xref: /qemu/target/arm/ptw.c (revision 4622c706)
1 /*
2  * ARM page table walking.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "idau.h"
17 
18 
19 typedef struct S1Translate {
20     ARMMMUIdx in_mmu_idx;
21     ARMMMUIdx in_ptw_idx;
22     bool in_secure;
23     bool in_debug;
24     bool out_secure;
25     bool out_rw;
26     bool out_be;
27     hwaddr out_virt;
28     hwaddr out_phys;
29     void *out_host;
30 } S1Translate;
31 
32 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
33                                uint64_t address,
34                                MMUAccessType access_type, bool s1_is_el0,
35                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
36     __attribute__((nonnull));
37 
38 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
39                                       target_ulong address,
40                                       MMUAccessType access_type,
41                                       GetPhysAddrResult *result,
42                                       ARMMMUFaultInfo *fi)
43     __attribute__((nonnull));
44 
45 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
46 static const uint8_t pamax_map[] = {
47     [0] = 32,
48     [1] = 36,
49     [2] = 40,
50     [3] = 42,
51     [4] = 44,
52     [5] = 48,
53     [6] = 52,
54 };
55 
56 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
57 unsigned int arm_pamax(ARMCPU *cpu)
58 {
59     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
60         unsigned int parange =
61             FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
62 
63         /*
64          * id_aa64mmfr0 is a read-only register so values outside of the
65          * supported mappings can be considered an implementation error.
66          */
67         assert(parange < ARRAY_SIZE(pamax_map));
68         return pamax_map[parange];
69     }
70 
71     /*
72      * In machvirt_init, we call arm_pamax on a cpu that is not fully
73      * initialized, so we can't rely on the propagation done in realize.
74      */
75     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
76         arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
77         /* v7 with LPAE */
78         return 40;
79     }
80     /* Anything else */
81     return 32;
82 }
83 
84 /*
85  * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
86  */
87 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
88 {
89     switch (mmu_idx) {
90     case ARMMMUIdx_E10_0:
91         return ARMMMUIdx_Stage1_E0;
92     case ARMMMUIdx_E10_1:
93         return ARMMMUIdx_Stage1_E1;
94     case ARMMMUIdx_E10_1_PAN:
95         return ARMMMUIdx_Stage1_E1_PAN;
96     default:
97         return mmu_idx;
98     }
99 }
100 
101 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
102 {
103     return stage_1_mmu_idx(arm_mmu_idx(env));
104 }
105 
106 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
107 {
108     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
109 }
110 
111 /* Return the TTBR associated with this translation regime */
112 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
113 {
114     if (mmu_idx == ARMMMUIdx_Stage2) {
115         return env->cp15.vttbr_el2;
116     }
117     if (mmu_idx == ARMMMUIdx_Stage2_S) {
118         return env->cp15.vsttbr_el2;
119     }
120     if (ttbrn == 0) {
121         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
122     } else {
123         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
124     }
125 }
126 
127 /* Return true if the specified stage of address translation is disabled */
128 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
129                                         bool is_secure)
130 {
131     uint64_t hcr_el2;
132 
133     if (arm_feature(env, ARM_FEATURE_M)) {
134         switch (env->v7m.mpu_ctrl[is_secure] &
135                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
136         case R_V7M_MPU_CTRL_ENABLE_MASK:
137             /* Enabled, but not for HardFault and NMI */
138             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
139         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
140             /* Enabled for all cases */
141             return false;
142         case 0:
143         default:
144             /*
145              * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
146              * we warned about that in armv7m_nvic.c when the guest set it.
147              */
148             return true;
149         }
150     }
151 
152     hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure);
153 
154     switch (mmu_idx) {
155     case ARMMMUIdx_Stage2:
156     case ARMMMUIdx_Stage2_S:
157         /* HCR.DC means HCR.VM behaves as 1 */
158         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
159 
160     case ARMMMUIdx_E10_0:
161     case ARMMMUIdx_E10_1:
162     case ARMMMUIdx_E10_1_PAN:
163         /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
164         if (hcr_el2 & HCR_TGE) {
165             return true;
166         }
167         break;
168 
169     case ARMMMUIdx_Stage1_E0:
170     case ARMMMUIdx_Stage1_E1:
171     case ARMMMUIdx_Stage1_E1_PAN:
172         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
173         if (hcr_el2 & HCR_DC) {
174             return true;
175         }
176         break;
177 
178     case ARMMMUIdx_E20_0:
179     case ARMMMUIdx_E20_2:
180     case ARMMMUIdx_E20_2_PAN:
181     case ARMMMUIdx_E2:
182     case ARMMMUIdx_E3:
183         break;
184 
185     case ARMMMUIdx_Phys_NS:
186     case ARMMMUIdx_Phys_S:
187         /* No translation for physical address spaces. */
188         return true;
189 
190     default:
191         g_assert_not_reached();
192     }
193 
194     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
195 }
196 
197 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
198 {
199     /*
200      * For an S1 page table walk, the stage 1 attributes are always
201      * some form of "this is Normal memory". The combined S1+S2
202      * attributes are therefore only Device if stage 2 specifies Device.
203      * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
204      * ie when cacheattrs.attrs bits [3:2] are 0b00.
205      * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
206      * when cacheattrs.attrs bit [2] is 0.
207      */
208     if (hcr & HCR_FWB) {
209         return (attrs & 0x4) == 0;
210     } else {
211         return (attrs & 0xc) == 0;
212     }
213 }
214 
215 /* Translate a S1 pagetable walk through S2 if needed.  */
216 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
217                              hwaddr addr, ARMMMUFaultInfo *fi)
218 {
219     bool is_secure = ptw->in_secure;
220     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
221     ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
222     uint8_t pte_attrs;
223     bool pte_secure;
224 
225     ptw->out_virt = addr;
226 
227     if (unlikely(ptw->in_debug)) {
228         /*
229          * From gdbstub, do not use softmmu so that we don't modify the
230          * state of the cpu at all, including softmmu tlb contents.
231          */
232         if (regime_is_stage2(s2_mmu_idx)) {
233             S1Translate s2ptw = {
234                 .in_mmu_idx = s2_mmu_idx,
235                 .in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS,
236                 .in_secure = is_secure,
237                 .in_debug = true,
238             };
239             GetPhysAddrResult s2 = { };
240 
241             if (get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD,
242                                    false, &s2, fi)) {
243                 goto fail;
244             }
245             ptw->out_phys = s2.f.phys_addr;
246             pte_attrs = s2.cacheattrs.attrs;
247             pte_secure = s2.f.attrs.secure;
248         } else {
249             /* Regime is physical. */
250             ptw->out_phys = addr;
251             pte_attrs = 0;
252             pte_secure = is_secure;
253         }
254         ptw->out_host = NULL;
255         ptw->out_rw = false;
256     } else {
257 #ifdef CONFIG_TCG
258         CPUTLBEntryFull *full;
259         int flags;
260 
261         env->tlb_fi = fi;
262         flags = probe_access_full(env, addr, 0, MMU_DATA_LOAD,
263                                   arm_to_core_mmu_idx(s2_mmu_idx),
264                                   true, &ptw->out_host, &full, 0);
265         env->tlb_fi = NULL;
266 
267         if (unlikely(flags & TLB_INVALID_MASK)) {
268             goto fail;
269         }
270         ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
271         ptw->out_rw = full->prot & PAGE_WRITE;
272         pte_attrs = full->pte_attrs;
273         pte_secure = full->attrs.secure;
274 #else
275         g_assert_not_reached();
276 #endif
277     }
278 
279     if (regime_is_stage2(s2_mmu_idx)) {
280         uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
281 
282         if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
283             /*
284              * PTW set and S1 walk touched S2 Device memory:
285              * generate Permission fault.
286              */
287             fi->type = ARMFault_Permission;
288             fi->s2addr = addr;
289             fi->stage2 = true;
290             fi->s1ptw = true;
291             fi->s1ns = !is_secure;
292             return false;
293         }
294     }
295 
296     /* Check if page table walk is to secure or non-secure PA space. */
297     ptw->out_secure = (is_secure
298                        && !(pte_secure
299                             ? env->cp15.vstcr_el2 & VSTCR_SW
300                             : env->cp15.vtcr_el2 & VTCR_NSW));
301     ptw->out_be = regime_translation_big_endian(env, mmu_idx);
302     return true;
303 
304  fail:
305     assert(fi->type != ARMFault_None);
306     fi->s2addr = addr;
307     fi->stage2 = true;
308     fi->s1ptw = true;
309     fi->s1ns = !is_secure;
310     return false;
311 }
312 
313 /* All loads done in the course of a page table walk go through here. */
314 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
315                             ARMMMUFaultInfo *fi)
316 {
317     CPUState *cs = env_cpu(env);
318     void *host = ptw->out_host;
319     uint32_t data;
320 
321     if (likely(host)) {
322         /* Page tables are in RAM, and we have the host address. */
323         data = qatomic_read((uint32_t *)host);
324         if (ptw->out_be) {
325             data = be32_to_cpu(data);
326         } else {
327             data = le32_to_cpu(data);
328         }
329     } else {
330         /* Page tables are in MMIO. */
331         MemTxAttrs attrs = { .secure = ptw->out_secure };
332         AddressSpace *as = arm_addressspace(cs, attrs);
333         MemTxResult result = MEMTX_OK;
334 
335         if (ptw->out_be) {
336             data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
337         } else {
338             data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
339         }
340         if (unlikely(result != MEMTX_OK)) {
341             fi->type = ARMFault_SyncExternalOnWalk;
342             fi->ea = arm_extabort_type(result);
343             return 0;
344         }
345     }
346     return data;
347 }
348 
349 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
350                             ARMMMUFaultInfo *fi)
351 {
352     CPUState *cs = env_cpu(env);
353     void *host = ptw->out_host;
354     uint64_t data;
355 
356     if (likely(host)) {
357         /* Page tables are in RAM, and we have the host address. */
358 #ifdef CONFIG_ATOMIC64
359         data = qatomic_read__nocheck((uint64_t *)host);
360         if (ptw->out_be) {
361             data = be64_to_cpu(data);
362         } else {
363             data = le64_to_cpu(data);
364         }
365 #else
366         if (ptw->out_be) {
367             data = ldq_be_p(host);
368         } else {
369             data = ldq_le_p(host);
370         }
371 #endif
372     } else {
373         /* Page tables are in MMIO. */
374         MemTxAttrs attrs = { .secure = ptw->out_secure };
375         AddressSpace *as = arm_addressspace(cs, attrs);
376         MemTxResult result = MEMTX_OK;
377 
378         if (ptw->out_be) {
379             data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
380         } else {
381             data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
382         }
383         if (unlikely(result != MEMTX_OK)) {
384             fi->type = ARMFault_SyncExternalOnWalk;
385             fi->ea = arm_extabort_type(result);
386             return 0;
387         }
388     }
389     return data;
390 }
391 
392 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
393                              uint64_t new_val, S1Translate *ptw,
394                              ARMMMUFaultInfo *fi)
395 {
396     uint64_t cur_val;
397     void *host = ptw->out_host;
398 
399     if (unlikely(!host)) {
400         fi->type = ARMFault_UnsuppAtomicUpdate;
401         fi->s1ptw = true;
402         return 0;
403     }
404 
405     /*
406      * Raising a stage2 Protection fault for an atomic update to a read-only
407      * page is delayed until it is certain that there is a change to make.
408      */
409     if (unlikely(!ptw->out_rw)) {
410         int flags;
411         void *discard;
412 
413         env->tlb_fi = fi;
414         flags = probe_access_flags(env, ptw->out_virt, 0, MMU_DATA_STORE,
415                                    arm_to_core_mmu_idx(ptw->in_ptw_idx),
416                                    true, &discard, 0);
417         env->tlb_fi = NULL;
418 
419         if (unlikely(flags & TLB_INVALID_MASK)) {
420             assert(fi->type != ARMFault_None);
421             fi->s2addr = ptw->out_virt;
422             fi->stage2 = true;
423             fi->s1ptw = true;
424             fi->s1ns = !ptw->in_secure;
425             return 0;
426         }
427 
428         /* In case CAS mismatches and we loop, remember writability. */
429         ptw->out_rw = true;
430     }
431 
432 #ifdef CONFIG_ATOMIC64
433     if (ptw->out_be) {
434         old_val = cpu_to_be64(old_val);
435         new_val = cpu_to_be64(new_val);
436         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
437         cur_val = be64_to_cpu(cur_val);
438     } else {
439         old_val = cpu_to_le64(old_val);
440         new_val = cpu_to_le64(new_val);
441         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
442         cur_val = le64_to_cpu(cur_val);
443     }
444 #else
445     /*
446      * We can't support the full 64-bit atomic cmpxchg on the host.
