ISAR1_EL1.
274      */
275     if (kvm_arm_pauth_supported()) {
276         init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
277                              1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
278     }
279 
280     if (kvm_arm_pmu_supported()) {
281         init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
282         pmu_supported = true;
283     }
284 
285     if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
286         return false;
287     }
288 
289     ahcf->target = init.target;
290     ahcf->dtb_compatible = "arm,arm-v8";
291 
292     err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
293                          ARM64_SYS_REG(3, 0, 0, 4, 0));
294     if (unlikely(err < 0)) {
295         /*
296          * Before v4.15, the kernel only exposed a limited number of system
297          * registers, not including any of the interesting AArch64 ID regs.
298          * For the most part we could leave these fields as zero with minimal
299          * effect, since this does not affect the values seen by the guest.
300          *
301          * However, it could cause problems down the line for QEMU,
302          * so provide a minimal v8.0 default.
303          *
304          * ??? Could read MIDR and use knowledge from cpu64.c.
305          * ??? Could map a page of memory into our temp guest and
306          *     run the tiniest of hand-crafted kernels to extract
307          *     the values seen by the guest.
308          * ??? Either of these sounds like too much effort just
309          *     to work around running a modern host kernel.
310          */
311         ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
312         err = 0;
313     } else {
314         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
315                               ARM64_SYS_REG(3, 0, 0, 4, 1));
316         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0,
317                               ARM64_SYS_REG(3, 0, 0, 4, 5));
318         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
319                               ARM64_SYS_REG(3, 0, 0, 5, 0));
320         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
321                               ARM64_SYS_REG(3, 0, 0, 5, 1));
322         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
323                               ARM64_SYS_REG(3, 0, 0, 6, 0));
324         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
325                               ARM64_SYS_REG(3, 0, 0, 6, 1));
326         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar2,
327                               ARM64_SYS_REG(3, 0, 0, 6, 2));
328         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
329                               ARM64_SYS_REG(3, 0, 0, 7, 0));
330         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
331                               ARM64_SYS_REG(3, 0, 0, 7, 1));
332         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
333                               ARM64_SYS_REG(3, 0, 0, 7, 2));
334 
335         /*
336          * Note that if AArch32 support is not present in the host,
337          * the AArch32 sysregs are present to be read, but will
338          * return UNKNOWN values.  This is neither better nor worse
339          * than skipping the reads and leaving 0, as we must avoid
340          * considering the values in every case.
341          */
342         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
343                               ARM64_SYS_REG(3, 0, 0, 1, 0));
344         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
345                               ARM64_SYS_REG(3, 0, 0, 1, 1));
346         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
347                               ARM64_SYS_REG(3, 0, 0, 1, 2));
348         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
349                               ARM64_SYS_REG(3, 0, 0, 1, 4));
350         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
351                               ARM64_SYS_REG(3, 0, 0, 1, 5));
352         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
353                               ARM64_SYS_REG(3, 0, 0, 1, 6));
354         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
355                               ARM64_SYS_REG(3, 0, 0, 1, 7));
356         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
357                               ARM64_SYS_REG(3, 0, 0, 2, 0));
358         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
359                               ARM64_SYS_REG(3, 0, 0, 2, 1));
360         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
361                               ARM64_SYS_REG(3, 0, 0, 2, 2));
362         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
363                               ARM64_SYS_REG(3, 0, 0, 2, 3));
364         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
365                               ARM64_SYS_REG(3, 0, 0, 2, 4));
366         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
367                               ARM64_SYS_REG(3, 0, 0, 2, 5));
368         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
369                               ARM64_SYS_REG(3, 0, 0, 2, 6));
370         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
371                               ARM64_SYS_REG(3, 0, 0, 2, 7));
372 
373         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
374                               ARM64_SYS_REG(3, 0, 0, 3, 0));
375         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
376                               ARM64_SYS_REG(3, 0, 0, 3, 1));
377         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
378                               ARM64_SYS_REG(3, 0, 0, 3, 2));
379         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
380                               ARM64_SYS_REG(3, 0, 0, 3, 4));
381         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1,
382                               ARM64_SYS_REG(3, 0, 0, 3, 5));
383         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5,
384                               ARM64_SYS_REG(3, 0, 0, 3, 6));
385 
386         /*
387          * DBGDIDR is a bit complicated because the kernel doesn't
388          * provide an accessor for it in 64-bit mode, which is what this
389          * scratch VM is in, and there's no architected "64-bit sysreg
390          * which reads the same as the 32-bit register" the way there is
391          * for other ID registers. Instead we synthesize a value from the
392          * AArch64 ID_AA64DFR0, the same way the kernel code in
393          * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
394          * We only do this if the CPU supports AArch32 at EL1.
395          */
396         if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
397             int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
398             int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
399             int ctx_cmps =
400                 FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
401             int version = 6; /* ARMv8 debug architecture */
402             bool has_el3 =
403                 !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
404             uint32_t dbgdidr = 0;
405 
406             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
407             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
408             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
409             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
410             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
411             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
412             dbgdidr |= (1 << 15); /* RES1 bit */
413             ahcf->isar.dbgdidr = dbgdidr;
414         }
415 
416         if (pmu_supported) {
417             /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
418             err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0,
419                                   ARM64_SYS_REG(3, 3, 9, 12, 0));
420         }
421 
422         if (sve_supported) {
423             /*
424              * There is a range of kernels between kernel commit 73433762fcae
425              * and f81cb2c3ad41 which have a bug where the kernel doesn't
426              * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
427              * enabled SVE support, which resulted in an error rather than RAZ.
428              * So only read the register if we set KVM_ARM_VCPU_SVE above.
429              */
430             err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
431                                   ARM64_SYS_REG(3, 0, 0, 4, 4));
432         }
433     }
434 
435     kvm_arm_destroy_scratch_host_vcpu(fdarray);
436 
437     if (err < 0) {
438         return false;
439     }
440 
441     /*
442      * We can assume any KVM supporting CPU is at least a v8
443      * with VFPv4+Neon; this in turn implies most of the other
444      * feature bits.
445      */
446     features |= 1ULL << ARM_FEATURE_V8;
447     features |= 1ULL << ARM_FEATURE_NEON;
448     features |= 1ULL << ARM_FEATURE_AARCH64;
449     features |= 1ULL << ARM_FEATURE_PMU;
450     features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
451 
452     ahcf->features = features;
453 
454     return true;
455 }
456 
457 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
458 {
459     CPUARMState *env = &cpu->env;
460 
461     if (!arm_host_cpu_features.dtb_compatible) {
462         if (!kvm_enabled() ||
463             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
464             /* We can't report this error yet, so flag that we need to
465              * in arm_cpu_realizefn().
466              */
467             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
468             cpu->host_cpu_probe_failed = true;
469             return;
470         }
471     }
472 
473     cpu->kvm_target = arm_host_cpu_features.target;
474     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
475     cpu->isar = arm_host_cpu_features.isar;
476     env->features = arm_host_cpu_features.features;
477 }
478 
479 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
480 {
481     return !ARM_CPU(obj)->kvm_adjvtime;
482 }
483 
484 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
485 {
486     ARM_CPU(obj)->kvm_adjvtime = !value;
487 }
488 
489 static bool kvm_steal_time_get(Object *obj, Error **errp)
490 {
491     return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
492 }
493 
494 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
495 {
496     ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
497 }
498 
499 /* KVM VCPU properties should be prefixed with "kvm-". */
500 void kvm_arm_add_vcpu_properties(ARMCPU *cpu)
501 {
502     CPUARMState *env = &cpu->env;
503     Object *obj = OBJECT(cpu);
504 
505     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
506         cpu->kvm_adjvtime = true;
507         object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
508                                  kvm_no_adjvtime_set);
509         object_property_set_description(obj, "kvm-no-adjvtime",
510                                         "Set on to disable the adjustment of "
511                                         "the virtual counter. VM stopped time "
512                                         "will be counted.");
513     }
514 
515     cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
516     object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
517                              kvm_steal_time_set);
518     object_property_set_description(obj, "kvm-steal-time",
519                                     "Set off to disable KVM steal time.");
520 }
521 
522 bool kvm_arm_pmu_supported(void)
523 {
524     return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
525 }
526 
527 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
528 {
529     KVMState *s = KVM_STATE(ms->accelerator);
530     int ret;
531 
532     ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
533     *fixed_ipa = ret <= 0;
534 
535     return ret > 0 ? ret : 40;
536 }
537 
538 int kvm_arch_get_default_type(MachineState *ms)
539 {
540     bool fixed_ipa;
541     int size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
542     return fixed_ipa ? 0 : size;
543 }
544 
545 int kvm_arch_init(MachineState *ms, KVMState *s)
546 {
547     int ret = 0;
548     /* For ARM interrupt delivery is always asynchronous,
549      * whether we are using an in-kernel VGIC or not.
