xref: /qemu/target/arm/kvm_arm.h (revision ab9056ff)
1 /*
2  * QEMU KVM support -- ARM specific functions.
3  *
4  * Copyright (c) 2012 Linaro Limited
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #ifndef QEMU_KVM_ARM_H
12 #define QEMU_KVM_ARM_H
13 
14 #include "sysemu/kvm.h"
15 #include "exec/memory.h"
16 #include "qemu/error-report.h"
17 
18 /**
19  * kvm_arm_vcpu_init:
20  * @cs: CPUState
21  *
22  * Initialize (or reinitialize) the VCPU by invoking the
23  * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
24  * bitmask specified in the CPUState.
25  *
26  * Returns: 0 if success else < 0 error code
27  */
28 int kvm_arm_vcpu_init(CPUState *cs);
29 
30 /**
31  * kvm_arm_register_device:
32  * @mr: memory region for this device
33  * @devid: the KVM device ID
34  * @group: device control API group for setting addresses
35  * @attr: device control API address type
36  * @dev_fd: device control device file descriptor (or -1 if not supported)
37  * @addr_ormask: value to be OR'ed with resolved address
38  *
39  * Remember the memory region @mr, and when it is mapped by the
40  * machine model, tell the kernel that base address using the
41  * KVM_ARM_SET_DEVICE_ADDRESS ioctl or the newer device control API.  @devid
42  * should be the ID of the device as defined by KVM_ARM_SET_DEVICE_ADDRESS or
43  * the arm-vgic device in the device control API.
44  * The machine model may map
45  * and unmap the device multiple times; the kernel will only be told the final
46  * address at the point where machine init is complete.
47  */
48 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
49                              uint64_t attr, int dev_fd, uint64_t addr_ormask);
50 
51 /**
52  * kvm_arm_init_cpreg_list:
53  * @cpu: ARMCPU
54  *
55  * Initialize the ARMCPU cpreg list according to the kernel's
56  * definition of what CPU registers it knows about (and throw away
57  * the previous TCG-created cpreg list).
58  *
59  * Returns: 0 if success, else < 0 error code
60  */
61 int kvm_arm_init_cpreg_list(ARMCPU *cpu);
62 
63 /**
64  * kvm_arm_reg_syncs_via_cpreg_list
65  * regidx: KVM register index
66  *
67  * Return true if this KVM register should be synchronized via the
68  * cpreg list of arbitrary system registers, false if it is synchronized
69  * by hand using code in kvm_arch_get/put_registers().
70  */
71 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx);
72 
73 /**
74  * kvm_arm_cpreg_level
75  * regidx: KVM register index
76  *
77  * Return the level of this coprocessor/system register.  Return value is
78  * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
79  */
80 int kvm_arm_cpreg_level(uint64_t regidx);
81 
82 /**
83  * write_list_to_kvmstate:
84  * @cpu: ARMCPU
85  * @level: the state level to sync
86  *
87  * For each register listed in the ARMCPU cpreg_indexes list, write
88  * its value from the cpreg_values list into the kernel (via ioctl).
89  * This updates KVM's working data structures from TCG data or
90  * from incoming migration state.
91  *
92  * Returns: true if all register values were updated correctly,
93  * false if some register was unknown to the kernel or could not
94  * be written (eg constant register with the wrong value).
95  * Note that we do not stop early on failure -- we will attempt
96  * writing all registers in the list.
97  */
98 bool write_list_to_kvmstate(ARMCPU *cpu, int level);
99 
100 /**
101  * write_kvmstate_to_list:
102  * @cpu: ARMCPU
103  *
104  * For each register listed in the ARMCPU cpreg_indexes list, write
105  * its value from the kernel into the cpreg_values list. This is used to
106  * copy info from KVM's working data structures into TCG or
107  * for outbound migration.
108  *
109  * Returns: true if all register values were read correctly,
110  * false if some register was unknown or could not be read.
111  * Note that we do not stop early on failure -- we will attempt
112  * reading all registers in the list.
