xref: /qemu/target/arm/ptw.c (revision 5db05230)
1 /*
2  * ARM page table walking.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "cpu-features.h"
17 #include "idau.h"
18 #ifdef CONFIG_TCG
19 # include "tcg/oversized-guest.h"
20 #endif
21 
22 typedef struct S1Translate {
23     /*
24      * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk.
25      * Together with in_space, specifies the architectural translation regime.
26      */
27     ARMMMUIdx in_mmu_idx;
28     /*
29      * in_ptw_idx: specifies which mmuidx to use for the actual
30      * page table descriptor load operations. This will be one of the
31      * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes.
32      * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
33      * this field is updated accordingly.
34      */
35     ARMMMUIdx in_ptw_idx;
36     /*
37      * in_space: the security space for this walk. This plus
38      * the in_mmu_idx specify the architectural translation regime.
39      * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
40      * this field is updated accordingly.
41      *
42      * Note that the security space for the in_ptw_idx may be different
43      * from that for the in_mmu_idx. We do not need to explicitly track
44      * the in_ptw_idx security space because:
45      *  - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx
46      *    itself specifies the security space
47      *  - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security
48      *    space used for ptw reads is the same as that of the security
49      *    space of the stage 1 translation for all cases except where
50      *    stage 1 is Secure; in that case the only possibilities for
51      *    the ptw read are Secure and NonSecure, and the in_ptw_idx
52      *    value being Stage2 vs Stage2_S distinguishes those.
53      */
54     ARMSecuritySpace in_space;
55     /*
56      * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug
57      * accesses will not update the guest page table access flags
58      * and will not change the state of the softmmu TLBs.
59      */
60     bool in_debug;
61     /*
62      * If this is stage 2 of a stage 1+2 page table walk, then this must
63      * be true if stage 1 is an EL0 access; otherwise this is ignored.
64      * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}.
65      */
66     bool in_s1_is_el0;
67     bool out_rw;
68     bool out_be;
69     ARMSecuritySpace out_space;
70     hwaddr out_virt;
71     hwaddr out_phys;
72     void *out_host;
73 } S1Translate;
74 
75 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
76                                 target_ulong address,
77                                 MMUAccessType access_type,
78                                 GetPhysAddrResult *result,
79                                 ARMMMUFaultInfo *fi);
80 
81 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
82                               target_ulong address,
83                               MMUAccessType access_type,
84                               GetPhysAddrResult *result,
85                               ARMMMUFaultInfo *fi);
86 
87 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
88 static const uint8_t pamax_map[] = {
89     [0] = 32,
90     [1] = 36,
91     [2] = 40,
92     [3] = 42,
93     [4] = 44,
94     [5] = 48,
95     [6] = 52,
96 };
97 
98 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
99 unsigned int arm_pamax(ARMCPU *cpu)
100 {
101     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
102         unsigned int parange =
103             FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
104 
105         /*
106          * id_aa64mmfr0 is a read-only register so values outside of the
107          * supported mappings can be considered an implementation error.
108          */
109         assert(parange < ARRAY_SIZE(pamax_map));
110         return pamax_map[parange];
111     }
112 
113     /*
114      * In machvirt_init, we call arm_pamax on a cpu that is not fully
115      * initialized, so we can't rely on the propagation done in realize.
116      */
117     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
118         arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
119         /* v7 with LPAE */
120         return 40;
121     }
122     /* Anything else */
123     return 32;
124 }
125 
126 /*
127  * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
128  */
129 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
130 {
131     switch (mmu_idx) {
132     case ARMMMUIdx_E10_0:
133         return ARMMMUIdx_Stage1_E0;
134     case ARMMMUIdx_E10_1:
135         return ARMMMUIdx_Stage1_E1;
136     case ARMMMUIdx_E10_1_PAN:
137         return ARMMMUIdx_Stage1_E1_PAN;
138     default:
139         return mmu_idx;
140     }
141 }
142 
143 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
144 {
145     return stage_1_mmu_idx(arm_mmu_idx(env));
146 }
147 
148 /*
149  * Return where we should do ptw loads from for a stage 2 walk.
150  * This depends on whether the address we are looking up is a
151  * Secure IPA or a NonSecure IPA, which we know from whether this is
152  * Stage2 or Stage2_S.
153  * If this is the Secure EL1&0 regime we need to check the NSW and SW bits.
154  */
155 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx)
156 {
157     bool s2walk_secure;
158 
159     /*
160      * We're OK to check the current state of the CPU here because
161      * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit
162      * changes.
163      * (2) there's no way to do a lookup that cares about Stage 2 for a
164      * different security state to the current one for AArch64, and AArch32
165      * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do
166      * an NS stage 1+2 lookup while the NS bit is 0.)
167      */
168     if (!arm_el_is_aa64(env, 3)) {
169         return ARMMMUIdx_Phys_NS;
170     }
171 
172     switch (arm_security_space_below_el3(env)) {
173     case ARMSS_NonSecure:
174         return ARMMMUIdx_Phys_NS;
175     case ARMSS_Realm:
176         return ARMMMUIdx_Phys_Realm;
177     case ARMSS_Secure:
178         if (stage2idx == ARMMMUIdx_Stage2_S) {
179             s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
180         } else {
181             s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
182         }
183         return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
184     default:
185         g_assert_not_reached();
186     }
187 }
188 
189 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
190 {
191     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
192 }
193 
194 /* Return the TTBR associated with this translation regime */
195 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
196 {
197     if (mmu_idx == ARMMMUIdx_Stage2) {
198         return env->cp15.vttbr_el2;
199     }
200     if (mmu_idx == ARMMMUIdx_Stage2_S) {
201         return env->cp15.vsttbr_el2;
202     }
203     if (ttbrn == 0) {
204         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
205     } else {
206         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
207     }
208 }
209 
210 /* Return true if the specified stage of address translation is disabled */
211 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
212                                         ARMSecuritySpace space)
213 {
214     uint64_t hcr_el2;
215 
216     if (arm_feature(env, ARM_FEATURE_M)) {
217         bool is_secure = arm_space_is_secure(space);
218         switch (env->v7m.mpu_ctrl[is_secure] &
219                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
220         case R_V7M_MPU_CTRL_ENABLE_MASK:
221             /* Enabled, but not for HardFault and NMI */
222             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
223         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
224             /* Enabled for all cases */
225             return false;
226         case 0:
227         default:
228             /*
229              * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
230              * we warned about that in armv7m_nvic.c when the guest set it.
231              */
232             return true;
233         }
234     }
235 
236 
237     switch (mmu_idx) {
238     case ARMMMUIdx_Stage2:
239     case ARMMMUIdx_Stage2_S:
240         /* HCR.DC means HCR.VM behaves as 1 */
241         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
242         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
243 
244     case ARMMMUIdx_E10_0:
245     case ARMMMUIdx_E10_1:
246     case ARMMMUIdx_E10_1_PAN:
247         /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
248         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
249         if (hcr_el2 & HCR_TGE) {
250             return true;
251         }
252         break;
253 
254     case ARMMMUIdx_Stage1_E0:
255     case ARMMMUIdx_Stage1_E1:
256     case ARMMMUIdx_Stage1_E1_PAN:
257         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
258         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
259         if (hcr_el2 & HCR_DC) {
260             return true;
261         }
262         break;
263 
264     case ARMMMUIdx_E20_0:
265     case ARMMMUIdx_E20_2:
266     case ARMMMUIdx_E20_2_PAN:
267     case ARMMMUIdx_E2:
268     case ARMMMUIdx_E3:
269         break;
270 
271     case ARMMMUIdx_Phys_S:
272     case ARMMMUIdx_Phys_NS:
273     case ARMMMUIdx_Phys_Root:
274     case ARMMMUIdx_Phys_Realm:
275         /* No translation for physical address spaces. */
276         return true;
277 
278     default:
279         g_assert_not_reached();
280     }
281 
282     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
283 }
284 
285 static bool granule_protection_check(CPUARMState *env, uint64_t paddress,
286                                      ARMSecuritySpace pspace,
287                                      ARMMMUFaultInfo *fi)
288 {
289     MemTxAttrs attrs = {
290         .secure = true,
291         .space = ARMSS_Root,
292     };
293     ARMCPU *cpu = env_archcpu(env);
294     uint64_t gpccr = env->cp15.gpccr_el3;
295     unsigned pps, pgs, l0gptsz, level = 0;
296     uint64_t tableaddr, pps_mask, align, entry, index;
297     AddressSpace *as;
298     MemTxResult result;
299     int gpi;
300 
301     if (!FIELD_EX64(gpccr, GPCCR, GPC)) {
302         return true;
303     }
304 
305     /*
306      * GPC Priority 1 (R_GMGRR):
307      * R_JWCSM: If the configuration of GPCCR_EL3 is invalid,
308      * the access fails as GPT walk fault at level 0.