550      */
551     kvm_async_interrupts_allowed = true;
552 
553     /*
554      * PSCI wakes up secondary cores, so we always need to
555      * have vCPUs waiting in kernel space
556      */
557     kvm_halt_in_kernel_allowed = true;
558 
559     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
560 
561     /* Check whether user space can specify guest syndrome value */
562     cap_has_inject_serror_esr =
563         kvm_check_extension(s, KVM_CAP_ARM_INJECT_SERROR_ESR);
564 
565     if (ms->smp.cpus > 256 &&
566         !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
567         error_report("Using more than 256 vcpus requires a host kernel "
568                      "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
569         ret = -EINVAL;
570     }
571 
572     if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
573         if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
574             error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
575         } else {
576             /* Set status for supporting the external dabt injection */
577             cap_has_inject_ext_dabt = kvm_check_extension(s,
578                                     KVM_CAP_ARM_INJECT_EXT_DABT);
579         }
580     }
581 
582     if (s->kvm_eager_split_size) {
583         uint32_t sizes;
584 
585         sizes = kvm_vm_check_extension(s, KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES);
586         if (!sizes) {
587             s->kvm_eager_split_size = 0;
588             warn_report("Eager Page Split support not available");
589         } else if (!(s->kvm_eager_split_size & sizes)) {
590             error_report("Eager Page Split requested chunk size not valid");
591             ret = -EINVAL;
592         } else {
593             ret = kvm_vm_enable_cap(s, KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE, 0,
594                                     s->kvm_eager_split_size);
595             if (ret < 0) {
596                 error_report("Enabling of Eager Page Split failed: %s",
597                              strerror(-ret));
598             }
599         }
600     }
601 
602     max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS);
603     hw_watchpoints = g_array_sized_new(true, true,
604                                        sizeof(HWWatchpoint), max_hw_wps);
605 
606     max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS);
607     hw_breakpoints = g_array_sized_new(true, true,
608                                        sizeof(HWBreakpoint), max_hw_bps);
609 
610     return ret;
611 }
612 
613 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
614 {
615     return cpu->cpu_index;
616 }
617 
618 /* We track all the KVM devices which need their memory addresses
619  * passing to the kernel in a list of these structures.
620  * When board init is complete we run through the list and
621  * tell the kernel the base addresses of the memory regions.
622  * We use a MemoryListener to track mapping and unmapping of
623  * the regions during board creation, so the board models don't
624  * need to do anything special for the KVM case.
625  *
626  * Sometimes the address must be OR'ed with some other fields
627  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
628  * @kda_addr_ormask aims at storing the value of those fields.
629  */
630 typedef struct KVMDevice {
631     struct kvm_arm_device_addr kda;
632     struct kvm_device_attr kdattr;
633     uint64_t kda_addr_ormask;
634     MemoryRegion *mr;
635     QSLIST_ENTRY(KVMDevice) entries;
636     int dev_fd;
637 } KVMDevice;
638 
639 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
640 
641 static void kvm_arm_devlistener_add(MemoryListener *listener,
642                                     MemoryRegionSection *section)
643 {
644     KVMDevice *kd;
645 
646     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
647         if (section->mr == kd->mr) {
648             kd->kda.addr = section->offset_within_address_space;
649         }
650     }
651 }
652 
653 static void kvm_arm_devlistener_del(MemoryListener *listener,
654                                     MemoryRegionSection *section)
655 {
656     KVMDevice *kd;
657 
658     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
659         if (section->mr == kd->mr) {
660             kd->kda.addr = -1;
661         }
662     }
663 }
664 
665 static MemoryListener devlistener = {
666     .name = "kvm-arm",
667     .region_add = kvm_arm_devlistener_add,
668     .region_del = kvm_arm_devlistener_del,
669     .priority = MEMORY_LISTENER_PRIORITY_MIN,
670 };
671 
672 static void kvm_arm_set_device_addr(KVMDevice *kd)
673 {
674     struct kvm_device_attr *attr = &kd->kdattr;
675     int ret;
676 
677     /* If the device control API is available and we have a device fd on the
678      * KVMDevice struct, let's use the newer API
679      */
680     if (kd->dev_fd >= 0) {
681         uint64_t addr = kd->kda.addr;
682 
683         addr |= kd->kda_addr_ormask;
684         attr->addr = (uintptr_t)&addr;
685         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
686     } else {
687         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
688     }
689 
690     if (ret < 0) {
691         fprintf(stderr, "Failed to set device address: %s\n",
692                 strerror(-ret));
693         abort();
694     }
695 }
696 
697 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
698 {
699     KVMDevice *kd, *tkd;
700 
701     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
702         if (kd->kda.addr != -1) {
703             kvm_arm_set_device_addr(kd);
704         }
705         memory_region_unref(kd->mr);
706         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
707         g_free(kd);
708     }
709     memory_listener_unregister(&devlistener);
710 }
711 
712 static Notifier notify = {
713     .notify = kvm_arm_machine_init_done,
714 };
715 
716 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
717                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
718 {
719     KVMDevice *kd;
720 
721     if (!kvm_irqchip_in_kernel()) {
722         return;
723     }
724 
725     if (QSLIST_EMPTY(&kvm_devices_head)) {
726         memory_listener_register(&devlistener, &address_space_memory);
727         qemu_add_machine_init_done_notifier(&notify);
728     }
729     kd = g_new0(KVMDevice, 1);
730     kd->mr = mr;
731     kd->kda.id = devid;
732     kd->kda.addr = -1;
733     kd->kdattr.flags = 0;
734     kd->kdattr.group = group;
735     kd->kdattr.attr = attr;
736     kd->dev_fd = dev_fd;
737     kd->kda_addr_ormask = addr_ormask;
738     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
739     memory_region_ref(kd->mr);
740 }
741 
742 static int compare_u64(const void *a, const void *b)
743 {
744     if (*(uint64_t *)a > *(uint64_t *)b) {
745         return 1;
746     }
747     if (*(uint64_t *)a < *(uint64_t *)b) {
748         return -1;
749     }
750     return 0;
751 }
752 
753 /*
754  * cpreg_values are sorted in ascending order by KVM register ID
755  * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
756  * the storage for a KVM register by ID with a binary search.
757  */
758 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
759 {
760     uint64_t *res;
761 
762     res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
763                   sizeof(uint64_t), compare_u64);
764     assert(res);
765 
766     return &cpu->cpreg_values[res - cpu->cpreg_indexes];
767 }
768 
769 /**
770  * kvm_arm_reg_syncs_via_cpreg_list:
771  * @regidx: KVM register index
772  *
773  * Return true if this KVM register should be synchronized via the
774  * cpreg list of arbitrary system registers, false if it is synchronized
775  * by hand using code in kvm_arch_get/put_registers().
