xref: /qemu/target/arm/kvm.c (revision e3a6e0da)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13 
14 #include <linux/kvm.h>
15 
16 #include "qemu-common.h"
17 #include "qemu/timer.h"
18 #include "qemu/error-report.h"
19 #include "qemu/main-loop.h"
20 #include "qom/object.h"
21 #include "qapi/error.h"
22 #include "sysemu/sysemu.h"
23 #include "sysemu/kvm.h"
24 #include "sysemu/kvm_int.h"
25 #include "kvm_arm.h"
26 #include "cpu.h"
27 #include "trace.h"
28 #include "internals.h"
29 #include "hw/pci/pci.h"
30 #include "exec/memattrs.h"
31 #include "exec/address-spaces.h"
32 #include "hw/boards.h"
33 #include "hw/irq.h"
34 #include "qemu/log.h"
35 
36 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
37     KVM_CAP_LAST_INFO
38 };
39 
40 static bool cap_has_mp_state;
41 static bool cap_has_inject_serror_esr;
42 static bool cap_has_inject_ext_dabt;
43 
44 static ARMHostCPUFeatures arm_host_cpu_features;
45 
46 int kvm_arm_vcpu_init(CPUState *cs)
47 {
48     ARMCPU *cpu = ARM_CPU(cs);
49     struct kvm_vcpu_init init;
50 
51     init.target = cpu->kvm_target;
52     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
53 
54     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
55 }
56 
57 int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
58 {
59     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
60 }
61 
62 void kvm_arm_init_serror_injection(CPUState *cs)
63 {
64     cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
65                                     KVM_CAP_ARM_INJECT_SERROR_ESR);
66 }
67 
68 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
69                                       int *fdarray,
70                                       struct kvm_vcpu_init *init)
71 {
72     int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
73 
74     kvmfd = qemu_open("/dev/kvm", O_RDWR);
75     if (kvmfd < 0) {
76         goto err;
77     }
78     vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
79     if (vmfd < 0) {
80         goto err;
81     }
82     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
83     if (cpufd < 0) {
84         goto err;
85     }
86 
87     if (!init) {
88         /* Caller doesn't want the VCPU to be initialized, so skip it */
89         goto finish;
90     }
91 
92     if (init->target == -1) {
93         struct kvm_vcpu_init preferred;
94 
95         ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
96         if (!ret) {
97             init->target = preferred.target;
98         }
99     }
100     if (ret >= 0) {
101         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
102         if (ret < 0) {
103             goto err;
104         }
105     } else if (cpus_to_try) {
106         /* Old kernel which doesn't know about the
107          * PREFERRED_TARGET ioctl: we know it will only support
108          * creating one kind of guest CPU which is its preferred
109          * CPU type.
110          */
111         struct kvm_vcpu_init try;
112 
113         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
114             try.target = *cpus_to_try++;
115             memcpy(try.features, init->features, sizeof(init->features));
116             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
117             if (ret >= 0) {
118                 break;
119             }
120         }
121         if (ret < 0) {
122             goto err;
123         }
124         init->target = try.target;
125     } else {
126         /* Treat a NULL cpus_to_try argument the same as an empty
127          * list, which means we will fail the call since this must
128          * be an old kernel which doesn't support PREFERRED_TARGET.
129          */
130         goto err;
131     }
132 
133 finish:
134     fdarray[0] = kvmfd;
135     fdarray[1] = vmfd;
136     fdarray[2] = cpufd;
137 
138     return true;
139 
140 err:
141     if (cpufd >= 0) {
142         close(cpufd);
143     }
144     if (vmfd >= 0) {
145         close(vmfd);
146     }
147     if (kvmfd >= 0) {
148         close(kvmfd);
149     }
150 
151     return false;
152 }
153 
154 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
155 {
156     int i;
157 
158     for (i = 2; i >= 0; i--) {
159         close(fdarray[i]);
160     }
161 }
162 
163 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
164 {
165     CPUARMState *env = &cpu->env;
166 
167     if (!arm_host_cpu_features.dtb_compatible) {
168         if (!kvm_enabled() ||
169             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
170             /* We can't report this error yet, so flag that we need to
171              * in arm_cpu_realizefn().
