xref: /qemu/target/arm/kvm.c (revision efade66d)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
6  * Copyright Alex Bennée 2014, Linaro
7  *
8  * This work is licensed under the terms of the GNU GPL, version 2 or later.
9  * See the COPYING file in the top-level directory.
10  *
11  */
12 
13 #include "qemu/osdep.h"
14 #include <sys/ioctl.h>
15 
16 #include <linux/kvm.h>
17 
18 #include "qemu/timer.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qom/object.h"
22 #include "qapi/error.h"
23 #include "sysemu/sysemu.h"
24 #include "sysemu/runstate.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/kvm_int.h"
27 #include "kvm_arm.h"
28 #include "cpu.h"
29 #include "trace.h"
30 #include "internals.h"
31 #include "hw/pci/pci.h"
32 #include "exec/memattrs.h"
33 #include "exec/address-spaces.h"
34 #include "exec/gdbstub.h"
35 #include "hw/boards.h"
36 #include "hw/irq.h"
37 #include "qapi/visitor.h"
38 #include "qemu/log.h"
39 #include "hw/acpi/acpi.h"
40 #include "hw/acpi/ghes.h"
41 
42 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
43     KVM_CAP_LAST_INFO
44 };
45 
46 static bool cap_has_mp_state;
47 static bool cap_has_inject_serror_esr;
48 static bool cap_has_inject_ext_dabt;
49 
50 /**
51  * ARMHostCPUFeatures: information about the host CPU (identified
52  * by asking the host kernel)
53  */
54 typedef struct ARMHostCPUFeatures {
55     ARMISARegisters isar;
56     uint64_t features;
57     uint32_t target;
58     const char *dtb_compatible;
59 } ARMHostCPUFeatures;
60 
61 static ARMHostCPUFeatures arm_host_cpu_features;
62 
63 /**
64  * kvm_arm_vcpu_init:
65  * @cpu: ARMCPU
66  *
67  * Initialize (or reinitialize) the VCPU by invoking the
68  * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
69  * bitmask specified in the CPUState.
70  *
71  * Returns: 0 if success else < 0 error code
72  */
73 static int kvm_arm_vcpu_init(ARMCPU *cpu)
74 {
75     struct kvm_vcpu_init init;
76 
77     init.target = cpu->kvm_target;
78     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
79 
80     return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_INIT, &init);
81 }
82 
83 /**
84  * kvm_arm_vcpu_finalize:
85  * @cpu: ARMCPU
86  * @feature: feature to finalize
87  *
88  * Finalizes the configuration of the specified VCPU feature by
89  * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
90  * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
91  * KVM's API documentation.
92  *
93  * Returns: 0 if success else < 0 error code
94  */
95 static int kvm_arm_vcpu_finalize(ARMCPU *cpu, int feature)
96 {
97     return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_FINALIZE, &feature);
98 }
99 
100 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
101                                       int *fdarray,
102                                       struct kvm_vcpu_init *init)
103 {
104     int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
105     int max_vm_pa_size;
106 
107     kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
108     if (kvmfd < 0) {
109         goto err;
110     }
111     max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
112     if (max_vm_pa_size < 0) {
113         max_vm_pa_size = 0;
114     }
115     do {
116         vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
117     } while (vmfd == -1 && errno == EINTR);
118     if (vmfd < 0) {
119         goto err;
120     }
121     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
122     if (cpufd < 0) {
123         goto err;
124     }
125 
126     if (!init) {
127         /* Caller doesn't want the VCPU to be initialized, so skip it */
128         goto finish;
129     }
130 
131     if (init->target == -1) {
132         struct kvm_vcpu_init preferred;
133 
134         ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
135         if (!ret) {
136             init->target = preferred.target;
137         }
138     }
139     if (ret >= 0) {
140         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
141         if (ret < 0) {
142             goto err;
143         }
144     } else if (cpus_to_try) {
145         /* Old kernel which doesn't know about the
146          * PREFERRED_TARGET ioctl: we know it will only support
147          * creating one kind of guest CPU which is its preferred
148          * CPU type.
149          */
150         struct kvm_vcpu_init try;
151 
152         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
153             try.target = *cpus_to_try++;
154             memcpy(try.features, init->features, sizeof(init->features));
155             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
156             if (ret >= 0) {
157                 break;
158             }
159         }
160         if (ret < 0) {
161             goto err;
162         }
163         init->target = try.target;
164     } else {
165         /* Treat a NULL cpus_to_try argument the same as an empty
166          * list, which means we will fail the call since this must
167          * be an old kernel which doesn't support PREFERRED_TARGET.
168          */
169         goto err;
170     }
171 
172 finish:
173     fdarray[0] = kvmfd;
174     fdarray[1] = vmfd;
175     fdarray[2] = cpufd;
176 
177     return true;
178 
179 err:
180     if (cpufd >= 0) {
181         close(cpufd);
182     }
183     if (vmfd >= 0) {
184         close(vmfd);
185     }
186     if (kvmfd >= 0) {
187         close(kvmfd);
188     }
189 
190     return false;
191 }
192 
193 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
194 {
195     int i;
196 
197     for (i = 2; i >= 0; i--) {
198         close(fdarray[i]);
199     }
200 }
201 
202 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
203 {
204     uint64_t ret;
205     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
206     int err;
207 
208     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
209     err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
210     if (err < 0) {
211         return -1;
212     }
213     *pret = ret;
214     return 0;
215 }
216 
217 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
218 {
219     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
220 
221     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
222     return ioctl(fd, KVM_GET_ONE_REG, &idreg);
223 }
224 
225 static bool kvm_arm_pauth_supported(void)
226 {
227     return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
228             kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
229 }
230 
231 static bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
232 {
233     /* Identify the feature bits corresponding to the host CPU, and
234      * fill out the ARMHostCPUClass fields accordingly. To do this
235      * we have to create a scratch VM, create a single CPU inside it,
236      * and then query that CPU for the relevant ID registers.
237      */
238     int fdarray[3];
239     bool sve_supported;
240     bool pmu_supported = false;
241     uint64_t features = 0;
242     int err;
243 
244     /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
245      * we know these will only support creating one kind of guest CPU,
246      * which is its preferred CPU type. Fortunately these old kernels
247      * support only a very limited number of CPUs.
248      */
249     static const uint32_t cpus_to_try[] = {
250         KVM_ARM_TARGET_AEM_V8,
251         KVM_ARM_TARGET_FOUNDATION_V8,
252         KVM_ARM_TARGET_CORTEX_A57,
253         QEMU_KVM_ARM_TARGET_NONE
254     };
255     /*
256      * target = -1 informs kvm_arm_create_scratch_host_vcpu()
257      * to use the preferred target
258      */
259     struct kvm_vcpu_init init = { .target = -1, };
260 
261     /*
262      * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
263      * which is otherwise RAZ.
264      */
265     sve_supported = kvm_arm_sve_supported();
266     if (sve_supported) {
267         init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
268     }
269 
270     /*
271      * Ask for Pointer Authentication if supported, so that we get
272      * the unsanitized field values for AA64ISAR1_EL1.
273      */
274     if (kvm_arm_pauth_supported()) {
275         init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
276                              1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
277     }
278 
279     if (kvm_arm_pmu_supported()) {
280         init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
281         pmu_supported = true;
282     }
283 
284     if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
285         return false;
286     }
287 
288     ahcf->target = init.target;
289     ahcf->dtb_compatible = "arm,arm-v8";
290 
291     err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
292                          ARM64_SYS_REG(3, 0, 0, 4, 0));
293     if (unlikely(err < 0)) {
294         /*
295          * Before v4.15, the kernel only exposed a limited number of system
296          * registers, not including any of the interesting AArch64 ID regs.
297          * For the most part we could leave these fields as zero with minimal
298          * effect, since this does not affect the values seen by the guest.
299          *
300          * However, it could cause problems down the line for QEMU,
301          * so provide a minimal v8.0 default.
302          *
303          * ??? Could read MIDR and use knowledge from cpu64.c.
304          * ??? Could map a page of memory into our temp guest and
305          *     run the tiniest of hand-crafted kernels to extract
306          *     the values seen by the guest.
307          * ??? Either of these sounds like too much effort just
308          *     to work around running a modern host kernel.