776  */
777 static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
778 {
779     switch (regidx & KVM_REG_ARM_COPROC_MASK) {
780     case KVM_REG_ARM_CORE:
781     case KVM_REG_ARM64_SVE:
782         return false;
783     default:
784         return true;
785     }
786 }
787 
788 /**
789  * kvm_arm_init_cpreg_list:
790  * @cpu: ARMCPU
791  *
792  * Initialize the ARMCPU cpreg list according to the kernel's
793  * definition of what CPU registers it knows about (and throw away
794  * the previous TCG-created cpreg list).
795  *
796  * Returns: 0 if success, else < 0 error code
797  */
798 static int kvm_arm_init_cpreg_list(ARMCPU *cpu)
799 {
800     struct kvm_reg_list rl;
801     struct kvm_reg_list *rlp;
802     int i, ret, arraylen;
803     CPUState *cs = CPU(cpu);
804 
805     rl.n = 0;
806     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
807     if (ret != -E2BIG) {
808         return ret;
809     }
810     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
811     rlp->n = rl.n;
812     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
813     if (ret) {
814         goto out;
815     }
816     /* Sort the list we get back from the kernel, since cpreg_tuples
817      * must be in strictly ascending order.
818      */
819     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
820 
821     for (i = 0, arraylen = 0; i < rlp->n; i++) {
822         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
823             continue;
824         }
825         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
826         case KVM_REG_SIZE_U32:
827         case KVM_REG_SIZE_U64:
828             break;
829         default:
830             fprintf(stderr, "Can't handle size of register in kernel list\n");
831             ret = -EINVAL;
832             goto out;
833         }
834 
835         arraylen++;
836     }
837 
838     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
839     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
840     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
841                                          arraylen);
842     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
843                                         arraylen);
844     cpu->cpreg_array_len = arraylen;
845     cpu->cpreg_vmstate_array_len = arraylen;
846 
847     for (i = 0, arraylen = 0; i < rlp->n; i++) {
848         uint64_t regidx = rlp->reg[i];
849         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
850             continue;
851         }
852         cpu->cpreg_indexes[arraylen] = regidx;
853         arraylen++;
854     }
855     assert(cpu->cpreg_array_len == arraylen);
856 
857     if (!write_kvmstate_to_list(cpu)) {
858         /* Shouldn't happen unless kernel is inconsistent about
859          * what registers exist.
860          */
861         fprintf(stderr, "Initial read of kernel register state failed\n");
862         ret = -EINVAL;
863         goto out;
864     }
865 
866 out:
867     g_free(rlp);
868     return ret;
869 }
870 
871 /**
872  * kvm_arm_cpreg_level:
873  * @regidx: KVM register index
874  *
875  * Return the level of this coprocessor/system register.  Return value is
876  * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
877  */
878 static int kvm_arm_cpreg_level(uint64_t regidx)
879 {
880     /*
881      * All system registers are assumed to be level KVM_PUT_RUNTIME_STATE.
882      * If a register should be written less often, you must add it here
883      * with a state of either KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
884      */
885     switch (regidx) {
886     case KVM_REG_ARM_TIMER_CNT:
887     case KVM_REG_ARM_PTIMER_CNT:
888         return KVM_PUT_FULL_STATE;
889     }
890     return KVM_PUT_RUNTIME_STATE;
891 }
892 
893 bool write_kvmstate_to_list(ARMCPU *cpu)
894 {
895     CPUState *cs = CPU(cpu);
896     int i;
897     bool ok = true;
898 
899     for (i = 0; i < cpu->cpreg_array_len; i++) {
900         uint64_t regidx = cpu->cpreg_indexes[i];
901         uint32_t v32;
902         int ret;
903 
904         switch (regidx & KVM_REG_SIZE_MASK) {
905         case KVM_REG_SIZE_U32:
906             ret = kvm_get_one_reg(cs, regidx, &v32);
907             if (!ret) {
908                 cpu->cpreg_values[i] = v32;
909             }
910             break;
911         case KVM_REG_SIZE_U64:
912             ret = kvm_get_one_reg(cs, regidx, cpu->cpreg_values + i);
913             break;
914         default:
915             g_assert_not_reached();
916         }
917         if (ret) {
918             ok = false;
919         }
920     }
921     return ok;
922 }
923 
924 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
925 {
926     CPUState *cs = CPU(cpu);
927     int i;
928     bool ok = true;
929 
930     for (i = 0; i < cpu->cpreg_array_len; i++) {
931         uint64_t regidx = cpu->cpreg_indexes[i];
932         uint32_t v32;
933         int ret;
934 
935         if (kvm_arm_cpreg_level(regidx) > level) {
936             continue;
937         }
938 
939         switch (regidx & KVM_REG_SIZE_MASK) {
940         case KVM_REG_SIZE_U32:
941             v32 = cpu->cpreg_values[i];
942             ret = kvm_set_one_reg(cs, regidx, &v32);
943             break;
944         case KVM_REG_SIZE_U64:
945             ret = kvm_set_one_reg(cs, regidx, cpu->cpreg_values + i);
946             break;
947         default:
948             g_assert_not_reached();
949         }
950         if (ret) {
951             /* We might fail for "unknown register" and also for
952              * "you tried to set a register which is constant with
953              * a different value from what it actually contains".
954              */
955             ok = false;
956         }
957     }
958     return ok;
959 }
960 
961 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
962 {
963     /* KVM virtual time adjustment */
964     if (cpu->kvm_vtime_dirty) {
965         *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
966     }
967 }
968 
969 void kvm_arm_cpu_post_load(ARMCPU *cpu)
970 {
971     /* KVM virtual time adjustment */
972     if (cpu->kvm_adjvtime) {
973         cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
974         cpu->kvm_vtime_dirty = true;
975     }
976 }
977 
978 void kvm_arm_reset_vcpu(ARMCPU *cpu)
979 {
980     int ret;
981 
982     /* Re-init VCPU so that all registers are set to
983      * their respective reset values.
984      */
985     ret = kvm_arm_vcpu_init(CPU(cpu));
986     if (ret < 0) {
987         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
988         abort();
989     }
990     if (!write_kvmstate_to_list(cpu)) {
991         fprintf(stderr, "write_kvmstate_to_list failed\n");
992         abort();
993     }
994     /*
995      * Sync the reset values also into the CPUState. This is necessary
996      * because the next thing we do will be a kvm_arch_put_registers()
997      * which will update the list values from the CPUState before copying
998      * the list values back to KVM. It's OK to ignore failure returns here
999      * for the same reason we do so in kvm_arch_get_registers().
1000      */
1001     write_list_to_cpustate(cpu);
1002 }
1003 
1004 /*
1005  * Update KVM's MP_STATE based on what QEMU thinks it is
1006  */
1007 static int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
1008 {
1009     if (cap_has_mp_state) {
1010         struct kvm_mp_state mp_state = {
1011             .mp_state = (cpu->power_state == PSCI_OFF) ?
1012             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
1013         };
1014         return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1015     }
1016     return 0;
1017 }
1018 
1019 /*
1020  * Sync the KVM MP_STATE into QEMU
1021  */
1022 static int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
1023 {
1024     if (cap_has_mp_state) {
1025         struct kvm_mp_state mp_state;
1026         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
1027         if (ret) {
1028             return ret;
1029         }
1030         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
1031             PSCI_OFF : PSCI_ON;
1032     }
1033     return 0;
1034 }
1035 
1036 /**
1037  * kvm_arm_get_virtual_time:
1038  * @cs: CPUState
1039  *
1040  * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
1041  */
1042 static void kvm_arm_get_virtual_time(CPUState *cs)
1043 {
1044     ARMCPU *cpu = ARM_CPU(cs);
1045     int ret;
1046 
1047     if (cpu->kvm_vtime_dirty) {
1048         return;
1049     }
1050 
1051     ret = kvm_get_one_reg(cs, KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1052     if (ret) {
1053         error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
1054         abort();
1055     }
1056 
1057     cpu->kvm_vtime_dirty = true;
1058 }
1059 
1060 /**
1061  * kvm_arm_put_virtual_time:
1062  * @cs: CPUState
1063  *
1064  * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
1065  */
1066 static void kvm_arm_put_virtual_time(CPUState *cs)
1067 {
1068     ARMCPU *cpu = ARM_CPU(cs);
1069     int ret;
1070 
1071     if (!cpu->kvm_vtime_dirty) {
1072         return;
1073     }
1074 
1075     ret = kvm_set_one_reg(cs, KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1076     if (ret) {
1077         error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
1078         abort();
1079     }
1080 
1081     cpu->kvm_vtime_dirty = false;
1082 }
1083 
1084 /**
1085  * kvm_put_vcpu_events:
1086  * @cpu: ARMCPU
1087  *
1088  * Put VCPU related state to kvm.
