xref: /qemu/target/arm/kvm.c (revision e7b3af81)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13 
14 #include <linux/kvm.h>
15 
16 #include "qemu-common.h"
17 #include "qemu/timer.h"
18 #include "qemu/error-report.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/kvm.h"
21 #include "kvm_arm.h"
22 #include "cpu.h"
23 #include "trace.h"
24 #include "internals.h"
25 #include "hw/arm/arm.h"
26 #include "hw/pci/pci.h"
27 #include "exec/memattrs.h"
28 #include "exec/address-spaces.h"
29 #include "hw/boards.h"
30 #include "qemu/log.h"
31 
32 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
33     KVM_CAP_LAST_INFO
34 };
35 
36 static bool cap_has_mp_state;
37 
38 static ARMHostCPUFeatures arm_host_cpu_features;
39 
40 int kvm_arm_vcpu_init(CPUState *cs)
41 {
42     ARMCPU *cpu = ARM_CPU(cs);
43     struct kvm_vcpu_init init;
44 
45     init.target = cpu->kvm_target;
46     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
47 
48     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
49 }
50 
51 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
52                                       int *fdarray,
53                                       struct kvm_vcpu_init *init)
54 {
55     int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
56 
57     kvmfd = qemu_open("/dev/kvm", O_RDWR);
58     if (kvmfd < 0) {
59         goto err;
60     }
61     vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
62     if (vmfd < 0) {
63         goto err;
64     }
65     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
66     if (cpufd < 0) {
67         goto err;
68     }
69 
70     if (!init) {
71         /* Caller doesn't want the VCPU to be initialized, so skip it */
72         goto finish;
73     }
74 
75     ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
76     if (ret >= 0) {
77         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
78         if (ret < 0) {
79             goto err;
80         }
81     } else if (cpus_to_try) {
82         /* Old kernel which doesn't know about the
83          * PREFERRED_TARGET ioctl: we know it will only support
84          * creating one kind of guest CPU which is its preferred
85          * CPU type.
86          */
87         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
88             init->target = *cpus_to_try++;
89             memset(init->features, 0, sizeof(init->features));
90             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
91             if (ret >= 0) {
92                 break;
93             }
94         }
95         if (ret < 0) {
96             goto err;
97         }
98     } else {
99         /* Treat a NULL cpus_to_try argument the same as an empty
100          * list, which means we will fail the call since this must
101          * be an old kernel which doesn't support PREFERRED_TARGET.
102          */
103         goto err;
104     }
105 
106 finish:
107     fdarray[0] = kvmfd;
108     fdarray[1] = vmfd;
109     fdarray[2] = cpufd;
110 
111     return true;
112 
113 err:
114     if (cpufd >= 0) {
115         close(cpufd);
116     }
117     if (vmfd >= 0) {
118         close(vmfd);
119     }
120     if (kvmfd >= 0) {
121         close(kvmfd);
122     }
123 
124     return false;
125 }
126 
127 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
128 {
129     int i;
130 
131     for (i = 2; i >= 0; i--) {
132         close(fdarray[i]);
133     }
134 }
135 
136 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
137 {
138     CPUARMState *env = &cpu->env;
139 
140     if (!arm_host_cpu_features.dtb_compatible) {
141         if (!kvm_enabled() ||
142             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
143             /* We can't report this error yet, so flag that we need to
144              * in arm_cpu_realizefn().
145              */
146             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
147             cpu->host_cpu_probe_failed = true;
148             return;
149         }
150     }
151 
152     cpu->kvm_target = arm_host_cpu_features.target;
153     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
154     env->features = arm_host_cpu_features.features;
155 }
156 
157 int kvm_arch_init(MachineState *ms, KVMState *s)
158 {
159     /* For ARM interrupt delivery is always asynchronous,
160      * whether we are using an in-kernel VGIC or not.
161      */
162     kvm_async_interrupts_allowed = true;
163 
164     /*
165      * PSCI wakes up secondary cores, so we always need to
166      * have vCPUs waiting in kernel space
167      */
168     kvm_halt_in_kernel_allowed = true;
169 
170     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
171 
172     return 0;
173 }
174 
175 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
176 {
177     return cpu->cpu_index;
178 }
179 
180 /* We track all the KVM devices which need their memory addresses
181  * passing to the kernel in a list of these structures.
182  * When board init is complete we run through the list and
183  * tell the kernel the base addresses of the memory regions.
184  * We use a MemoryListener to track mapping and unmapping of
185  * the regions during board creation, so the board models don't
186  * need to do anything special for the KVM case.
187  *
188  * Sometimes the address must be OR'ed with some other fields
189  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
190  * @kda_addr_ormask aims at storing the value of those fields.