309          */
310         ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
311         err = 0;
312     } else {
313         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
314                               ARM64_SYS_REG(3, 0, 0, 4, 1));
315         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0,
316                               ARM64_SYS_REG(3, 0, 0, 4, 5));
317         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
318                               ARM64_SYS_REG(3, 0, 0, 5, 0));
319         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
320                               ARM64_SYS_REG(3, 0, 0, 5, 1));
321         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
322                               ARM64_SYS_REG(3, 0, 0, 6, 0));
323         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
324                               ARM64_SYS_REG(3, 0, 0, 6, 1));
325         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar2,
326                               ARM64_SYS_REG(3, 0, 0, 6, 2));
327         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
328                               ARM64_SYS_REG(3, 0, 0, 7, 0));
329         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
330                               ARM64_SYS_REG(3, 0, 0, 7, 1));
331         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
332                               ARM64_SYS_REG(3, 0, 0, 7, 2));
333 
334         /*
335          * Note that if AArch32 support is not present in the host,
336          * the AArch32 sysregs are present to be read, but will
337          * return UNKNOWN values.  This is neither better nor worse
338          * than skipping the reads and leaving 0, as we must avoid
339          * considering the values in every case.
340          */
341         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
342                               ARM64_SYS_REG(3, 0, 0, 1, 0));
343         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
344                               ARM64_SYS_REG(3, 0, 0, 1, 1));
345         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
346                               ARM64_SYS_REG(3, 0, 0, 1, 2));
347         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
348                               ARM64_SYS_REG(3, 0, 0, 1, 4));
349         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
350                               ARM64_SYS_REG(3, 0, 0, 1, 5));
351         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
352                               ARM64_SYS_REG(3, 0, 0, 1, 6));
353         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
354                               ARM64_SYS_REG(3, 0, 0, 1, 7));
355         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
356                               ARM64_SYS_REG(3, 0, 0, 2, 0));
357         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
358                               ARM64_SYS_REG(3, 0, 0, 2, 1));
359         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
360                               ARM64_SYS_REG(3, 0, 0, 2, 2));
361         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
362                               ARM64_SYS_REG(3, 0, 0, 2, 3));
363         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
364                               ARM64_SYS_REG(3, 0, 0, 2, 4));
365         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
366                               ARM64_SYS_REG(3, 0, 0, 2, 5));
367         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
368                               ARM64_SYS_REG(3, 0, 0, 2, 6));
369         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
370                               ARM64_SYS_REG(3, 0, 0, 2, 7));
371 
372         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
373                               ARM64_SYS_REG(3, 0, 0, 3, 0));
374         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
375                               ARM64_SYS_REG(3, 0, 0, 3, 1));
376         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
377                               ARM64_SYS_REG(3, 0, 0, 3, 2));
378         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
379                               ARM64_SYS_REG(3, 0, 0, 3, 4));
380         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1,
381                               ARM64_SYS_REG(3, 0, 0, 3, 5));
382         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5,
383                               ARM64_SYS_REG(3, 0, 0, 3, 6));
384 
385         /*
386          * DBGDIDR is a bit complicated because the kernel doesn't
387          * provide an accessor for it in 64-bit mode, which is what this
388          * scratch VM is in, and there's no architected "64-bit sysreg
389          * which reads the same as the 32-bit register" the way there is
390          * for other ID registers. Instead we synthesize a value from the
391          * AArch64 ID_AA64DFR0, the same way the kernel code in
392          * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
393          * We only do this if the CPU supports AArch32 at EL1.
394          */
395         if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
396             int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
397             int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
398             int ctx_cmps =
399                 FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
400             int version = 6; /* ARMv8 debug architecture */
401             bool has_el3 =
402                 !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
403             uint32_t dbgdidr = 0;
404 
405             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
406             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
407             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
408             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
409             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
410             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
411             dbgdidr |= (1 << 15); /* RES1 bit */
412             ahcf->isar.dbgdidr = dbgdidr;
413         }
414 
415         if (pmu_supported) {
416             /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
417             err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0,
418                                   ARM64_SYS_REG(3, 3, 9, 12, 0));
419         }
420 
421         if (sve_supported) {
422             /*
423              * There is a range of kernels between kernel commit 73433762fcae
424              * and f81cb2c3ad41 which have a bug where the kernel doesn't
425              * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
426              * enabled SVE support, which resulted in an error rather than RAZ.
427              * So only read the register if we set KVM_ARM_VCPU_SVE above.
428              */
429             err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
430                                   ARM64_SYS_REG(3, 0, 0, 4, 4));
431         }
432     }
433 
434     kvm_arm_destroy_scratch_host_vcpu(fdarray);
435 
436     if (err < 0) {
437         return false;
438     }
439 
440     /*
441      * We can assume any KVM supporting CPU is at least a v8
442      * with VFPv4+Neon; this in turn implies most of the other
443      * feature bits.
444      */
445     features |= 1ULL << ARM_FEATURE_V8;
446     features |= 1ULL << ARM_FEATURE_NEON;
447     features |= 1ULL << ARM_FEATURE_AARCH64;
448     features |= 1ULL << ARM_FEATURE_PMU;
449     features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
450 
451     ahcf->features = features;
452 
453     return true;
454 }
455 
456 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
457 {
458     CPUARMState *env = &cpu->env;
459 
460     if (!arm_host_cpu_features.dtb_compatible) {
461         if (!kvm_enabled() ||
462             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
463             /* We can't report this error yet, so flag that we need to
464              * in arm_cpu_realizefn().
465              */
466             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
467             cpu->host_cpu_probe_failed = true;
468             return;
469         }
470     }
471 
472     cpu->kvm_target = arm_host_cpu_features.target;
473     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
474     cpu->isar = arm_host_cpu_features.isar;
475     env->features = arm_host_cpu_features.features;
476 }
477 
478 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
479 {
480     return !ARM_CPU(obj)->kvm_adjvtime;
481 }
482 
483 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
484 {
485     ARM_CPU(obj)->kvm_adjvtime = !value;
486 }
487 
488 static bool kvm_steal_time_get(Object *obj, Error **errp)
489 {
490     return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
491 }
492 
493 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
494 {
495     ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
496 }
497 
498 /* KVM VCPU properties should be prefixed with "kvm-". */
499 void kvm_arm_add_vcpu_properties(ARMCPU *cpu)
500 {
501     CPUARMState *env = &cpu->env;
502     Object *obj = OBJECT(cpu);
503 
504     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
505         cpu->kvm_adjvtime = true;
506         object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
507                                  kvm_no_adjvtime_set);
508         object_property_set_description(obj, "kvm-no-adjvtime",
509                                         "Set on to disable the adjustment of "
510                                         "the virtual counter. VM stopped time "
511                                         "will be counted.");
512     }
513 
514     cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
515     object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
516                              kvm_steal_time_set);
517     object_property_set_description(obj, "kvm-steal-time",
518                                     "Set off to disable KVM steal time.");
519 }
520 
521 bool kvm_arm_pmu_supported(void)
522 {
523     return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
524 }
525 
526 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
527 {
528     KVMState *s = KVM_STATE(ms->accelerator);
529     int ret;
530 
531     ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
532     *fixed_ipa = ret <= 0;
533 
534     return ret > 0 ? ret : 40;
535 }
536 
537 int kvm_arch_get_default_type(MachineState *ms)
538 {
539     bool fixed_ipa;
540     int size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
541     return fixed_ipa ? 0 : size;
542 }
543 
544 int kvm_arch_init(MachineState *ms, KVMState *s)
545 {
546     int ret = 0;
547     /* For ARM interrupt delivery is always asynchronous,
548      * whether we are using an in-kernel VGIC or not.
549      */
550     kvm_async_interrupts_allowed = true;
551 
552     /*
553      * PSCI wakes up secondary cores, so we always need to
554      * have vCPUs waiting in kernel space
555      */
556     kvm_halt_in_kernel_allowed = true;
557 
558     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
559 
560     /* Check whether user space can specify guest syndrome value */
561     cap_has_inject_serror_esr =
562         kvm_check_extension(s, KVM_CAP_ARM_INJECT_SERROR_ESR);
563 
564     if (ms->smp.cpus > 256 &&
565         !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
566         error_report("Using more than 256 vcpus requires a host kernel "
567                      "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
568         ret = -EINVAL;
569     }
570 
571     if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
572         if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
573             error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
574         } else {
575             /* Set status for supporting the external dabt injection */
576             cap_has_inject_ext_dabt = kvm_check_extension(s,
577                                     KVM_CAP_ARM_INJECT_EXT_DABT);
578         }
579     }
580 
581     if (s->kvm_eager_split_size) {
582         uint32_t sizes;
583 
584         sizes = kvm_vm_check_extension(s, KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES);
585         if (!sizes) {
586             s->kvm_eager_split_size = 0;
587             warn_report("Eager Page Split support not available");
588         } else if (!(s->kvm_eager_split_size & sizes)) {
589             error_report("Eager Page Split requested chunk size not valid");
590             ret = -EINVAL;
591         } else {
592             ret = kvm_vm_enable_cap(s, KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE, 0,
593                                     s->kvm_eager_split_size);
594             if (ret < 0) {
595                 error_report("Enabling of Eager Page Split failed: %s",
596                              strerror(-ret));
597             }
598         }
599     }
600 
601     max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS);
602     hw_watchpoints = g_array_sized_new(true, true,
603                                        sizeof(HWWatchpoint), max_hw_wps);
604 
605     max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS);
606     hw_breakpoints = g_array_sized_new(true, true,
607                                        sizeof(HWBreakpoint), max_hw_bps);
608 
609     return ret;
610 }
611 
612 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
613 {
614     return cpu->cpu_index;
615 }
616 
617 /* We track all the KVM devices which need their memory addresses
618  * passing to the kernel in a list of these structures.