1089  *
1090  * Returns: 0 if success else < 0 error code
1091  */
1092 static int kvm_put_vcpu_events(ARMCPU *cpu)
1093 {
1094     CPUARMState *env = &cpu->env;
1095     struct kvm_vcpu_events events;
1096     int ret;
1097 
1098     if (!kvm_has_vcpu_events()) {
1099         return 0;
1100     }
1101 
1102     memset(&events, 0, sizeof(events));
1103     events.exception.serror_pending = env->serror.pending;
1104 
1105     /* Inject SError to guest with specified syndrome if host kernel
1106      * supports it, otherwise inject SError without syndrome.
1107      */
1108     if (cap_has_inject_serror_esr) {
1109         events.exception.serror_has_esr = env->serror.has_esr;
1110         events.exception.serror_esr = env->serror.esr;
1111     }
1112 
1113     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1114     if (ret) {
1115         error_report("failed to put vcpu events");
1116     }
1117 
1118     return ret;
1119 }
1120 
1121 /**
1122  * kvm_get_vcpu_events:
1123  * @cpu: ARMCPU
1124  *
1125  * Get VCPU related state from kvm.
1126  *
1127  * Returns: 0 if success else < 0 error code
1128  */
1129 static int kvm_get_vcpu_events(ARMCPU *cpu)
1130 {
1131     CPUARMState *env = &cpu->env;
1132     struct kvm_vcpu_events events;
1133     int ret;
1134 
1135     if (!kvm_has_vcpu_events()) {
1136         return 0;
1137     }
1138 
1139     memset(&events, 0, sizeof(events));
1140     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1141     if (ret) {
1142         error_report("failed to get vcpu events");
1143         return ret;
1144     }
1145 
1146     env->serror.pending = events.exception.serror_pending;
1147     env->serror.has_esr = events.exception.serror_has_esr;
1148     env->serror.esr = events.exception.serror_esr;
1149 
1150     return 0;
1151 }
1152 
1153 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1154 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1155 
1156 /*
1157  * ESR_EL1
1158  * ISS encoding
1159  * AARCH64: DFSC,   bits [5:0]
1160  * AARCH32:
1161  *      TTBCR.EAE == 0
1162  *          FS[4]   - DFSR[10]
1163  *          FS[3:0] - DFSR[3:0]
1164  *      TTBCR.EAE == 1
1165  *          FS, bits [5:0]
1166  */
1167 #define ESR_DFSC(aarch64, lpae, v)        \
1168     ((aarch64 || (lpae)) ? ((v) & 0x3F)   \
1169                : (((v) >> 6) | ((v) & 0x1F)))
1170 
1171 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1172     ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1173 
1174 /**
1175  * kvm_arm_verify_ext_dabt_pending:
1176  * @cs: CPUState
1177  *
1178  * Verify the fault status code wrt the Ext DABT injection
1179  *
1180  * Returns: true if the fault status code is as expected, false otherwise
1181  */
1182 static bool kvm_arm_verify_ext_dabt_pending(CPUState *cs)
1183 {
1184     uint64_t dfsr_val;
1185 
1186     if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
1187         ARMCPU *cpu = ARM_CPU(cs);
1188         CPUARMState *env = &cpu->env;
1189         int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
1190         int lpae = 0;
1191 
1192         if (!aarch64_mode) {
1193             uint64_t ttbcr;
1194 
1195             if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
1196                 lpae = arm_feature(env, ARM_FEATURE_LPAE)
1197                         && (ttbcr & TTBCR_EAE);
1198             }
1199         }
1200         /*
1201          * The verification here is based on the DFSC bits
1202          * of the ESR_EL1 reg only
1203          */
1204          return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
1205                 ESR_DFSC_EXTABT(aarch64_mode, lpae));
1206     }
1207     return false;
1208 }
1209 
1210 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1211 {
1212     ARMCPU *cpu = ARM_CPU(cs);
1213     CPUARMState *env = &cpu->env;
1214 
1215     if (unlikely(env->ext_dabt_raised)) {
1216         /*
1217          * Verifying that the ext DABT has been properly injected,
1218          * otherwise risking indefinitely re-running the faulting instruction
1219          * Covering a very narrow case for kernels 5.5..5.5.4
1220          * when injected abort was misconfigured to be
1221          * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
1222          */
1223         if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
1224             unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
1225 
1226             error_report("Data abort exception with no valid ISS generated by "
1227                    "guest memory access. KVM unable to emulate faulting "
1228                    "instruction. Failed to inject an external data abort "
1229                    "into the guest.");
1230             abort();
1231        }
1232        /* Clear the status */
1233        env->ext_dabt_raised = 0;
1234     }
1235 }
1236 
1237 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1238 {
1239     ARMCPU *cpu;
1240     uint32_t switched_level;
1241 
1242     if (kvm_irqchip_in_kernel()) {
1243         /*
1244          * We only need to sync timer states with user-space interrupt
1245          * controllers, so return early and save cycles if we don't.
1246          */
1247         return MEMTXATTRS_UNSPECIFIED;
1248     }
1249 
1250     cpu = ARM_CPU(cs);
1251 
1252     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
1253     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
1254         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
1255 
1256         qemu_mutex_lock_iothread();
1257 
1258         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
1259             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
1260                          !!(run->s.regs.device_irq_level &
1261                             KVM_ARM_DEV_EL1_VTIMER));
1262             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
1263         }
1264 
1265         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
1266             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
1267                          !!(run->s.regs.device_irq_level &
1268                             KVM_ARM_DEV_EL1_PTIMER));
1269             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
1270         }
1271 
1272         if (switched_level & KVM_ARM_DEV_PMU) {
1273             qemu_set_irq(cpu->pmu_interrupt,
1274                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
1275             switched_level &= ~KVM_ARM_DEV_PMU;
1276         }
1277 
1278         if (switched_level) {
1279             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
1280                           __func__, switched_level);
1281         }
1282 
1283         /* We also mark unknown levels as processed to not waste cycles */
1284         cpu->device_irq_level = run->s.regs.device_irq_level;
1285         qemu_mutex_unlock_iothread();
1286     }
1287 
1288     return MEMTXATTRS_UNSPECIFIED;
1289 }
1290 
1291 static void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
1292 {
1293     CPUState *cs = opaque;
1294     ARMCPU *cpu = ARM_CPU(cs);
1295 
1296     if (running) {
1297         if (cpu->kvm_adjvtime) {
1298             kvm_arm_put_virtual_time(cs);
1299         }
1300     } else {
1301         if (cpu->kvm_adjvtime) {
1302             kvm_arm_get_virtual_time(cs);
1303         }
1304     }
1305 }
1306 
1307 /**
1308  * kvm_arm_handle_dabt_nisv:
1309  * @cs: CPUState
1310  * @esr_iss: ISS encoding (limited) for the exception from Data Abort
1311  *           ISV bit set to '0b0' -> no valid instruction syndrome
1312  * @fault_ipa: faulting address for the synchronous data abort
1313  *
1314  * Returns: 0 if the exception has been handled, < 0 otherwise
1315  */
1316 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
1317                                     uint64_t fault_ipa)
1318 {
1319     ARMCPU *cpu = ARM_CPU(cs);
1320     CPUARMState *env = &cpu->env;
1321     /*
1322      * Request KVM to inject the external data abort into the guest
1323      */
1324     if (cap_has_inject_ext_dabt) {
1325         struct kvm_vcpu_events events = { };
1326         /*
1327          * The external data abort event will be handled immediately by KVM
1328          * using the address fault that triggered the exit on given VCPU.