172              */
173             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
174             cpu->host_cpu_probe_failed = true;
175             return;
176         }
177     }
178 
179     cpu->kvm_target = arm_host_cpu_features.target;
180     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
181     cpu->isar = arm_host_cpu_features.isar;
182     env->features = arm_host_cpu_features.features;
183 }
184 
185 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
186 {
187     return !ARM_CPU(obj)->kvm_adjvtime;
188 }
189 
190 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
191 {
192     ARM_CPU(obj)->kvm_adjvtime = !value;
193 }
194 
195 /* KVM VCPU properties should be prefixed with "kvm-". */
196 void kvm_arm_add_vcpu_properties(Object *obj)
197 {
198     ARMCPU *cpu = ARM_CPU(obj);
199     CPUARMState *env = &cpu->env;
200 
201     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
202         cpu->kvm_adjvtime = true;
203         object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
204                                  kvm_no_adjvtime_set);
205         object_property_set_description(obj, "kvm-no-adjvtime",
206                                         "Set on to disable the adjustment of "
207                                         "the virtual counter. VM stopped time "
208                                         "will be counted.");
209     }
210 }
211 
212 bool kvm_arm_pmu_supported(void)
213 {
214     return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
215 }
216 
217 int kvm_arm_get_max_vm_ipa_size(MachineState *ms)
218 {
219     KVMState *s = KVM_STATE(ms->accelerator);
220     int ret;
221 
222     ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
223     return ret > 0 ? ret : 40;
224 }
225 
226 int kvm_arch_init(MachineState *ms, KVMState *s)
227 {
228     int ret = 0;
229     /* For ARM interrupt delivery is always asynchronous,
230      * whether we are using an in-kernel VGIC or not.
231      */
232     kvm_async_interrupts_allowed = true;
233 
234     /*
235      * PSCI wakes up secondary cores, so we always need to
236      * have vCPUs waiting in kernel space
237      */
238     kvm_halt_in_kernel_allowed = true;
239 
240     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
241 
242     if (ms->smp.cpus > 256 &&
243         !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
244         error_report("Using more than 256 vcpus requires a host kernel "
245                      "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
246         ret = -EINVAL;
247     }
248 
249     if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
250         if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
251             error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
252         } else {
253             /* Set status for supporting the external dabt injection */
254             cap_has_inject_ext_dabt = kvm_check_extension(s,
255                                     KVM_CAP_ARM_INJECT_EXT_DABT);
256         }
257     }
258 
259     return ret;
260 }
261 
262 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
263 {
264     return cpu->cpu_index;
265 }
266 
267 /* We track all the KVM devices which need their memory addresses
268  * passing to the kernel in a list of these structures.
269  * When board init is complete we run through the list and
270  * tell the kernel the base addresses of the memory regions.
271  * We use a MemoryListener to track mapping and unmapping of
272  * the regions during board creation, so the board models don't
273  * need to do anything special for the KVM case.
274  *
275  * Sometimes the address must be OR'ed with some other fields
276  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
277  * @kda_addr_ormask aims at storing the value of those fields.