309      */
310 
311     /*
312      * Configuration of PPS to a value exceeding the implemented
313      * physical address size is invalid.
314      */
315     pps = FIELD_EX64(gpccr, GPCCR, PPS);
316     if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) {
317         goto fault_walk;
318     }
319     pps = pamax_map[pps];
320     pps_mask = MAKE_64BIT_MASK(0, pps);
321 
322     switch (FIELD_EX64(gpccr, GPCCR, SH)) {
323     case 0b10: /* outer shareable */
324         break;
325     case 0b00: /* non-shareable */
326     case 0b11: /* inner shareable */
327         /* Inner and Outer non-cacheable requires Outer shareable. */
328         if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 &&
329             FIELD_EX64(gpccr, GPCCR, IRGN) == 0) {
330             goto fault_walk;
331         }
332         break;
333     default:   /* reserved */
334         goto fault_walk;
335     }
336 
337     switch (FIELD_EX64(gpccr, GPCCR, PGS)) {
338     case 0b00: /* 4KB */
339         pgs = 12;
340         break;
341     case 0b01: /* 64KB */
342         pgs = 16;
343         break;
344     case 0b10: /* 16KB */
345         pgs = 14;
346         break;
347     default: /* reserved */
348         goto fault_walk;
349     }
350 
351     /* Note this field is read-only and fixed at reset. */
352     l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ);
353 
354     /*
355      * GPC Priority 2: Secure, Realm or Root address exceeds PPS.
356      * R_CPDSB: A NonSecure physical address input exceeding PPS
357      * does not experience any fault.
358      */
359     if (paddress & ~pps_mask) {
360         if (pspace == ARMSS_NonSecure) {
361             return true;
362         }
363         goto fault_size;
364     }
365 
366     /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */
367     tableaddr = env->cp15.gptbr_el3 << 12;
368     if (tableaddr & ~pps_mask) {
369         goto fault_size;
370     }
371 
372     /*
373      * BADDR is aligned per a function of PPS and L0GPTSZ.
374      * These bits of GPTBR_EL3 are RES0, but are not a configuration error,
375      * unlike the RES0 bits of the GPT entries (R_XNKFZ).
376      */
377     align = MAX(pps - l0gptsz + 3, 12);
378     align = MAKE_64BIT_MASK(0, align);
379     tableaddr &= ~align;
380 
381     as = arm_addressspace(env_cpu(env), attrs);
382 
383     /* Level 0 lookup. */
384     index = extract64(paddress, l0gptsz, pps - l0gptsz);
385     tableaddr += index * 8;
386     entry = address_space_ldq_le(as, tableaddr, attrs, &result);
387     if (result != MEMTX_OK) {
388         goto fault_eabt;
389     }
390 
391     switch (extract32(entry, 0, 4)) {
392     case 1: /* block descriptor */
393         if (entry >> 8) {
394             goto fault_walk; /* RES0 bits not 0 */
395         }
396         gpi = extract32(entry, 4, 4);
397         goto found;
398     case 3: /* table descriptor */
399         tableaddr = entry & ~0xf;
400         align = MAX(l0gptsz - pgs - 1, 12);
401         align = MAKE_64BIT_MASK(0, align);
402         if (tableaddr & (~pps_mask | align)) {
403             goto fault_walk; /* RES0 bits not 0 */
404         }
405         break;
406     default: /* invalid */
407         goto fault_walk;
408     }
409 
410     /* Level 1 lookup */
411     level = 1;
412     index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4);
413     tableaddr += index * 8;
414     entry = address_space_ldq_le(as, tableaddr, attrs, &result);
415     if (result != MEMTX_OK) {
416         goto fault_eabt;
417     }
418 
419     switch (extract32(entry, 0, 4)) {
420     case 1: /* contiguous descriptor */
421         if (entry >> 10) {
422             goto fault_walk; /* RES0 bits not 0 */
423         }
424         /*
425          * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE,
426          * and because we cannot invalidate by pa, and thus will always
427          * flush entire tlbs, we don't actually care about the range here
428          * and can simply extract the GPI as the result.
429          */
430         if (extract32(entry, 8, 2) == 0) {
431             goto fault_walk; /* reserved contig */
432         }
433         gpi = extract32(entry, 4, 4);
434         break;
435     default:
436         index = extract64(paddress, pgs, 4);
437         gpi = extract64(entry, index * 4, 4);
438         break;
439     }
440 
441  found:
442     switch (gpi) {
443     case 0b0000: /* no access */
444         break;
445     case 0b1111: /* all access */
446         return true;
447     case 0b1000:
448     case 0b1001:
449     case 0b1010:
450     case 0b1011:
451         if (pspace == (gpi & 3)) {
452             return true;
453         }
454         break;
455     default:
456         goto fault_walk; /* reserved */
457     }
458 
459     fi->gpcf = GPCF_Fail;
460     goto fault_common;
461  fault_eabt:
462     fi->gpcf = GPCF_EABT;
463     goto fault_common;
464  fault_size:
465     fi->gpcf = GPCF_AddressSize;
466     goto fault_common;
467  fault_walk:
468     fi->gpcf = GPCF_Walk;
469  fault_common:
470     fi->level = level;
471     fi->paddr = paddress;
472     fi->paddr_space = pspace;
473     return false;
474 }
475 
476 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
477 {
478     /*
479      * For an S1 page table walk, the stage 1 attributes are always
480      * some form of "this is Normal memory". The combined S1+S2
481      * attributes are therefore only Device if stage 2 specifies Device.
482      * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
483      * ie when cacheattrs.attrs bits [3:2] are 0b00.
484      * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
485      * when cacheattrs.attrs bit [2] is 0.
486      */
487     if (hcr & HCR_FWB) {
488         return (attrs & 0x4) == 0;
489     } else {
490         return (attrs & 0xc) == 0;
491     }
492 }
493 
494 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space,
495                                           ARMMMUIdx s2_mmu_idx)
496 {
497     /*
498      * Return the security space to use for stage 2 when doing
499      * the S1 page table descriptor load.
500      */
501     if (regime_is_stage2(s2_mmu_idx)) {
502         /*
503          * The security space for ptw reads is almost always the same
504          * as that of the security space of the stage 1 translation.
505          * The only exception is when stage 1 is Secure; in that case
506          * the ptw read might be to the Secure or the NonSecure space
507          * (but never Realm or Root), and the s2_mmu_idx tells us which.
508          * Root translations are always single-stage.
509          */
510         if (s1_space == ARMSS_Secure) {
511             return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S);
512         } else {
513             assert(s2_mmu_idx != ARMMMUIdx_Stage2_S);
514             assert(s1_space != ARMSS_Root);
515             return s1_space;
516         }
517     } else {
518         /* ptw loads are from phys: the mmu idx itself says which space */
519         return arm_phys_to_space(s2_mmu_idx);
520     }
521 }
522 
523 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx)
524 {
525     /*
526      * For stage 2 faults in Secure EL22, S1NS indicates
527      * whether the faulting IPA is in the Secure or NonSecure
528      * IPA space. For all other kinds of fault, it is false.
529      */
530     return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx)
531         && s2_mmu_idx == ARMMMUIdx_Stage2_S;
532 }
533 
534 /* Translate a S1 pagetable walk through S2 if needed.  */
535 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
536                              hwaddr addr, ARMMMUFaultInfo *fi)
537 {
538     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
539     ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
540     uint8_t pte_attrs;
541 
542     ptw->out_virt = addr;
543 
544     if (unlikely(ptw->in_debug)) {
545         /*
546          * From gdbstub, do not use softmmu so that we don't modify the
547          * state of the cpu at all, including softmmu tlb contents.