447      * Because this is only used for FEAT_HAFDBS, which is only for AA64,
448      * we know that TCG_OVERSIZED_GUEST is set, which means that we are
449      * running in round-robin mode and could only race with dma i/o.
450      */
451 #ifndef TCG_OVERSIZED_GUEST
452 # error "Unexpected configuration"
453 #endif
454     bool locked = qemu_mutex_iothread_locked();
455     if (!locked) {
456        qemu_mutex_lock_iothread();
457     }
458     if (ptw->out_be) {
459         cur_val = ldq_be_p(host);
460         if (cur_val == old_val) {
461             stq_be_p(host, new_val);
462         }
463     } else {
464         cur_val = ldq_le_p(host);
465         if (cur_val == old_val) {
466             stq_le_p(host, new_val);
467         }
468     }
469     if (!locked) {
470         qemu_mutex_unlock_iothread();
471     }
472 #endif
473 
474     return cur_val;
475 }
476 
477 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
478                                      uint32_t *table, uint32_t address)
479 {
480     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
481     uint64_t tcr = regime_tcr(env, mmu_idx);
482     int maskshift = extract32(tcr, 0, 3);
483     uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
484     uint32_t base_mask;
485 
486     if (address & mask) {
487         if (tcr & TTBCR_PD1) {
488             /* Translation table walk disabled for TTBR1 */
489             return false;
490         }
491         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
492     } else {
493         if (tcr & TTBCR_PD0) {
494             /* Translation table walk disabled for TTBR0 */
495             return false;
496         }
497         base_mask = ~((uint32_t)0x3fffu >> maskshift);
498         *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
499     }
500     *table |= (address >> 18) & 0x3ffc;
501     return true;
502 }
503 
504 /*
505  * Translate section/page access permissions to page R/W protection flags
506  * @env:         CPUARMState
507  * @mmu_idx:     MMU index indicating required translation regime
508  * @ap:          The 3-bit access permissions (AP[2:0])
509  * @domain_prot: The 2-bit domain access permissions
510  * @is_user: TRUE if accessing from PL0
511  */
512 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
513                          int ap, int domain_prot, bool is_user)
514 {
515     if (domain_prot == 3) {
516         return PAGE_READ | PAGE_WRITE;
517     }
518 
519     switch (ap) {
520     case 0:
521         if (arm_feature(env, ARM_FEATURE_V7)) {
522             return 0;
523         }
524         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
525         case SCTLR_S:
526             return is_user ? 0 : PAGE_READ;
527         case SCTLR_R:
528             return PAGE_READ;
529         default:
530             return 0;
531         }
532     case 1:
533         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
534     case 2:
535         if (is_user) {
536             return PAGE_READ;
537         } else {
538             return PAGE_READ | PAGE_WRITE;
539         }
540     case 3:
541         return PAGE_READ | PAGE_WRITE;
542     case 4: /* Reserved.  */
543         return 0;
544     case 5:
545         return is_user ? 0 : PAGE_READ;
546     case 6:
547         return PAGE_READ;
548     case 7:
549         if (!arm_feature(env, ARM_FEATURE_V6K)) {
550             return 0;
551         }
552         return PAGE_READ;
553     default:
554         g_assert_not_reached();
555     }
556 }
557 
558 /*
559  * Translate section/page access permissions to page R/W protection flags
560  * @env:         CPUARMState
561  * @mmu_idx:     MMU index indicating required translation regime
562  * @ap:          The 3-bit access permissions (AP[2:0])
563  * @domain_prot: The 2-bit domain access permissions
564  */
565 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
566                          int ap, int domain_prot)
567 {
568    return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
569                                 regime_is_user(env, mmu_idx));
570 }
571 
572 /*
573  * Translate section/page access permissions to page R/W protection flags.
574  * @ap:      The 2-bit simple AP (AP[2:1])
575  * @is_user: TRUE if accessing from PL0
576  */
577 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
578 {
579     switch (ap) {
580     case 0:
581         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
582     case 1:
583         return PAGE_READ | PAGE_WRITE;
584     case 2:
585         return is_user ? 0 : PAGE_READ;
586     case 3:
587         return PAGE_READ;
588     default:
589         g_assert_not_reached();
590     }
591 }
592 
593 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
594 {
595     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
596 }
597 
598 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
599                              uint32_t address, MMUAccessType access_type,
600                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
601 {
602     int level = 1;
603     uint32_t table;
604     uint32_t desc;
605     int type;
606     int ap;
607     int domain = 0;
608     int domain_prot;
609     hwaddr phys_addr;
610     uint32_t dacr;
611 
612     /* Pagetable walk.  */
613     /* Lookup l1 descriptor.  */
614     if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
615         /* Section translation fault if page walk is disabled by PD0 or PD1 */
616         fi->type = ARMFault_Translation;
617         goto do_fault;
618     }
619     if (!S1_ptw_translate(env, ptw, table, fi)) {
620         goto do_fault;
621     }
622     desc = arm_ldl_ptw(env, ptw, fi);
623     if (fi->type != ARMFault_None) {
624         goto do_fault;
625     }
626     type = (desc & 3);
627     domain = (desc >> 5) & 0x0f;
628     if (regime_el(env, ptw->in_mmu_idx) == 1) {
629         dacr = env->cp15.dacr_ns;
630     } else {
631         dacr = env->cp15.dacr_s;
632     }
633     domain_prot = (dacr >> (domain * 2)) & 3;
634     if (type == 0) {
635         /* Section translation fault.  */
636         fi->type = ARMFault_Translation;
637         goto do_fault;
638     }
639     if (type != 2) {
640         level = 2;
641     }
642     if (domain_prot == 0 || domain_prot == 2) {
643         fi->type = ARMFault_Domain;
644         goto do_fault;
645     }
646     if (type == 2) {
647         /* 1Mb section.  */
648         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
649         ap = (desc >> 10) & 3;
650         result->f.lg_page_size = 20; /* 1MB */
651     } else {
652         /* Lookup l2 entry.  */
653         if (type == 1) {
654             /* Coarse pagetable.  */
655             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
656         } else {
657             /* Fine pagetable.  */
658             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
659         }
660         if (!S1_ptw_translate(env, ptw, table, fi)) {
661             goto do_fault;
662         }
663         desc = arm_ldl_ptw(env, ptw, fi);
664         if (fi->type != ARMFault_None) {
665             goto do_fault;
666         }
667         switch (desc & 3) {
668         case 0: /* Page translation fault.  */
669             fi->type = ARMFault_Translation;
670             goto do_fault;
671         case 1: /* 64k page.  */
672             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
673             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
674             result->f.lg_page_size = 16;
675             break;
676         case 2: /* 4k page.  */
677             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
678             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
679             result->f.lg_page_size = 12;
680             break;
681         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
682             if (type == 1) {
683                 /* ARMv6/XScale extended small page format */
684                 if (arm_feature(env, ARM_FEATURE_XSCALE)
685                     || arm_feature(env, ARM_FEATURE_V6)) {
686                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
687                     result->f.lg_page_size = 12;
688                 } else {
689                     /*
690                      * UNPREDICTABLE in ARMv5; we choose to take a
691                      * page translation fault.
692                      */
693                     fi->type = ARMFault_Translation;
694                     goto do_fault;
695                 }
696             } else {
697                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
698                 result->f.lg_page_size = 10;
699             }
700             ap = (desc >> 4) & 3;
701             break;
702         default:
703             /* Never happens, but compiler isn't smart enough to tell.  */
704             g_assert_not_reached();
705         }
706     }
707     result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
708     result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
709     if (!(result->f.prot & (1 << access_type))) {
710         /* Access permission fault.  */
711         fi->type = ARMFault_Permission;
712         goto do_fault;
713     }
714     result->f.phys_addr = phys_addr;
715     return false;
716 do_fault:
717     fi->domain = domain;
718     fi->level = level;
719     return true;
720 }
721 
722 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
723                              uint32_t address, MMUAccessType access_type,
724                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
725 {
726     ARMCPU *cpu = env_archcpu(env);
727     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
728     int level = 1;
729     uint32_t table;
730     uint32_t desc;
731     uint32_t xn;
732     uint32_t pxn = 0;
733     int type;
734     int ap;
735     int domain = 0;
736     int domain_prot;
737     hwaddr phys_addr;
738     uint32_t dacr;
739     bool ns;
740     int user_prot;
741 
742     /* Pagetable walk.  */
743     /* Lookup l1 descriptor.  */
744     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
745         /* Section translation fault if page walk is disabled by PD0 or PD1 */
746         fi->type = ARMFault_Translation;
747         goto do_fault;
748     }
749     if (!S1_ptw_translate(env, ptw, table, fi)) {
750         goto do_fault;
751     }
752     desc = arm_ldl_ptw(env, ptw, fi);
753     if (fi->type != ARMFault_None) {
754         goto do_fault;
755     }
756     type = (desc & 3);
757     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
758         /* Section translation fault, or attempt to use the encoding
759          * which is Reserved on implementations without PXN.
760          */
761         fi->type = ARMFault_Translation;
762         goto do_fault;
763     }
764     if ((type == 1) || !(desc & (1 << 18))) {
765         /* Page or Section.  */
766         domain = (desc >> 5) & 0x0f;
767     }
768     if (regime_el(env, mmu_idx) == 1) {
769         dacr = env->cp15.dacr_ns;
770     } else {
771         dacr = env->cp15.dacr_s;
772     }
773     if (type == 1) {
774         level = 2;
775     }
776     domain_prot = (dacr >> (domain * 2)) & 3;
777     if (domain_prot == 0 || domain_prot == 2) {
778         /* Section or Page domain fault */
779         fi->type = ARMFault_Domain;
780         goto do_fault;
781     }
782     if (type != 1) {
783         if (desc & (1 << 18)) {
784             /* Supersection.  */
785             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
786             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
787             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
788             result->f.lg_page_size = 24;  /* 16MB */
789         } else {
790             /* Section.  */
791             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
792             result->f.lg_page_size = 20;  /* 1MB */
793         }
794         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
795         xn = desc & (1 << 4);
796         pxn = desc & 1;
797         ns = extract32(desc, 19, 1);
798     } else {
799         if (cpu_isar_feature(aa32_pxn, cpu)) {
800             pxn = (desc >> 2) & 1;
801         }
802         ns = extract32(desc, 3, 1);
803         /* Lookup l2 entry.  */
804         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
805         if (!S1_ptw_translate(env, ptw, table, fi)) {
806             goto do_fault;
807         }
808         desc = arm_ldl_ptw(env, ptw, fi);
809         if (fi->type != ARMFault_None) {
810             goto do_fault;
811         }
812         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
813         switch (desc & 3) {
814         case 0: /* Page translation fault.  */
815             fi->type = ARMFault_Translation;
816             goto do_fault;
817         case 1: /* 64k page.  */
818             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
819             xn = desc & (1 << 15);
820             result->f.lg_page_size = 16;
821             break;
822         case 2: case 3: /* 4k page.  */
823             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
824             xn = desc & 1;
825             result->f.lg_page_size = 12;
826             break;
827         default:
828             /* Never happens, but compiler isn't smart enough to tell.  */
829             g_assert_not_reached();
830         }
831     }
832     if (domain_prot == 3) {
833         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
834     } else {
835         if (pxn && !regime_is_user(env, mmu_idx)) {
836             xn = 1;
837         }
838         if (xn && access_type == MMU_INST_FETCH) {
839             fi->type = ARMFault_Permission;
840             goto do_fault;
841         }
842 
843         if (arm_feature(env, ARM_FEATURE_V6K) &&
844                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
845             /* The simplified model uses AP[0] as an access control bit.  */
846             if ((ap & 1) == 0) {
847                 /* Access flag fault.  */
848                 fi->type = ARMFault_AccessFlag;
849                 goto do_fault;
850             }
851             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
852             user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
853         } else {
854             result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
855             user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
856         }
857         if (result->f.prot && !xn) {
858             result->f.prot |= PAGE_EXEC;
859         }
860         if (!(result->f.prot & (1 << access_type))) {
861             /* Access permission fault.  */
862             fi->type = ARMFault_Permission;
863             goto do_fault;
864         }
865         if (regime_is_pan(env, mmu_idx) &&
866             !regime_is_user(env, mmu_idx) &&
867             user_prot &&
868             access_type != MMU_INST_FETCH) {
869             /* Privileged Access Never fault */
870             fi->type = ARMFault_Permission;
871             goto do_fault;
872         }
873     }
874     if (ns) {
875         /* The NS bit will (as required by the architecture) have no effect if
876          * the CPU doesn't support TZ or this is a non-secure translation
877          * regime, because the attribute will already be non-secure.