191  */
192 typedef struct KVMDevice {
193     struct kvm_arm_device_addr kda;
194     struct kvm_device_attr kdattr;
195     uint64_t kda_addr_ormask;
196     MemoryRegion *mr;
197     QSLIST_ENTRY(KVMDevice) entries;
198     int dev_fd;
199 } KVMDevice;
200 
201 static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head;
202 
203 static void kvm_arm_devlistener_add(MemoryListener *listener,
204                                     MemoryRegionSection *section)
205 {
206     KVMDevice *kd;
207 
208     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
209         if (section->mr == kd->mr) {
210             kd->kda.addr = section->offset_within_address_space;
211         }
212     }
213 }
214 
215 static void kvm_arm_devlistener_del(MemoryListener *listener,
216                                     MemoryRegionSection *section)
217 {
218     KVMDevice *kd;
219 
220     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
221         if (section->mr == kd->mr) {
222             kd->kda.addr = -1;
223         }
224     }
225 }
226 
227 static MemoryListener devlistener = {
228     .region_add = kvm_arm_devlistener_add,
229     .region_del = kvm_arm_devlistener_del,
230 };
231 
232 static void kvm_arm_set_device_addr(KVMDevice *kd)
233 {
234     struct kvm_device_attr *attr = &kd->kdattr;
235     int ret;
236 
237     /* If the device control API is available and we have a device fd on the
238      * KVMDevice struct, let's use the newer API
239      */
240     if (kd->dev_fd >= 0) {
241         uint64_t addr = kd->kda.addr;
242 
243         addr |= kd->kda_addr_ormask;
244         attr->addr = (uintptr_t)&addr;
245         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
246     } else {
247         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
248     }
249 
250     if (ret < 0) {
251         fprintf(stderr, "Failed to set device address: %s\n",
252                 strerror(-ret));
253         abort();
254     }
255 }
256 
257 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
258 {
259     KVMDevice *kd, *tkd;
260 
261     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
262         if (kd->kda.addr != -1) {
263             kvm_arm_set_device_addr(kd);
264         }
265         memory_region_unref(kd->mr);
266         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
267         g_free(kd);
268     }
269     memory_listener_unregister(&devlistener);
270 }
271 
272 static Notifier notify = {
273     .notify = kvm_arm_machine_init_done,
274 };
275 
276 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
277                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
278 {
279     KVMDevice *kd;
280 
281     if (!kvm_irqchip_in_kernel()) {
282         return;
283     }
284 
285     if (QSLIST_EMPTY(&kvm_devices_head)) {
286         memory_listener_register(&devlistener, &address_space_memory);
287         qemu_add_machine_init_done_notifier(&notify);
288     }
289     kd = g_new0(KVMDevice, 1);
290     kd->mr = mr;
291     kd->kda.id = devid;
292     kd->kda.addr = -1;
293     kd->kdattr.flags = 0;
294     kd->kdattr.group = group;
295     kd->kdattr.attr = attr;
296     kd->dev_fd = dev_fd;
297     kd->kda_addr_ormask = addr_ormask;
298     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
299     memory_region_ref(kd->mr);
300 }
301 
302 static int compare_u64(const void *a, const void *b)
303 {
304     if (*(uint64_t *)a > *(uint64_t *)b) {
305         return 1;
306     }
307     if (*(uint64_t *)a < *(uint64_t *)b) {
308         return -1;
309     }
310     return 0;
311 }
312 
313 /* Initialize the CPUState's cpreg list according to the kernel's
314  * definition of what CPU registers it knows about (and throw away
315  * the previous TCG-created cpreg list).
316  */
317 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
318 {
319     struct kvm_reg_list rl;
320     struct kvm_reg_list *rlp;
321     int i, ret, arraylen;
322     CPUState *cs = CPU(cpu);
323 
324     rl.n = 0;
325     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
326     if (ret != -E2BIG) {
327         return ret;
328     }
329     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
330     rlp->n = rl.n;
331     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
332     if (ret) {
333         goto out;
334     }
335     /* Sort the list we get back from the kernel, since cpreg_tuples
336      * must be in strictly ascending order.