619  * When board init is complete we run through the list and
620  * tell the kernel the base addresses of the memory regions.
621  * We use a MemoryListener to track mapping and unmapping of
622  * the regions during board creation, so the board models don't
623  * need to do anything special for the KVM case.
624  *
625  * Sometimes the address must be OR'ed with some other fields
626  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
627  * @kda_addr_ormask aims at storing the value of those fields.
628  */
629 typedef struct KVMDevice {
630     struct kvm_arm_device_addr kda;
631     struct kvm_device_attr kdattr;
632     uint64_t kda_addr_ormask;
633     MemoryRegion *mr;
634     QSLIST_ENTRY(KVMDevice) entries;
635     int dev_fd;
636 } KVMDevice;
637 
638 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
639 
640 static void kvm_arm_devlistener_add(MemoryListener *listener,
641                                     MemoryRegionSection *section)
642 {
643     KVMDevice *kd;
644 
645     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
646         if (section->mr == kd->mr) {
647             kd->kda.addr = section->offset_within_address_space;
648         }
649     }
650 }
651 
652 static void kvm_arm_devlistener_del(MemoryListener *listener,
653                                     MemoryRegionSection *section)
654 {
655     KVMDevice *kd;
656 
657     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
658         if (section->mr == kd->mr) {
659             kd->kda.addr = -1;
660         }
661     }
662 }
663 
664 static MemoryListener devlistener = {
665     .name = "kvm-arm",
666     .region_add = kvm_arm_devlistener_add,
667     .region_del = kvm_arm_devlistener_del,
668     .priority = MEMORY_LISTENER_PRIORITY_MIN,
669 };
670 
671 static void kvm_arm_set_device_addr(KVMDevice *kd)
672 {
673     struct kvm_device_attr *attr = &kd->kdattr;
674     int ret;
675 
676     /* If the device control API is available and we have a device fd on the
677      * KVMDevice struct, let's use the newer API
678      */
679     if (kd->dev_fd >= 0) {
680         uint64_t addr = kd->kda.addr;
681 
682         addr |= kd->kda_addr_ormask;
683         attr->addr = (uintptr_t)&addr;
684         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
685     } else {
686         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
687     }
688 
689     if (ret < 0) {
690         fprintf(stderr, "Failed to set device address: %s\n",
691                 strerror(-ret));
692         abort();
693     }
694 }
695 
696 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
697 {
698     KVMDevice *kd, *tkd;
699 
700     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
701         if (kd->kda.addr != -1) {
702             kvm_arm_set_device_addr(kd);
703         }
704         memory_region_unref(kd->mr);
705         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
706         g_free(kd);
707     }
708     memory_listener_unregister(&devlistener);
709 }
710 
711 static Notifier notify = {
712     .notify = kvm_arm_machine_init_done,
713 };
714 
715 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
716                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
717 {
718     KVMDevice *kd;
719 
720     if (!kvm_irqchip_in_kernel()) {
721         return;
722     }
723 
724     if (QSLIST_EMPTY(&kvm_devices_head)) {
725         memory_listener_register(&devlistener, &address_space_memory);
726         qemu_add_machine_init_done_notifier(&notify);
727     }
728     kd = g_new0(KVMDevice, 1);
729     kd->mr = mr;
730     kd->kda.id = devid;
731     kd->kda.addr = -1;
732     kd->kdattr.flags = 0;
733     kd->kdattr.group = group;
734     kd->kdattr.attr = attr;
735     kd->dev_fd = dev_fd;
736     kd->kda_addr_ormask = addr_ormask;
737     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
738     memory_region_ref(kd->mr);
739 }
740 
741 static int compare_u64(const void *a, const void *b)
742 {
743     if (*(uint64_t *)a > *(uint64_t *)b) {
744         return 1;
745     }
746     if (*(uint64_t *)a < *(uint64_t *)b) {
747         return -1;
748     }
749     return 0;
750 }
751 
752 /*
753  * cpreg_values are sorted in ascending order by KVM register ID
754  * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
755  * the storage for a KVM register by ID with a binary search.
756  */
757 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
758 {
759     uint64_t *res;
760 
761     res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
762                   sizeof(uint64_t), compare_u64);
763     assert(res);
764 
765     return &cpu->cpreg_values[res - cpu->cpreg_indexes];
766 }
767 
768 /**
769  * kvm_arm_reg_syncs_via_cpreg_list:
770  * @regidx: KVM register index
771  *
772  * Return true if this KVM register should be synchronized via the
773  * cpreg list of arbitrary system registers, false if it is synchronized
774  * by hand using code in kvm_arch_get/put_registers().
775  */
776 static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
777 {
778     switch (regidx & KVM_REG_ARM_COPROC_MASK) {
779     case KVM_REG_ARM_CORE:
780     case KVM_REG_ARM64_SVE:
781         return false;
782     default:
783         return true;
784     }
785 }
786 
787 /**
788  * kvm_arm_init_cpreg_list:
789  * @cpu: ARMCPU
790  *
791  * Initialize the ARMCPU cpreg list according to the kernel's
792  * definition of what CPU registers it knows about (and throw away
793  * the previous TCG-created cpreg list).
794  *
795  * Returns: 0 if success, else < 0 error code
796  */
797 static int kvm_arm_init_cpreg_list(ARMCPU *cpu)
798 {
799     struct kvm_reg_list rl;
800     struct kvm_reg_list *rlp;
801     int i, ret, arraylen;
802     CPUState *cs = CPU(cpu);
803 
804     rl.n = 0;
805     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
806     if (ret != -E2BIG) {
807         return ret;
808     }
809     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
810     rlp->n = rl.n;
811     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
812     if (ret) {
813         goto out;
814     }
815     /* Sort the list we get back from the kernel, since cpreg_tuples
816      * must be in strictly ascending order.
817      */
818     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
819 
820     for (i = 0, arraylen = 0; i < rlp->n; i++) {
821         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
822             continue;
823         }
824         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
825         case KVM_REG_SIZE_U32:
826         case KVM_REG_SIZE_U64:
827             break;
828         default:
829             fprintf(stderr, "Can't handle size of register in kernel list\n");
830             ret = -EINVAL;
831             goto out;
832         }
833 
834         arraylen++;
835     }
836 
837     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
838     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
839     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
840                                          arraylen);
841     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
842                                         arraylen);
843     cpu->cpreg_array_len = arraylen;
844     cpu->cpreg_vmstate_array_len = arraylen;
845 
846     for (i = 0, arraylen = 0; i < rlp->n; i++) {
847         uint64_t regidx = rlp->reg[i];
848         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
849             continue;
850         }
851         cpu->cpreg_indexes[arraylen] = regidx;
852         arraylen++;
853     }
854     assert(cpu->cpreg_array_len == arraylen);
855 
856     if (!write_kvmstate_to_list(cpu)) {
857         /* Shouldn't happen unless kernel is inconsistent about
858          * what registers exist.
859          */
860         fprintf(stderr, "Initial read of kernel register state failed\n");
861         ret = -EINVAL;
862         goto out;
863     }
864 
865 out:
866     g_free(rlp);
867     return ret;
868 }
869 
870 /**
871  * kvm_arm_cpreg_level:
872  * @regidx: KVM register index
873  *
874  * Return the level of this coprocessor/system register.  Return value is
875  * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
876  */
877 static int kvm_arm_cpreg_level(uint64_t regidx)
878 {
879     /*
880      * All system registers are assumed to be level KVM_PUT_RUNTIME_STATE.