878          */
879         result->f.attrs.secure = false;
880     }
881     result->f.phys_addr = phys_addr;
882     return false;
883 do_fault:
884     fi->domain = domain;
885     fi->level = level;
886     return true;
887 }
888 
889 /*
890  * Translate S2 section/page access permissions to protection flags
891  * @env:     CPUARMState
892  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
893  * @xn:      XN (execute-never) bits
894  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
895  */
896 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
897 {
898     int prot = 0;
899 
900     if (s2ap & 1) {
901         prot |= PAGE_READ;
902     }
903     if (s2ap & 2) {
904         prot |= PAGE_WRITE;
905     }
906 
907     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
908         switch (xn) {
909         case 0:
910             prot |= PAGE_EXEC;
911             break;
912         case 1:
913             if (s1_is_el0) {
914                 prot |= PAGE_EXEC;
915             }
916             break;
917         case 2:
918             break;
919         case 3:
920             if (!s1_is_el0) {
921                 prot |= PAGE_EXEC;
922             }
923             break;
924         default:
925             g_assert_not_reached();
926         }
927     } else {
928         if (!extract32(xn, 1, 1)) {
929             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
930                 prot |= PAGE_EXEC;
931             }
932         }
933     }
934     return prot;
935 }
936 
937 /*
938  * Translate section/page access permissions to protection flags
939  * @env:     CPUARMState
940  * @mmu_idx: MMU index indicating required translation regime
941  * @is_aa64: TRUE if AArch64
942  * @ap:      The 2-bit simple AP (AP[2:1])
943  * @ns:      NS (non-secure) bit
944  * @xn:      XN (execute-never) bit
945  * @pxn:     PXN (privileged execute-never) bit
946  */
947 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
948                       int ap, int ns, int xn, int pxn)
949 {
950     ARMCPU *cpu = env_archcpu(env);
951     bool is_user = regime_is_user(env, mmu_idx);
952     int prot_rw, user_rw;
953     bool have_wxn;
954     int wxn = 0;
955 
956     assert(!regime_is_stage2(mmu_idx));
957 
958     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
959     if (is_user) {
960         prot_rw = user_rw;
961     } else {
962         /*
963          * PAN controls can forbid data accesses but don't affect insn fetch.
964          * Plain PAN forbids data accesses if EL0 has data permissions;
965          * PAN3 forbids data accesses if EL0 has either data or exec perms.
966          * Note that for AArch64 the 'user can exec' case is exactly !xn.
967          * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
968          * do not affect EPAN.
969          */
970         if (user_rw && regime_is_pan(env, mmu_idx)) {
971             prot_rw = 0;
972         } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
973                    regime_is_pan(env, mmu_idx) &&
974                    (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
975             prot_rw = 0;
976         } else {
977             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
978         }
979     }
980 
981     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
982         return prot_rw;
983     }
984 
985     /* TODO have_wxn should be replaced with
986      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
987      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
988      * compatible processors have EL2, which is required for [U]WXN.
989      */
990     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
991 
992     if (have_wxn) {
993         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
994     }
995 
996     if (is_aa64) {
997         if (regime_has_2_ranges(mmu_idx) && !is_user) {
998             xn = pxn || (user_rw & PAGE_WRITE);
999         }
1000     } else if (arm_feature(env, ARM_FEATURE_V7)) {
1001         switch (regime_el(env, mmu_idx)) {
1002         case 1:
1003         case 3:
1004             if (is_user) {
1005                 xn = xn || !(user_rw & PAGE_READ);
1006             } else {
1007                 int uwxn = 0;
1008                 if (have_wxn) {
1009                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
1010                 }
1011                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1012                      (uwxn && (user_rw & PAGE_WRITE));
1013             }
1014             break;
1015         case 2:
1016             break;
1017         }
1018     } else {
1019         xn = wxn = 0;
1020     }
1021 
1022     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1023         return prot_rw;
1024     }
1025     return prot_rw | PAGE_EXEC;
1026 }
1027 
1028 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1029                                           ARMMMUIdx mmu_idx)
1030 {
1031     uint64_t tcr = regime_tcr(env, mmu_idx);
1032     uint32_t el = regime_el(env, mmu_idx);
1033     int select, tsz;
1034     bool epd, hpd;
1035 
1036     assert(mmu_idx != ARMMMUIdx_Stage2_S);
1037 
1038     if (mmu_idx == ARMMMUIdx_Stage2) {
1039         /* VTCR */
1040         bool sext = extract32(tcr, 4, 1);
1041         bool sign = extract32(tcr, 3, 1);
1042 
1043         /*
1044          * If the sign-extend bit is not the same as t0sz[3], the result
1045          * is unpredictable. Flag this as a guest error.
1046          */
1047         if (sign != sext) {
1048             qemu_log_mask(LOG_GUEST_ERROR,
1049                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1050         }
1051         tsz = sextract32(tcr, 0, 4) + 8;
1052         select = 0;
1053         hpd = false;
1054         epd = false;
1055     } else if (el == 2) {
1056         /* HTCR */
1057         tsz = extract32(tcr, 0, 3);
1058         select = 0;
1059         hpd = extract64(tcr, 24, 1);
1060         epd = false;
1061     } else {
1062         int t0sz = extract32(tcr, 0, 3);
1063         int t1sz = extract32(tcr, 16, 3);
1064 
1065         if (t1sz == 0) {
1066             select = va > (0xffffffffu >> t0sz);
1067         } else {
1068             /* Note that we will detect errors later.  */
1069             select = va >= ~(0xffffffffu >> t1sz);
1070         }
1071         if (!select) {
1072             tsz = t0sz;
1073             epd = extract32(tcr, 7, 1);
1074             hpd = extract64(tcr, 41, 1);
1075         } else {
1076             tsz = t1sz;
1077             epd = extract32(tcr, 23, 1);
1078             hpd = extract64(tcr, 42, 1);
1079         }
1080         /* For aarch32, hpd0 is not enabled without t2e as well.  */
1081         hpd &= extract32(tcr, 6, 1);
1082     }
1083 
1084     return (ARMVAParameters) {
1085         .tsz = tsz,
1086         .select = select,
1087         .epd = epd,
1088         .hpd = hpd,
1089     };
1090 }
1091 
1092 /*
1093  * check_s2_mmu_setup
1094  * @cpu:        ARMCPU
1095  * @is_aa64:    True if the translation regime is in AArch64 state
1096  * @tcr:        VTCR_EL2 or VSTCR_EL2
1097  * @ds:         Effective value of TCR.DS.
1098  * @iasize:     Bitsize of IPAs
1099  * @stride:     Page-table stride (See the ARM ARM)
1100  *
1101  * Decode the starting level of the S2 lookup, returning INT_MIN if
1102  * the configuration is invalid.
1103  */
1104 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1105                               bool ds, int iasize, int stride)
1106 {
1107     int sl0, sl2, startlevel, granulebits, levels;
1108     int s1_min_iasize, s1_max_iasize;
1109 
1110     sl0 = extract32(tcr, 6, 2);
1111     if (is_aa64) {
1112         /*
1113          * AArch64.S2InvalidTxSZ: While we checked tsz_oob near the top of
1114          * get_phys_addr_lpae, that used aa64_va_parameters which apply
1115          * to aarch64.  If Stage1 is aarch32, the min_txsz is larger.
1116          * See AArch64.S2MinTxSZ, where min_tsz is 24, translated to
1117          * inputsize is 64 - 24 = 40.
1118          */
1119         if (iasize < 40 && !arm_el_is_aa64(&cpu->env, 1)) {
1120             goto fail;
1121         }
1122 
1123         /*
1124          * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1125          * so interleave AArch64.S2StartLevel.
1126          */
1127         switch (stride) {
1128         case 9: /* 4KB */
1129             /* SL2 is RES0 unless DS=1 & 4KB granule. */
1130             sl2 = extract64(tcr, 33, 1);
1131             if (ds && sl2) {
1132                 if (sl0 != 0) {
1133                     goto fail;
1134                 }
1135                 startlevel = -1;
1136             } else {
1137                 startlevel = 2 - sl0;
1138                 switch (sl0) {
1139                 case 2:
1140                     if (arm_pamax(cpu) < 44) {
1141                         goto fail;
1142                     }
1143                     break;
1144                 case 3:
1145                     if (!cpu_isar_feature(aa64_st, cpu)) {
1146                         goto fail;
1147                     }
1148                     startlevel = 3;
1149                     break;
1150                 }
1151             }
1152             break;
1153         case 11: /* 16KB */
1154             switch (sl0) {
1155             case 2:
1156                 if (arm_pamax(cpu) < 42) {
1157                     goto fail;
1158                 }
1159                 break;
1160             case 3:
1161                 if (!ds) {
1162                     goto fail;
1163                 }
1164                 break;
1165             }
1166             startlevel = 3 - sl0;
1167             break;
1168         case 13: /* 64KB */
1169             switch (sl0) {
1170             case 2:
1171                 if (arm_pamax(cpu) < 44) {
1172                     goto fail;
1173                 }
1174                 break;
1175             case 3:
1176                 goto fail;
1177             }
1178             startlevel = 3 - sl0;
1179             break;
1180         default:
1181             g_assert_not_reached();
1182         }
1183     } else {
1184         /*
1185          * Things are simpler for AArch32 EL2, with only 4k pages.
1186          * There is no separate S2InvalidSL function, but AArch32.S2Walk
1187          * begins with walkparms.sl0 in {'1x'}.
1188          */
1189         assert(stride == 9);
1190         if (sl0 >= 2) {
1191             goto fail;
1192         }
1193         startlevel = 2 - sl0;
1194     }
1195 
1196     /* AArch{64,32}.S2InconsistentSL are functionally equivalent.  */
1197     levels = 3 - startlevel;
1198     granulebits = stride + 3;
1199 
1200     s1_min_iasize = levels * stride + granulebits + 1;
1201     s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1202 
1203     if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1204         return startlevel;
1205     }
1206 
1207  fail:
1208     return INT_MIN;
1209 }
1210 
1211 /**
1212  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1213  *
1214  * Returns false if the translation was successful. Otherwise, phys_ptr,
1215  * attrs, prot and page_size may not be filled in, and the populated fsr
1216  * value provides information on why the translation aborted, in the format
1217  * of a long-format DFSR/IFSR fault register, with the following caveat:
1218  * the WnR bit is never set (the caller must do this).
1219  *
1220  * @env: CPUARMState
1221  * @ptw: Current and next stage parameters for the walk.
1222  * @address: virtual address to get physical address for
1223  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1224  * @s1_is_el0: if @ptw->in_mmu_idx is ARMMMUIdx_Stage2
1225  *             (so this is a stage 2 page table walk),
1226  *             must be true if this is stage 2 of a stage 1+2
1227  *             walk for an EL0 access. If @mmu_idx is anything else,
1228  *             @s1_is_el0 is ignored.