548          */
549         ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx);
550         S1Translate s2ptw = {
551             .in_mmu_idx = s2_mmu_idx,
552             .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
553             .in_space = s2_space,
554             .in_debug = true,
555         };
556         GetPhysAddrResult s2 = { };
557 
558         if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, &s2, fi)) {
559             goto fail;
560         }
561 
562         ptw->out_phys = s2.f.phys_addr;
563         pte_attrs = s2.cacheattrs.attrs;
564         ptw->out_host = NULL;
565         ptw->out_rw = false;
566         ptw->out_space = s2.f.attrs.space;
567     } else {
568 #ifdef CONFIG_TCG
569         CPUTLBEntryFull *full;
570         int flags;
571 
572         env->tlb_fi = fi;
573         flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD,
574                                       arm_to_core_mmu_idx(s2_mmu_idx),
575                                       &ptw->out_host, &full);
576         env->tlb_fi = NULL;
577 
578         if (unlikely(flags & TLB_INVALID_MASK)) {
579             goto fail;
580         }
581         ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
582         ptw->out_rw = full->prot & PAGE_WRITE;
583         pte_attrs = full->extra.arm.pte_attrs;
584         ptw->out_space = full->attrs.space;
585 #else
586         g_assert_not_reached();
587 #endif
588     }
589 
590     if (regime_is_stage2(s2_mmu_idx)) {
591         uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
592 
593         if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
594             /*
595              * PTW set and S1 walk touched S2 Device memory:
596              * generate Permission fault.
597              */
598             fi->type = ARMFault_Permission;
599             fi->s2addr = addr;
600             fi->stage2 = true;
601             fi->s1ptw = true;
602             fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
603             return false;
604         }
605     }
606 
607     ptw->out_be = regime_translation_big_endian(env, mmu_idx);
608     return true;
609 
610  fail:
611     assert(fi->type != ARMFault_None);
612     if (fi->type == ARMFault_GPCFOnOutput) {
613         fi->type = ARMFault_GPCFOnWalk;
614     }
615     fi->s2addr = addr;
616     fi->stage2 = regime_is_stage2(s2_mmu_idx);
617     fi->s1ptw = fi->stage2;
618     fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
619     return false;
620 }
621 
622 /* All loads done in the course of a page table walk go through here. */
623 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
624                             ARMMMUFaultInfo *fi)
625 {
626     CPUState *cs = env_cpu(env);
627     void *host = ptw->out_host;
628     uint32_t data;
629 
630     if (likely(host)) {
631         /* Page tables are in RAM, and we have the host address. */
632         data = qatomic_read((uint32_t *)host);
633         if (ptw->out_be) {
634             data = be32_to_cpu(data);
635         } else {
636             data = le32_to_cpu(data);
637         }
638     } else {
639         /* Page tables are in MMIO. */
640         MemTxAttrs attrs = {
641             .space = ptw->out_space,
642             .secure = arm_space_is_secure(ptw->out_space),
643         };
644         AddressSpace *as = arm_addressspace(cs, attrs);
645         MemTxResult result = MEMTX_OK;
646 
647         if (ptw->out_be) {
648             data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
649         } else {
650             data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
651         }
652         if (unlikely(result != MEMTX_OK)) {
653             fi->type = ARMFault_SyncExternalOnWalk;
654             fi->ea = arm_extabort_type(result);
655             return 0;
656         }
657     }
658     return data;
659 }
660 
661 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
662                             ARMMMUFaultInfo *fi)
663 {
664     CPUState *cs = env_cpu(env);
665     void *host = ptw->out_host;
666     uint64_t data;
667 
668     if (likely(host)) {
669         /* Page tables are in RAM, and we have the host address. */
670 #ifdef CONFIG_ATOMIC64
671         data = qatomic_read__nocheck((uint64_t *)host);
672         if (ptw->out_be) {
673             data = be64_to_cpu(data);
674         } else {
675             data = le64_to_cpu(data);
676         }
677 #else
678         if (ptw->out_be) {
679             data = ldq_be_p(host);
680         } else {
681             data = ldq_le_p(host);
682         }
683 #endif
684     } else {
685         /* Page tables are in MMIO. */
686         MemTxAttrs attrs = {
687             .space = ptw->out_space,
688             .secure = arm_space_is_secure(ptw->out_space),
689         };
690         AddressSpace *as = arm_addressspace(cs, attrs);
691         MemTxResult result = MEMTX_OK;
692 
693         if (ptw->out_be) {
694             data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
695         } else {
696             data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
697         }
698         if (unlikely(result != MEMTX_OK)) {
699             fi->type = ARMFault_SyncExternalOnWalk;
700             fi->ea = arm_extabort_type(result);
701             return 0;
702         }
703     }
704     return data;
705 }
706 
707 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
708                              uint64_t new_val, S1Translate *ptw,
709                              ARMMMUFaultInfo *fi)
710 {
711 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG)
712     uint64_t cur_val;
713     void *host = ptw->out_host;
714 
715     if (unlikely(!host)) {
716         fi->type = ARMFault_UnsuppAtomicUpdate;
717         return 0;
718     }
719 
720     /*
721      * Raising a stage2 Protection fault for an atomic update to a read-only
722      * page is delayed until it is certain that there is a change to make.
723      */
724     if (unlikely(!ptw->out_rw)) {
725         int flags;
726 
727         env->tlb_fi = fi;
728         flags = probe_access_full_mmu(env, ptw->out_virt, 0,
729                                       MMU_DATA_STORE,
730                                       arm_to_core_mmu_idx(ptw->in_ptw_idx),
731                                       NULL, NULL);
732         env->tlb_fi = NULL;
733 
734         if (unlikely(flags & TLB_INVALID_MASK)) {
735             /*
736              * We know this must be a stage 2 fault because the granule
737              * protection table does not separately track read and write
738              * permission, so all GPC faults are caught in S1_ptw_translate():
739              * we only get here for "readable but not writeable".
740              */
741             assert(fi->type != ARMFault_None);
742             fi->s2addr = ptw->out_virt;
743             fi->stage2 = true;
744             fi->s1ptw = true;
745             fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx);
746             return 0;
747         }
748 
749         /* In case CAS mismatches and we loop, remember writability. */
750         ptw->out_rw = true;
751     }
752 
753 #ifdef CONFIG_ATOMIC64
754     if (ptw->out_be) {
755         old_val = cpu_to_be64(old_val);
756         new_val = cpu_to_be64(new_val);
757         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
758         cur_val = be64_to_cpu(cur_val);
759     } else {
760         old_val = cpu_to_le64(old_val);
761         new_val = cpu_to_le64(new_val);
762         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
763         cur_val = le64_to_cpu(cur_val);
764     }
765 #else
766     /*
767      * We can't support the full 64-bit atomic cmpxchg on the host.
768      * Because this is only used for FEAT_HAFDBS, which is only for AA64,
769      * we know that TCG_OVERSIZED_GUEST is set, which means that we are
770      * running in round-robin mode and could only race with dma i/o.
771      */
772 #if !TCG_OVERSIZED_GUEST
773 # error "Unexpected configuration"
774 #endif
775     bool locked = qemu_mutex_iothread_locked();
776     if (!locked) {
777        qemu_mutex_lock_iothread();
778     }
779     if (ptw->out_be) {
780         cur_val = ldq_be_p(host);
781         if (cur_val == old_val) {
782             stq_be_p(host, new_val);
783         }
784     } else {
785         cur_val = ldq_le_p(host);
786         if (cur_val == old_val) {
787             stq_le_p(host, new_val);
788         }
789     }
790     if (!locked) {
791         qemu_mutex_unlock_iothread();
792     }
793 #endif
794 
795     return cur_val;
796 #else
797     /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */
798     g_assert_not_reached();
799 #endif
800 }
801 
802 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
803                                      uint32_t *table, uint32_t address)
804 {
805     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
806     uint64_t tcr = regime_tcr(env, mmu_idx);
807     int maskshift = extract32(tcr, 0, 3);
808     uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
809     uint32_t base_mask;
810 
811     if (address & mask) {
812         if (tcr & TTBCR_PD1) {
813             /* Translation table walk disabled for TTBR1 */
814             return false;
815         }
816         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
817     } else {
818         if (tcr & TTBCR_PD0) {
819             /* Translation table walk disabled for TTBR0 */
820             return false;
821         }
822         base_mask = ~((uint32_t)0x3fffu >> maskshift);
823         *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
824     }
825     *table |= (address >> 18) & 0x3ffc;
826     return true;
827 }
828 
829 /*
830  * Translate section/page access permissions to page R/W protection flags
831  * @env:         CPUARMState
832  * @mmu_idx:     MMU index indicating required translation regime
833  * @ap:          The 3-bit access permissions (AP[2:0])
834  * @domain_prot: The 2-bit domain access permissions
835  * @is_user: TRUE if accessing from PL0
836  */
837 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
838                          int ap, int domain_prot, bool is_user)
839 {
840     if (domain_prot == 3) {
841         return PAGE_READ | PAGE_WRITE;
842     }
843 
844     switch (ap) {
845     case 0:
846         if (arm_feature(env, ARM_FEATURE_V7)) {
847             return 0;
848         }
849         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
850         case SCTLR_S:
851             return is_user ? 0 : PAGE_READ;
852         case SCTLR_R:
853             return PAGE_READ;
854         default:
855             return 0;
856         }
857     case 1:
858         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
859     case 2:
860         if (is_user) {
861             return PAGE_READ;
862         } else {
863             return PAGE_READ | PAGE_WRITE;
864         }
865     case 3:
866         return PAGE_READ | PAGE_WRITE;
867     case 4: /* Reserved.  */
868         return 0;
869     case 5:
870         return is_user ? 0 : PAGE_READ;
871     case 6:
872         return PAGE_READ;
873     case 7:
874         if (!arm_feature(env, ARM_FEATURE_V6K)) {
875             return 0;
876         }
877         return PAGE_READ;
878     default:
879         g_assert_not_reached();
880     }
881 }
882 
883 /*
884  * Translate section/page access permissions to page R/W protection flags
885  * @env:         CPUARMState
886  * @mmu_idx:     MMU index indicating required translation regime
887  * @ap:          The 3-bit access permissions (AP[2:0])
888  * @domain_prot: The 2-bit domain access permissions
889  */
890 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
891                          int ap, int domain_prot)
892 {
893    return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
894                                 regime_is_user(env, mmu_idx));
895 }
896 
897 /*
898  * Translate section/page access permissions to page R/W protection flags.