881      * If a register should be written less often, you must add it here
882      * with a state of either KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
883      */
884     switch (regidx) {
885     case KVM_REG_ARM_TIMER_CNT:
886     case KVM_REG_ARM_PTIMER_CNT:
887         return KVM_PUT_FULL_STATE;
888     }
889     return KVM_PUT_RUNTIME_STATE;
890 }
891 
892 bool write_kvmstate_to_list(ARMCPU *cpu)
893 {
894     CPUState *cs = CPU(cpu);
895     int i;
896     bool ok = true;
897 
898     for (i = 0; i < cpu->cpreg_array_len; i++) {
899         uint64_t regidx = cpu->cpreg_indexes[i];
900         uint32_t v32;
901         int ret;
902 
903         switch (regidx & KVM_REG_SIZE_MASK) {
904         case KVM_REG_SIZE_U32:
905             ret = kvm_get_one_reg(cs, regidx, &v32);
906             if (!ret) {
907                 cpu->cpreg_values[i] = v32;
908             }
909             break;
910         case KVM_REG_SIZE_U64:
911             ret = kvm_get_one_reg(cs, regidx, cpu->cpreg_values + i);
912             break;
913         default:
914             g_assert_not_reached();
915         }
916         if (ret) {
917             ok = false;
918         }
919     }
920     return ok;
921 }
922 
923 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
924 {
925     CPUState *cs = CPU(cpu);
926     int i;
927     bool ok = true;
928 
929     for (i = 0; i < cpu->cpreg_array_len; i++) {
930         uint64_t regidx = cpu->cpreg_indexes[i];
931         uint32_t v32;
932         int ret;
933 
934         if (kvm_arm_cpreg_level(regidx) > level) {
935             continue;
936         }
937 
938         switch (regidx & KVM_REG_SIZE_MASK) {
939         case KVM_REG_SIZE_U32:
940             v32 = cpu->cpreg_values[i];
941             ret = kvm_set_one_reg(cs, regidx, &v32);
942             break;
943         case KVM_REG_SIZE_U64:
944             ret = kvm_set_one_reg(cs, regidx, cpu->cpreg_values + i);
945             break;
946         default:
947             g_assert_not_reached();
948         }
949         if (ret) {
950             /* We might fail for "unknown register" and also for
951              * "you tried to set a register which is constant with
952              * a different value from what it actually contains".
953              */
954             ok = false;
955         }
956     }
957     return ok;
958 }
959 
960 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
961 {
962     /* KVM virtual time adjustment */
963     if (cpu->kvm_vtime_dirty) {
964         *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
965     }
966 }
967 
968 void kvm_arm_cpu_post_load(ARMCPU *cpu)
969 {
970     /* KVM virtual time adjustment */
971     if (cpu->kvm_adjvtime) {
972         cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
973         cpu->kvm_vtime_dirty = true;
974     }
975 }
976 
977 void kvm_arm_reset_vcpu(ARMCPU *cpu)
978 {
979     int ret;
980 
981     /* Re-init VCPU so that all registers are set to
982      * their respective reset values.
983      */
984     ret = kvm_arm_vcpu_init(cpu);
985     if (ret < 0) {
986         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
987         abort();
988     }
989     if (!write_kvmstate_to_list(cpu)) {
990         fprintf(stderr, "write_kvmstate_to_list failed\n");
991         abort();
992     }
993     /*
994      * Sync the reset values also into the CPUState. This is necessary
995      * because the next thing we do will be a kvm_arch_put_registers()
996      * which will update the list values from the CPUState before copying
997      * the list values back to KVM. It's OK to ignore failure returns here
998      * for the same reason we do so in kvm_arch_get_registers().
999      */
1000     write_list_to_cpustate(cpu);
1001 }
1002 
1003 /*
1004  * Update KVM's MP_STATE based on what QEMU thinks it is
1005  */
1006 static int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
1007 {
1008     if (cap_has_mp_state) {
1009         struct kvm_mp_state mp_state = {
1010             .mp_state = (cpu->power_state == PSCI_OFF) ?
1011             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
1012         };
1013         return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1014     }
1015     return 0;
1016 }
1017 
1018 /*
1019  * Sync the KVM MP_STATE into QEMU
1020  */
1021 static int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
1022 {
1023     if (cap_has_mp_state) {
1024         struct kvm_mp_state mp_state;
1025         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
1026         if (ret) {
1027             return ret;
1028         }
1029         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
1030             PSCI_OFF : PSCI_ON;
1031     }
1032     return 0;
1033 }
1034 
1035 /**
1036  * kvm_arm_get_virtual_time:
1037  * @cpu: ARMCPU
1038  *
1039  * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
1040  */
1041 static void kvm_arm_get_virtual_time(ARMCPU *cpu)
1042 {
1043     int ret;
1044 
1045     if (cpu->kvm_vtime_dirty) {
1046         return;
1047     }
1048 
1049     ret = kvm_get_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1050     if (ret) {
1051         error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
1052         abort();
1053     }
1054 
1055     cpu->kvm_vtime_dirty = true;
1056 }
1057 
1058 /**
1059  * kvm_arm_put_virtual_time:
1060  * @cpu: ARMCPU
1061  *
1062  * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
1063  */
1064 static void kvm_arm_put_virtual_time(ARMCPU *cpu)
1065 {
1066     int ret;
1067 
1068     if (!cpu->kvm_vtime_dirty) {
1069         return;
1070     }
1071 
1072     ret = kvm_set_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1073     if (ret) {
1074         error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
1075         abort();
1076     }
1077 
1078     cpu->kvm_vtime_dirty = false;
1079 }
1080 
1081 /**
1082  * kvm_put_vcpu_events:
1083  * @cpu: ARMCPU
1084  *
1085  * Put VCPU related state to kvm.
1086  *
1087  * Returns: 0 if success else < 0 error code
1088  */
1089 static int kvm_put_vcpu_events(ARMCPU *cpu)
1090 {
1091     CPUARMState *env = &cpu->env;
1092     struct kvm_vcpu_events events;
1093     int ret;
1094 
1095     if (!kvm_has_vcpu_events()) {
1096         return 0;
1097     }
1098 
1099     memset(&events, 0, sizeof(events));
1100     events.exception.serror_pending = env->serror.pending;
1101 
1102     /* Inject SError to guest with specified syndrome if host kernel
1103      * supports it, otherwise inject SError without syndrome.
1104      */
1105     if (cap_has_inject_serror_esr) {
1106         events.exception.serror_has_esr = env->serror.has_esr;
1107         events.exception.serror_esr = env->serror.esr;
1108     }
1109 
1110     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1111     if (ret) {
1112         error_report("failed to put vcpu events");
1113     }
1114 
1115     return ret;
1116 }
1117 
1118 /**
1119  * kvm_get_vcpu_events:
1120  * @cpu: ARMCPU
1121  *
1122  * Get VCPU related state from kvm.
1123  *
1124  * Returns: 0 if success else < 0 error code
1125  */
1126 static int kvm_get_vcpu_events(ARMCPU *cpu)
1127 {
1128     CPUARMState *env = &cpu->env;
1129     struct kvm_vcpu_events events;
1130     int ret;
1131 
1132     if (!kvm_has_vcpu_events()) {
1133         return 0;
1134     }
1135 
1136     memset(&events, 0, sizeof(events));
1137     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1138     if (ret) {
1139         error_report("failed to get vcpu events");
1140         return ret;
1141     }
1142 
1143     env->serror.pending = events.exception.serror_pending;
1144     env->serror.has_esr = events.exception.serror_has_esr;
1145     env->serror.esr = events.exception.serror_esr;
1146 
1147     return 0;
1148 }
1149 
1150 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1151 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1152 
1153 /*
1154  * ESR_EL1
1155  * ISS encoding
1156  * AARCH64: DFSC,   bits [5:0]
1157  * AARCH32:
1158  *      TTBCR.EAE == 0
1159  *          FS[4]   - DFSR[10]
1160  *          FS[3:0] - DFSR[3:0]
1161  *      TTBCR.EAE == 1
1162  *          FS, bits [5:0]
1163  */
1164 #define ESR_DFSC(aarch64, lpae, v)        \
1165     ((aarch64 || (lpae)) ? ((v) & 0x3F)   \
1166                : (((v) >> 6) | ((v) & 0x1F)))
1167 
1168 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1169     ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1170 
1171 /**
1172  * kvm_arm_verify_ext_dabt_pending:
1173  * @cpu: ARMCPU
1174  *
1175  * Verify the fault status code wrt the Ext DABT injection
1176  *
1177  * Returns: true if the fault status code is as expected, false otherwise
1178  */
1179 static bool kvm_arm_verify_ext_dabt_pending(ARMCPU *cpu)
1180 {
1181     CPUState *cs = CPU(cpu);
1182     uint64_t dfsr_val;
1183 
1184     if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
1185         CPUARMState *env = &cpu->env;
1186         int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
1187         int lpae = 0;
1188 
1189         if (!aarch64_mode) {
1190             uint64_t ttbcr;
1191 
1192             if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
1193                 lpae = arm_feature(env, ARM_FEATURE_LPAE)
1194                         && (ttbcr & TTBCR_EAE);
1195             }
1196         }
1197         /*
1198          * The verification here is based on the DFSC bits
1199          * of the ESR_EL1 reg only
1200          */
1201          return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
1202                 ESR_DFSC_EXTABT(aarch64_mode, lpae));
1203     }
1204     return false;
1205 }
1206 
1207 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1208 {
1209     ARMCPU *cpu = ARM_CPU(cs);
1210     CPUARMState *env = &cpu->env;
1211 
1212     if (unlikely(env->ext_dabt_raised)) {
1213         /*
1214          * Verifying that the ext DABT has been properly injected,
1215          * otherwise risking indefinitely re-running the faulting instruction
1216          * Covering a very narrow case for kernels 5.5..5.5.4
1217          * when injected abort was misconfigured to be
1218          * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
1219          */
1220         if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
1221             unlikely(!kvm_arm_verify_ext_dabt_pending(cpu))) {
1222 
1223             error_report("Data abort exception with no valid ISS generated by "
1224                    "guest memory access. KVM unable to emulate faulting "
1225                    "instruction. Failed to inject an external data abort "
1226                    "into the guest.");
1227             abort();
1228        }
1229        /* Clear the status */
1230        env->ext_dabt_raised = 0;
1231     }
1232 }
1233 
1234 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1235 {
1236     ARMCPU *cpu;
1237     uint32_t switched_level;
1238 
1239     if (kvm_irqchip_in_kernel()) {
1240         /*
1241          * We only need to sync timer states with user-space interrupt
1242          * controllers, so return early and save cycles if we don't.