1329          * Requesting injection of the external data abort does not rely
1330          * on any other VCPU state. Therefore, in this particular case, the VCPU
1331          * synchronization can be exceptionally skipped.
1332          */
1333         events.exception.ext_dabt_pending = 1;
1334         /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
1335         if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
1336             env->ext_dabt_raised = 1;
1337             return 0;
1338         }
1339     } else {
1340         error_report("Data abort exception triggered by guest memory access "
1341                      "at physical address: 0x"  TARGET_FMT_lx,
1342                      (target_ulong)fault_ipa);
1343         error_printf("KVM unable to emulate faulting instruction.\n");
1344     }
1345     return -1;
1346 }
1347 
1348 /**
1349  * kvm_arm_handle_debug:
1350  * @cs: CPUState
1351  * @debug_exit: debug part of the KVM exit structure
1352  *
1353  * Returns: TRUE if the debug exception was handled.
1354  *
1355  * See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1356  *
1357  * To minimise translating between kernel and user-space the kernel
1358  * ABI just provides user-space with the full exception syndrome
1359  * register value to be decoded in QEMU.
1360  */
1361 static bool kvm_arm_handle_debug(CPUState *cs,
1362                                  struct kvm_debug_exit_arch *debug_exit)
1363 {
1364     int hsr_ec = syn_get_ec(debug_exit->hsr);
1365     ARMCPU *cpu = ARM_CPU(cs);
1366     CPUARMState *env = &cpu->env;
1367 
1368     /* Ensure PC is synchronised */
1369     kvm_cpu_synchronize_state(cs);
1370 
1371     switch (hsr_ec) {
1372     case EC_SOFTWARESTEP:
1373         if (cs->singlestep_enabled) {
1374             return true;
1375         } else {
1376             /*
1377              * The kernel should have suppressed the guest's ability to
1378              * single step at this point so something has gone wrong.
1379              */
1380             error_report("%s: guest single-step while debugging unsupported"
1381                          " (%"PRIx64", %"PRIx32")",
1382                          __func__, env->pc, debug_exit->hsr);
1383             return false;
1384         }
1385         break;
1386     case EC_AA64_BKPT:
1387         if (kvm_find_sw_breakpoint(cs, env->pc)) {
1388             return true;
1389         }
1390         break;
1391     case EC_BREAKPOINT:
1392         if (find_hw_breakpoint(cs, env->pc)) {
1393             return true;
1394         }
1395         break;
1396     case EC_WATCHPOINT:
1397     {
1398         CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1399         if (wp) {
1400             cs->watchpoint_hit = wp;
1401             return true;
1402         }
1403         break;
1404     }
1405     default:
1406         error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1407                      __func__, debug_exit->hsr, env->pc);
1408     }
1409 
1410     /* If we are not handling the debug exception it must belong to
1411      * the guest. Let's re-use the existing TCG interrupt code to set
1412      * everything up properly.
1413      */
1414     cs->exception_index = EXCP_BKPT;
1415     env->exception.syndrome = debug_exit->hsr;
1416     env->exception.vaddress = debug_exit->far;
1417     env->exception.target_el = 1;
1418     qemu_mutex_lock_iothread();
1419     arm_cpu_do_interrupt(cs);
1420     qemu_mutex_unlock_iothread();
1421 
1422     return false;
1423 }
1424 
1425 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1426 {
1427     int ret = 0;
1428 
1429     switch (run->exit_reason) {
1430     case KVM_EXIT_DEBUG:
1431         if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
1432             ret = EXCP_DEBUG;
1433         } /* otherwise return to guest */
1434         break;
1435     case KVM_EXIT_ARM_NISV:
1436         /* External DABT with no valid iss to decode */
1437         ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
1438                                        run->arm_nisv.fault_ipa);
1439         break;
1440     default:
1441         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
1442                       __func__, run->exit_reason);
1443         break;
1444     }
1445     return ret;
1446 }
1447 
1448 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
1449 {
1450     return true;
1451 }
1452 
1453 int kvm_arch_process_async_events(CPUState *cs)
1454 {
1455     return 0;
1456 }
1457 
1458 /**
1459  * kvm_arm_hw_debug_active:
1460  * @cs: CPU State
1461  *
1462  * Return: TRUE if any hardware breakpoints in use.
1463  */
1464 static bool kvm_arm_hw_debug_active(CPUState *cs)
1465 {
1466     return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
1467 }
1468 
1469 /**
1470  * kvm_arm_copy_hw_debug_data:
1471  * @ptr: kvm_guest_debug_arch structure
1472  *
1473  * Copy the architecture specific debug registers into the
1474  * kvm_guest_debug ioctl structure.
1475  */
1476 static void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
1477 {
1478     int i;
1479     memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
1480 
1481     for (i = 0; i < max_hw_wps; i++) {
1482         HWWatchpoint *wp = get_hw_wp(i);
1483         ptr->dbg_wcr[i] = wp->wcr;
1484         ptr->dbg_wvr[i] = wp->wvr;
1485     }
1486     for (i = 0; i < max_hw_bps; i++) {
1487         HWBreakpoint *bp = get_hw_bp(i);
1488         ptr->dbg_bcr[i] = bp->bcr;
1489         ptr->dbg_bvr[i] = bp->bvr;
1490     }
1491 }
1492 
1493 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1494 {
1495     if (kvm_sw_breakpoints_active(cs)) {
1496         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1497     }
1498     if (kvm_arm_hw_debug_active(cs)) {
1499         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
1500         kvm_arm_copy_hw_debug_data(&dbg->arch);
1501     }
1502 }
1503 
1504 void kvm_arch_init_irq_routing(KVMState *s)
1505 {
1506 }
1507 
1508 int kvm_arch_irqchip_create(KVMState *s)
1509 {
1510     if (kvm_kernel_irqchip_split()) {
1511         error_report("-machine kernel_irqchip=split is not supported on ARM.");
1512         exit(1);
1513     }
1514 
1515     /* If we can create the VGIC using the newer device control API, we
1516      * let the device do this when it initializes itself, otherwise we
1517      * fall back to the old API */
1518     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
1519 }
1520 
1521 int kvm_arm_vgic_probe(void)
1522 {
1523     int val = 0;
1524 
1525     if (kvm_create_device(kvm_state,
1526                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
1527         val |= KVM_ARM_VGIC_V3;
1528     }
1529     if (kvm_create_device(kvm_state,
1530                           KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
1531         val |= KVM_ARM_VGIC_V2;
1532     }
1533     return val;
1534 }
1535 
1536 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
1537 {
1538     int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
1539     int cpu_idx1 = cpu % 256;
1540     int cpu_idx2 = cpu / 256;
1541 
1542     kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
1543                (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
1544 
1545     return kvm_set_irq(kvm_state, kvm_irq, !!level);
1546 }
1547 
1548 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1549                              uint64_t address, uint32_t data, PCIDevice *dev)
1550 {
1551     AddressSpace *as = pci_device_iommu_address_space(dev);
1552     hwaddr xlat, len, doorbell_gpa;
1553     MemoryRegionSection mrs;
1554     MemoryRegion *mr;
1555 
1556     if (as == &address_space_memory) {
1557         return 0;
1558     }
1559 
1560     /* MSI doorbell address is translated by an IOMMU */
1561 
1562     RCU_READ_LOCK_GUARD();
1563 
1564     mr = address_space_translate(as, address, &xlat, &len, true,