1229  * @result: set on translation success,
1230  * @fi: set to fault info if the translation fails
1231  */
1232 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1233                                uint64_t address,
1234                                MMUAccessType access_type, bool s1_is_el0,
1235                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1236 {
1237     ARMCPU *cpu = env_archcpu(env);
1238     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1239     bool is_secure = ptw->in_secure;
1240     int32_t level;
1241     ARMVAParameters param;
1242     uint64_t ttbr;
1243     hwaddr descaddr, indexmask, indexmask_grainsize;
1244     uint32_t tableattrs;
1245     target_ulong page_size;
1246     uint64_t attrs;
1247     int32_t stride;
1248     int addrsize, inputsize, outputsize;
1249     uint64_t tcr = regime_tcr(env, mmu_idx);
1250     int ap, ns, xn, pxn;
1251     uint32_t el = regime_el(env, mmu_idx);
1252     uint64_t descaddrmask;
1253     bool aarch64 = arm_el_is_aa64(env, el);
1254     uint64_t descriptor, new_descriptor;
1255     bool nstable;
1256 
1257     /* TODO: This code does not support shareability levels. */
1258     if (aarch64) {
1259         int ps;
1260 
1261         param = aa64_va_parameters(env, address, mmu_idx,
1262                                    access_type != MMU_INST_FETCH);
1263         level = 0;
1264 
1265         /*
1266          * If TxSZ is programmed to a value larger than the maximum,
1267          * or smaller than the effective minimum, it is IMPLEMENTATION
1268          * DEFINED whether we behave as if the field were programmed
1269          * within bounds, or if a level 0 Translation fault is generated.
1270          *
1271          * With FEAT_LVA, fault on less than minimum becomes required,
1272          * so our choice is to always raise the fault.
1273          */
1274         if (param.tsz_oob) {
1275             goto do_translation_fault;
1276         }
1277 
1278         addrsize = 64 - 8 * param.tbi;
1279         inputsize = 64 - param.tsz;
1280 
1281         /*
1282          * Bound PS by PARANGE to find the effective output address size.
1283          * ID_AA64MMFR0 is a read-only register so values outside of the
1284          * supported mappings can be considered an implementation error.
1285          */
1286         ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1287         ps = MIN(ps, param.ps);
1288         assert(ps < ARRAY_SIZE(pamax_map));
1289         outputsize = pamax_map[ps];
1290 
1291         /*
1292          * With LPA2, the effective output address (OA) size is at most 48 bits
1293          * unless TCR.DS == 1
1294          */
1295         if (!param.ds && param.gran != Gran64K) {
1296             outputsize = MIN(outputsize, 48);
1297         }
1298     } else {
1299         param = aa32_va_parameters(env, address, mmu_idx);
1300         level = 1;
1301         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1302         inputsize = addrsize - param.tsz;
1303         outputsize = 40;
1304     }
1305 
1306     /*
1307      * We determined the region when collecting the parameters, but we
1308      * have not yet validated that the address is valid for the region.
1309      * Extract the top bits and verify that they all match select.
1310      *
1311      * For aa32, if inputsize == addrsize, then we have selected the
1312      * region by exclusion in aa32_va_parameters and there is no more
1313      * validation to do here.
1314      */
1315     if (inputsize < addrsize) {
1316         target_ulong top_bits = sextract64(address, inputsize,
1317                                            addrsize - inputsize);
1318         if (-top_bits != param.select) {
1319             /* The gap between the two regions is a Translation fault */
1320             goto do_translation_fault;
1321         }
1322     }
1323 
1324     stride = arm_granule_bits(param.gran) - 3;
1325 
1326     /*
1327      * Note that QEMU ignores shareability and cacheability attributes,
1328      * so we don't need to do anything with the SH, ORGN, IRGN fields
1329      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
1330      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1331      * implement any ASID-like capability so we can ignore it (instead
1332      * we will always flush the TLB any time the ASID is changed).
1333      */
1334     ttbr = regime_ttbr(env, mmu_idx, param.select);
1335 
1336     /*
1337      * Here we should have set up all the parameters for the translation:
1338      * inputsize, ttbr, epd, stride, tbi
1339      */
1340 
1341     if (param.epd) {
1342         /*
1343          * Translation table walk disabled => Translation fault on TLB miss
1344          * Note: This is always 0 on 64-bit EL2 and EL3.
1345          */
1346         goto do_translation_fault;
1347     }
1348 
1349     if (!regime_is_stage2(mmu_idx)) {
1350         /*
1351          * The starting level depends on the virtual address size (which can
1352          * be up to 48 bits) and the translation granule size. It indicates
1353          * the number of strides (stride bits at a time) needed to
1354          * consume the bits of the input address. In the pseudocode this is:
1355          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
1356          * where their 'inputsize' is our 'inputsize', 'grainsize' is
1357          * our 'stride + 3' and 'stride' is our 'stride'.
1358          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1359          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1360          * = 4 - (inputsize - 4) / stride;
1361          */
1362         level = 4 - (inputsize - 4) / stride;
1363     } else {
1364         int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1365                                             inputsize, stride);
1366         if (startlevel == INT_MIN) {
1367             level = 0;
1368             goto do_translation_fault;
1369         }
1370         level = startlevel;
1371     }
1372 
1373     indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1374     indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1375 
1376     /* Now we can extract the actual base address from the TTBR */
1377     descaddr = extract64(ttbr, 0, 48);
1378 
1379     /*
1380      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1381      *
1382      * Otherwise, if the base address is out of range, raise AddressSizeFault.
1383      * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1384      * but we've just cleared the bits above 47, so simplify the test.
1385      */
1386     if (outputsize > 48) {
1387         descaddr |= extract64(ttbr, 2, 4) << 48;
1388     } else if (descaddr >> outputsize) {
1389         level = 0;
1390         fi->type = ARMFault_AddressSize;
1391         goto do_fault;
1392     }
1393 
1394     /*
1395      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1396      * and also to mask out CnP (bit 0) which could validly be non-zero.
1397      */
1398     descaddr &= ~indexmask;
1399 
1400     /*
1401      * For AArch32, the address field in the descriptor goes up to bit 39
1402      * for both v7 and v8.  However, for v8 the SBZ bits [47:40] must be 0
1403      * or an AddressSize fault is raised.  So for v8 we extract those SBZ
1404      * bits as part of the address, which will be checked via outputsize.
1405      * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1406      * the highest bits of a 52-bit output are placed elsewhere.
1407      */
1408     if (param.ds) {
1409         descaddrmask = MAKE_64BIT_MASK(0, 50);
1410     } else if (arm_feature(env, ARM_FEATURE_V8)) {
1411         descaddrmask = MAKE_64BIT_MASK(0, 48);
1412     } else {
1413         descaddrmask = MAKE_64BIT_MASK(0, 40);
1414     }
1415     descaddrmask &= ~indexmask_grainsize;
1416 
1417     /*
1418      * Secure accesses start with the page table in secure memory and
1419      * can be downgraded to non-secure at any step. Non-secure accesses
1420      * remain non-secure. We implement this by just ORing in the NSTable/NS
1421      * bits at each step.
1422      */
1423     tableattrs = is_secure ? 0 : (1 << 4);
1424 
1425  next_level:
1426     descaddr |= (address >> (stride * (4 - level))) & indexmask;
1427     descaddr &= ~7ULL;
1428     nstable = extract32(tableattrs, 4, 1);
1429     if (nstable) {
1430         /*
1431          * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1432          * Assert that the non-secure idx are even, and relative order.
1433          */
1434         QEMU_BUILD_BUG_ON((ARMMMUIdx_Phys_NS & 1) != 0);
1435         QEMU_BUILD_BUG_ON((ARMMMUIdx_Stage2 & 1) != 0);
1436         QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS + 1 != ARMMMUIdx_Phys_S);
1437         QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2 + 1 != ARMMMUIdx_Stage2_S);
1438         ptw->in_ptw_idx &= ~1;
1439         ptw->in_secure = false;
1440     }
1441     if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1442         goto do_fault;
1443     }
1444     descriptor = arm_ldq_ptw(env, ptw, fi);
1445     if (fi->type != ARMFault_None) {
1446         goto do_fault;
1447     }
1448     new_descriptor = descriptor;
1449 
1450  restart_atomic_update:
1451     if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) {
1452         /* Invalid, or the Reserved level 3 encoding */
1453         goto do_translation_fault;
1454     }
1455 
1456     descaddr = descriptor & descaddrmask;
1457 
1458     /*
1459      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1460      * of descriptor.  For FEAT_LPA2 and effective DS, bits [51:50] of
1461      * descaddr are in [9:8].  Otherwise, if descaddr is out of range,
1462      * raise AddressSizeFault.
1463      */
1464     if (outputsize > 48) {
1465         if (param.ds) {
1466             descaddr |= extract64(descriptor, 8, 2) << 50;
1467         } else {
1468             descaddr |= extract64(descriptor, 12, 4) << 48;
1469         }
1470     } else if (descaddr >> outputsize) {
1471         fi->type = ARMFault_AddressSize;
1472         goto do_fault;
1473     }
1474 
1475     if ((descriptor & 2) && (level < 3)) {
1476         /*
1477          * Table entry. The top five bits are attributes which may
1478          * propagate down through lower levels of the table (and
1479          * which are all arranged so that 0 means "no effect", so
1480          * we can gather them up by ORing in the bits at each level).
1481          */
1482         tableattrs |= extract64(descriptor, 59, 5);
1483         level++;
1484         indexmask = indexmask_grainsize;
1485         goto next_level;
1486     }
1487 
1488     /*
1489      * Block entry at level 1 or 2, or page entry at level 3.
1490      * These are basically the same thing, although the number
1491      * of bits we pull in from the vaddr varies. Note that although
1492      * descaddrmask masks enough of the low bits of the descriptor
1493      * to give a correct page or table address, the address field
1494      * in a block descriptor is smaller; so we need to explicitly
1495      * clear the lower bits here before ORing in the low vaddr bits.
1496      *
1497      * Afterward, descaddr is the final physical address.
1498      */
1499     page_size = (1ULL << ((stride * (4 - level)) + 3));
1500     descaddr &= ~(hwaddr)(page_size - 1);
1501     descaddr |= (address & (page_size - 1));
1502 
1503     if (likely(!ptw->in_debug)) {
1504         /*
1505          * Access flag.
1506          * If HA is enabled, prepare to update the descriptor below.
1507          * Otherwise, pass the access fault on to software.
1508          */
1509         if (!(descriptor & (1 << 10))) {
1510             if (param.ha) {
1511                 new_descriptor |= 1 << 10; /* AF */
1512             } else {
1513                 fi->type = ARMFault_AccessFlag;
1514                 goto do_fault;
1515             }
1516         }
1517 
1518         /*
1519          * Dirty Bit.
1520          * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1521          * bit for writeback. The actual write protection test may still be
1522          * overridden by tableattrs, to be merged below.
1523          */
1524         if (param.hd
1525             && extract64(descriptor, 51, 1)  /* DBM */
1526             && access_type == MMU_DATA_STORE) {
1527             if (regime_is_stage2(mmu_idx)) {
1528                 new_descriptor |= 1ull << 7;    /* set S2AP[1] */
1529             } else {
1530                 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1531             }
1532         }
1533     }
1534 
1535     /*
1536      * Extract attributes from the (modified) descriptor, and apply
1537      * table descriptors. Stage 2 table descriptors do not include
1538      * any attribute fields. HPD disables all the table attributes
1539      * except NSTable.
1540      */
1541     attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1542     if (!regime_is_stage2(mmu_idx)) {
1543         attrs |= nstable << 5; /* NS */
1544         if (!param.hpd) {
1545             attrs |= extract64(tableattrs, 0, 2) << 53;     /* XN, PXN */
1546             /*
1547              * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1548              * means "force PL1 access only", which means forcing AP[1] to 0.
1549              */
1550             attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1551             attrs |= extract32(tableattrs, 3, 1) << 7;    /* APT[1] => AP[2] */
1552         }
1553     }
1554 
1555     ap = extract32(attrs, 6, 2);
1556     if (regime_is_stage2(mmu_idx)) {
1557         ns = mmu_idx == ARMMMUIdx_Stage2;
1558         xn = extract64(attrs, 53, 2);
1559         result->f.prot = get_S2prot(env, ap, xn, s1_is_el0);
1560     } else {
1561         ns = extract32(attrs, 5, 1);
1562         xn = extract64(attrs, 54, 1);
1563         pxn = extract64(attrs, 53, 1);
1564         result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
1565     }
1566 
1567     if (!(result->f.prot & (1 << access_type))) {
1568         fi->type = ARMFault_Permission;
1569         goto do_fault;
1570     }
1571 
1572     /* If FEAT_HAFDBS has made changes, update the PTE. */
1573     if (new_descriptor != descriptor) {
1574         new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
1575         if (fi->type != ARMFault_None) {
1576             goto do_fault;
1577         }
1578         /*
1579          * I_YZSVV says that if the in-memory descriptor has changed,
1580          * then we must use the information in that new value
1581          * (which might include a different output address, different
1582          * attributes, or generate a fault).