337      */
338     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
339 
340     for (i = 0, arraylen = 0; i < rlp->n; i++) {
341         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
342             continue;
343         }
344         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
345         case KVM_REG_SIZE_U32:
346         case KVM_REG_SIZE_U64:
347             break;
348         default:
349             fprintf(stderr, "Can't handle size of register in kernel list\n");
350             ret = -EINVAL;
351             goto out;
352         }
353 
354         arraylen++;
355     }
356 
357     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
358     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
359     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
360                                          arraylen);
361     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
362                                         arraylen);
363     cpu->cpreg_array_len = arraylen;
364     cpu->cpreg_vmstate_array_len = arraylen;
365 
366     for (i = 0, arraylen = 0; i < rlp->n; i++) {
367         uint64_t regidx = rlp->reg[i];
368         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
369             continue;
370         }
371         cpu->cpreg_indexes[arraylen] = regidx;
372         arraylen++;
373     }
374     assert(cpu->cpreg_array_len == arraylen);
375 
376     if (!write_kvmstate_to_list(cpu)) {
377         /* Shouldn't happen unless kernel is inconsistent about
378          * what registers exist.
379          */
380         fprintf(stderr, "Initial read of kernel register state failed\n");
381         ret = -EINVAL;
382         goto out;
383     }
384 
385 out:
386     g_free(rlp);
387     return ret;
388 }
389 
390 bool write_kvmstate_to_list(ARMCPU *cpu)
391 {
392     CPUState *cs = CPU(cpu);
393     int i;
394     bool ok = true;
395 
396     for (i = 0; i < cpu->cpreg_array_len; i++) {
397         struct kvm_one_reg r;
398         uint64_t regidx = cpu->cpreg_indexes[i];
399         uint32_t v32;
400         int ret;
401 
402         r.id = regidx;
403 
404         switch (regidx & KVM_REG_SIZE_MASK) {
405         case KVM_REG_SIZE_U32:
406             r.addr = (uintptr_t)&v32;
407             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
408             if (!ret) {
409                 cpu->cpreg_values[i] = v32;
410             }
411             break;
412         case KVM_REG_SIZE_U64:
413             r.addr = (uintptr_t)(cpu->cpreg_values + i);
414             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
415             break;
416         default:
417             abort();
418         }
419         if (ret) {
420             ok = false;
421         }
422     }
423     return ok;
424 }
425 
426 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
427 {
428     CPUState *cs = CPU(cpu);
429     int i;
430     bool ok = true;
431 
432     for (i = 0; i < cpu->cpreg_array_len; i++) {
433         struct kvm_one_reg r;
434         uint64_t regidx = cpu->cpreg_indexes[i];
435         uint32_t v32;
436         int ret;
437 
438         if (kvm_arm_cpreg_level(regidx) > level) {
439             continue;
440         }
441 
442         r.id = regidx;
443         switch (regidx & KVM_REG_SIZE_MASK) {
444         case KVM_REG_SIZE_U32:
445             v32 = cpu->cpreg_values[i];
446             r.addr = (uintptr_t)&v32;
447             break;
448         case KVM_REG_SIZE_U64:
449             r.addr = (uintptr_t)(cpu->cpreg_values + i);
450             break;
451         default:
452             abort();
453         }
454         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
455         if (ret) {
456             /* We might fail for "unknown register" and also for
457              * "you tried to set a register which is constant with
458              * a different value from what it actually contains".
459              */
460             ok = false;
461         }
462     }
463     return ok;
464 }
465 
466 void kvm_arm_reset_vcpu(ARMCPU *cpu)
467 {
468     int ret;
469 
470     /* Re-init VCPU so that all registers are set to
471      * their respective reset values.
472      */
473     ret = kvm_arm_vcpu_init(CPU(cpu));
474     if (ret < 0) {
475         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
476         abort();
477     }
478     if (!write_kvmstate_to_list(cpu)) {
479         fprintf(stderr, "write_kvmstate_to_list failed\n");
480         abort();
481     }
482 }
483 
484 /*
485  * Update KVM's MP_STATE based on what QEMU thinks it is
486  */
487 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
488 {
489     if (cap_has_mp_state) {
490         struct kvm_mp_state mp_state = {
491             .mp_state = (cpu->power_state == PSCI_OFF) ?
492             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
493         };
494         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
495         if (ret) {
496             fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
497                     __func__, ret, strerror(-ret));
498             return -1;
499         }
500     }
501 
502     return 0;
503 }
504 
505 /*
506  * Sync the KVM MP_STATE into QEMU
507  */
508 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
509 {
510     if (cap_has_mp_state) {
511         struct kvm_mp_state mp_state;
512         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
513         if (ret) {
514             fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
515                     __func__, ret, strerror(-ret));
516             abort();
517         }
518         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
519             PSCI_OFF : PSCI_ON;
520     }
521 
522     return 0;
523 }
524 
525 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
526 {
527 }
528 
529 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
530 {
531     ARMCPU *cpu;
532     uint32_t switched_level;
533 
534     if (kvm_irqchip_in_kernel()) {
535         /*
536          * We only need to sync timer states with user-space interrupt
537          * controllers, so return early and save cycles if we don't.