1565                                  MEMTXATTRS_UNSPECIFIED);
1566 
1567     if (!mr) {
1568         return 1;
1569     }
1570 
1571     mrs = memory_region_find(mr, xlat, 1);
1572 
1573     if (!mrs.mr) {
1574         return 1;
1575     }
1576 
1577     doorbell_gpa = mrs.offset_within_address_space;
1578     memory_region_unref(mrs.mr);
1579 
1580     route->u.msi.address_lo = doorbell_gpa;
1581     route->u.msi.address_hi = doorbell_gpa >> 32;
1582 
1583     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1584 
1585     return 0;
1586 }
1587 
1588 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1589                                 int vector, PCIDevice *dev)
1590 {
1591     return 0;
1592 }
1593 
1594 int kvm_arch_release_virq_post(int virq)
1595 {
1596     return 0;
1597 }
1598 
1599 int kvm_arch_msi_data_to_gsi(uint32_t data)
1600 {
1601     return (data - 32) & 0xffff;
1602 }
1603 
1604 bool kvm_arch_cpu_check_are_resettable(void)
1605 {
1606     return true;
1607 }
1608 
1609 static void kvm_arch_get_eager_split_size(Object *obj, Visitor *v,
1610                                           const char *name, void *opaque,
1611                                           Error **errp)
1612 {
1613     KVMState *s = KVM_STATE(obj);
1614     uint64_t value = s->kvm_eager_split_size;
1615 
1616     visit_type_size(v, name, &value, errp);
1617 }
1618 
1619 static void kvm_arch_set_eager_split_size(Object *obj, Visitor *v,
1620                                           const char *name, void *opaque,
1621                                           Error **errp)
1622 {
1623     KVMState *s = KVM_STATE(obj);
1624     uint64_t value;
1625 
1626     if (s->fd != -1) {
1627         error_setg(errp, "Unable to set early-split-size after KVM has been initialized");
1628         return;
1629     }
1630 
1631     if (!visit_type_size(v, name, &value, errp)) {
1632         return;
1633     }
1634 
1635     if (value && !is_power_of_2(value)) {
1636         error_setg(errp, "early-split-size must be a power of two");
1637         return;
1638     }
1639 
1640     s->kvm_eager_split_size = value;
1641 }
1642 
1643 void kvm_arch_accel_class_init(ObjectClass *oc)
1644 {
1645     object_class_property_add(oc, "eager-split-size", "size",
1646                               kvm_arch_get_eager_split_size,
1647                               kvm_arch_set_eager_split_size, NULL, NULL);
1648 
1649     object_class_property_set_description(oc, "eager-split-size",
1650         "Eager Page Split chunk size for hugepages. (default: 0, disabled)");
1651 }
1652 
1653 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
1654 {
1655     switch (type) {
1656     case GDB_BREAKPOINT_HW:
1657         return insert_hw_breakpoint(addr);
1658         break;
1659     case GDB_WATCHPOINT_READ:
1660     case GDB_WATCHPOINT_WRITE:
1661     case GDB_WATCHPOINT_ACCESS:
1662         return insert_hw_watchpoint(addr, len, type);
1663     default:
1664         return -ENOSYS;
1665     }
1666 }
1667 
1668 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
1669 {
1670     switch (type) {
1671     case GDB_BREAKPOINT_HW:
1672         return delete_hw_breakpoint(addr);
1673     case GDB_WATCHPOINT_READ:
1674     case GDB_WATCHPOINT_WRITE:
1675     case GDB_WATCHPOINT_ACCESS:
1676         return delete_hw_watchpoint(addr, len, type);
1677     default:
1678         return -ENOSYS;
1679     }
1680 }
1681 
1682 void kvm_arch_remove_all_hw_breakpoints(void)
1683 {
1684     if (cur_hw_wps > 0) {
1685         g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
1686     }
1687     if (cur_hw_bps > 0) {
1688         g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
1689     }
1690 }
1691 
1692 static bool kvm_arm_set_device_attr(CPUState *cs, struct kvm_device_attr *attr,
1693                                     const char *name)
1694 {
1695     int err;
1696 
1697     err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
1698     if (err != 0) {
1699         error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
1700         return false;
1701     }
1702 
1703     err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
1704     if (err != 0) {
1705         error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
1706         return false;
1707     }
1708 
1709     return true;
1710 }
1711 
1712 void kvm_arm_pmu_init(CPUState *cs)
1713 {
1714     struct kvm_device_attr attr = {
1715         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1716         .attr = KVM_ARM_VCPU_PMU_V3_INIT,
1717     };
1718 
1719     if (!ARM_CPU(cs)->has_pmu) {
1720         return;
1721     }
1722     if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
1723         error_report("failed to init PMU");
1724         abort();
1725     }
1726 }
1727 
1728 void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
1729 {
1730     struct kvm_device_attr attr = {
1731         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1732         .addr = (intptr_t)&irq,
1733         .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
1734     };
1735 
1736     if (!ARM_CPU(cs)->has_pmu) {
1737         return;
1738     }
1739     if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
1740         error_report("failed to set irq for PMU");
1741         abort();
1742     }
1743 }
1744 
1745 void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa)
1746 {
1747     struct kvm_device_attr attr = {
1748         .group = KVM_ARM_VCPU_PVTIME_CTRL,
1749         .attr = KVM_ARM_VCPU_PVTIME_IPA,
1750         .addr = (uint64_t)&ipa,
1751     };
1752 
1753     if (ARM_CPU(cs)->kvm_steal_time == ON_OFF_AUTO_OFF) {
1754         return;
1755     }
1756     if (!kvm_arm_set_device_attr(cs, &attr, "PVTIME IPA")) {
1757         error_report("failed to init PVTIME IPA");
1758         abort();
1759     }
1760 }
1761 
1762 void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
1763 {
1764     bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
1765 
1766     if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
1767         if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1768             cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
1769         } else {
1770             cpu->kvm_steal_time = ON_OFF_AUTO_ON;
1771         }
1772     } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
1773         if (!has_steal_time) {
1774             error_setg(errp, "'kvm-steal-time' cannot be enabled "
1775                              "on this host");
1776             return;
1777         } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1778             /*
1779              * DEN0057A chapter 2 says "This specification only covers
1780              * systems in which the Execution state of the hypervisor
1781              * as well as EL1 of virtual machines is AArch64.". And,
1782              * to ensure that, the smc/hvc calls are only specified as
1783              * smc64/hvc64.
1784              */
1785             error_setg(errp, "'kvm-steal-time' cannot be enabled "
1786                              "for AArch32 guests");
1787             return;
1788         }
1789     }
1790 }
1791 
1792 bool kvm_arm_aarch32_supported(void)
1793 {
1794     return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
1795 }
1796 
1797 bool kvm_arm_sve_supported(void)
1798 {
1799     return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
1800 }
1801 
1802 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
1803 
1804 uint32_t kvm_arm_sve_get_vls(CPUState *cs)
1805 {
1806     /* Only call this function if kvm_arm_sve_supported() returns true. */
1807     static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
1808     static bool probed;
1809     uint32_t vq = 0;
1810     int i;
1811 
1812     /*
1813      * KVM ensures all host CPUs support the same set of vector lengths.
1814      * So we only need to create the scratch VCPUs once and then cache
1815      * the results.