1583          * Restart the handling of the descriptor value from scratch.
1584          */
1585         if (new_descriptor != descriptor) {
1586             descriptor = new_descriptor;
1587             goto restart_atomic_update;
1588         }
1589     }
1590 
1591     if (ns) {
1592         /*
1593          * The NS bit will (as required by the architecture) have no effect if
1594          * the CPU doesn't support TZ or this is a non-secure translation
1595          * regime, because the attribute will already be non-secure.
1596          */
1597         result->f.attrs.secure = false;
1598     }
1599 
1600     if (regime_is_stage2(mmu_idx)) {
1601         result->cacheattrs.is_s2_format = true;
1602         result->cacheattrs.attrs = extract32(attrs, 2, 4);
1603     } else {
1604         /* Index into MAIR registers for cache attributes */
1605         uint8_t attrindx = extract32(attrs, 2, 3);
1606         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
1607         assert(attrindx <= 7);
1608         result->cacheattrs.is_s2_format = false;
1609         result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
1610 
1611         /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
1612         if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
1613             result->f.guarded = extract64(attrs, 50, 1); /* GP */
1614         }
1615     }
1616 
1617     /*
1618      * For FEAT_LPA2 and effective DS, the SH field in the attributes
1619      * was re-purposed for output address bits.  The SH attribute in
1620      * that case comes from TCR_ELx, which we extracted earlier.
1621      */
1622     if (param.ds) {
1623         result->cacheattrs.shareability = param.sh;
1624     } else {
1625         result->cacheattrs.shareability = extract32(attrs, 8, 2);
1626     }
1627 
1628     result->f.phys_addr = descaddr;
1629     result->f.lg_page_size = ctz64(page_size);
1630     return false;
1631 
1632  do_translation_fault:
1633     fi->type = ARMFault_Translation;
1634  do_fault:
1635     fi->level = level;
1636     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
1637     fi->stage2 = fi->s1ptw || regime_is_stage2(mmu_idx);
1638     fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
1639     return true;
1640 }
1641 
1642 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
1643                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
1644                                  bool is_secure, GetPhysAddrResult *result,
1645                                  ARMMMUFaultInfo *fi)
1646 {
1647     int n;
1648     uint32_t mask;
1649     uint32_t base;
1650     bool is_user = regime_is_user(env, mmu_idx);
1651 
1652     if (regime_translation_disabled(env, mmu_idx, is_secure)) {
1653         /* MPU disabled.  */
1654         result->f.phys_addr = address;
1655         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1656         return false;
1657     }
1658 
1659     result->f.phys_addr = address;
1660     for (n = 7; n >= 0; n--) {
1661         base = env->cp15.c6_region[n];
1662         if ((base & 1) == 0) {
1663             continue;
1664         }
1665         mask = 1 << ((base >> 1) & 0x1f);
1666         /* Keep this shift separate from the above to avoid an
1667            (undefined) << 32.  */
1668         mask = (mask << 1) - 1;
1669         if (((base ^ address) & ~mask) == 0) {
1670             break;
1671         }
1672     }
1673     if (n < 0) {
1674         fi->type = ARMFault_Background;
1675         return true;
1676     }
1677 
1678     if (access_type == MMU_INST_FETCH) {
1679         mask = env->cp15.pmsav5_insn_ap;
1680     } else {
1681         mask = env->cp15.pmsav5_data_ap;
1682     }
1683     mask = (mask >> (n * 4)) & 0xf;
1684     switch (mask) {
1685     case 0:
1686         fi->type = ARMFault_Permission;
1687         fi->level = 1;
1688         return true;
1689     case 1:
1690         if (is_user) {
1691             fi->type = ARMFault_Permission;
1692             fi->level = 1;
1693             return true;
1694         }
1695         result->f.prot = PAGE_READ | PAGE_WRITE;
1696         break;
1697     case 2:
1698         result->f.prot = PAGE_READ;
1699         if (!is_user) {
1700             result->f.prot |= PAGE_WRITE;
1701         }
1702         break;
1703     case 3:
1704         result->f.prot = PAGE_READ | PAGE_WRITE;
1705         break;
1706     case 5:
1707         if (is_user) {
1708             fi->type = ARMFault_Permission;
1709             fi->level = 1;
1710             return true;
1711         }
1712         result->f.prot = PAGE_READ;
1713         break;
1714     case 6:
1715         result->f.prot = PAGE_READ;
1716         break;
1717     default:
1718         /* Bad permission.  */
1719         fi->type = ARMFault_Permission;
1720         fi->level = 1;
1721         return true;
1722     }
1723     result->f.prot |= PAGE_EXEC;
1724     return false;
1725 }
1726 
1727 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
1728                                          int32_t address, uint8_t *prot)
1729 {
1730     if (!arm_feature(env, ARM_FEATURE_M)) {
1731         *prot = PAGE_READ | PAGE_WRITE;
1732         switch (address) {
1733         case 0xF0000000 ... 0xFFFFFFFF:
1734             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
1735                 /* hivecs execing is ok */
1736                 *prot |= PAGE_EXEC;
1737             }
1738             break;
1739         case 0x00000000 ... 0x7FFFFFFF:
1740             *prot |= PAGE_EXEC;
1741             break;
1742         }
1743     } else {
1744         /* Default system address map for M profile cores.
1745          * The architecture specifies which regions are execute-never;
1746          * at the MPU level no other checks are defined.
1747          */
1748         switch (address) {
1749         case 0x00000000 ... 0x1fffffff: /* ROM */
1750         case 0x20000000 ... 0x3fffffff: /* SRAM */
1751         case 0x60000000 ... 0x7fffffff: /* RAM */
1752         case 0x80000000 ... 0x9fffffff: /* RAM */
1753             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1754             break;
1755         case 0x40000000 ... 0x5fffffff: /* Peripheral */
1756         case 0xa0000000 ... 0xbfffffff: /* Device */
1757         case 0xc0000000 ... 0xdfffffff: /* Device */
1758         case 0xe0000000 ... 0xffffffff: /* System */
1759             *prot = PAGE_READ | PAGE_WRITE;
1760             break;
1761         default:
1762             g_assert_not_reached();
1763         }
1764     }
1765 }
1766 
1767 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
1768 {
1769     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
1770     return arm_feature(env, ARM_FEATURE_M) &&
1771         extract32(address, 20, 12) == 0xe00;
1772 }
1773 
1774 static bool m_is_system_region(CPUARMState *env, uint32_t address)
1775 {
1776     /*
1777      * True if address is in the M profile system region
1778      * 0xe0000000 - 0xffffffff
1779      */
1780     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
1781 }
1782 
1783 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1784                                          bool is_secure, bool is_user)
1785 {
1786     /*
1787      * Return true if we should use the default memory map as a
1788      * "background" region if there are no hits against any MPU regions.
1789      */
1790     CPUARMState *env = &cpu->env;
1791 
1792     if (is_user) {
1793         return false;
1794     }
1795 
1796     if (arm_feature(env, ARM_FEATURE_M)) {
1797         return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
1798     }
1799 
1800     if (mmu_idx == ARMMMUIdx_Stage2) {
1801         return false;
1802     }
1803 
1804     return regime_sctlr(env, mmu_idx) & SCTLR_BR;
1805 }
1806 
1807 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
1808                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
1809                                  bool secure, GetPhysAddrResult *result,
1810                                  ARMMMUFaultInfo *fi)
1811 {
1812     ARMCPU *cpu = env_archcpu(env);
1813     int n;
1814     bool is_user = regime_is_user(env, mmu_idx);
1815 
1816     result->f.phys_addr = address;
1817     result->f.lg_page_size = TARGET_PAGE_BITS;
1818     result->f.prot = 0;
1819 
1820     if (regime_translation_disabled(env, mmu_idx, secure) ||
1821         m_is_ppb_region(env, address)) {
1822         /*
1823          * MPU disabled or M profile PPB access: use default memory map.
1824          * The other case which uses the default memory map in the
1825          * v7M ARM ARM pseudocode is exception vector reads from the vector
1826          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
1827          * which always does a direct read using address_space_ldl(), rather
1828          * than going via this function, so we don't need to check that here.
1829          */
1830         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
1831     } else { /* MPU enabled */
1832         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1833             /* region search */
1834             uint32_t base = env->pmsav7.drbar[n];
1835             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
1836             uint32_t rmask;
1837             bool srdis = false;
1838 
1839             if (!(env->pmsav7.drsr[n] & 0x1)) {
1840                 continue;
1841             }
1842 
1843             if (!rsize) {
1844                 qemu_log_mask(LOG_GUEST_ERROR,
1845                               "DRSR[%d]: Rsize field cannot be 0\n", n);
1846                 continue;
1847             }
1848             rsize++;
1849             rmask = (1ull << rsize) - 1;
1850 
1851             if (base & rmask) {
1852                 qemu_log_mask(LOG_GUEST_ERROR,
1853                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
1854                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
1855                               n, base, rmask);
1856                 continue;
1857             }
1858 
1859             if (address < base || address > base + rmask) {
1860                 /*
1861                  * Address not in this region. We must check whether the
1862                  * region covers addresses in the same page as our address.
1863                  * In that case we must not report a size that covers the
1864                  * whole page for a subsequent hit against a different MPU
1865                  * region or the background region, because it would result in
1866                  * incorrect TLB hits for subsequent accesses to addresses that
1867                  * are in this MPU region.
1868                  */
1869                 if (ranges_overlap(base, rmask,
1870                                    address & TARGET_PAGE_MASK,
1871                                    TARGET_PAGE_SIZE)) {
1872                     result->f.lg_page_size = 0;
1873                 }
1874                 continue;
1875             }
1876 
1877             /* Region matched */
1878 
1879             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
1880                 int i, snd;
1881                 uint32_t srdis_mask;
1882 
1883                 rsize -= 3; /* sub region size (power of 2) */
1884                 snd = ((address - base) >> rsize) & 0x7;
1885                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
1886 
1887                 srdis_mask = srdis ? 0x3 : 0x0;
1888                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
1889                     /*
1890                      * This will check in groups of 2, 4 and then 8, whether
1891                      * the subregion bits are consistent. rsize is incremented
1892                      * back up to give the region size, considering consistent
1893                      * adjacent subregions as one region. Stop testing if rsize
1894                      * is already big enough for an entire QEMU page.