1243          */
1244         return MEMTXATTRS_UNSPECIFIED;
1245     }
1246 
1247     cpu = ARM_CPU(cs);
1248 
1249     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
1250     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
1251         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
1252 
1253         qemu_mutex_lock_iothread();
1254 
1255         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
1256             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
1257                          !!(run->s.regs.device_irq_level &
1258                             KVM_ARM_DEV_EL1_VTIMER));
1259             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
1260         }
1261 
1262         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
1263             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
1264                          !!(run->s.regs.device_irq_level &
1265                             KVM_ARM_DEV_EL1_PTIMER));
1266             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
1267         }
1268 
1269         if (switched_level & KVM_ARM_DEV_PMU) {
1270             qemu_set_irq(cpu->pmu_interrupt,
1271                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
1272             switched_level &= ~KVM_ARM_DEV_PMU;
1273         }
1274 
1275         if (switched_level) {
1276             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
1277                           __func__, switched_level);
1278         }
1279 
1280         /* We also mark unknown levels as processed to not waste cycles */
1281         cpu->device_irq_level = run->s.regs.device_irq_level;
1282         qemu_mutex_unlock_iothread();
1283     }
1284 
1285     return MEMTXATTRS_UNSPECIFIED;
1286 }
1287 
1288 static void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
1289 {
1290     ARMCPU *cpu = opaque;
1291 
1292     if (running) {
1293         if (cpu->kvm_adjvtime) {
1294             kvm_arm_put_virtual_time(cpu);
1295         }
1296     } else {
1297         if (cpu->kvm_adjvtime) {
1298             kvm_arm_get_virtual_time(cpu);
1299         }
1300     }
1301 }
1302 
1303 /**
1304  * kvm_arm_handle_dabt_nisv:
1305  * @cpu: ARMCPU
1306  * @esr_iss: ISS encoding (limited) for the exception from Data Abort
1307  *           ISV bit set to '0b0' -> no valid instruction syndrome
1308  * @fault_ipa: faulting address for the synchronous data abort
1309  *
1310  * Returns: 0 if the exception has been handled, < 0 otherwise
1311  */
1312 static int kvm_arm_handle_dabt_nisv(ARMCPU *cpu, uint64_t esr_iss,
1313                                     uint64_t fault_ipa)
1314 {
1315     CPUARMState *env = &cpu->env;
1316     /*
1317      * Request KVM to inject the external data abort into the guest
1318      */
1319     if (cap_has_inject_ext_dabt) {
1320         struct kvm_vcpu_events events = { };
1321         /*
1322          * The external data abort event will be handled immediately by KVM
1323          * using the address fault that triggered the exit on given VCPU.
1324          * Requesting injection of the external data abort does not rely
1325          * on any other VCPU state. Therefore, in this particular case, the VCPU
1326          * synchronization can be exceptionally skipped.
1327          */
1328         events.exception.ext_dabt_pending = 1;
1329         /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
1330         if (!kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events)) {
1331             env->ext_dabt_raised = 1;
1332             return 0;
1333         }
1334     } else {
1335         error_report("Data abort exception triggered by guest memory access "
1336                      "at physical address: 0x"  TARGET_FMT_lx,
1337                      (target_ulong)fault_ipa);
1338         error_printf("KVM unable to emulate faulting instruction.\n");
1339     }
1340     return -1;
1341 }
1342 
1343 /**
1344  * kvm_arm_handle_debug:
1345  * @cpu: ARMCPU
1346  * @debug_exit: debug part of the KVM exit structure
1347  *
1348  * Returns: TRUE if the debug exception was handled.
1349  *
1350  * See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1351  *
1352  * To minimise translating between kernel and user-space the kernel
1353  * ABI just provides user-space with the full exception syndrome
1354  * register value to be decoded in QEMU.
1355  */
1356 static bool kvm_arm_handle_debug(ARMCPU *cpu,
1357                                  struct kvm_debug_exit_arch *debug_exit)
1358 {
1359     int hsr_ec = syn_get_ec(debug_exit->hsr);
1360     CPUState *cs = CPU(cpu);
1361     CPUARMState *env = &cpu->env;
1362 
1363     /* Ensure PC is synchronised */
1364     kvm_cpu_synchronize_state(cs);
1365 
1366     switch (hsr_ec) {
1367     case EC_SOFTWARESTEP:
1368         if (cs->singlestep_enabled) {
1369             return true;
1370         } else {
1371             /*
1372              * The kernel should have suppressed the guest's ability to
1373              * single step at this point so something has gone wrong.
1374              */
1375             error_report("%s: guest single-step while debugging unsupported"
1376                          " (%"PRIx64", %"PRIx32")",
1377                          __func__, env->pc, debug_exit->hsr);
1378             return false;
1379         }
1380         break;
1381     case EC_AA64_BKPT:
1382         if (kvm_find_sw_breakpoint(cs, env->pc)) {
1383             return true;
1384         }
1385         break;
1386     case EC_BREAKPOINT:
1387         if (find_hw_breakpoint(cs, env->pc)) {
1388             return true;
1389         }
1390         break;
1391     case EC_WATCHPOINT:
1392     {
1393         CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1394         if (wp) {
1395             cs->watchpoint_hit = wp;
1396             return true;
1397         }
1398         break;
1399     }
1400     default:
1401         error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1402                      __func__, debug_exit->hsr, env->pc);
1403     }
1404 
1405     /* If we are not handling the debug exception it must belong to
1406      * the guest. Let's re-use the existing TCG interrupt code to set
1407      * everything up properly.
1408      */
1409     cs->exception_index = EXCP_BKPT;
1410     env->exception.syndrome = debug_exit->hsr;
1411     env->exception.vaddress = debug_exit->far;
1412     env->exception.target_el = 1;
1413     qemu_mutex_lock_iothread();
1414     arm_cpu_do_interrupt(cs);
1415     qemu_mutex_unlock_iothread();
1416 
1417     return false;
1418 }
1419 
1420 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1421 {
1422     ARMCPU *cpu = ARM_CPU(cs);
1423     int ret = 0;
1424 
1425     switch (run->exit_reason) {
1426     case KVM_EXIT_DEBUG:
1427         if (kvm_arm_handle_debug(cpu, &run->debug.arch)) {
1428             ret = EXCP_DEBUG;
1429         } /* otherwise return to guest */
1430         break;
1431     case KVM_EXIT_ARM_NISV:
1432         /* External DABT with no valid iss to decode */
1433         ret = kvm_arm_handle_dabt_nisv(cpu, run->arm_nisv.esr_iss,
1434                                        run->arm_nisv.fault_ipa);
1435         break;
1436     default:
1437         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
1438                       __func__, run->exit_reason);
1439         break;
1440     }
1441     return ret;
1442 }
1443 
1444 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
1445 {
1446     return true;
1447 }
1448 
1449 int kvm_arch_process_async_events(CPUState *cs)
1450 {
1451     return 0;
1452 }
1453 
1454 /**
1455  * kvm_arm_hw_debug_active:
1456  * @cpu: ARMCPU
1457  *
1458  * Return: TRUE if any hardware breakpoints in use.
1459  */
1460 static bool kvm_arm_hw_debug_active(ARMCPU *cpu)
1461 {
1462     return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
1463 }
1464 
1465 /**
1466  * kvm_arm_copy_hw_debug_data:
1467  * @ptr: kvm_guest_debug_arch structure
1468  *
1469  * Copy the architecture specific debug registers into the
1470  * kvm_guest_debug ioctl structure.