1816      */
1817     if (!probed) {
1818         struct kvm_vcpu_init init = {
1819             .target = -1,
1820             .features[0] = (1 << KVM_ARM_VCPU_SVE),
1821         };
1822         struct kvm_one_reg reg = {
1823             .id = KVM_REG_ARM64_SVE_VLS,
1824             .addr = (uint64_t)&vls[0],
1825         };
1826         int fdarray[3], ret;
1827 
1828         probed = true;
1829 
1830         if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
1831             error_report("failed to create scratch VCPU with SVE enabled");
1832             abort();
1833         }
1834         ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
1835         kvm_arm_destroy_scratch_host_vcpu(fdarray);
1836         if (ret) {
1837             error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
1838                          strerror(errno));
1839             abort();
1840         }
1841 
1842         for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
1843             if (vls[i]) {
1844                 vq = 64 - clz64(vls[i]) + i * 64;
1845                 break;
1846             }
1847         }
1848         if (vq > ARM_MAX_VQ) {
1849             warn_report("KVM supports vector lengths larger than "
1850                         "QEMU can enable");
1851             vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
1852         }
1853     }
1854 
1855     return vls[0];
1856 }
1857 
1858 static int kvm_arm_sve_set_vls(ARMCPU *cpu)
1859 {
1860     uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
1861 
1862     assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
1863 
1864     return kvm_set_one_reg(CPU(cpu), KVM_REG_ARM64_SVE_VLS, &vls[0]);
1865 }
1866 
1867 #define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
1868 
1869 int kvm_arch_init_vcpu(CPUState *cs)
1870 {
1871     int ret;
1872     uint64_t mpidr;
1873     ARMCPU *cpu = ARM_CPU(cs);
1874     CPUARMState *env = &cpu->env;
1875     uint64_t psciver;
1876 
1877     if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
1878         !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
1879         error_report("KVM is not supported for this guest CPU type");
1880         return -EINVAL;
1881     }
1882 
1883     qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs);
1884 
1885     /* Determine init features for this CPU */
1886     memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
1887     if (cs->start_powered_off) {
1888         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
1889     }
1890     if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
1891         cpu->psci_version = QEMU_PSCI_VERSION_0_2;
1892         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
1893     }
1894     if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1895         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
1896     }
1897     if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
1898         cpu->has_pmu = false;
1899     }
1900     if (cpu->has_pmu) {
1901         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
1902     } else {
1903         env->features &= ~(1ULL << ARM_FEATURE_PMU);
1904     }
1905     if (cpu_isar_feature(aa64_sve, cpu)) {
1906         assert(kvm_arm_sve_supported());
1907         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
1908     }
1909     if (cpu_isar_feature(aa64_pauth, cpu)) {
1910         cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
1911                                       1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
1912     }
1913 
1914     /* Do KVM_ARM_VCPU_INIT ioctl */
1915     ret = kvm_arm_vcpu_init(cs);
1916     if (ret) {
1917         return ret;
1918     }
1919 
1920     if (cpu_isar_feature(aa64_sve, cpu)) {
1921         ret = kvm_arm_sve_set_vls(cpu);
1922         if (ret) {
1923             return ret;
1924         }
1925         ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE);
1926         if (ret) {
1927             return ret;
1928         }
1929     }
1930 
1931     /*
1932      * KVM reports the exact PSCI version it is implementing via a
1933      * special sysreg. If it is present, use its contents to determine
1934      * what to report to the guest in the dtb (it is the PSCI version,
1935      * in the same 15-bits major 16-bits minor format that PSCI_VERSION
1936      * returns).
1937      */
1938     if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
1939         cpu->psci_version = psciver;
1940     }
1941 
1942     /*
1943      * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
1944      * Currently KVM has its own idea about MPIDR assignment, so we
1945      * override our defaults with what we get from KVM.
1946      */
1947     ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
1948     if (ret) {
1949         return ret;
1950     }
1951     cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
1952 
1953     return kvm_arm_init_cpreg_list(cpu);
1954 }
1955 
1956 int kvm_arch_destroy_vcpu(CPUState *cs)
1957 {
1958     return 0;
1959 }
1960 
1961 /* Callers must hold the iothread mutex lock */
1962 static void kvm_inject_arm_sea(CPUState *c)
1963 {
1964     ARMCPU *cpu = ARM_CPU(c);
1965     CPUARMState *env = &cpu->env;
1966     uint32_t esr;
1967     bool same_el;
1968 
1969     c->exception_index = EXCP_DATA_ABORT;
1970     env->exception.target_el = 1;
1971 
1972     /*
1973      * Set the DFSC to synchronous external abort and set FnV to not valid,
1974      * this will tell guest the FAR_ELx is UNKNOWN for this abort.
1975      */
1976     same_el = arm_current_el(env) == env->exception.target_el;
1977     esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
1978 
1979     env->exception.syndrome = esr;
1980 
1981     arm_cpu_do_interrupt(c);
1982 }
1983 
1984 #define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
1985                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1986 
1987 #define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
1988                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1989 
1990 #define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
1991                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1992 
1993 static int kvm_arch_put_fpsimd(CPUState *cs)
1994 {
1995     CPUARMState *env = &ARM_CPU(cs)->env;
1996     int i, ret;
1997 
1998     for (i = 0; i < 32; i++) {
1999         uint64_t *q = aa64_vfp_qreg(env, i);
2000 #if HOST_BIG_ENDIAN
2001         uint64_t fp_val[2] = { q[1], q[0] };
2002         ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
2003                                                         fp_val);
2004 #else
2005         ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2006 #endif
2007         if (ret) {
2008             return ret;
2009         }
2010     }
2011 
2012     return 0;
2013 }
2014 
2015 /*
2016  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2017  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2018  * code the slice index to zero for now as it's unlikely we'll need more than
2019  * one slice for quite some time.
2020  */
2021 static int kvm_arch_put_sve(CPUState *cs)
2022 {
2023     ARMCPU *cpu = ARM_CPU(cs);
2024     CPUARMState *env = &cpu->env;
2025     uint64_t tmp[ARM_MAX_VQ * 2];
2026     uint64_t *r;
2027     int n, ret;
2028 
2029     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2030         r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
2031         ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2032         if (ret) {
2033             return ret;
2034         }
2035     }
2036 
2037     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2038         r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
2039                         DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2040         ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2041         if (ret) {
2042             return ret;
2043         }
2044     }
2045 
2046     r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
2047                     DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2048     ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2049     if (ret) {
2050         return ret;
2051     }
2052 
2053     return 0;
2054 }
2055 
2056 int kvm_arch_put_registers(CPUState *cs, int level)
2057 {
2058     uint64_t val;
2059     uint32_t fpr;
2060     int i, ret;
2061     unsigned int el;
2062 
2063     ARMCPU *cpu = ARM_CPU(cs);
2064     CPUARMState *env = &cpu->env;
2065 
2066     /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
2067      * AArch64 registers before pushing them out to 64-bit KVM.
2068      */
2069     if (!is_a64(env)) {
2070         aarch64_sync_32_to_64(env);
2071     }
2072 
2073     for (i = 0; i < 31; i++) {
2074         ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2075                               &env->xregs[i]);
2076         if (ret) {
2077             return ret;
2078         }
2079     }
2080 
2081     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2082      * QEMU side we keep the current SP in xregs[31] as well.
2083      */
2084     aarch64_save_sp(env, 1);
2085 
2086     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2087     if (ret) {
2088         return ret;
2089     }
2090 
2091     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2092     if (ret) {
2093         return ret;
2094     }
2095 
2096     /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
2097     if (is_a64(env)) {
2098         val = pstate_read(env);
2099     } else {
2100         val = cpsr_read(env);
2101     }
2102     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2103     if (ret) {
2104         return ret;
2105     }
2106 
2107     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2108     if (ret) {
2109         return ret;
2110     }
2111 
2112     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2113     if (ret) {
2114         return ret;
2115     }
2116 
2117     /* Saved Program State Registers
2118      *
2119      * Before we restore from the banked_spsr[] array we need to
2120      * ensure that any modifications to env->spsr are correctly
2121      * reflected in the banks.