899  * @ap:      The 2-bit simple AP (AP[2:1])
900  * @is_user: TRUE if accessing from PL0
901  */
902 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
903 {
904     switch (ap) {
905     case 0:
906         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
907     case 1:
908         return PAGE_READ | PAGE_WRITE;
909     case 2:
910         return is_user ? 0 : PAGE_READ;
911     case 3:
912         return PAGE_READ;
913     default:
914         g_assert_not_reached();
915     }
916 }
917 
918 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
919 {
920     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
921 }
922 
923 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
924                              uint32_t address, MMUAccessType access_type,
925                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
926 {
927     int level = 1;
928     uint32_t table;
929     uint32_t desc;
930     int type;
931     int ap;
932     int domain = 0;
933     int domain_prot;
934     hwaddr phys_addr;
935     uint32_t dacr;
936 
937     /* Pagetable walk.  */
938     /* Lookup l1 descriptor.  */
939     if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
940         /* Section translation fault if page walk is disabled by PD0 or PD1 */
941         fi->type = ARMFault_Translation;
942         goto do_fault;
943     }
944     if (!S1_ptw_translate(env, ptw, table, fi)) {
945         goto do_fault;
946     }
947     desc = arm_ldl_ptw(env, ptw, fi);
948     if (fi->type != ARMFault_None) {
949         goto do_fault;
950     }
951     type = (desc & 3);
952     domain = (desc >> 5) & 0x0f;
953     if (regime_el(env, ptw->in_mmu_idx) == 1) {
954         dacr = env->cp15.dacr_ns;
955     } else {
956         dacr = env->cp15.dacr_s;
957     }
958     domain_prot = (dacr >> (domain * 2)) & 3;
959     if (type == 0) {
960         /* Section translation fault.  */
961         fi->type = ARMFault_Translation;
962         goto do_fault;
963     }
964     if (type != 2) {
965         level = 2;
966     }
967     if (domain_prot == 0 || domain_prot == 2) {
968         fi->type = ARMFault_Domain;
969         goto do_fault;
970     }
971     if (type == 2) {
972         /* 1Mb section.  */
973         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
974         ap = (desc >> 10) & 3;
975         result->f.lg_page_size = 20; /* 1MB */
976     } else {
977         /* Lookup l2 entry.  */
978         if (type == 1) {
979             /* Coarse pagetable.  */
980             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
981         } else {
982             /* Fine pagetable.  */
983             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
984         }
985         if (!S1_ptw_translate(env, ptw, table, fi)) {
986             goto do_fault;
987         }
988         desc = arm_ldl_ptw(env, ptw, fi);
989         if (fi->type != ARMFault_None) {
990             goto do_fault;
991         }
992         switch (desc & 3) {
993         case 0: /* Page translation fault.  */
994             fi->type = ARMFault_Translation;
995             goto do_fault;
996         case 1: /* 64k page.  */
997             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
998             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
999             result->f.lg_page_size = 16;
1000             break;
1001         case 2: /* 4k page.  */
1002             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1003             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
1004             result->f.lg_page_size = 12;
1005             break;
1006         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
1007             if (type == 1) {
1008                 /* ARMv6/XScale extended small page format */
1009                 if (arm_feature(env, ARM_FEATURE_XSCALE)
1010                     || arm_feature(env, ARM_FEATURE_V6)) {
1011                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1012                     result->f.lg_page_size = 12;
1013                 } else {
1014                     /*
1015                      * UNPREDICTABLE in ARMv5; we choose to take a
1016                      * page translation fault.
1017                      */
1018                     fi->type = ARMFault_Translation;
1019                     goto do_fault;
1020                 }
1021             } else {
1022                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1023                 result->f.lg_page_size = 10;
1024             }
1025             ap = (desc >> 4) & 3;
1026             break;
1027         default:
1028             /* Never happens, but compiler isn't smart enough to tell.  */
1029             g_assert_not_reached();
1030         }
1031     }
1032     result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
1033     result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
1034     if (!(result->f.prot & (1 << access_type))) {
1035         /* Access permission fault.  */
1036         fi->type = ARMFault_Permission;
1037         goto do_fault;
1038     }
1039     result->f.phys_addr = phys_addr;
1040     return false;
1041 do_fault:
1042     fi->domain = domain;
1043     fi->level = level;
1044     return true;
1045 }
1046 
1047 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
1048                              uint32_t address, MMUAccessType access_type,
1049                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1050 {
1051     ARMCPU *cpu = env_archcpu(env);
1052     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1053     int level = 1;
1054     uint32_t table;
1055     uint32_t desc;
1056     uint32_t xn;
1057     uint32_t pxn = 0;
1058     int type;
1059     int ap;
1060     int domain = 0;
1061     int domain_prot;
1062     hwaddr phys_addr;
1063     uint32_t dacr;
1064     bool ns;
1065     int user_prot;
1066 
1067     /* Pagetable walk.  */
1068     /* Lookup l1 descriptor.  */
1069     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
1070         /* Section translation fault if page walk is disabled by PD0 or PD1 */
1071         fi->type = ARMFault_Translation;
1072         goto do_fault;
1073     }
1074     if (!S1_ptw_translate(env, ptw, table, fi)) {
1075         goto do_fault;
1076     }
1077     desc = arm_ldl_ptw(env, ptw, fi);
1078     if (fi->type != ARMFault_None) {
1079         goto do_fault;
1080     }
1081     type = (desc & 3);
1082     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
1083         /* Section translation fault, or attempt to use the encoding
1084          * which is Reserved on implementations without PXN.