278  */
279 typedef struct KVMDevice {
280     struct kvm_arm_device_addr kda;
281     struct kvm_device_attr kdattr;
282     uint64_t kda_addr_ormask;
283     MemoryRegion *mr;
284     QSLIST_ENTRY(KVMDevice) entries;
285     int dev_fd;
286 } KVMDevice;
287 
288 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
289 
290 static void kvm_arm_devlistener_add(MemoryListener *listener,
291                                     MemoryRegionSection *section)
292 {
293     KVMDevice *kd;
294 
295     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
296         if (section->mr == kd->mr) {
297             kd->kda.addr = section->offset_within_address_space;
298         }
299     }
300 }
301 
302 static void kvm_arm_devlistener_del(MemoryListener *listener,
303                                     MemoryRegionSection *section)
304 {
305     KVMDevice *kd;
306 
307     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
308         if (section->mr == kd->mr) {
309             kd->kda.addr = -1;
310         }
311     }
312 }
313 
314 static MemoryListener devlistener = {
315     .region_add = kvm_arm_devlistener_add,
316     .region_del = kvm_arm_devlistener_del,
317 };
318 
319 static void kvm_arm_set_device_addr(KVMDevice *kd)
320 {
321     struct kvm_device_attr *attr = &kd->kdattr;
322     int ret;
323 
324     /* If the device control API is available and we have a device fd on the
325      * KVMDevice struct, let's use the newer API
326      */
327     if (kd->dev_fd >= 0) {
328         uint64_t addr = kd->kda.addr;
329 
330         addr |= kd->kda_addr_ormask;
331         attr->addr = (uintptr_t)&addr;
332         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
333     } else {
334         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
335     }
336 
337     if (ret < 0) {
338         fprintf(stderr, "Failed to set device address: %s\n",
339                 strerror(-ret));
340         abort();
341     }
342 }
343 
344 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
345 {
346     KVMDevice *kd, *tkd;
347 
348     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
349         if (kd->kda.addr != -1) {
350             kvm_arm_set_device_addr(kd);
351         }
352         memory_region_unref(kd->mr);
353         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
354         g_free(kd);
355     }
356     memory_listener_unregister(&devlistener);
357 }
358 
359 static Notifier notify = {
360     .notify = kvm_arm_machine_init_done,
361 };
362 
363 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
364                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
365 {
366     KVMDevice *kd;
367 
368     if (!kvm_irqchip_in_kernel()) {
369         return;
370     }
371 
372     if (QSLIST_EMPTY(&kvm_devices_head)) {
373         memory_listener_register(&devlistener, &address_space_memory);
374         qemu_add_machine_init_done_notifier(&notify);
375     }
376     kd = g_new0(KVMDevice, 1);
377     kd->mr = mr;
378     kd->kda.id = devid;
379     kd->kda.addr = -1;
380     kd->kdattr.flags = 0;
381     kd->kdattr.group = group;
382     kd->kdattr.attr = attr;
383     kd->dev_fd = dev_fd;
384     kd->kda_addr_ormask = addr_ormask;
385     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
386     memory_region_ref(kd->mr);
387 }
388 
389 static int compare_u64(const void *a, const void *b)
390 {
391     if (*(uint64_t *)a > *(uint64_t *)b) {
392         return 1;
393     }
394     if (*(uint64_t *)a < *(uint64_t *)b) {
395         return -1;
396     }
397     return 0;
398 }
399 
400 /*
401  * cpreg_values are sorted in ascending order by KVM register ID
402  * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
403  * the storage for a KVM register by ID with a binary search.
404  */
405 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
406 {
407     uint64_t *res;
408 
409     res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
410                   sizeof(uint64_t), compare_u64);
411     assert(res);
412 
413     return &cpu->cpreg_values[res - cpu->cpreg_indexes];
414 }
415 
416 /* Initialize the ARMCPU cpreg list according to the kernel's
417  * definition of what CPU registers it knows about (and throw away
418  * the previous TCG-created cpreg list).
419  */
420 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
421 {
422     struct kvm_reg_list rl;
423     struct kvm_reg_list *rlp;
424     int i, ret, arraylen;
425     CPUState *cs = CPU(cpu);
426 
427     rl.n = 0;
428     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
429     if (ret != -E2BIG) {
430         return ret;
431     }
432     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
433     rlp->n = rl.n;
434     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
435     if (ret) {
436         goto out;
437     }
438     /* Sort the list we get back from the kernel, since cpreg_tuples
439      * must be in strictly ascending order.