1895                      */
1896                     int snd_rounded = snd & ~(i - 1);
1897                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
1898                                                      snd_rounded + 8, i);
1899                     if (srdis_mask ^ srdis_multi) {
1900                         break;
1901                     }
1902                     srdis_mask = (srdis_mask << i) | srdis_mask;
1903                     rsize++;
1904                 }
1905             }
1906             if (srdis) {
1907                 continue;
1908             }
1909             if (rsize < TARGET_PAGE_BITS) {
1910                 result->f.lg_page_size = rsize;
1911             }
1912             break;
1913         }
1914 
1915         if (n == -1) { /* no hits */
1916             if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
1917                 /* background fault */
1918                 fi->type = ARMFault_Background;
1919                 return true;
1920             }
1921             get_phys_addr_pmsav7_default(env, mmu_idx, address,
1922                                          &result->f.prot);
1923         } else { /* a MPU hit! */
1924             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
1925             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
1926 
1927             if (m_is_system_region(env, address)) {
1928                 /* System space is always execute never */
1929                 xn = 1;
1930             }
1931 
1932             if (is_user) { /* User mode AP bit decoding */
1933                 switch (ap) {
1934                 case 0:
1935                 case 1:
1936                 case 5:
1937                     break; /* no access */
1938                 case 3:
1939                     result->f.prot |= PAGE_WRITE;
1940                     /* fall through */
1941                 case 2:
1942                 case 6:
1943                     result->f.prot |= PAGE_READ | PAGE_EXEC;
1944                     break;
1945                 case 7:
1946                     /* for v7M, same as 6; for R profile a reserved value */
1947                     if (arm_feature(env, ARM_FEATURE_M)) {
1948                         result->f.prot |= PAGE_READ | PAGE_EXEC;
1949                         break;
1950                     }
1951                     /* fall through */
1952                 default:
1953                     qemu_log_mask(LOG_GUEST_ERROR,
1954                                   "DRACR[%d]: Bad value for AP bits: 0x%"
1955                                   PRIx32 "\n", n, ap);
1956                 }
1957             } else { /* Priv. mode AP bits decoding */
1958                 switch (ap) {
1959                 case 0:
1960                     break; /* no access */
1961                 case 1:
1962                 case 2:
1963                 case 3:
1964                     result->f.prot |= PAGE_WRITE;
1965                     /* fall through */
1966                 case 5:
1967                 case 6:
1968                     result->f.prot |= PAGE_READ | PAGE_EXEC;
1969                     break;
1970                 case 7:
1971                     /* for v7M, same as 6; for R profile a reserved value */
1972                     if (arm_feature(env, ARM_FEATURE_M)) {
1973                         result->f.prot |= PAGE_READ | PAGE_EXEC;
1974                         break;
1975                     }
1976                     /* fall through */
1977                 default:
1978                     qemu_log_mask(LOG_GUEST_ERROR,
1979                                   "DRACR[%d]: Bad value for AP bits: 0x%"
1980                                   PRIx32 "\n", n, ap);
1981                 }
1982             }
1983 
1984             /* execute never */
1985             if (xn) {
1986                 result->f.prot &= ~PAGE_EXEC;
1987             }
1988         }
1989     }
1990 
1991     fi->type = ARMFault_Permission;
1992     fi->level = 1;
1993     return !(result->f.prot & (1 << access_type));
1994 }
1995 
1996 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
1997                              uint32_t secure)
1998 {
1999     if (regime_el(env, mmu_idx) == 2) {
2000         return env->pmsav8.hprbar;
2001     } else {
2002         return env->pmsav8.rbar[secure];
2003     }
2004 }
2005 
2006 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
2007                              uint32_t secure)
2008 {
2009     if (regime_el(env, mmu_idx) == 2) {
2010         return env->pmsav8.hprlar;
2011     } else {
2012         return env->pmsav8.rlar[secure];
2013     }
2014 }
2015 
2016 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2017                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
2018                        bool secure, GetPhysAddrResult *result,
2019                        ARMMMUFaultInfo *fi, uint32_t *mregion)
2020 {
2021     /*
2022      * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2023      * that a full phys-to-virt translation does).
2024      * mregion is (if not NULL) set to the region number which matched,
2025      * or -1 if no region number is returned (MPU off, address did not
2026      * hit a region, address hit in multiple regions).
2027      * If the region hit doesn't cover the entire TARGET_PAGE the address
2028      * is within, then we set the result page_size to 1 to force the
2029      * memory system to use a subpage.
2030      */
2031     ARMCPU *cpu = env_archcpu(env);
2032     bool is_user = regime_is_user(env, mmu_idx);
2033     int n;
2034     int matchregion = -1;
2035     bool hit = false;
2036     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2037     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2038     int region_counter;
2039 
2040     if (regime_el(env, mmu_idx) == 2) {
2041         region_counter = cpu->pmsav8r_hdregion;
2042     } else {
2043         region_counter = cpu->pmsav7_dregion;
2044     }
2045 
2046     result->f.lg_page_size = TARGET_PAGE_BITS;
2047     result->f.phys_addr = address;
2048     result->f.prot = 0;
2049     if (mregion) {
2050         *mregion = -1;
2051     }
2052 
2053     if (mmu_idx == ARMMMUIdx_Stage2) {
2054         fi->stage2 = true;
2055     }
2056 
2057     /*
2058      * Unlike the ARM ARM pseudocode, we don't need to check whether this
2059      * was an exception vector read from the vector table (which is always
2060      * done using the default system address map), because those accesses
2061      * are done in arm_v7m_load_vector(), which always does a direct
2062      * read using address_space_ldl(), rather than going via this function.
2063      */
2064     if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */
2065         hit = true;
2066     } else if (m_is_ppb_region(env, address)) {
2067         hit = true;
2068     } else {
2069         if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2070             hit = true;
2071         }
2072 
2073         uint32_t bitmask;
2074         if (arm_feature(env, ARM_FEATURE_M)) {
2075             bitmask = 0x1f;
2076         } else {
2077             bitmask = 0x3f;
2078             fi->level = 0;
2079         }
2080 
2081         for (n = region_counter - 1; n >= 0; n--) {
2082             /* region search */
2083             /*
2084              * Note that the base address is bits [31:x] from the register
2085              * with bits [x-1:0] all zeroes, but the limit address is bits
2086              * [31:x] from the register with bits [x:0] all ones. Where x is
2087              * 5 for Cortex-M and 6 for Cortex-R
2088              */
2089             uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2090             uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2091 
2092             if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2093                 /* Region disabled */
2094                 continue;
2095             }
2096 
2097             if (address < base || address > limit) {
2098                 /*
2099                  * Address not in this region. We must check whether the
2100                  * region covers addresses in the same page as our address.
2101                  * In that case we must not report a size that covers the
2102                  * whole page for a subsequent hit against a different MPU
2103                  * region or the background region, because it would result in
2104                  * incorrect TLB hits for subsequent accesses to addresses that
2105                  * are in this MPU region.
2106                  */
2107                 if (limit >= base &&
2108                     ranges_overlap(base, limit - base + 1,
2109                                    addr_page_base,
2110                                    TARGET_PAGE_SIZE)) {
2111                     result->f.lg_page_size = 0;
2112                 }
2113                 continue;
2114             }
2115 
2116             if (base > addr_page_base || limit < addr_page_limit) {
2117                 result->f.lg_page_size = 0;
2118             }
2119 
2120             if (matchregion != -1) {
2121                 /*
2122                  * Multiple regions match -- always a failure (unlike
2123                  * PMSAv7 where highest-numbered-region wins)
2124                  */
2125                 fi->type = ARMFault_Permission;
2126                 if (arm_feature(env, ARM_FEATURE_M)) {
2127                     fi->level = 1;
2128                 }
2129                 return true;
2130             }
2131 
2132             matchregion = n;
2133             hit = true;
2134         }
2135     }
2136 
2137     if (!hit) {
2138         if (arm_feature(env, ARM_FEATURE_M)) {
2139             fi->type = ARMFault_Background;
2140         } else {
2141             fi->type = ARMFault_Permission;
2142         }
2143         return true;
2144     }
2145 
2146     if (matchregion == -1) {
2147         /* hit using the background region */
2148         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2149     } else {
2150         uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2151         uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2152         uint32_t ap = extract32(matched_rbar, 1, 2);
2153         uint32_t xn = extract32(matched_rbar, 0, 1);
2154         bool pxn = false;
2155 
2156         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2157             pxn = extract32(matched_rlar, 4, 1);
2158         }
2159 
2160         if (m_is_system_region(env, address)) {
2161             /* System space is always execute never */
2162             xn = 1;
2163         }
2164 
2165         if (regime_el(env, mmu_idx) == 2) {
2166             result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2167                                             mmu_idx != ARMMMUIdx_E2);
2168         } else {
2169             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2170         }
2171 
2172         if (!arm_feature(env, ARM_FEATURE_M)) {
2173             uint8_t attrindx = extract32(matched_rlar, 1, 3);
2174             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2175             uint8_t sh = extract32(matched_rlar, 3, 2);
2176 
2177             if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2178                 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2179                 xn = 0x1;
2180             }
2181 
2182             if ((regime_el(env, mmu_idx) == 1) &&
2183                 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2184                 pxn = 0x1;
2185             }
2186 
2187             result->cacheattrs.is_s2_format = false;
2188             result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2189             result->cacheattrs.shareability = sh;
2190         }
2191 
2192         if (result->f.prot && !xn && !(pxn && !is_user)) {
2193             result->f.prot |= PAGE_EXEC;
2194         }
2195 
2196         if (mregion) {
2197             *mregion = matchregion;
2198         }
2199     }
2200 
2201     fi->type = ARMFault_Permission;
2202     if (arm_feature(env, ARM_FEATURE_M)) {
2203         fi->level = 1;
2204     }
2205     return !(result->f.prot & (1 << access_type));
2206 }
2207 
2208 static bool v8m_is_sau_exempt(CPUARMState *env,
2209                               uint32_t address, MMUAccessType access_type)
2210 {
2211     /*
2212      * The architecture specifies that certain address ranges are
2213      * exempt from v8M SAU/IDAU checks.
2214      */
2215     return
2216         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2217         (address >= 0xe0000000 && address <= 0xe0002fff) ||
2218         (address >= 0xe000e000 && address <= 0xe000efff) ||
2219         (address >= 0xe002e000 && address <= 0xe002efff) ||
2220         (address >= 0xe0040000 && address <= 0xe0041fff) ||
2221         (address >= 0xe00ff000 && address <= 0xe00fffff);
2222 }
2223 
2224 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2225                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
2226                          bool is_secure, V8M_SAttributes *sattrs)
2227 {
2228     /*
2229      * Look up the security attributes for this address. Compare the
2230      * pseudocode SecurityCheck() function.
2231      * We assume the caller has zero-initialized *sattrs.
2232      */
2233     ARMCPU *cpu = env_archcpu(env);
2234     int r;
2235     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2236     int idau_region = IREGION_NOTVALID;
2237     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2238     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2239 
2240     if (cpu->idau) {
2241         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2242         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2243 
2244         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2245                    &idau_nsc);
2246     }
2247 
2248     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2249         /* 0xf0000000..0xffffffff is always S for insn fetches */
2250         return;
2251     }
2252 
2253     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2254         sattrs->ns = !is_secure;
2255         return;
2256     }
2257 
2258     if (idau_region != IREGION_NOTVALID) {
2259         sattrs->irvalid = true;
2260         sattrs->iregion = idau_region;
2261     }
2262 
2263     switch (env->sau.ctrl & 3) {
2264     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2265         break;
2266     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2267         sattrs->ns = true;
2268         break;
2269     default: /* SAU.ENABLE == 1 */
2270         for (r = 0; r < cpu->sau_sregion; r++) {
2271             if (env->sau.rlar[r] & 1) {
2272                 uint32_t base = env->sau.rbar[r] & ~0x1f;
2273                 uint32_t limit = env->sau.rlar[r] | 0x1f;
2274 
2275                 if (base <= address && limit >= address) {
2276                     if (base > addr_page_base || limit < addr_page_limit) {
2277                         sattrs->subpage = true;
2278                     }
2279                     if (sattrs->srvalid) {
2280                         /*
2281                          * If we hit in more than one region then we must report
2282                          * as Secure, not NS-Callable, with no valid region
2283                          * number info.
2284                          */
2285                         sattrs->ns = false;
2286                         sattrs->nsc = false;
2287                         sattrs->sregion = 0;
2288                         sattrs->srvalid = false;
2289                         break;
2290                     } else {
2291                         if (env->sau.rlar[r] & 2) {
2292                             sattrs->nsc = true;
2293                         } else {
2294                             sattrs->ns = true;
2295                         }
2296                         sattrs->srvalid = true;
2297                         sattrs->sregion = r;
2298                     }
2299                 } else {
2300                     /*
2301                      * Address not in this region. We must check whether the
2302                      * region covers addresses in the same page as our address.
2303                      * In that case we must not report a size that covers the
2304                      * whole page for a subsequent hit against a different MPU
2305                      * region or the background region, because it would result
2306                      * in incorrect TLB hits for subsequent accesses to
2307                      * addresses that are in this MPU region.
2308                      */
2309                     if (limit >= base &&
2310                         ranges_overlap(base, limit - base + 1,
2311                                        addr_page_base,
2312                                        TARGET_PAGE_SIZE)) {
2313                         sattrs->subpage = true;
2314                     }
2315                 }
2316             }
2317         }
2318         break;
2319     }
2320 
2321     /*
2322      * The IDAU will override the SAU lookup results if it specifies
2323      * higher security than the SAU does.