1085          */
1086         fi->type = ARMFault_Translation;
1087         goto do_fault;
1088     }
1089     if ((type == 1) || !(desc & (1 << 18))) {
1090         /* Page or Section.  */
1091         domain = (desc >> 5) & 0x0f;
1092     }
1093     if (regime_el(env, mmu_idx) == 1) {
1094         dacr = env->cp15.dacr_ns;
1095     } else {
1096         dacr = env->cp15.dacr_s;
1097     }
1098     if (type == 1) {
1099         level = 2;
1100     }
1101     domain_prot = (dacr >> (domain * 2)) & 3;
1102     if (domain_prot == 0 || domain_prot == 2) {
1103         /* Section or Page domain fault */
1104         fi->type = ARMFault_Domain;
1105         goto do_fault;
1106     }
1107     if (type != 1) {
1108         if (desc & (1 << 18)) {
1109             /* Supersection.  */
1110             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1111             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
1112             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
1113             result->f.lg_page_size = 24;  /* 16MB */
1114         } else {
1115             /* Section.  */
1116             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1117             result->f.lg_page_size = 20;  /* 1MB */
1118         }
1119         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1120         xn = desc & (1 << 4);
1121         pxn = desc & 1;
1122         ns = extract32(desc, 19, 1);
1123     } else {
1124         if (cpu_isar_feature(aa32_pxn, cpu)) {
1125             pxn = (desc >> 2) & 1;
1126         }
1127         ns = extract32(desc, 3, 1);
1128         /* Lookup l2 entry.  */
1129         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1130         if (!S1_ptw_translate(env, ptw, table, fi)) {
1131             goto do_fault;
1132         }
1133         desc = arm_ldl_ptw(env, ptw, fi);
1134         if (fi->type != ARMFault_None) {
1135             goto do_fault;
1136         }
1137         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1138         switch (desc & 3) {
1139         case 0: /* Page translation fault.  */
1140             fi->type = ARMFault_Translation;
1141             goto do_fault;
1142         case 1: /* 64k page.  */
1143             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1144             xn = desc & (1 << 15);
1145             result->f.lg_page_size = 16;
1146             break;
1147         case 2: case 3: /* 4k page.  */
1148             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1149             xn = desc & 1;
1150             result->f.lg_page_size = 12;
1151             break;
1152         default:
1153             /* Never happens, but compiler isn't smart enough to tell.  */
1154             g_assert_not_reached();
1155         }
1156     }
1157     if (domain_prot == 3) {
1158         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1159     } else {
1160         if (pxn && !regime_is_user(env, mmu_idx)) {
1161             xn = 1;
1162         }
1163         if (xn && access_type == MMU_INST_FETCH) {
1164             fi->type = ARMFault_Permission;
1165             goto do_fault;
1166         }
1167 
1168         if (arm_feature(env, ARM_FEATURE_V6K) &&
1169                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
1170             /* The simplified model uses AP[0] as an access control bit.  */
1171             if ((ap & 1) == 0) {
1172                 /* Access flag fault.  */
1173                 fi->type = ARMFault_AccessFlag;
1174                 goto do_fault;
1175             }
1176             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
1177             user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
1178         } else {
1179             result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
1180             user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
1181         }
1182         if (result->f.prot && !xn) {
1183             result->f.prot |= PAGE_EXEC;
1184         }
1185         if (!(result->f.prot & (1 << access_type))) {
1186             /* Access permission fault.  */
1187             fi->type = ARMFault_Permission;
1188             goto do_fault;
1189         }
1190         if (regime_is_pan(env, mmu_idx) &&
1191             !regime_is_user(env, mmu_idx) &&
1192             user_prot &&
1193             access_type != MMU_INST_FETCH) {
1194             /* Privileged Access Never fault */
1195             fi->type = ARMFault_Permission;
1196             goto do_fault;
1197         }
1198     }
1199     if (ns) {
1200         /* The NS bit will (as required by the architecture) have no effect if
1201          * the CPU doesn't support TZ or this is a non-secure translation
1202          * regime, because the attribute will already be non-secure.
1203          */
1204         result->f.attrs.secure = false;
1205         result->f.attrs.space = ARMSS_NonSecure;
1206     }
1207     result->f.phys_addr = phys_addr;
1208     return false;
1209 do_fault:
1210     fi->domain = domain;
1211     fi->level = level;
1212     return true;
1213 }
1214 
1215 /*
1216  * Translate S2 section/page access permissions to protection flags
1217  * @env:     CPUARMState
1218  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
1219  * @xn:      XN (execute-never) bits
1220  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
1221  */
1222 static int get_S2prot_noexecute(int s2ap)
1223 {
1224     int prot = 0;
1225 
1226     if (s2ap & 1) {
1227         prot |= PAGE_READ;
1228     }
1229     if (s2ap & 2) {
1230         prot |= PAGE_WRITE;
1231     }
1232     return prot;
1233 }
1234 
1235 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
1236 {
1237     int prot = get_S2prot_noexecute(s2ap);
1238 
1239     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
1240         switch (xn) {
1241         case 0:
1242             prot |= PAGE_EXEC;
1243             break;
1244         case 1:
1245             if (s1_is_el0) {
1246                 prot |= PAGE_EXEC;
1247             }
1248             break;
1249         case 2:
1250             break;
1251         case 3:
1252             if (!s1_is_el0) {
1253                 prot |= PAGE_EXEC;
1254             }
1255             break;
1256         default:
1257             g_assert_not_reached();
1258         }
1259     } else {
1260         if (!extract32(xn, 1, 1)) {
1261             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
1262                 prot |= PAGE_EXEC;
1263             }
1264         }
1265     }
1266     return prot;
1267 }
1268 
1269 /*
1270  * Translate section/page access permissions to protection flags
1271  * @env:     CPUARMState
1272  * @mmu_idx: MMU index indicating required translation regime
1273  * @is_aa64: TRUE if AArch64
1274  * @ap:      The 2-bit simple AP (AP[2:1])
1275  * @xn:      XN (execute-never) bit
1276  * @pxn:     PXN (privileged execute-never) bit
1277  * @in_pa:   The original input pa space
1278  * @out_pa:  The output pa space, modified by NSTable, NS, and NSE
1279  */
1280 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
1281                       int ap, int xn, int pxn,
1282                       ARMSecuritySpace in_pa, ARMSecuritySpace out_pa)
1283 {
1284     ARMCPU *cpu = env_archcpu(env);
1285     bool is_user = regime_is_user(env, mmu_idx);
1286     int prot_rw, user_rw;
1287     bool have_wxn;
1288     int wxn = 0;
1289 
1290     assert(!regime_is_stage2(mmu_idx));
1291 
1292     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
1293     if (is_user) {
1294         prot_rw = user_rw;
1295     } else {
1296         /*
1297          * PAN controls can forbid data accesses but don't affect insn fetch.
1298          * Plain PAN forbids data accesses if EL0 has data permissions;
1299          * PAN3 forbids data accesses if EL0 has either data or exec perms.
1300          * Note that for AArch64 the 'user can exec' case is exactly !xn.
1301          * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
1302          * do not affect EPAN.
1303          */
1304         if (user_rw && regime_is_pan(env, mmu_idx)) {
1305             prot_rw = 0;
1306         } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
1307                    regime_is_pan(env, mmu_idx) &&
1308                    (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
1309             prot_rw = 0;
1310         } else {
1311             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
1312         }
1313     }
1314 
1315     if (in_pa != out_pa) {
1316         switch (in_pa) {
1317         case ARMSS_Root:
1318             /*
1319              * R_ZWRVD: permission fault for insn fetched from non-Root,
1320              * I_WWBFB: SIF has no effect in EL3.
1321              */
1322             return prot_rw;
1323         case ARMSS_Realm:
1324             /*
1325              * R_PKTDS: permission fault for insn fetched from non-Realm,
1326              * for Realm EL2 or EL2&0.  The corresponding fault for EL1&0
1327              * happens during any stage2 translation.
1328              */
1329             switch (mmu_idx) {
1330             case ARMMMUIdx_E2:
1331             case ARMMMUIdx_E20_0:
1332             case ARMMMUIdx_E20_2:
1333             case ARMMMUIdx_E20_2_PAN:
1334                 return prot_rw;
1335             default:
1336                 break;
1337             }
1338             break;
1339         case ARMSS_Secure:
1340             if (env->cp15.scr_el3 & SCR_SIF) {
1341                 return prot_rw;
1342             }
1343             break;
1344         default:
1345             /* Input NonSecure must have output NonSecure. */
1346             g_assert_not_reached();
1347         }
1348     }
1349 
1350     /* TODO have_wxn should be replaced with
1351      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
1352      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
1353      * compatible processors have EL2, which is required for [U]WXN.
1354      */
1355     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
1356 
1357     if (have_wxn) {
1358         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
1359     }
1360 
1361     if (is_aa64) {
1362         if (regime_has_2_ranges(mmu_idx) && !is_user) {
1363             xn = pxn || (user_rw & PAGE_WRITE);
1364         }
1365     } else if (arm_feature(env, ARM_FEATURE_V7)) {
1366         switch (regime_el(env, mmu_idx)) {
1367         case 1:
1368         case 3:
1369             if (is_user) {
1370                 xn = xn || !(user_rw & PAGE_READ);
1371             } else {
1372                 int uwxn = 0;
1373                 if (have_wxn) {
1374                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
1375                 }
1376                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1377                      (uwxn && (user_rw & PAGE_WRITE));
1378             }
1379             break;
1380         case 2:
1381             break;
1382         }
1383     } else {
1384         xn = wxn = 0;
1385     }
1386 
1387     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1388         return prot_rw;
1389     }
1390     return prot_rw | PAGE_EXEC;
1391 }
1392 
1393 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1394                                           ARMMMUIdx mmu_idx)
1395 {
1396     uint64_t tcr = regime_tcr(env, mmu_idx);
1397     uint32_t el = regime_el(env, mmu_idx);
1398     int select, tsz;
1399     bool epd, hpd;
1400 
1401     assert(mmu_idx != ARMMMUIdx_Stage2_S);
1402 
1403     if (mmu_idx == ARMMMUIdx_Stage2) {
1404         /* VTCR */
1405         bool sext = extract32(tcr, 4, 1);
1406         bool sign = extract32(tcr, 3, 1);
1407 
1408         /*
1409          * If the sign-extend bit is not the same as t0sz[3], the result
1410          * is unpredictable. Flag this as a guest error.