440      */
441     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
442 
443     for (i = 0, arraylen = 0; i < rlp->n; i++) {
444         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
445             continue;
446         }
447         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
448         case KVM_REG_SIZE_U32:
449         case KVM_REG_SIZE_U64:
450             break;
451         default:
452             fprintf(stderr, "Can't handle size of register in kernel list\n");
453             ret = -EINVAL;
454             goto out;
455         }
456 
457         arraylen++;
458     }
459 
460     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
461     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
462     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
463                                          arraylen);
464     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
465                                         arraylen);
466     cpu->cpreg_array_len = arraylen;
467     cpu->cpreg_vmstate_array_len = arraylen;
468 
469     for (i = 0, arraylen = 0; i < rlp->n; i++) {
470         uint64_t regidx = rlp->reg[i];
471         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
472             continue;
473         }
474         cpu->cpreg_indexes[arraylen] = regidx;
475         arraylen++;
476     }
477     assert(cpu->cpreg_array_len == arraylen);
478 
479     if (!write_kvmstate_to_list(cpu)) {
480         /* Shouldn't happen unless kernel is inconsistent about
481          * what registers exist.
482          */
483         fprintf(stderr, "Initial read of kernel register state failed\n");
484         ret = -EINVAL;
485         goto out;
486     }
487 
488 out:
489     g_free(rlp);
490     return ret;
491 }
492 
493 bool write_kvmstate_to_list(ARMCPU *cpu)
494 {
495     CPUState *cs = CPU(cpu);
496     int i;
497     bool ok = true;
498 
499     for (i = 0; i < cpu->cpreg_array_len; i++) {
500         struct kvm_one_reg r;
501         uint64_t regidx = cpu->cpreg_indexes[i];
502         uint32_t v32;
503         int ret;
504 
505         r.id = regidx;
506 
507         switch (regidx & KVM_REG_SIZE_MASK) {
508         case KVM_REG_SIZE_U32:
509             r.addr = (uintptr_t)&v32;
510             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
511             if (!ret) {
512                 cpu->cpreg_values[i] = v32;
513             }
514             break;
515         case KVM_REG_SIZE_U64:
516             r.addr = (uintptr_t)(cpu->cpreg_values + i);
517             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
518             break;
519         default:
520             abort();
521         }
522         if (ret) {
523             ok = false;
524         }
525     }
526     return ok;
527 }
528 
529 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
530 {
531     CPUState *cs = CPU(cpu);
532     int i;
533     bool ok = true;
534 
535     for (i = 0; i < cpu->cpreg_array_len; i++) {
536         struct kvm_one_reg r;
537         uint64_t regidx = cpu->cpreg_indexes[i];
538         uint32_t v32;
539         int ret;
540 
541         if (kvm_arm_cpreg_level(regidx) > level) {
542             continue;
543         }
544 
545         r.id = regidx;
546         switch (regidx & KVM_REG_SIZE_MASK) {
547         case KVM_REG_SIZE_U32:
548             v32 = cpu->cpreg_values[i];
549             r.addr = (uintptr_t)&v32;
550             break;
551         case KVM_REG_SIZE_U64:
552             r.addr = (uintptr_t)(cpu->cpreg_values + i);
553             break;
554         default:
555             abort();
556         }
557         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
558         if (ret) {
559             /* We might fail for "unknown register" and also for
560              * "you tried to set a register which is constant with
561              * a different value from what it actually contains".
562              */
563             ok = false;
564         }
565     }
566     return ok;
567 }
568 
569 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
570 {
571     /* KVM virtual time adjustment */
572     if (cpu->kvm_vtime_dirty) {
573         *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
574     }
575 }
576 
577 void kvm_arm_cpu_post_load(ARMCPU *cpu)
578 {
579     /* KVM virtual time adjustment */
580     if (cpu->kvm_adjvtime) {
581         cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
582         cpu->kvm_vtime_dirty = true;
583     }
584 }
585 
586 void kvm_arm_reset_vcpu(ARMCPU *cpu)
587 {
588     int ret;
589 
590     /* Re-init VCPU so that all registers are set to
591      * their respective reset values.