113  */
114 bool write_kvmstate_to_list(ARMCPU *cpu);
115 
116 /**
117  * kvm_arm_reset_vcpu:
118  * @cpu: ARMCPU
119  *
120  * Called at reset time to kernel registers to their initial values.
121  */
122 void kvm_arm_reset_vcpu(ARMCPU *cpu);
123 
124 /**
125  * kvm_arm_init_serror_injection:
126  * @cs: CPUState
127  *
128  * Check whether KVM can set guest SError syndrome.
129  */
130 void kvm_arm_init_serror_injection(CPUState *cs);
131 
132 /**
133  * kvm_get_vcpu_events:
134  * @cpu: ARMCPU
135  *
136  * Get VCPU related state from kvm.
137  */
138 int kvm_get_vcpu_events(ARMCPU *cpu);
139 
140 /**
141  * kvm_put_vcpu_events:
142  * @cpu: ARMCPU
143  *
144  * Put VCPU related state to kvm.
145  */
146 int kvm_put_vcpu_events(ARMCPU *cpu);
147 
148 #ifdef CONFIG_KVM
149 /**
150  * kvm_arm_create_scratch_host_vcpu:
151  * @cpus_to_try: array of QEMU_KVM_ARM_TARGET_* values (terminated with
152  * QEMU_KVM_ARM_TARGET_NONE) to try as fallback if the kernel does not
153  * know the PREFERRED_TARGET ioctl. Passing NULL is the same as passing
154  * an empty array.
155  * @fdarray: filled in with kvmfd, vmfd, cpufd file descriptors in that order
156  * @init: filled in with the necessary values for creating a host
157  * vcpu. If NULL is provided, will not init the vCPU (though the cpufd
158  * will still be set up).
159  *
160  * Create a scratch vcpu in its own VM of the type preferred by the host
161  * kernel (as would be used for '-cpu host'), for purposes of probing it
162  * for capabilities.
163  *
164  * Returns: true on success (and fdarray and init are filled in),
165  * false on failure (and fdarray and init are not valid).
166  */
167 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
168                                       int *fdarray,
169                                       struct kvm_vcpu_init *init);
170 
171 /**
172  * kvm_arm_destroy_scratch_host_vcpu:
173  * @fdarray: array of fds as set up by kvm_arm_create_scratch_host_vcpu
174  *
175  * Tear down the scratch vcpu created by kvm_arm_create_scratch_host_vcpu.
176  */
177 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray);
178 
179 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
180 
181 /**
182  * ARMHostCPUFeatures: information about the host CPU (identified
183  * by asking the host kernel)
184  */
185 typedef struct ARMHostCPUFeatures {
186     ARMISARegisters isar;
187     uint64_t features;
188     uint32_t target;
189     const char *dtb_compatible;
190 } ARMHostCPUFeatures;
191 
192 /**
193  * kvm_arm_get_host_cpu_features:
194  * @ahcc: ARMHostCPUClass to fill in
195  *
196  * Probe the capabilities of the host kernel's preferred CPU and fill
197  * in the ARMHostCPUClass struct accordingly.
198  */
199 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf);
200 
201 /**
202  * kvm_arm_set_cpu_features_from_host:
203  * @cpu: ARMCPU to set the features for
204  *
205  * Set up the ARMCPU struct fields up to match the information probed
206  * from the host CPU.
207  */
208 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu);
209 
210 /**
211  * kvm_arm_aarch32_supported:
212  * @cs: CPUState
213  *
214  * Returns: true if the KVM VCPU can enable AArch32 mode
215  * and false otherwise.
216  */
217 bool kvm_arm_aarch32_supported(CPUState *cs);
218 
219 /**
220  * bool kvm_arm_pmu_supported:
221  * @cs: CPUState
222  *
223  * Returns: true if the KVM VCPU can enable its PMU
224  * and false otherwise.
225  */
226 bool kvm_arm_pmu_supported(CPUState *cs);
227 
228 /**
229  * kvm_arm_get_max_vm_ipa_size - Returns the number of bits in the
230  * IPA address space supported by KVM
231  *
232  * @ms: Machine state handle
233  */
234 int kvm_arm_get_max_vm_ipa_size(MachineState *ms);
235 
236 /**
237  * kvm_arm_sync_mpstate_to_kvm
238  * @cpu: ARMCPU
239  *
240  * If supported set the KVM MP_STATE based on QEMU's model.