1411          */
1412         if (sign != sext) {
1413             qemu_log_mask(LOG_GUEST_ERROR,
1414                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1415         }
1416         tsz = sextract32(tcr, 0, 4) + 8;
1417         select = 0;
1418         hpd = false;
1419         epd = false;
1420     } else if (el == 2) {
1421         /* HTCR */
1422         tsz = extract32(tcr, 0, 3);
1423         select = 0;
1424         hpd = extract64(tcr, 24, 1);
1425         epd = false;
1426     } else {
1427         int t0sz = extract32(tcr, 0, 3);
1428         int t1sz = extract32(tcr, 16, 3);
1429 
1430         if (t1sz == 0) {
1431             select = va > (0xffffffffu >> t0sz);
1432         } else {
1433             /* Note that we will detect errors later.  */
1434             select = va >= ~(0xffffffffu >> t1sz);
1435         }
1436         if (!select) {
1437             tsz = t0sz;
1438             epd = extract32(tcr, 7, 1);
1439             hpd = extract64(tcr, 41, 1);
1440         } else {
1441             tsz = t1sz;
1442             epd = extract32(tcr, 23, 1);
1443             hpd = extract64(tcr, 42, 1);
1444         }
1445         /* For aarch32, hpd0 is not enabled without t2e as well.  */
1446         hpd &= extract32(tcr, 6, 1);
1447     }
1448 
1449     return (ARMVAParameters) {
1450         .tsz = tsz,
1451         .select = select,
1452         .epd = epd,
1453         .hpd = hpd,
1454     };
1455 }
1456 
1457 /*
1458  * check_s2_mmu_setup
1459  * @cpu:        ARMCPU
1460  * @is_aa64:    True if the translation regime is in AArch64 state
1461  * @tcr:        VTCR_EL2 or VSTCR_EL2
1462  * @ds:         Effective value of TCR.DS.
1463  * @iasize:     Bitsize of IPAs
1464  * @stride:     Page-table stride (See the ARM ARM)
1465  *
1466  * Decode the starting level of the S2 lookup, returning INT_MIN if
1467  * the configuration is invalid.
1468  */
1469 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1470                               bool ds, int iasize, int stride)
1471 {
1472     int sl0, sl2, startlevel, granulebits, levels;
1473     int s1_min_iasize, s1_max_iasize;
1474 
1475     sl0 = extract32(tcr, 6, 2);
1476     if (is_aa64) {
1477         /*
1478          * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1479          * so interleave AArch64.S2StartLevel.
1480          */
1481         switch (stride) {
1482         case 9: /* 4KB */
1483             /* SL2 is RES0 unless DS=1 & 4KB granule. */
1484             sl2 = extract64(tcr, 33, 1);
1485             if (ds && sl2) {
1486                 if (sl0 != 0) {
1487                     goto fail;
1488                 }
1489                 startlevel = -1;
1490             } else {
1491                 startlevel = 2 - sl0;
1492                 switch (sl0) {
1493                 case 2:
1494                     if (arm_pamax(cpu) < 44) {
1495                         goto fail;
1496                     }
1497                     break;
1498                 case 3:
1499                     if (!cpu_isar_feature(aa64_st, cpu)) {
1500                         goto fail;
1501                     }
1502                     startlevel = 3;
1503                     break;
1504                 }
1505             }
1506             break;
1507         case 11: /* 16KB */
1508             switch (sl0) {
1509             case 2:
1510                 if (arm_pamax(cpu) < 42) {
1511                     goto fail;
1512                 }
1513                 break;
1514             case 3:
1515                 if (!ds) {
1516                     goto fail;
1517                 }
1518                 break;
1519             }
1520             startlevel = 3 - sl0;
1521             break;
1522         case 13: /* 64KB */
1523             switch (sl0) {
1524             case 2:
1525                 if (arm_pamax(cpu) < 44) {
1526                     goto fail;
1527                 }
1528                 break;
1529             case 3:
1530                 goto fail;
1531             }
1532             startlevel = 3 - sl0;
1533             break;
1534         default:
1535             g_assert_not_reached();
1536         }
1537     } else {
1538         /*
1539          * Things are simpler for AArch32 EL2, with only 4k pages.
1540          * There is no separate S2InvalidSL function, but AArch32.S2Walk
1541          * begins with walkparms.sl0 in {'1x'}.
1542          */
1543         assert(stride == 9);
1544         if (sl0 >= 2) {
1545             goto fail;
1546         }
1547         startlevel = 2 - sl0;
1548     }
1549 
1550     /* AArch{64,32}.S2InconsistentSL are functionally equivalent.  */
1551     levels = 3 - startlevel;
1552     granulebits = stride + 3;
1553 
1554     s1_min_iasize = levels * stride + granulebits + 1;
1555     s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1556 
1557     if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1558         return startlevel;
1559     }
1560 
1561  fail:
1562     return INT_MIN;
1563 }
1564 
1565 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds,
1566                                   ARMGranuleSize gran, int level)
1567 {
1568     /*
1569      * See pseudocode AArch46.BlockDescSupported(): block descriptors
1570      * are not valid at all levels, depending on the page size.
1571      */
1572     switch (gran) {
1573     case Gran4K:
1574         return (level == 0 && ds) || level == 1 || level == 2;
1575     case Gran16K:
1576         return (level == 1 && ds) || level == 2;
1577     case Gran64K:
1578         return (level == 1 && arm_pamax(cpu) == 52) || level == 2;
1579     default:
1580         g_assert_not_reached();
1581     }
1582 }
1583 
1584 /**
1585  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1586  *
1587  * Returns false if the translation was successful. Otherwise, phys_ptr,
1588  * attrs, prot and page_size may not be filled in, and the populated fsr
1589  * value provides information on why the translation aborted, in the format
1590  * of a long-format DFSR/IFSR fault register, with the following caveat:
1591  * the WnR bit is never set (the caller must do this).
1592  *
1593  * @env: CPUARMState
1594  * @ptw: Current and next stage parameters for the walk.
1595  * @address: virtual address to get physical address for
1596  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1597  * @result: set on translation success,
1598  * @fi: set to fault info if the translation fails
1599  */
1600 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1601                                uint64_t address,
1602                                MMUAccessType access_type,
1603                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1604 {
1605     ARMCPU *cpu = env_archcpu(env);
1606     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1607     int32_t level;
1608     ARMVAParameters param;
1609     uint64_t ttbr;
1610     hwaddr descaddr, indexmask, indexmask_grainsize;
1611     uint32_t tableattrs;
1612     target_ulong page_size;
1613     uint64_t attrs;
1614     int32_t stride;
1615     int addrsize, inputsize, outputsize;
1616     uint64_t tcr = regime_tcr(env, mmu_idx);
1617     int ap, xn, pxn;
1618     uint32_t el = regime_el(env, mmu_idx);
1619     uint64_t descaddrmask;
1620     bool aarch64 = arm_el_is_aa64(env, el);
1621     uint64_t descriptor, new_descriptor;
1622     ARMSecuritySpace out_space;
1623 
1624     /* TODO: This code does not support shareability levels. */
1625     if (aarch64) {
1626         int ps;
1627 
1628         param = aa64_va_parameters(env, address, mmu_idx,
1629                                    access_type != MMU_INST_FETCH,
1630                                    !arm_el_is_aa64(env, 1));
1631         level = 0;
1632 
1633         /*
1634          * If TxSZ is programmed to a value larger than the maximum,
1635          * or smaller than the effective minimum, it is IMPLEMENTATION
1636          * DEFINED whether we behave as if the field were programmed
1637          * within bounds, or if a level 0 Translation fault is generated.
1638          *
1639          * With FEAT_LVA, fault on less than minimum becomes required,
1640          * so our choice is to always raise the fault.