592      */
593     ret = kvm_arm_vcpu_init(CPU(cpu));
594     if (ret < 0) {
595         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
596         abort();
597     }
598     if (!write_kvmstate_to_list(cpu)) {
599         fprintf(stderr, "write_kvmstate_to_list failed\n");
600         abort();
601     }
602     /*
603      * Sync the reset values also into the CPUState. This is necessary
604      * because the next thing we do will be a kvm_arch_put_registers()
605      * which will update the list values from the CPUState before copying
606      * the list values back to KVM. It's OK to ignore failure returns here
607      * for the same reason we do so in kvm_arch_get_registers().
608      */
609     write_list_to_cpustate(cpu);
610 }
611 
612 /*
613  * Update KVM's MP_STATE based on what QEMU thinks it is
614  */
615 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
616 {
617     if (cap_has_mp_state) {
618         struct kvm_mp_state mp_state = {
619             .mp_state = (cpu->power_state == PSCI_OFF) ?
620             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
621         };
622         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
623         if (ret) {
624             fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
625                     __func__, ret, strerror(-ret));
626             return -1;
627         }
628     }
629 
630     return 0;
631 }
632 
633 /*
634  * Sync the KVM MP_STATE into QEMU
635  */
636 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
637 {
638     if (cap_has_mp_state) {
639         struct kvm_mp_state mp_state;
640         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
641         if (ret) {
642             fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
643                     __func__, ret, strerror(-ret));
644             abort();
645         }
646         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
647             PSCI_OFF : PSCI_ON;
648     }
649 
650     return 0;
651 }
652 
653 void kvm_arm_get_virtual_time(CPUState *cs)
654 {
655     ARMCPU *cpu = ARM_CPU(cs);
656     struct kvm_one_reg reg = {
657         .id = KVM_REG_ARM_TIMER_CNT,
658         .addr = (uintptr_t)&cpu->kvm_vtime,
659     };
660     int ret;
661 
662     if (cpu->kvm_vtime_dirty) {
663         return;
664     }
665 
666     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
667     if (ret) {
668         error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
669         abort();
670     }
671 
672     cpu->kvm_vtime_dirty = true;
673 }
674 
675 void kvm_arm_put_virtual_time(CPUState *cs)
676 {
677     ARMCPU *cpu = ARM_CPU(cs);
678     struct kvm_one_reg reg = {
679         .id = KVM_REG_ARM_TIMER_CNT,
680         .addr = (uintptr_t)&cpu->kvm_vtime,
681     };
682     int ret;
683 
684     if (!cpu->kvm_vtime_dirty) {
685         return;
686     }
687 
688     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
689     if (ret) {
690         error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
691         abort();
692     }
693 
694     cpu->kvm_vtime_dirty = false;
695 }
696 
697 int kvm_put_vcpu_events(ARMCPU *cpu)
698 {
699     CPUARMState *env = &cpu->env;
700     struct kvm_vcpu_events events;
701     int ret;
702 
703     if (!kvm_has_vcpu_events()) {
704         return 0;
705     }
706 
707     memset(&events, 0, sizeof(events));
708     events.exception.serror_pending = env->serror.pending;
709 
710     /* Inject SError to guest with specified syndrome if host kernel
711      * supports it, otherwise inject SError without syndrome.