2324      */
2325     if (!idau_ns) {
2326         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2327             sattrs->ns = false;
2328             sattrs->nsc = idau_nsc;
2329         }
2330     }
2331 }
2332 
2333 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
2334                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
2335                                  bool secure, GetPhysAddrResult *result,
2336                                  ARMMMUFaultInfo *fi)
2337 {
2338     V8M_SAttributes sattrs = {};
2339     bool ret;
2340 
2341     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2342         v8m_security_lookup(env, address, access_type, mmu_idx,
2343                             secure, &sattrs);
2344         if (access_type == MMU_INST_FETCH) {
2345             /*
2346              * Instruction fetches always use the MMU bank and the
2347              * transaction attribute determined by the fetch address,
2348              * regardless of CPU state. This is painful for QEMU
2349              * to handle, because it would mean we need to encode
2350              * into the mmu_idx not just the (user, negpri) information
2351              * for the current security state but also that for the
2352              * other security state, which would balloon the number
2353              * of mmu_idx values needed alarmingly.
2354              * Fortunately we can avoid this because it's not actually
2355              * possible to arbitrarily execute code from memory with
2356              * the wrong security attribute: it will always generate
2357              * an exception of some kind or another, apart from the
2358              * special case of an NS CPU executing an SG instruction
2359              * in S&NSC memory. So we always just fail the translation
2360              * here and sort things out in the exception handler
2361              * (including possibly emulating an SG instruction).
2362              */
2363             if (sattrs.ns != !secure) {
2364                 if (sattrs.nsc) {
2365                     fi->type = ARMFault_QEMU_NSCExec;
2366                 } else {
2367                     fi->type = ARMFault_QEMU_SFault;
2368                 }
2369                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2370                 result->f.phys_addr = address;
2371                 result->f.prot = 0;
2372                 return true;
2373             }
2374         } else {
2375             /*
2376              * For data accesses we always use the MMU bank indicated
2377              * by the current CPU state, but the security attributes
2378              * might downgrade a secure access to nonsecure.
2379              */
2380             if (sattrs.ns) {
2381                 result->f.attrs.secure = false;
2382             } else if (!secure) {
2383                 /*
2384                  * NS access to S memory must fault.
2385                  * Architecturally we should first check whether the
2386                  * MPU information for this address indicates that we
2387                  * are doing an unaligned access to Device memory, which
2388                  * should generate a UsageFault instead. QEMU does not
2389                  * currently check for that kind of unaligned access though.
2390                  * If we added it we would need to do so as a special case
2391                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2392                  */
2393                 fi->type = ARMFault_QEMU_SFault;
2394                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2395                 result->f.phys_addr = address;
2396                 result->f.prot = 0;
2397                 return true;
2398             }
2399         }
2400     }
2401 
2402     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2403                             result, fi, NULL);
2404     if (sattrs.subpage) {
2405         result->f.lg_page_size = 0;
2406     }
2407     return ret;
2408 }
2409 
2410 /*
2411  * Translate from the 4-bit stage 2 representation of
2412  * memory attributes (without cache-allocation hints) to
2413  * the 8-bit representation of the stage 1 MAIR registers
2414  * (which includes allocation hints).
2415  *
2416  * ref: shared/translation/attrs/S2AttrDecode()
2417  *      .../S2ConvertAttrsHints()
2418  */
2419 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2420 {
2421     uint8_t hiattr = extract32(s2attrs, 2, 2);
2422     uint8_t loattr = extract32(s2attrs, 0, 2);
2423     uint8_t hihint = 0, lohint = 0;
2424 
2425     if (hiattr != 0) { /* normal memory */
2426         if (hcr & HCR_CD) { /* cache disabled */
2427             hiattr = loattr = 1; /* non-cacheable */
2428         } else {
2429             if (hiattr != 1) { /* Write-through or write-back */
2430                 hihint = 3; /* RW allocate */
2431             }
2432             if (loattr != 1) { /* Write-through or write-back */
2433                 lohint = 3; /* RW allocate */
2434             }
2435         }
2436     }
2437 
2438     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2439 }
2440 
2441 /*
2442  * Combine either inner or outer cacheability attributes for normal
2443  * memory, according to table D4-42 and pseudocode procedure
2444  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2445  *
2446  * NB: only stage 1 includes allocation hints (RW bits), leading to
2447  * some asymmetry.
2448  */
2449 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2450 {
2451     if (s1 == 4 || s2 == 4) {
2452         /* non-cacheable has precedence */
2453         return 4;
2454     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2455         /* stage 1 write-through takes precedence */
2456         return s1;
2457     } else if (extract32(s2, 2, 2) == 2) {
2458         /* stage 2 write-through takes precedence, but the allocation hint
2459          * is still taken from stage 1
2460          */
2461         return (2 << 2) | extract32(s1, 0, 2);
2462     } else { /* write-back */
2463         return s1;
2464     }
2465 }
2466 
2467 /*
2468  * Combine the memory type and cacheability attributes of
2469  * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2470  * combined attributes in MAIR_EL1 format.
2471  */
2472 static uint8_t combined_attrs_nofwb(uint64_t hcr,
2473                                     ARMCacheAttrs s1, ARMCacheAttrs s2)
2474 {
2475     uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2476 
2477     if (s2.is_s2_format) {
2478         s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
2479     } else {
2480         s2_mair_attrs = s2.attrs;
2481     }
2482 
2483     s1lo = extract32(s1.attrs, 0, 4);
2484     s2lo = extract32(s2_mair_attrs, 0, 4);
2485     s1hi = extract32(s1.attrs, 4, 4);
2486     s2hi = extract32(s2_mair_attrs, 4, 4);
2487 
2488     /* Combine memory type and cacheability attributes */
2489     if (s1hi == 0 || s2hi == 0) {
2490         /* Device has precedence over normal */
2491         if (s1lo == 0 || s2lo == 0) {
2492             /* nGnRnE has precedence over anything */
2493             ret_attrs = 0;
2494         } else if (s1lo == 4 || s2lo == 4) {
2495             /* non-Reordering has precedence over Reordering */
2496             ret_attrs = 4;  /* nGnRE */
2497         } else if (s1lo == 8 || s2lo == 8) {
2498             /* non-Gathering has precedence over Gathering */
2499             ret_attrs = 8;  /* nGRE */
2500         } else {
2501             ret_attrs = 0xc; /* GRE */
2502         }
2503     } else { /* Normal memory */
2504         /* Outer/inner cacheability combine independently */
2505         ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2506                   | combine_cacheattr_nibble(s1lo, s2lo);
2507     }
2508     return ret_attrs;
2509 }
2510 
2511 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2512 {
2513     /*
2514      * Given the 4 bits specifying the outer or inner cacheability
2515      * in MAIR format, return a value specifying Normal Write-Back,
2516      * with the allocation and transient hints taken from the input
2517      * if the input specified some kind of cacheable attribute.
2518      */
2519     if (attr == 0 || attr == 4) {
2520         /*
2521          * 0 == an UNPREDICTABLE encoding
2522          * 4 == Non-cacheable
2523          * Either way, force Write-Back RW allocate non-transient
2524          */
2525         return 0xf;
2526     }
2527     /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2528     return attr | 4;
2529 }
2530 
2531 /*
2532  * Combine the memory type and cacheability attributes of
2533  * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2534  * combined attributes in MAIR_EL1 format.
2535  */
2536 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
2537 {
2538     assert(s2.is_s2_format && !s1.is_s2_format);
2539 
2540     switch (s2.attrs) {
2541     case 7:
2542         /* Use stage 1 attributes */
2543         return s1.attrs;
2544     case 6:
2545         /*
2546          * Force Normal Write-Back. Note that if S1 is Normal cacheable
2547          * then we take the allocation hints from it; otherwise it is
2548          * RW allocate, non-transient.
2549          */
2550         if ((s1.attrs & 0xf0) == 0) {
2551             /* S1 is Device */
2552             return 0xff;
2553         }
2554         /* Need to check the Inner and Outer nibbles separately */
2555         return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
2556             force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
2557     case 5:
2558         /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
2559         if ((s1.attrs & 0xf0) == 0) {
2560             return s1.attrs;
2561         }
2562         return 0x44;
2563     case 0 ... 3:
2564         /* Force Device, of subtype specified by S2 */
2565         return s2.attrs << 2;
2566     default:
2567         /*
2568          * RESERVED values (including RES0 descriptor bit [5] being nonzero);
2569          * arbitrarily force Device.
2570          */
2571         return 0;
2572     }
2573 }
2574 
2575 /*
2576  * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
2577  * and CombineS1S2Desc()
2578  *
2579  * @env:     CPUARMState
2580  * @s1:      Attributes from stage 1 walk
2581  * @s2:      Attributes from stage 2 walk
2582  */
2583 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
2584                                         ARMCacheAttrs s1, ARMCacheAttrs s2)
2585 {
2586     ARMCacheAttrs ret;
2587     bool tagged = false;
2588 
2589     assert(!s1.is_s2_format);
2590     ret.is_s2_format = false;
2591     ret.guarded = s1.guarded;
2592 
2593     if (s1.attrs == 0xf0) {
2594         tagged = true;
2595         s1.attrs = 0xff;
2596     }
2597 
2598     /* Combine shareability attributes (table D4-43) */
2599     if (s1.shareability == 2 || s2.shareability == 2) {
2600         /* if either are outer-shareable, the result is outer-shareable */
2601         ret.shareability = 2;
2602     } else if (s1.shareability == 3 || s2.shareability == 3) {
2603         /* if either are inner-shareable, the result is inner-shareable */
2604         ret.shareability = 3;
2605     } else {
2606         /* both non-shareable */
2607         ret.shareability = 0;
2608     }
2609 
2610     /* Combine memory type and cacheability attributes */
2611     if (hcr & HCR_FWB) {
2612         ret.attrs = combined_attrs_fwb(s1, s2);
2613     } else {
2614         ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
2615     }
2616 
2617     /*
2618      * Any location for which the resultant memory type is any
2619      * type of Device memory is always treated as Outer Shareable.
2620      * Any location for which the resultant memory type is Normal
2621      * Inner Non-cacheable, Outer Non-cacheable is always treated
2622      * as Outer Shareable.
2623      * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
2624      */
2625     if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
2626         ret.shareability = 2;
2627     }
2628 
2629     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
2630     if (tagged && ret.attrs == 0xff) {
2631         ret.attrs = 0xf0;
2632     }
2633 
2634     return ret;
2635 }
2636 
2637 /*
2638  * MMU disabled.  S1 addresses within aa64 translation regimes are
2639  * still checked for bounds -- see AArch64.S1DisabledOutput().
2640  */
2641 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address,
2642                                    MMUAccessType access_type,
2643                                    ARMMMUIdx mmu_idx, bool is_secure,
2644                                    GetPhysAddrResult *result,
2645                                    ARMMMUFaultInfo *fi)
2646 {
2647     uint8_t memattr = 0x00;    /* Device nGnRnE */
2648     uint8_t shareability = 0;  /* non-sharable */
2649     int r_el;
2650 
2651     switch (mmu_idx) {
2652     case ARMMMUIdx_Stage2:
2653     case ARMMMUIdx_Stage2_S:
2654     case ARMMMUIdx_Phys_NS:
2655     case ARMMMUIdx_Phys_S:
2656         break;
2657 
2658     default:
2659         r_el = regime_el(env, mmu_idx);
2660         if (arm_el_is_aa64(env, r_el)) {
2661             int pamax = arm_pamax(env_archcpu(env));
2662             uint64_t tcr = env->cp15.tcr_el[r_el];
2663             int addrtop, tbi;
2664 
2665             tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
2666             if (access_type == MMU_INST_FETCH) {
2667                 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
2668             }
2669             tbi = (tbi >> extract64(address, 55, 1)) & 1;
2670             addrtop = (tbi ? 55 : 63);
2671 
2672             if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
2673                 fi->type = ARMFault_AddressSize;
2674                 fi->level = 0;
2675                 fi->stage2 = false;
2676                 return 1;
2677             }
2678 
2679             /*
2680              * When TBI is disabled, we've just validated that all of the
2681              * bits above PAMax are zero, so logically we only need to
2682              * clear the top byte for TBI.  But it's clearer to follow
2683              * the pseudocode set of addrdesc.paddress.