1641          */
1642         if (param.tsz_oob) {
1643             goto do_translation_fault;
1644         }
1645 
1646         addrsize = 64 - 8 * param.tbi;
1647         inputsize = 64 - param.tsz;
1648 
1649         /*
1650          * Bound PS by PARANGE to find the effective output address size.
1651          * ID_AA64MMFR0 is a read-only register so values outside of the
1652          * supported mappings can be considered an implementation error.
1653          */
1654         ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1655         ps = MIN(ps, param.ps);
1656         assert(ps < ARRAY_SIZE(pamax_map));
1657         outputsize = pamax_map[ps];
1658 
1659         /*
1660          * With LPA2, the effective output address (OA) size is at most 48 bits
1661          * unless TCR.DS == 1
1662          */
1663         if (!param.ds && param.gran != Gran64K) {
1664             outputsize = MIN(outputsize, 48);
1665         }
1666     } else {
1667         param = aa32_va_parameters(env, address, mmu_idx);
1668         level = 1;
1669         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1670         inputsize = addrsize - param.tsz;
1671         outputsize = 40;
1672     }
1673 
1674     /*
1675      * We determined the region when collecting the parameters, but we
1676      * have not yet validated that the address is valid for the region.
1677      * Extract the top bits and verify that they all match select.
1678      *
1679      * For aa32, if inputsize == addrsize, then we have selected the
1680      * region by exclusion in aa32_va_parameters and there is no more
1681      * validation to do here.
1682      */
1683     if (inputsize < addrsize) {
1684         target_ulong top_bits = sextract64(address, inputsize,
1685                                            addrsize - inputsize);
1686         if (-top_bits != param.select) {
1687             /* The gap between the two regions is a Translation fault */
1688             goto do_translation_fault;
1689         }
1690     }
1691 
1692     stride = arm_granule_bits(param.gran) - 3;
1693 
1694     /*
1695      * Note that QEMU ignores shareability and cacheability attributes,
1696      * so we don't need to do anything with the SH, ORGN, IRGN fields
1697      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
1698      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1699      * implement any ASID-like capability so we can ignore it (instead
1700      * we will always flush the TLB any time the ASID is changed).
1701      */
1702     ttbr = regime_ttbr(env, mmu_idx, param.select);
1703 
1704     /*
1705      * Here we should have set up all the parameters for the translation:
1706      * inputsize, ttbr, epd, stride, tbi
1707      */
1708 
1709     if (param.epd) {
1710         /*
1711          * Translation table walk disabled => Translation fault on TLB miss
1712          * Note: This is always 0 on 64-bit EL2 and EL3.
1713          */
1714         goto do_translation_fault;
1715     }
1716 
1717     if (!regime_is_stage2(mmu_idx)) {
1718         /*
1719          * The starting level depends on the virtual address size (which can
1720          * be up to 48 bits) and the translation granule size. It indicates
1721          * the number of strides (stride bits at a time) needed to
1722          * consume the bits of the input address. In the pseudocode this is:
1723          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
1724          * where their 'inputsize' is our 'inputsize', 'grainsize' is
1725          * our 'stride + 3' and 'stride' is our 'stride'.
1726          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1727          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1728          * = 4 - (inputsize - 4) / stride;
1729          */
1730         level = 4 - (inputsize - 4) / stride;
1731     } else {
1732         int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1733                                             inputsize, stride);
1734         if (startlevel == INT_MIN) {
1735             level = 0;
1736             goto do_translation_fault;
1737         }
1738         level = startlevel;
1739     }
1740 
1741     indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1742     indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1743 
1744     /* Now we can extract the actual base address from the TTBR */
1745     descaddr = extract64(ttbr, 0, 48);
1746 
1747     /*
1748      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1749      *
1750      * Otherwise, if the base address is out of range, raise AddressSizeFault.
1751      * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1752      * but we've just cleared the bits above 47, so simplify the test.
1753      */
1754     if (outputsize > 48) {
1755         descaddr |= extract64(ttbr, 2, 4) << 48;
1756     } else if (descaddr >> outputsize) {
1757         level = 0;
1758         fi->type = ARMFault_AddressSize;
1759         goto do_fault;
1760     }
1761 
1762     /*
1763      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1764      * and also to mask out CnP (bit 0) which could validly be non-zero.
1765      */
1766     descaddr &= ~indexmask;
1767 
1768     /*
1769      * For AArch32, the address field in the descriptor goes up to bit 39
1770      * for both v7 and v8.  However, for v8 the SBZ bits [47:40] must be 0
1771      * or an AddressSize fault is raised.  So for v8 we extract those SBZ
1772      * bits as part of the address, which will be checked via outputsize.
1773      * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1774      * the highest bits of a 52-bit output are placed elsewhere.
1775      */
1776     if (param.ds) {
1777         descaddrmask = MAKE_64BIT_MASK(0, 50);
1778     } else if (arm_feature(env, ARM_FEATURE_V8)) {
1779         descaddrmask = MAKE_64BIT_MASK(0, 48);
1780     } else {
1781         descaddrmask = MAKE_64BIT_MASK(0, 40);
1782     }
1783     descaddrmask &= ~indexmask_grainsize;
1784     tableattrs = 0;
1785 
1786  next_level:
1787     descaddr |= (address >> (stride * (4 - level))) & indexmask;
1788     descaddr &= ~7ULL;
1789 
1790     /*
1791      * Process the NSTable bit from the previous level.  This changes
1792      * the table address space and the output space from Secure to
1793      * NonSecure.  With RME, the EL3 translation regime does not change
1794      * from Root to NonSecure.
1795      */
1796     if (ptw->in_space == ARMSS_Secure
1797         && !regime_is_stage2(mmu_idx)
1798         && extract32(tableattrs, 4, 1)) {
1799         /*
1800          * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1801          * Assert the relative order of the secure/non-secure indexes.
1802          */
1803         QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS);
1804         QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2);
1805         ptw->in_ptw_idx += 1;
1806         ptw->in_space = ARMSS_NonSecure;
1807     }
1808 
1809     if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1810         goto do_fault;
1811     }
1812     descriptor = arm_ldq_ptw(env, ptw, fi);
1813     if (fi->type != ARMFault_None) {
1814         goto do_fault;
1815     }
1816     new_descriptor = descriptor;
1817 
1818  restart_atomic_update:
1819     if (!(descriptor & 1) ||
1820         (!(descriptor & 2) &&
1821          !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) {
1822         /* Invalid, or a block descriptor at an invalid level */
1823         goto do_translation_fault;
1824     }
1825 
1826     descaddr = descriptor & descaddrmask;
1827 
1828     /*
1829      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1830      * of descriptor.  For FEAT_LPA2 and effective DS, bits [51:50] of
1831      * descaddr are in [9:8].  Otherwise, if descaddr is out of range,
1832      * raise AddressSizeFault.
1833      */
1834     if (outputsize > 48) {
1835         if (param.ds) {
1836             descaddr |= extract64(descriptor, 8, 2) << 50;
1837         } else {
1838             descaddr |= extract64(descriptor, 12, 4) << 48;
1839         }
1840     } else if (descaddr >> outputsize) {
1841         fi->type = ARMFault_AddressSize;
1842         goto do_fault;
1843     }
1844 
1845     if ((descriptor & 2) && (level < 3)) {
1846         /*
1847          * Table entry. The top five bits are attributes which may
1848          * propagate down through lower levels of the table (and
1849          * which are all arranged so that 0 means "no effect", so
1850          * we can gather them up by ORing in the bits at each level).
1851          */
1852         tableattrs |= extract64(descriptor, 59, 5);
1853         level++;
1854         indexmask = indexmask_grainsize;
1855         goto next_level;
1856     }
1857 
1858     /*
1859      * Block entry at level 1 or 2, or page entry at level 3.
1860      * These are basically the same thing, although the number
1861      * of bits we pull in from the vaddr varies. Note that although
1862      * descaddrmask masks enough of the low bits of the descriptor
1863      * to give a correct page or table address, the address field
1864      * in a block descriptor is smaller; so we need to explicitly
1865      * clear the lower bits here before ORing in the low vaddr bits.
1866      *
1867      * Afterward, descaddr is the final physical address.
1868      */
1869     page_size = (1ULL << ((stride * (4 - level)) + 3));
1870     descaddr &= ~(hwaddr)(page_size - 1);
1871     descaddr |= (address & (page_size - 1));
1872 
1873     if (likely(!ptw->in_debug)) {
1874         /*
1875          * Access flag.
1876          * If HA is enabled, prepare to update the descriptor below.
1877          * Otherwise, pass the access fault on to software.