712      */
713     if (cap_has_inject_serror_esr) {
714         events.exception.serror_has_esr = env->serror.has_esr;
715         events.exception.serror_esr = env->serror.esr;
716     }
717 
718     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
719     if (ret) {
720         error_report("failed to put vcpu events");
721     }
722 
723     return ret;
724 }
725 
726 int kvm_get_vcpu_events(ARMCPU *cpu)
727 {
728     CPUARMState *env = &cpu->env;
729     struct kvm_vcpu_events events;
730     int ret;
731 
732     if (!kvm_has_vcpu_events()) {
733         return 0;
734     }
735 
736     memset(&events, 0, sizeof(events));
737     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
738     if (ret) {
739         error_report("failed to get vcpu events");
740         return ret;
741     }
742 
743     env->serror.pending = events.exception.serror_pending;
744     env->serror.has_esr = events.exception.serror_has_esr;
745     env->serror.esr = events.exception.serror_esr;
746 
747     return 0;
748 }
749 
750 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
751 {
752     ARMCPU *cpu = ARM_CPU(cs);
753     CPUARMState *env = &cpu->env;
754 
755     if (unlikely(env->ext_dabt_raised)) {
756         /*
757          * Verifying that the ext DABT has been properly injected,
758          * otherwise risking indefinitely re-running the faulting instruction
759          * Covering a very narrow case for kernels 5.5..5.5.4
760          * when injected abort was misconfigured to be
761          * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
762          */
763         if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
764             unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
765 
766             error_report("Data abort exception with no valid ISS generated by "
767                    "guest memory access. KVM unable to emulate faulting "
768                    "instruction. Failed to inject an external data abort "
769                    "into the guest.");
770             abort();
771        }
772        /* Clear the status */
773        env->ext_dabt_raised = 0;
774     }
775 }
776 
777 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
778 {
779     ARMCPU *cpu;
780     uint32_t switched_level;
781 
782     if (kvm_irqchip_in_kernel()) {
783         /*
784          * We only need to sync timer states with user-space interrupt
785          * controllers, so return early and save cycles if we don't.
786          */
787         return MEMTXATTRS_UNSPECIFIED;
788     }
789 
790     cpu = ARM_CPU(cs);
791 
792     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
793     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
794         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
795 
796         qemu_mutex_lock_iothread();
797 
798         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
799             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
800                          !!(run->s.regs.device_irq_level &
801                             KVM_ARM_DEV_EL1_VTIMER));
802             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
803         }
804 
805         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
806             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
807                          !!(run->s.regs.device_irq_level &
808                             KVM_ARM_DEV_EL1_PTIMER));
809             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
810         }
811 
812         if (switched_level & KVM_ARM_DEV_PMU) {
813             qemu_set_irq(cpu->pmu_interrupt,
814                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
815             switched_level &= ~KVM_ARM_DEV_PMU;
816         }
817 
818         if (switched_level) {
819             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
820                           __func__, switched_level);
821         }
822 
823         /* We also mark unknown levels as processed to not waste cycles */
824         cpu->device_irq_level = run->s.regs.device_irq_level;
825         qemu_mutex_unlock_iothread();
826     }
827 
828     return MEMTXATTRS_UNSPECIFIED;
829 }
830 
831 void kvm_arm_vm_state_change(void *opaque, int running, RunState state)
832 {
833     CPUState *cs = opaque;
834     ARMCPU *cpu = ARM_CPU(cs);
835 
836     if (running) {
837         if (cpu->kvm_adjvtime) {
838             kvm_arm_put_virtual_time(cs);
839         }
840     } else {
841         if (cpu->kvm_adjvtime) {
842             kvm_arm_get_virtual_time(cs);
843         }
844     }
845 }
846 
847 /**
848  * kvm_arm_handle_dabt_nisv:
849  * @cs: CPUState
850  * @esr_iss: ISS encoding (limited) for the exception from Data Abort
851  *           ISV bit set to '0b0' -> no valid instruction syndrome
852  * @fault_ipa: faulting address for the synchronous data abort
853  *
854  * Returns: 0 if the exception has been handled, < 0 otherwise
855  */
856 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
857                                     uint64_t fault_ipa)
858 {
859     ARMCPU *cpu = ARM_CPU(cs);
860     CPUARMState *env = &cpu->env;
861     /*
862      * Request KVM to inject the external data abort into the guest
863      */
864     if (cap_has_inject_ext_dabt) {
865         struct kvm_vcpu_events events = { };
866         /*
867          * The external data abort event will be handled immediately by KVM
868          * using the address fault that triggered the exit on given VCPU.
869          * Requesting injection of the external data abort does not rely
870          * on any other VCPU state. Therefore, in this particular case, the VCPU
871          * synchronization can be exceptionally skipped.