1471  */
1472 static void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
1473 {
1474     int i;
1475     memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
1476 
1477     for (i = 0; i < max_hw_wps; i++) {
1478         HWWatchpoint *wp = get_hw_wp(i);
1479         ptr->dbg_wcr[i] = wp->wcr;
1480         ptr->dbg_wvr[i] = wp->wvr;
1481     }
1482     for (i = 0; i < max_hw_bps; i++) {
1483         HWBreakpoint *bp = get_hw_bp(i);
1484         ptr->dbg_bcr[i] = bp->bcr;
1485         ptr->dbg_bvr[i] = bp->bvr;
1486     }
1487 }
1488 
1489 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1490 {
1491     if (kvm_sw_breakpoints_active(cs)) {
1492         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1493     }
1494     if (kvm_arm_hw_debug_active(ARM_CPU(cs))) {
1495         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
1496         kvm_arm_copy_hw_debug_data(&dbg->arch);
1497     }
1498 }
1499 
1500 void kvm_arch_init_irq_routing(KVMState *s)
1501 {
1502 }
1503 
1504 int kvm_arch_irqchip_create(KVMState *s)
1505 {
1506     if (kvm_kernel_irqchip_split()) {
1507         error_report("-machine kernel_irqchip=split is not supported on ARM.");
1508         exit(1);
1509     }
1510 
1511     /* If we can create the VGIC using the newer device control API, we
1512      * let the device do this when it initializes itself, otherwise we
1513      * fall back to the old API */
1514     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
1515 }
1516 
1517 int kvm_arm_vgic_probe(void)
1518 {
1519     int val = 0;
1520 
1521     if (kvm_create_device(kvm_state,
1522                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
1523         val |= KVM_ARM_VGIC_V3;
1524     }
1525     if (kvm_create_device(kvm_state,
1526                           KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
1527         val |= KVM_ARM_VGIC_V2;
1528     }
1529     return val;
1530 }
1531 
1532 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
1533 {
1534     int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
1535     int cpu_idx1 = cpu % 256;
1536     int cpu_idx2 = cpu / 256;
1537 
1538     kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
1539                (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
1540 
1541     return kvm_set_irq(kvm_state, kvm_irq, !!level);
1542 }
1543 
1544 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1545                              uint64_t address, uint32_t data, PCIDevice *dev)
1546 {
1547     AddressSpace *as = pci_device_iommu_address_space(dev);
1548     hwaddr xlat, len, doorbell_gpa;
1549     MemoryRegionSection mrs;
1550     MemoryRegion *mr;
1551 
1552     if (as == &address_space_memory) {
1553         return 0;
1554     }
1555 
1556     /* MSI doorbell address is translated by an IOMMU */
1557 
1558     RCU_READ_LOCK_GUARD();
1559 
1560     mr = address_space_translate(as, address, &xlat, &len, true,
1561                                  MEMTXATTRS_UNSPECIFIED);
1562 
1563     if (!mr) {
1564         return 1;
1565     }
1566 
1567     mrs = memory_region_find(mr, xlat, 1);
1568 
1569     if (!mrs.mr) {
1570         return 1;
1571     }
1572 
1573     doorbell_gpa = mrs.offset_within_address_space;
1574     memory_region_unref(mrs.mr);
1575 
1576     route->u.msi.address_lo = doorbell_gpa;
1577     route->u.msi.address_hi = doorbell_gpa >> 32;
1578 
1579     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1580 
1581     return 0;
1582 }
1583 
1584 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1585                                 int vector, PCIDevice *dev)
1586 {
1587     return 0;
1588 }
1589 
1590 int kvm_arch_release_virq_post(int virq)
1591 {
1592     return 0;
1593 }
1594 
1595 int kvm_arch_msi_data_to_gsi(uint32_t data)
1596 {
1597     return (data - 32) & 0xffff;
1598 }
1599 
1600 bool kvm_arch_cpu_check_are_resettable(void)
1601 {
1602     return true;
1603 }
1604 
1605 static void kvm_arch_get_eager_split_size(Object *obj, Visitor *v,
1606                                           const char *name, void *opaque,
1607                                           Error **errp)
1608 {
1609     KVMState *s = KVM_STATE(obj);
1610     uint64_t value = s->kvm_eager_split_size;
1611 
1612     visit_type_size(v, name, &value, errp);
1613 }
1614 
1615 static void kvm_arch_set_eager_split_size(Object *obj, Visitor *v,
1616                                           const char *name, void *opaque,
1617                                           Error **errp)
1618 {
1619     KVMState *s = KVM_STATE(obj);
1620     uint64_t value;
1621 
1622     if (s->fd != -1) {
1623         error_setg(errp, "Unable to set early-split-size after KVM has been initialized");
1624         return;
1625     }
1626 
1627     if (!visit_type_size(v, name, &value, errp)) {
1628         return;
1629     }
1630 
1631     if (value && !is_power_of_2(value)) {
1632         error_setg(errp, "early-split-size must be a power of two");
1633         return;
1634     }
1635 
1636     s->kvm_eager_split_size = value;
1637 }
1638 
1639 void kvm_arch_accel_class_init(ObjectClass *oc)
1640 {
1641     object_class_property_add(oc, "eager-split-size", "size",
1642                               kvm_arch_get_eager_split_size,
1643                               kvm_arch_set_eager_split_size, NULL, NULL);
1644 
1645     object_class_property_set_description(oc, "eager-split-size",
1646         "Eager Page Split chunk size for hugepages. (default: 0, disabled)");
1647 }
1648 
1649 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
1650 {
1651     switch (type) {
1652     case GDB_BREAKPOINT_HW:
1653         return insert_hw_breakpoint(addr);
1654         break;
1655     case GDB_WATCHPOINT_READ:
1656     case GDB_WATCHPOINT_WRITE:
1657     case GDB_WATCHPOINT_ACCESS:
1658         return insert_hw_watchpoint(addr, len, type);
1659     default:
1660         return -ENOSYS;
1661     }
1662 }
1663 
1664 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
1665 {
1666     switch (type) {
1667     case GDB_BREAKPOINT_HW:
1668         return delete_hw_breakpoint(addr);
1669     case GDB_WATCHPOINT_READ:
1670     case GDB_WATCHPOINT_WRITE:
1671     case GDB_WATCHPOINT_ACCESS:
1672         return delete_hw_watchpoint(addr, len, type);
1673     default:
1674         return -ENOSYS;
1675     }
1676 }
1677 
1678 void kvm_arch_remove_all_hw_breakpoints(void)
1679 {
1680     if (cur_hw_wps > 0) {
1681         g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
1682     }
1683     if (cur_hw_bps > 0) {
1684         g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
1685     }
1686 }
1687 
1688 static bool kvm_arm_set_device_attr(ARMCPU *cpu, struct kvm_device_attr *attr,
1689                                     const char *name)
1690 {
1691     int err;
1692 
1693     err = kvm_vcpu_ioctl(CPU(cpu), KVM_HAS_DEVICE_ATTR, attr);
1694     if (err != 0) {
1695         error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
1696         return false;
1697     }
1698 
1699     err = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEVICE_ATTR, attr);
1700     if (err != 0) {
1701         error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
1702         return false;
1703     }
1704 
1705     return true;
1706 }
1707 
1708 void kvm_arm_pmu_init(ARMCPU *cpu)
1709 {
1710     struct kvm_device_attr attr = {
1711         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1712         .attr = KVM_ARM_VCPU_PMU_V3_INIT,
1713     };
1714 
1715     if (!cpu->has_pmu) {
1716         return;
1717     }
1718     if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1719         error_report("failed to init PMU");
1720         abort();
1721     }
1722 }
1723 
1724 void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq)
1725 {
1726     struct kvm_device_attr attr = {
1727         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1728         .addr = (intptr_t)&irq,
1729         .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
1730     };
1731 
1732     if (!cpu->has_pmu) {
1733         return;
1734     }
1735     if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1736         error_report("failed to set irq for PMU");
1737         abort();
1738     }
1739 }
1740 
1741 void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa)
1742 {
1743     struct kvm_device_attr attr = {
1744         .group = KVM_ARM_VCPU_PVTIME_CTRL,
1745         .attr = KVM_ARM_VCPU_PVTIME_IPA,
1746         .addr = (uint64_t)&ipa,
1747     };
1748 
1749     if (cpu->kvm_steal_time == ON_OFF_AUTO_OFF) {
1750         return;
1751     }
1752     if (!kvm_arm_set_device_attr(cpu, &attr, "PVTIME IPA")) {
1753         error_report("failed to init PVTIME IPA");
1754         abort();
1755     }
1756 }
1757 
1758 void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
1759 {
1760     bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
1761 
1762     if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
1763         if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1764             cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
1765         } else {
1766             cpu->kvm_steal_time = ON_OFF_AUTO_ON;
1767         }
1768     } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
1769         if (!has_steal_time) {
1770             error_setg(errp, "'kvm-steal-time' cannot be enabled "
1771                              "on this host");
1772             return;
1773         } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1774             /*
1775              * DEN0057A chapter 2 says "This specification only covers
1776              * systems in which the Execution state of the hypervisor
1777              * as well as EL1 of virtual machines is AArch64.". And,
1778              * to ensure that, the smc/hvc calls are only specified as
1779              * smc64/hvc64.