241  */
242 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu);
243 
244 /**
245  * kvm_arm_sync_mpstate_to_qemu
246  * @cpu: ARMCPU
247  *
248  * If supported get the MP_STATE from KVM and store in QEMU's model.
249  */
250 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu);
251 
252 int kvm_arm_vgic_probe(void);
253 
254 void kvm_arm_pmu_set_irq(CPUState *cs, int irq);
255 void kvm_arm_pmu_init(CPUState *cs);
256 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level);
257 
258 #else
259 
260 static inline void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
261 {
262     /* This should never actually be called in the "not KVM" case,
263      * but set up the fields to indicate an error anyway.
264      */
265     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
266     cpu->host_cpu_probe_failed = true;
267 }
268 
269 static inline bool kvm_arm_aarch32_supported(CPUState *cs)
270 {
271     return false;
272 }
273 
274 static inline bool kvm_arm_pmu_supported(CPUState *cs)
275 {
276     return false;
277 }
278 
279 static inline int kvm_arm_get_max_vm_ipa_size(MachineState *ms)
280 {
281     return -ENOENT;
282 }
283 
284 static inline int kvm_arm_vgic_probe(void)
285 {
286     return 0;
287 }
288 
289 static inline void kvm_arm_pmu_set_irq(CPUState *cs, int irq) {}
290 static inline void kvm_arm_pmu_init(CPUState *cs) {}
291 
292 #endif
293 
294 static inline const char *gic_class_name(void)
295 {
296     return kvm_irqchip_in_kernel() ? "kvm-arm-gic" : "arm_gic";
297 }
298 
299 /**
300  * gicv3_class_name
301  *
302  * Return name of GICv3 class to use depending on whether KVM acceleration is
303  * in use. May throw an error if the chosen implementation is not available.
304  *
305  * Returns: class name to use
306  */
307 static inline const char *gicv3_class_name(void)
308 {
309     if (kvm_irqchip_in_kernel()) {
310 #ifdef TARGET_AARCH64
311         return "kvm-arm-gicv3";
312 #else
313         error_report("KVM GICv3 acceleration is not supported on this "
314                      "platform");
315         exit(1);
316 #endif
317     } else {
318         if (kvm_enabled()) {
319             error_report("Userspace GICv3 is not supported with KVM");
320             exit(1);
321         }
322         return "arm-gicv3";
323     }
324 }
325 
326 /**
327  * kvm_arm_handle_debug:
328  * @cs: CPUState
329  * @debug_exit: debug part of the KVM exit structure
330  *
331  * Returns: TRUE if the debug exception was handled.
332  */
333 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit);
334 
335 /**
336  * kvm_arm_hw_debug_active:
337  * @cs: CPU State
338  *
339  * Return: TRUE if any hardware breakpoints in use.
340  */
341 
342 bool kvm_arm_hw_debug_active(CPUState *cs);
343 
344 /**
345  * kvm_arm_copy_hw_debug_data:
346  *
347  * @ptr: kvm_guest_debug_arch structure
348  *
349  * Copy the architecture specific debug registers into the
350  * kvm_guest_debug ioctl structure.
351  */
352 struct kvm_guest_debug_arch;
353 
354 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr);
355 
356 /**
357  * its_class_name
358  *
359  * Return the ITS class name to use depending on whether KVM acceleration
360  * and KVM CAP_SIGNAL_MSI are supported
361  *
362  * Returns: class name to use or NULL
363  */
364 static inline const char *its_class_name(void)
365 {
366     if (kvm_irqchip_in_kernel()) {
367         /* KVM implementation requires this capability */
368         return kvm_direct_msi_enabled() ? "arm-its-kvm" : NULL;
369     } else {
370         /* Software emulation is not implemented yet */
371         return NULL;
372     }
373 }
374 
375 #endif
376