538          */
539         return MEMTXATTRS_UNSPECIFIED;
540     }
541 
542     cpu = ARM_CPU(cs);
543 
544     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
545     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
546         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
547 
548         qemu_mutex_lock_iothread();
549 
550         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
551             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
552                          !!(run->s.regs.device_irq_level &
553                             KVM_ARM_DEV_EL1_VTIMER));
554             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
555         }
556 
557         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
558             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
559                          !!(run->s.regs.device_irq_level &
560                             KVM_ARM_DEV_EL1_PTIMER));
561             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
562         }
563 
564         if (switched_level & KVM_ARM_DEV_PMU) {
565             qemu_set_irq(cpu->pmu_interrupt,
566                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
567             switched_level &= ~KVM_ARM_DEV_PMU;
568         }
569 
570         if (switched_level) {
571             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
572                           __func__, switched_level);
573         }
574 
575         /* We also mark unknown levels as processed to not waste cycles */
576         cpu->device_irq_level = run->s.regs.device_irq_level;
577         qemu_mutex_unlock_iothread();
578     }
579 
580     return MEMTXATTRS_UNSPECIFIED;
581 }
582 
583 
584 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
585 {
586     int ret = 0;
587 
588     switch (run->exit_reason) {
589     case KVM_EXIT_DEBUG:
590         if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
591             ret = EXCP_DEBUG;
592         } /* otherwise return to guest */
593         break;
594     default:
595         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
596                       __func__, run->exit_reason);
597         break;
598     }
599     return ret;
600 }
601 
602 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
603 {
604     return true;
605 }
606 
607 int kvm_arch_process_async_events(CPUState *cs)
608 {
609     return 0;
610 }
611 
612 /* The #ifdef protections are until 32bit headers are imported and can
613  * be removed once both 32 and 64 bit reach feature parity.
614  */
615 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
616 {
617 #ifdef KVM_GUESTDBG_USE_SW_BP
618     if (kvm_sw_breakpoints_active(cs)) {
619         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
620     }
621 #endif
622 #ifdef KVM_GUESTDBG_USE_HW
623     if (kvm_arm_hw_debug_active(cs)) {
624         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
625         kvm_arm_copy_hw_debug_data(&dbg->arch);
626     }
627 #endif
628 }
629 
630 void kvm_arch_init_irq_routing(KVMState *s)
631 {
632 }
633 
634 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
635 {
636      if (machine_kernel_irqchip_split(ms)) {
637          perror("-machine kernel_irqchip=split is not supported on ARM.");
638          exit(1);
639     }
640 
641     /* If we can create the VGIC using the newer device control API, we
642      * let the device do this when it initializes itself, otherwise we
643      * fall back to the old API */
644     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
645 }
646 
647 int kvm_arm_vgic_probe(void)
648 {
649     if (kvm_create_device(kvm_state,
650                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
651         return 3;
652     } else if (kvm_create_device(kvm_state,
653                                  KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
654         return 2;
655     } else {
656         return 0;
657     }
658 }
659 
660 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
661                              uint64_t address, uint32_t data, PCIDevice *dev)
662 {
663     AddressSpace *as = pci_device_iommu_address_space(dev);
664     hwaddr xlat, len, doorbell_gpa;
665     MemoryRegionSection mrs;
666     MemoryRegion *mr;
667     int ret = 1;
668 
669     if (as == &address_space_memory) {
670         return 0;
671     }
672 
673     /* MSI doorbell address is translated by an IOMMU */
674 
675     rcu_read_lock();
676     mr = address_space_translate(as, address, &xlat, &len, true,
677                                  MEMTXATTRS_UNSPECIFIED);
678     if (!mr) {
679         goto unlock;
680     }
681     mrs = memory_region_find(mr, xlat, 1);
682     if (!mrs.mr) {
683         goto unlock;
684     }
685 
686     doorbell_gpa = mrs.offset_within_address_space;
687     memory_region_unref(mrs.mr);
688 
689     route->u.msi.address_lo = doorbell_gpa;
690     route->u.msi.address_hi = doorbell_gpa >> 32;
691 
692     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
693 
694     ret = 0;
695 
696 unlock:
697     rcu_read_unlock();
698     return ret;
699 }
700 
701 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
702                                 int vector, PCIDevice *dev)
703 {
704     return 0;
705 }
706 
707 int kvm_arch_release_virq_post(int virq)
708 {
709     return 0;
710 }
711 
712 int kvm_arch_msi_data_to_gsi(uint32_t data)
713 {
714     return (data - 32) & 0xffff;
715 }
716