872          */
873         events.exception.ext_dabt_pending = 1;
874         /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
875         if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
876             env->ext_dabt_raised = 1;
877             return 0;
878         }
879     } else {
880         error_report("Data abort exception triggered by guest memory access "
881                      "at physical address: 0x"  TARGET_FMT_lx,
882                      (target_ulong)fault_ipa);
883         error_printf("KVM unable to emulate faulting instruction.\n");
884     }
885     return -1;
886 }
887 
888 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
889 {
890     int ret = 0;
891 
892     switch (run->exit_reason) {
893     case KVM_EXIT_DEBUG:
894         if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
895             ret = EXCP_DEBUG;
896         } /* otherwise return to guest */
897         break;
898     case KVM_EXIT_ARM_NISV:
899         /* External DABT with no valid iss to decode */
900         ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
901                                        run->arm_nisv.fault_ipa);
902         break;
903     default:
904         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
905                       __func__, run->exit_reason);
906         break;
907     }
908     return ret;
909 }
910 
911 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
912 {
913     return true;
914 }
915 
916 int kvm_arch_process_async_events(CPUState *cs)
917 {
918     return 0;
919 }
920 
921 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
922 {
923     if (kvm_sw_breakpoints_active(cs)) {
924         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
925     }
926     if (kvm_arm_hw_debug_active(cs)) {
927         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
928         kvm_arm_copy_hw_debug_data(&dbg->arch);
929     }
930 }
931 
932 void kvm_arch_init_irq_routing(KVMState *s)
933 {
934 }
935 
936 int kvm_arch_irqchip_create(KVMState *s)
937 {
938     if (kvm_kernel_irqchip_split()) {
939         perror("-machine kernel_irqchip=split is not supported on ARM.");
940         exit(1);
941     }
942 
943     /* If we can create the VGIC using the newer device control API, we
944      * let the device do this when it initializes itself, otherwise we
945      * fall back to the old API */
946     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
947 }
948 
949 int kvm_arm_vgic_probe(void)
950 {
951     int val = 0;
952 
953     if (kvm_create_device(kvm_state,
954                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
955         val |= KVM_ARM_VGIC_V3;
956     }
957     if (kvm_create_device(kvm_state,
958                           KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
959         val |= KVM_ARM_VGIC_V2;
960     }
961     return val;
962 }
963 
964 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
965 {
966     int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
967     int cpu_idx1 = cpu % 256;
968     int cpu_idx2 = cpu / 256;
969 
970     kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
971                (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
972 
973     return kvm_set_irq(kvm_state, kvm_irq, !!level);
974 }
975 
976 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
977                              uint64_t address, uint32_t data, PCIDevice *dev)
978 {
979     AddressSpace *as = pci_device_iommu_address_space(dev);
980     hwaddr xlat, len, doorbell_gpa;
981     MemoryRegionSection mrs;
982     MemoryRegion *mr;
983     int ret = 1;
984 
985     if (as == &address_space_memory) {
986         return 0;
987     }
988 
989     /* MSI doorbell address is translated by an IOMMU */
990 
991     rcu_read_lock();
992     mr = address_space_translate(as, address, &xlat, &len, true,
993                                  MEMTXATTRS_UNSPECIFIED);
994     if (!mr) {
995         goto unlock;
996     }
997     mrs = memory_region_find(mr, xlat, 1);
998     if (!mrs.mr) {
999         goto unlock;
1000     }
1001 
1002     doorbell_gpa = mrs.offset_within_address_space;
1003     memory_region_unref(mrs.mr);
1004 
1005     route->u.msi.address_lo = doorbell_gpa;
1006     route->u.msi.address_hi = doorbell_gpa >> 32;
1007 
1008     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1009 
1010     ret = 0;
1011 
1012 unlock:
1013     rcu_read_unlock();
1014     return ret;
1015 }
1016 
1017 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1018                                 int vector, PCIDevice *dev)
1019 {
1020     return 0;
1021 }
1022 
1023 int kvm_arch_release_virq_post(int virq)
1024 {
1025     return 0;
1026 }
1027 
1028 int kvm_arch_msi_data_to_gsi(uint32_t data)
1029 {
1030     return (data - 32) & 0xffff;
1031 }
1032