1780              */
1781             error_setg(errp, "'kvm-steal-time' cannot be enabled "
1782                              "for AArch32 guests");
1783             return;
1784         }
1785     }
1786 }
1787 
1788 bool kvm_arm_aarch32_supported(void)
1789 {
1790     return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
1791 }
1792 
1793 bool kvm_arm_sve_supported(void)
1794 {
1795     return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
1796 }
1797 
1798 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
1799 
1800 uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu)
1801 {
1802     /* Only call this function if kvm_arm_sve_supported() returns true. */
1803     static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
1804     static bool probed;
1805     uint32_t vq = 0;
1806     int i;
1807 
1808     /*
1809      * KVM ensures all host CPUs support the same set of vector lengths.
1810      * So we only need to create the scratch VCPUs once and then cache
1811      * the results.
1812      */
1813     if (!probed) {
1814         struct kvm_vcpu_init init = {
1815             .target = -1,
1816             .features[0] = (1 << KVM_ARM_VCPU_SVE),
1817         };
1818         struct kvm_one_reg reg = {
1819             .id = KVM_REG_ARM64_SVE_VLS,
1820             .addr = (uint64_t)&vls[0],
1821         };
1822         int fdarray[3], ret;
1823 
1824         probed = true;
1825 
1826         if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
1827             error_report("failed to create scratch VCPU with SVE enabled");
1828             abort();
1829         }
1830         ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
1831         kvm_arm_destroy_scratch_host_vcpu(fdarray);
1832         if (ret) {
1833             error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
1834                          strerror(errno));
1835             abort();
1836         }
1837 
1838         for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
1839             if (vls[i]) {
1840                 vq = 64 - clz64(vls[i]) + i * 64;
1841                 break;
1842             }
1843         }
1844         if (vq > ARM_MAX_VQ) {
1845             warn_report("KVM supports vector lengths larger than "
1846                         "QEMU can enable");
1847             vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
1848         }
1849     }
1850 
1851     return vls[0];
1852 }
1853 
1854 static int kvm_arm_sve_set_vls(ARMCPU *cpu)
1855 {
1856     uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
1857 
1858     assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
1859 
1860     return kvm_set_one_reg(CPU(cpu), KVM_REG_ARM64_SVE_VLS, &vls[0]);
1861 }
1862 
1863 #define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
1864 
1865 int kvm_arch_init_vcpu(CPUState *cs)
1866 {
1867     int ret;
1868     uint64_t mpidr;
1869     ARMCPU *cpu = ARM_CPU(cs);
1870     CPUARMState *env = &cpu->env;
1871     uint64_t psciver;
1872 
1873     if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
1874         !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
1875         error_report("KVM is not supported for this guest CPU type");
1876         return -EINVAL;
1877     }
1878 
1879     qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cpu);
1880 
1881     /* Determine init features for this CPU */
1882     memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
1883     if (cs->start_powered_off) {
1884         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
1885     }
1886     if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
1887         cpu->psci_version = QEMU_PSCI_VERSION_0_2;
1888         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
1889     }
1890     if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1891         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
1892     }
1893     if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
1894         cpu->has_pmu = false;
1895     }
1896     if (cpu->has_pmu) {
1897         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
1898     } else {
1899         env->features &= ~(1ULL << ARM_FEATURE_PMU);
1900     }
1901     if (cpu_isar_feature(aa64_sve, cpu)) {
1902         assert(kvm_arm_sve_supported());
1903         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
1904     }
1905     if (cpu_isar_feature(aa64_pauth, cpu)) {
1906         cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
1907                                       1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
1908     }
1909 
1910     /* Do KVM_ARM_VCPU_INIT ioctl */
1911     ret = kvm_arm_vcpu_init(cpu);
1912     if (ret) {
1913         return ret;
1914     }
1915 
1916     if (cpu_isar_feature(aa64_sve, cpu)) {
1917         ret = kvm_arm_sve_set_vls(cpu);
1918         if (ret) {
1919             return ret;
1920         }
1921         ret = kvm_arm_vcpu_finalize(cpu, KVM_ARM_VCPU_SVE);
1922         if (ret) {
1923             return ret;
1924         }
1925     }
1926 
1927     /*
1928      * KVM reports the exact PSCI version it is implementing via a
1929      * special sysreg. If it is present, use its contents to determine
1930      * what to report to the guest in the dtb (it is the PSCI version,
1931      * in the same 15-bits major 16-bits minor format that PSCI_VERSION
1932      * returns).
1933      */
1934     if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
1935         cpu->psci_version = psciver;
1936     }
1937 
1938     /*
1939      * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
1940      * Currently KVM has its own idea about MPIDR assignment, so we
1941      * override our defaults with what we get from KVM.
1942      */
1943     ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
1944     if (ret) {
1945         return ret;
1946     }
1947     cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
1948 
1949     return kvm_arm_init_cpreg_list(cpu);
1950 }
1951 
1952 int kvm_arch_destroy_vcpu(CPUState *cs)
1953 {
1954     return 0;
1955 }
1956 
1957 /* Callers must hold the iothread mutex lock */
1958 static void kvm_inject_arm_sea(CPUState *c)
1959 {
1960     ARMCPU *cpu = ARM_CPU(c);
1961     CPUARMState *env = &cpu->env;
1962     uint32_t esr;
1963     bool same_el;
1964 
1965     c->exception_index = EXCP_DATA_ABORT;
1966     env->exception.target_el = 1;
1967 
1968     /*
1969      * Set the DFSC to synchronous external abort and set FnV to not valid,
1970      * this will tell guest the FAR_ELx is UNKNOWN for this abort.
1971      */
1972     same_el = arm_current_el(env) == env->exception.target_el;
1973     esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
1974 
1975     env->exception.syndrome = esr;
1976 
1977     arm_cpu_do_interrupt(c);
1978 }
1979 
1980 #define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
1981                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1982 
1983 #define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
1984                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1985 
1986 #define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
1987                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1988 
1989 static int kvm_arch_put_fpsimd(CPUState *cs)
1990 {
1991     CPUARMState *env = &ARM_CPU(cs)->env;
1992     int i, ret;
1993 
1994     for (i = 0; i < 32; i++) {
1995         uint64_t *q = aa64_vfp_qreg(env, i);
1996 #if HOST_BIG_ENDIAN
1997         uint64_t fp_val[2] = { q[1], q[0] };
1998         ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
1999                                                         fp_val);
2000 #else
2001         ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2002 #endif
2003         if (ret) {
2004             return ret;
2005         }
2006     }
2007 
2008     return 0;
2009 }
2010 
2011 /*
2012  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2013  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2014  * code the slice index to zero for now as it's unlikely we'll need more than
2015  * one slice for quite some time.
2016  */
2017 static int kvm_arch_put_sve(CPUState *cs)
2018 {
2019     ARMCPU *cpu = ARM_CPU(cs);
2020     CPUARMState *env = &cpu->env;
2021     uint64_t tmp[ARM_MAX_VQ * 2];
2022     uint64_t *r;
2023     int n, ret;
2024 
2025     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2026         r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
2027         ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2028         if (ret) {
2029             return ret;
2030         }
2031     }
2032 
2033     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2034         r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
2035                         DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2036         ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2037         if (ret) {
2038             return ret;
2039         }
2040     }
2041 
2042     r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
2043                     DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2044     ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2045     if (ret) {
2046         return ret;
2047     }
2048 
2049     return 0;
2050 }
2051 
2052 int kvm_arch_put_registers(CPUState *cs, int level)
2053 {
2054     uint64_t val;
2055     uint32_t fpr;
2056     int i, ret;
2057     unsigned int el;
2058 
2059     ARMCPU *cpu = ARM_CPU(cs);
2060     CPUARMState *env = &cpu->env;
2061 
2062     /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
2063      * AArch64 registers before pushing them out to 64-bit KVM.
2064      */
2065     if (!is_a64(env)) {
2066         aarch64_sync_32_to_64(env);
2067     }
2068 
2069     for (i = 0; i < 31; i++) {
2070         ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2071                               &env->xregs[i]);
2072         if (ret) {
2073             return ret;
2074         }
2075     }
2076 
2077     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2078      * QEMU side we keep the current SP in xregs[31] as well.
2079      */
2080     aarch64_save_sp(env, 1);
2081 
2082     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2083     if (ret) {
2084         return ret;
2085     }
2086 
2087     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2088     if (ret) {
2089         return ret;
2090     }
2091 
2092     /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
2093     if (is_a64(env)) {
2094         val = pstate_read(env);
2095     } else {
2096         val = cpsr_read(env);
2097     }
2098     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2099     if (ret) {
2100         return ret;
2101     }
2102 
2103     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2104     if (ret) {
2105         return ret;
2106     }
2107 
2108     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2109     if (ret) {
2110         return ret;
2111     }
2112 
2113     /* Saved Program State Registers
2114      *
2115      * Before we restore from the banked_spsr[] array we need to
2116      * ensure that any modifications to env->spsr are correctly
2117      * reflected in the banks.