2684              */
2685             address = extract64(address, 0, 52);
2686         }
2687 
2688         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
2689         if (r_el == 1) {
2690             uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2691             if (hcr & HCR_DC) {
2692                 if (hcr & HCR_DCT) {
2693                     memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
2694                 } else {
2695                     memattr = 0xff;  /* Normal, WB, RWA */
2696                 }
2697             }
2698         }
2699         if (memattr == 0 && access_type == MMU_INST_FETCH) {
2700             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
2701                 memattr = 0xee;  /* Normal, WT, RA, NT */
2702             } else {
2703                 memattr = 0x44;  /* Normal, NC, No */
2704             }
2705             shareability = 2; /* outer sharable */
2706         }
2707         result->cacheattrs.is_s2_format = false;
2708         break;
2709     }
2710 
2711     result->f.phys_addr = address;
2712     result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2713     result->f.lg_page_size = TARGET_PAGE_BITS;
2714     result->cacheattrs.shareability = shareability;
2715     result->cacheattrs.attrs = memattr;
2716     return false;
2717 }
2718 
2719 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
2720                                    target_ulong address,
2721                                    MMUAccessType access_type,
2722                                    GetPhysAddrResult *result,
2723                                    ARMMMUFaultInfo *fi)
2724 {
2725     hwaddr ipa;
2726     int s1_prot, s1_lgpgsz;
2727     bool is_secure = ptw->in_secure;
2728     bool ret, ipa_secure, s2walk_secure;
2729     ARMCacheAttrs cacheattrs1;
2730     bool is_el0;
2731     uint64_t hcr;
2732 
2733     ret = get_phys_addr_with_struct(env, ptw, address, access_type, result, fi);
2734 
2735     /* If S1 fails, return early.  */
2736     if (ret) {
2737         return ret;
2738     }
2739 
2740     ipa = result->f.phys_addr;
2741     ipa_secure = result->f.attrs.secure;
2742     if (is_secure) {
2743         /* Select TCR based on the NS bit from the S1 walk. */
2744         s2walk_secure = !(ipa_secure
2745                           ? env->cp15.vstcr_el2 & VSTCR_SW
2746                           : env->cp15.vtcr_el2 & VTCR_NSW);
2747     } else {
2748         assert(!ipa_secure);
2749         s2walk_secure = false;
2750     }
2751 
2752     is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
2753     ptw->in_mmu_idx = s2walk_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2754     ptw->in_ptw_idx = s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
2755     ptw->in_secure = s2walk_secure;
2756 
2757     /*
2758      * S1 is done, now do S2 translation.
2759      * Save the stage1 results so that we may merge prot and cacheattrs later.
2760      */
2761     s1_prot = result->f.prot;
2762     s1_lgpgsz = result->f.lg_page_size;
2763     cacheattrs1 = result->cacheattrs;
2764     memset(result, 0, sizeof(*result));
2765 
2766     if (arm_feature(env, ARM_FEATURE_PMSA)) {
2767         ret = get_phys_addr_pmsav8(env, ipa, access_type,
2768                                    ptw->in_mmu_idx, is_secure, result, fi);
2769     } else {
2770         ret = get_phys_addr_lpae(env, ptw, ipa, access_type,
2771                                  is_el0, result, fi);
2772     }
2773     fi->s2addr = ipa;
2774 
2775     /* Combine the S1 and S2 perms.  */
2776     result->f.prot &= s1_prot;
2777 
2778     /* If S2 fails, return early.  */
2779     if (ret) {
2780         return ret;
2781     }
2782 
2783     /*
2784      * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
2785      * this means "don't put this in the TLB"; in this case, return a
2786      * result with lg_page_size == 0 to achieve that. Otherwise,
2787      * use the maximum of the S1 & S2 page size, so that invalidation
2788      * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
2789      * we know the combined result permissions etc only cover the minimum
2790      * of the S1 and S2 page size, because we know that the common TLB code
2791      * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
2792      * and passing a larger page size value only affects invalidations.)
2793      */
2794     if (result->f.lg_page_size < TARGET_PAGE_BITS ||
2795         s1_lgpgsz < TARGET_PAGE_BITS) {
2796         result->f.lg_page_size = 0;
2797     } else if (result->f.lg_page_size < s1_lgpgsz) {
2798         result->f.lg_page_size = s1_lgpgsz;
2799     }
2800 
2801     /* Combine the S1 and S2 cache attributes. */
2802     hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2803     if (hcr & HCR_DC) {
2804         /*
2805          * HCR.DC forces the first stage attributes to
2806          *  Normal Non-Shareable,
2807          *  Inner Write-Back Read-Allocate Write-Allocate,
2808          *  Outer Write-Back Read-Allocate Write-Allocate.
2809          * Do not overwrite Tagged within attrs.
2810          */
2811         if (cacheattrs1.attrs != 0xf0) {
2812             cacheattrs1.attrs = 0xff;
2813         }
2814         cacheattrs1.shareability = 0;
2815     }
2816     result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
2817                                             result->cacheattrs);
2818 
2819     /*
2820      * Check if IPA translates to secure or non-secure PA space.
2821      * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
2822      */
2823     result->f.attrs.secure =
2824         (is_secure
2825          && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
2826          && (ipa_secure
2827              || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))));
2828 
2829     return false;
2830 }
2831 
2832 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
2833                                       target_ulong address,
2834                                       MMUAccessType access_type,
2835                                       GetPhysAddrResult *result,
2836                                       ARMMMUFaultInfo *fi)
2837 {
2838     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2839     bool is_secure = ptw->in_secure;
2840     ARMMMUIdx s1_mmu_idx;
2841 
2842     /*
2843      * The page table entries may downgrade secure to non-secure, but
2844      * cannot upgrade an non-secure translation regime's attributes
2845      * to secure.
2846      */
2847     result->f.attrs.secure = is_secure;
2848 
2849     switch (mmu_idx) {
2850     case ARMMMUIdx_Phys_S:
2851     case ARMMMUIdx_Phys_NS:
2852         /* Checking Phys early avoids special casing later vs regime_el. */
2853         return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2854                                       is_secure, result, fi);
2855 
2856     case ARMMMUIdx_Stage1_E0:
2857     case ARMMMUIdx_Stage1_E1:
2858     case ARMMMUIdx_Stage1_E1_PAN:
2859         /* First stage lookup uses second stage for ptw. */
2860         ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2861         break;
2862 
2863     case ARMMMUIdx_E10_0:
2864         s1_mmu_idx = ARMMMUIdx_Stage1_E0;
2865         goto do_twostage;
2866     case ARMMMUIdx_E10_1:
2867         s1_mmu_idx = ARMMMUIdx_Stage1_E1;
2868         goto do_twostage;
2869     case ARMMMUIdx_E10_1_PAN:
2870         s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
2871     do_twostage:
2872         /*
2873          * Call ourselves recursively to do the stage 1 and then stage 2
2874          * translations if mmu_idx is a two-stage regime, and EL2 present.
2875          * Otherwise, a stage1+stage2 translation is just stage 1.
2876          */
2877         ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
2878         if (arm_feature(env, ARM_FEATURE_EL2) &&
2879             !regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) {
2880             return get_phys_addr_twostage(env, ptw, address, access_type,
2881                                           result, fi);
2882         }
2883         /* fall through */
2884 
2885     default:
2886         /* Single stage and second stage uses physical for ptw. */
2887         ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
2888         break;
2889     }
2890 
2891     result->f.attrs.user = regime_is_user(env, mmu_idx);
2892 
2893     /*
2894      * Fast Context Switch Extension. This doesn't exist at all in v8.
2895      * In v7 and earlier it affects all stage 1 translations.
2896      */
2897     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
2898         && !arm_feature(env, ARM_FEATURE_V8)) {
2899         if (regime_el(env, mmu_idx) == 3) {
2900             address += env->cp15.fcseidr_s;
2901         } else {
2902             address += env->cp15.fcseidr_ns;
2903         }
2904     }
2905 
2906     if (arm_feature(env, ARM_FEATURE_PMSA)) {
2907         bool ret;
2908         result->f.lg_page_size = TARGET_PAGE_BITS;
2909 
2910         if (arm_feature(env, ARM_FEATURE_V8)) {
2911             /* PMSAv8 */
2912             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
2913                                        is_secure, result, fi);
2914         } else if (arm_feature(env, ARM_FEATURE_V7)) {
2915             /* PMSAv7 */
2916             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
2917                                        is_secure, result, fi);
2918         } else {
2919             /* Pre-v7 MPU */
2920             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
2921                                        is_secure, result, fi);
2922         }
2923         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
2924                       " mmu_idx %u -> %s (prot %c%c%c)\n",
2925                       access_type == MMU_DATA_LOAD ? "reading" :
2926                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
2927                       (uint32_t)address, mmu_idx,
2928                       ret ? "Miss" : "Hit",
2929                       result->f.prot & PAGE_READ ? 'r' : '-',
2930                       result->f.prot & PAGE_WRITE ? 'w' : '-',
2931                       result->f.prot & PAGE_EXEC ? 'x' : '-');
2932 
2933         return ret;
2934     }
2935 
2936     /* Definitely a real MMU, not an MPU */
2937 
2938     if (regime_translation_disabled(env, mmu_idx, is_secure)) {
2939         return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2940                                       is_secure, result, fi);
2941     }
2942 
2943     if (regime_using_lpae_format(env, mmu_idx)) {
2944         return get_phys_addr_lpae(env, ptw, address, access_type, false,
2945                                   result, fi);
2946     } else if (arm_feature(env, ARM_FEATURE_V7) ||
2947                regime_sctlr(env, mmu_idx) & SCTLR_XP) {
2948         return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
2949     } else {
2950         return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
2951     }
2952 }
2953 
2954 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
2955                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
2956                                bool is_secure, GetPhysAddrResult *result,
2957                                ARMMMUFaultInfo *fi)
2958 {
2959     S1Translate ptw = {
2960         .in_mmu_idx = mmu_idx,
2961         .in_secure = is_secure,
2962     };
2963     return get_phys_addr_with_struct(env, &ptw, address, access_type,
2964                                      result, fi);
2965 }
2966 
2967 bool get_phys_addr(CPUARMState *env, target_ulong address,
2968                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
2969                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
2970 {
2971     bool is_secure;
2972 
2973     switch (mmu_idx) {
2974     case ARMMMUIdx_E10_0:
2975     case ARMMMUIdx_E10_1:
2976     case ARMMMUIdx_E10_1_PAN:
2977     case ARMMMUIdx_E20_0:
2978     case ARMMMUIdx_E20_2:
2979     case ARMMMUIdx_E20_2_PAN:
2980     case ARMMMUIdx_Stage1_E0:
2981     case ARMMMUIdx_Stage1_E1:
2982     case ARMMMUIdx_Stage1_E1_PAN:
2983     case ARMMMUIdx_E2:
2984         is_secure = arm_is_secure_below_el3(env);
2985         break;
2986     case ARMMMUIdx_Stage2:
2987     case ARMMMUIdx_Phys_NS:
2988     case ARMMMUIdx_MPrivNegPri:
2989     case ARMMMUIdx_MUserNegPri:
2990     case ARMMMUIdx_MPriv:
2991     case ARMMMUIdx_MUser:
2992         is_secure = false;
2993         break;
2994     case ARMMMUIdx_E3:
2995     case ARMMMUIdx_Stage2_S:
2996     case ARMMMUIdx_Phys_S:
2997     case ARMMMUIdx_MSPrivNegPri:
2998     case ARMMMUIdx_MSUserNegPri:
2999     case ARMMMUIdx_MSPriv:
3000     case ARMMMUIdx_MSUser:
3001         is_secure = true;
3002         break;
3003     default:
3004         g_assert_not_reached();
3005     }
3006     return get_phys_addr_with_secure(env, address, access_type, mmu_idx,
3007                                      is_secure, result, fi);
3008 }
3009 
3010 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
3011                                          MemTxAttrs *attrs)
3012 {
3013     ARMCPU *cpu = ARM_CPU(cs);
3014     CPUARMState *env = &cpu->env;
3015     S1Translate ptw = {
3016         .in_mmu_idx = arm_mmu_idx(env),
3017         .in_secure = arm_is_secure(env),
3018         .in_debug = true,
3019     };
3020     GetPhysAddrResult res = {};
3021     ARMMMUFaultInfo fi = {};
3022     bool ret;
3023 
3024     ret = get_phys_addr_with_struct(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
3025     *attrs = res.f.attrs;
3026 
3027     if (ret) {
3028         return -1;
3029     }
3030     return res.f.phys_addr;
3031 }
3032