2122      */
2123     el = arm_current_el(env);
2124     if (el > 0 && !is_a64(env)) {
2125         i = bank_number(env->uncached_cpsr & CPSR_M);
2126         env->banked_spsr[i] = env->spsr;
2127     }
2128 
2129     /* KVM 0-4 map to QEMU banks 1-5 */
2130     for (i = 0; i < KVM_NR_SPSR; i++) {
2131         ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2132                               &env->banked_spsr[i + 1]);
2133         if (ret) {
2134             return ret;
2135         }
2136     }
2137 
2138     if (cpu_isar_feature(aa64_sve, cpu)) {
2139         ret = kvm_arch_put_sve(cs);
2140     } else {
2141         ret = kvm_arch_put_fpsimd(cs);
2142     }
2143     if (ret) {
2144         return ret;
2145     }
2146 
2147     fpr = vfp_get_fpsr(env);
2148     ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2149     if (ret) {
2150         return ret;
2151     }
2152 
2153     fpr = vfp_get_fpcr(env);
2154     ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2155     if (ret) {
2156         return ret;
2157     }
2158 
2159     write_cpustate_to_list(cpu, true);
2160 
2161     if (!write_list_to_kvmstate(cpu, level)) {
2162         return -EINVAL;
2163     }
2164 
2165    /*
2166     * Setting VCPU events should be triggered after syncing the registers
2167     * to avoid overwriting potential changes made by KVM upon calling
2168     * KVM_SET_VCPU_EVENTS ioctl
2169     */
2170     ret = kvm_put_vcpu_events(cpu);
2171     if (ret) {
2172         return ret;
2173     }
2174 
2175     return kvm_arm_sync_mpstate_to_kvm(cpu);
2176 }
2177 
2178 static int kvm_arch_get_fpsimd(CPUState *cs)
2179 {
2180     CPUARMState *env = &ARM_CPU(cs)->env;
2181     int i, ret;
2182 
2183     for (i = 0; i < 32; i++) {
2184         uint64_t *q = aa64_vfp_qreg(env, i);
2185         ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2186         if (ret) {
2187             return ret;
2188         } else {
2189 #if HOST_BIG_ENDIAN
2190             uint64_t t;
2191             t = q[0], q[0] = q[1], q[1] = t;
2192 #endif
2193         }
2194     }
2195 
2196     return 0;
2197 }
2198 
2199 /*
2200  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2201  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2202  * code the slice index to zero for now as it's unlikely we'll need more than
2203  * one slice for quite some time.
2204  */
2205 static int kvm_arch_get_sve(CPUState *cs)
2206 {
2207     ARMCPU *cpu = ARM_CPU(cs);
2208     CPUARMState *env = &cpu->env;
2209     uint64_t *r;
2210     int n, ret;
2211 
2212     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2213         r = &env->vfp.zregs[n].d[0];
2214         ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2215         if (ret) {
2216             return ret;
2217         }
2218         sve_bswap64(r, r, cpu->sve_max_vq * 2);
2219     }
2220 
2221     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2222         r = &env->vfp.pregs[n].p[0];
2223         ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2224         if (ret) {
2225             return ret;
2226         }
2227         sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2228     }
2229 
2230     r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
2231     ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2232     if (ret) {
2233         return ret;
2234     }
2235     sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2236 
2237     return 0;
2238 }
2239 
2240 int kvm_arch_get_registers(CPUState *cs)
2241 {
2242     uint64_t val;
2243     unsigned int el;
2244     uint32_t fpr;
2245     int i, ret;
2246 
2247     ARMCPU *cpu = ARM_CPU(cs);
2248     CPUARMState *env = &cpu->env;
2249 
2250     for (i = 0; i < 31; i++) {
2251         ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2252                               &env->xregs[i]);
2253         if (ret) {
2254             return ret;
2255         }
2256     }
2257 
2258     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2259     if (ret) {
2260         return ret;
2261     }
2262 
2263     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2264     if (ret) {
2265         return ret;
2266     }
2267 
2268     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2269     if (ret) {
2270         return ret;
2271     }
2272 
2273     env->aarch64 = ((val & PSTATE_nRW) == 0);
2274     if (is_a64(env)) {
2275         pstate_write(env, val);
2276     } else {
2277         cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
2278     }
2279 
2280     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2281      * QEMU side we keep the current SP in xregs[31] as well.
2282      */
2283     aarch64_restore_sp(env, 1);
2284 
2285     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2286     if (ret) {
2287         return ret;
2288     }
2289 
2290     /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
2291      * incoming AArch64 regs received from 64-bit KVM.
2292      * We must perform this after all of the registers have been acquired from
2293      * the kernel.
2294      */
2295     if (!is_a64(env)) {
2296         aarch64_sync_64_to_32(env);
2297     }
2298 
2299     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2300     if (ret) {
2301         return ret;
2302     }
2303 
2304     /* Fetch the SPSR registers
2305      *
2306      * KVM SPSRs 0-4 map to QEMU banks 1-5
2307      */
2308     for (i = 0; i < KVM_NR_SPSR; i++) {
2309         ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2310                               &env->banked_spsr[i + 1]);
2311         if (ret) {
2312             return ret;
2313         }
2314     }
2315 
2316     el = arm_current_el(env);
2317     if (el > 0 && !is_a64(env)) {
2318         i = bank_number(env->uncached_cpsr & CPSR_M);
2319         env->spsr = env->banked_spsr[i];
2320     }
2321 
2322     if (cpu_isar_feature(aa64_sve, cpu)) {
2323         ret = kvm_arch_get_sve(cs);
2324     } else {
2325         ret = kvm_arch_get_fpsimd(cs);
2326     }
2327     if (ret) {
2328         return ret;
2329     }
2330 
2331     ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2332     if (ret) {
2333         return ret;
2334     }
2335     vfp_set_fpsr(env, fpr);
2336 
2337     ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2338     if (ret) {
2339         return ret;
2340     }
2341     vfp_set_fpcr(env, fpr);
2342 
2343     ret = kvm_get_vcpu_events(cpu);
2344     if (ret) {
2345         return ret;
2346     }
2347 
2348     if (!write_kvmstate_to_list(cpu)) {
2349         return -EINVAL;
2350     }
2351     /* Note that it's OK to have registers which aren't in CPUState,
2352      * so we can ignore a failure return here.
2353      */
2354     write_list_to_cpustate(cpu);
2355 
2356     ret = kvm_arm_sync_mpstate_to_qemu(cpu);
2357 
2358     /* TODO: other registers */
2359     return ret;
2360 }
2361 
2362 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
2363 {
2364     ram_addr_t ram_addr;
2365     hwaddr paddr;
2366 
2367     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
2368 
2369     if (acpi_ghes_present() && addr) {
2370         ram_addr = qemu_ram_addr_from_host(addr);
2371         if (ram_addr != RAM_ADDR_INVALID &&
2372             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
2373             kvm_hwpoison_page_add(ram_addr);
2374             /*
2375              * If this is a BUS_MCEERR_AR, we know we have been called
2376              * synchronously from the vCPU thread, so we can easily
2377              * synchronize the state and inject an error.
2378              *
2379              * TODO: we currently don't tell the guest at all about
2380              * BUS_MCEERR_AO. In that case we might either be being
2381              * called synchronously from the vCPU thread, or a bit
2382              * later from the main thread, so doing the injection of
2383              * the error would be more complicated.
2384              */
2385             if (code == BUS_MCEERR_AR) {
2386                 kvm_cpu_synchronize_state(c);
2387                 if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
2388                     kvm_inject_arm_sea(c);
2389                 } else {
2390                     error_report("failed to record the error");
2391                     abort();
2392                 }
2393             }
2394             return;
2395         }
2396         if (code == BUS_MCEERR_AO) {
2397             error_report("Hardware memory error at addr %p for memory used by "
2398                 "QEMU itself instead of guest system!", addr);
2399         }
2400     }
2401 
2402     if (code == BUS_MCEERR_AR) {
2403         error_report("Hardware memory error!");
2404         exit(1);
2405     }
2406 }
2407 
2408 /* C6.6.29 BRK instruction */
2409 static const uint32_t brk_insn = 0xd4200000;
2410 
2411 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2412 {
2413     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2414         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2415         return -EINVAL;
2416     }
2417     return 0;
2418 }
2419 
2420 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2421 {
2422     static uint32_t brk;
2423 
2424     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
2425         brk != brk_insn ||
2426         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2427         return -EINVAL;
2428     }
2429     return 0;
2430 }
2431