2118      */
2119     el = arm_current_el(env);
2120     if (el > 0 && !is_a64(env)) {
2121         i = bank_number(env->uncached_cpsr & CPSR_M);
2122         env->banked_spsr[i] = env->spsr;
2123     }
2124 
2125     /* KVM 0-4 map to QEMU banks 1-5 */
2126     for (i = 0; i < KVM_NR_SPSR; i++) {
2127         ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2128                               &env->banked_spsr[i + 1]);
2129         if (ret) {
2130             return ret;
2131         }
2132     }
2133 
2134     if (cpu_isar_feature(aa64_sve, cpu)) {
2135         ret = kvm_arch_put_sve(cs);
2136     } else {
2137         ret = kvm_arch_put_fpsimd(cs);
2138     }
2139     if (ret) {
2140         return ret;
2141     }
2142 
2143     fpr = vfp_get_fpsr(env);
2144     ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2145     if (ret) {
2146         return ret;
2147     }
2148 
2149     fpr = vfp_get_fpcr(env);
2150     ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2151     if (ret) {
2152         return ret;
2153     }
2154 
2155     write_cpustate_to_list(cpu, true);
2156 
2157     if (!write_list_to_kvmstate(cpu, level)) {
2158         return -EINVAL;
2159     }
2160 
2161    /*
2162     * Setting VCPU events should be triggered after syncing the registers
2163     * to avoid overwriting potential changes made by KVM upon calling
2164     * KVM_SET_VCPU_EVENTS ioctl
2165     */
2166     ret = kvm_put_vcpu_events(cpu);
2167     if (ret) {
2168         return ret;
2169     }
2170 
2171     return kvm_arm_sync_mpstate_to_kvm(cpu);
2172 }
2173 
2174 static int kvm_arch_get_fpsimd(CPUState *cs)
2175 {
2176     CPUARMState *env = &ARM_CPU(cs)->env;
2177     int i, ret;
2178 
2179     for (i = 0; i < 32; i++) {
2180         uint64_t *q = aa64_vfp_qreg(env, i);
2181         ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2182         if (ret) {
2183             return ret;
2184         } else {
2185 #if HOST_BIG_ENDIAN
2186             uint64_t t;
2187             t = q[0], q[0] = q[1], q[1] = t;
2188 #endif
2189         }
2190     }
2191 
2192     return 0;
2193 }
2194 
2195 /*
2196  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2197  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2198  * code the slice index to zero for now as it's unlikely we'll need more than
2199  * one slice for quite some time.
2200  */
2201 static int kvm_arch_get_sve(CPUState *cs)
2202 {
2203     ARMCPU *cpu = ARM_CPU(cs);
2204     CPUARMState *env = &cpu->env;
2205     uint64_t *r;
2206     int n, ret;
2207 
2208     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2209         r = &env->vfp.zregs[n].d[0];
2210         ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2211         if (ret) {
2212             return ret;
2213         }
2214         sve_bswap64(r, r, cpu->sve_max_vq * 2);
2215     }
2216 
2217     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2218         r = &env->vfp.pregs[n].p[0];
2219         ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2220         if (ret) {
2221             return ret;
2222         }
2223         sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2224     }
2225 
2226     r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
2227     ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2228     if (ret) {
2229         return ret;
2230     }
2231     sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2232 
2233     return 0;
2234 }
2235 
2236 int kvm_arch_get_registers(CPUState *cs)
2237 {
2238     uint64_t val;
2239     unsigned int el;
2240     uint32_t fpr;
2241     int i, ret;
2242 
2243     ARMCPU *cpu = ARM_CPU(cs);
2244     CPUARMState *env = &cpu->env;
2245 
2246     for (i = 0; i < 31; i++) {
2247         ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2248                               &env->xregs[i]);
2249         if (ret) {
2250             return ret;
2251         }
2252     }
2253 
2254     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2255     if (ret) {
2256         return ret;
2257     }
2258 
2259     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2260     if (ret) {
2261         return ret;
2262     }
2263 
2264     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2265     if (ret) {
2266         return ret;
2267     }
2268 
2269     env->aarch64 = ((val & PSTATE_nRW) == 0);
2270     if (is_a64(env)) {
2271         pstate_write(env, val);
2272     } else {
2273         cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
2274     }
2275 
2276     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2277      * QEMU side we keep the current SP in xregs[31] as well.
2278      */
2279     aarch64_restore_sp(env, 1);
2280 
2281     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2282     if (ret) {
2283         return ret;
2284     }
2285 
2286     /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
2287      * incoming AArch64 regs received from 64-bit KVM.
2288      * We must perform this after all of the registers have been acquired from
2289      * the kernel.
2290      */
2291     if (!is_a64(env)) {
2292         aarch64_sync_64_to_32(env);
2293     }
2294 
2295     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2296     if (ret) {
2297         return ret;
2298     }
2299 
2300     /* Fetch the SPSR registers
2301      *
2302      * KVM SPSRs 0-4 map to QEMU banks 1-5
2303      */
2304     for (i = 0; i < KVM_NR_SPSR; i++) {
2305         ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2306                               &env->banked_spsr[i + 1]);
2307         if (ret) {
2308             return ret;
2309         }
2310     }
2311 
2312     el = arm_current_el(env);
2313     if (el > 0 && !is_a64(env)) {
2314         i = bank_number(env->uncached_cpsr & CPSR_M);
2315         env->spsr = env->banked_spsr[i];
2316     }
2317 
2318     if (cpu_isar_feature(aa64_sve, cpu)) {
2319         ret = kvm_arch_get_sve(cs);
2320     } else {
2321         ret = kvm_arch_get_fpsimd(cs);
2322     }
2323     if (ret) {
2324         return ret;
2325     }
2326 
2327     ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2328     if (ret) {
2329         return ret;
2330     }
2331     vfp_set_fpsr(env, fpr);
2332 
2333     ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2334     if (ret) {
2335         return ret;
2336     }
2337     vfp_set_fpcr(env, fpr);
2338 
2339     ret = kvm_get_vcpu_events(cpu);
2340     if (ret) {
2341         return ret;
2342     }
2343 
2344     if (!write_kvmstate_to_list(cpu)) {
2345         return -EINVAL;
2346     }
2347     /* Note that it's OK to have registers which aren't in CPUState,
2348      * so we can ignore a failure return here.
2349      */
2350     write_list_to_cpustate(cpu);
2351 
2352     ret = kvm_arm_sync_mpstate_to_qemu(cpu);
2353 
2354     /* TODO: other registers */
2355     return ret;
2356 }
2357 
2358 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
2359 {
2360     ram_addr_t ram_addr;
2361     hwaddr paddr;
2362 
2363     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
2364 
2365     if (acpi_ghes_present() && addr) {
2366         ram_addr = qemu_ram_addr_from_host(addr);
2367         if (ram_addr != RAM_ADDR_INVALID &&
2368             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
2369             kvm_hwpoison_page_add(ram_addr);
2370             /*
2371              * If this is a BUS_MCEERR_AR, we know we have been called
2372              * synchronously from the vCPU thread, so we can easily
2373              * synchronize the state and inject an error.
2374              *
2375              * TODO: we currently don't tell the guest at all about
2376              * BUS_MCEERR_AO. In that case we might either be being
2377              * called synchronously from the vCPU thread, or a bit
2378              * later from the main thread, so doing the injection of
2379              * the error would be more complicated.
2380              */
2381             if (code == BUS_MCEERR_AR) {
2382                 kvm_cpu_synchronize_state(c);
2383                 if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
2384                     kvm_inject_arm_sea(c);
2385                 } else {
2386                     error_report("failed to record the error");
2387                     abort();
2388                 }
2389             }
2390             return;
2391         }
2392         if (code == BUS_MCEERR_AO) {
2393             error_report("Hardware memory error at addr %p for memory used by "
2394                 "QEMU itself instead of guest system!", addr);
2395         }
2396     }
2397 
2398     if (code == BUS_MCEERR_AR) {
2399         error_report("Hardware memory error!");
2400         exit(1);
2401     }
2402 }
2403 
2404 /* C6.6.29 BRK instruction */
2405 static const uint32_t brk_insn = 0xd4200000;
2406 
2407 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2408 {
2409     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2410         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2411         return -EINVAL;
2412     }
2413     return 0;
2414 }
2415 
2416 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2417 {
2418     static uint32_t brk;
2419 
2420     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
2421         brk != brk_insn ||
2422         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2423         return -EINVAL;
2424     }
2425     return 0;
2426 }
2427