1878          */
1879         if (!(descriptor & (1 << 10))) {
1880             if (param.ha) {
1881                 new_descriptor |= 1 << 10; /* AF */
1882             } else {
1883                 fi->type = ARMFault_AccessFlag;
1884                 goto do_fault;
1885             }
1886         }
1887 
1888         /*
1889          * Dirty Bit.
1890          * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1891          * bit for writeback. The actual write protection test may still be
1892          * overridden by tableattrs, to be merged below.
1893          */
1894         if (param.hd
1895             && extract64(descriptor, 51, 1)  /* DBM */
1896             && access_type == MMU_DATA_STORE) {
1897             if (regime_is_stage2(mmu_idx)) {
1898                 new_descriptor |= 1ull << 7;    /* set S2AP[1] */
1899             } else {
1900                 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1901             }
1902         }
1903     }
1904 
1905     /*
1906      * Extract attributes from the (modified) descriptor, and apply
1907      * table descriptors. Stage 2 table descriptors do not include
1908      * any attribute fields. HPD disables all the table attributes
1909      * except NSTable (which we have already handled).
1910      */
1911     attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1912     if (!regime_is_stage2(mmu_idx)) {
1913         if (!param.hpd) {
1914             attrs |= extract64(tableattrs, 0, 2) << 53;     /* XN, PXN */
1915             /*
1916              * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1917              * means "force PL1 access only", which means forcing AP[1] to 0.
1918              */
1919             attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1920             attrs |= extract32(tableattrs, 3, 1) << 7;    /* APT[1] => AP[2] */
1921         }
1922     }
1923 
1924     ap = extract32(attrs, 6, 2);
1925     out_space = ptw->in_space;
1926     if (regime_is_stage2(mmu_idx)) {
1927         /*
1928          * R_GYNXY: For stage2 in Realm security state, bit 55 is NS.
1929          * The bit remains ignored for other security states.
1930          * R_YMCSL: Executing an insn fetched from non-Realm causes
1931          * a stage2 permission fault.
1932          */
1933         if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) {
1934             out_space = ARMSS_NonSecure;
1935             result->f.prot = get_S2prot_noexecute(ap);
1936         } else {
1937             xn = extract64(attrs, 53, 2);
1938             result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0);
1939         }
1940     } else {
1941         int nse, ns = extract32(attrs, 5, 1);
1942         switch (out_space) {
1943         case ARMSS_Root:
1944             /*
1945              * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime.
1946              * R_XTYPW: NSE and NS together select the output pa space.
1947              */
1948             nse = extract32(attrs, 11, 1);
1949             out_space = (nse << 1) | ns;
1950             if (out_space == ARMSS_Secure &&
1951                 !cpu_isar_feature(aa64_sel2, cpu)) {
1952                 out_space = ARMSS_NonSecure;
1953             }
1954             break;
1955         case ARMSS_Secure:
1956             if (ns) {
1957                 out_space = ARMSS_NonSecure;
1958             }
1959             break;
1960         case ARMSS_Realm:
1961             switch (mmu_idx) {
1962             case ARMMMUIdx_Stage1_E0:
1963             case ARMMMUIdx_Stage1_E1:
1964             case ARMMMUIdx_Stage1_E1_PAN:
1965                 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */
1966                 break;
1967             case ARMMMUIdx_E2:
1968             case ARMMMUIdx_E20_0:
1969             case ARMMMUIdx_E20_2:
1970             case ARMMMUIdx_E20_2_PAN:
1971                 /*
1972                  * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1,
1973                  * NS changes the output to non-secure space.
1974                  */
1975                 if (ns) {
1976                     out_space = ARMSS_NonSecure;
1977                 }
1978                 break;
1979             default:
1980                 g_assert_not_reached();
1981             }
1982             break;
1983         case ARMSS_NonSecure:
1984             /* R_QRMFF: For NonSecure state, the NS bit is RES0. */
1985             break;
1986         default:
1987             g_assert_not_reached();
1988         }
1989         xn = extract64(attrs, 54, 1);
1990         pxn = extract64(attrs, 53, 1);
1991 
1992         /*
1993          * Note that we modified ptw->in_space earlier for NSTable, but
1994          * result->f.attrs retains a copy of the original security space.
1995          */
1996         result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, xn, pxn,
1997                                     result->f.attrs.space, out_space);
1998     }
1999 
2000     if (!(result->f.prot & (1 << access_type))) {
2001         fi->type = ARMFault_Permission;
2002         goto do_fault;
2003     }
2004 
2005     /* If FEAT_HAFDBS has made changes, update the PTE. */
2006     if (new_descriptor != descriptor) {
2007         new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
2008         if (fi->type != ARMFault_None) {
2009             goto do_fault;
2010         }
2011         /*
2012          * I_YZSVV says that if the in-memory descriptor has changed,
2013          * then we must use the information in that new value
2014          * (which might include a different output address, different
2015          * attributes, or generate a fault).
2016          * Restart the handling of the descriptor value from scratch.
2017          */
2018         if (new_descriptor != descriptor) {
2019             descriptor = new_descriptor;
2020             goto restart_atomic_update;
2021         }
2022     }
2023 
2024     result->f.attrs.space = out_space;
2025     result->f.attrs.secure = arm_space_is_secure(out_space);
2026 
2027     if (regime_is_stage2(mmu_idx)) {
2028         result->cacheattrs.is_s2_format = true;
2029         result->cacheattrs.attrs = extract32(attrs, 2, 4);
2030     } else {
2031         /* Index into MAIR registers for cache attributes */
2032         uint8_t attrindx = extract32(attrs, 2, 3);
2033         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2034         assert(attrindx <= 7);
2035         result->cacheattrs.is_s2_format = false;
2036         result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2037 
2038         /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
2039         if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
2040             result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */
2041         }
2042     }
2043 
2044     /*
2045      * For FEAT_LPA2 and effective DS, the SH field in the attributes
2046      * was re-purposed for output address bits.  The SH attribute in
2047      * that case comes from TCR_ELx, which we extracted earlier.
2048      */
2049     if (param.ds) {
2050         result->cacheattrs.shareability = param.sh;
2051     } else {
2052         result->cacheattrs.shareability = extract32(attrs, 8, 2);
2053     }
2054 
2055     result->f.phys_addr = descaddr;
2056     result->f.lg_page_size = ctz64(page_size);
2057     return false;
2058 
2059  do_translation_fault:
2060     fi->type = ARMFault_Translation;
2061  do_fault:
2062     if (fi->s1ptw) {
2063         /* Retain the existing stage 2 fi->level */
2064         assert(fi->stage2);
2065     } else {
2066         fi->level = level;
2067         fi->stage2 = regime_is_stage2(mmu_idx);
2068     }
2069     fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx);
2070     return true;
2071 }
2072 
2073 static bool get_phys_addr_pmsav5(CPUARMState *env,
2074                                  S1Translate *ptw,
2075                                  uint32_t address,
2076                                  MMUAccessType access_type,
2077                                  GetPhysAddrResult *result,
2078                                  ARMMMUFaultInfo *fi)
2079 {
2080     int n;
2081     uint32_t mask;
2082     uint32_t base;
2083     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2084     bool is_user = regime_is_user(env, mmu_idx);
2085 
2086     if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
2087         /* MPU disabled.  */
2088         result->f.phys_addr = address;
2089         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2090         return false;
2091     }
2092 
2093     result->f.phys_addr = address;
2094     for (n = 7; n >= 0; n--) {
2095         base = env->cp15.c6_region[n];
2096         if ((base & 1) == 0) {
2097             continue;
2098         }
2099         mask = 1 << ((base >> 1) & 0x1f);
2100         /* Keep this shift separate from the above to avoid an
2101            (undefined) << 32.  */
2102         mask = (mask << 1) - 1;
2103         if (((base ^ address) & ~mask) == 0) {
2104             break;
2105         }
2106     }
2107     if (n < 0) {
2108         fi->type = ARMFault_Background;
2109         return true;
2110     }
2111 
2112     if (access_type == MMU_INST_FETCH) {
2113         mask = env->cp15.pmsav5_insn_ap;
2114     } else {
2115         mask = env->cp15.pmsav5_data_ap;
2116     }
2117     mask = (mask >> (n * 4)) & 0xf;
2118     switch (mask) {
2119     case 0:
2120         fi->type = ARMFault_Permission;
2121         fi->level = 1;
2122         return true;
2123     case 1:
2124         if (is_user) {
2125             fi->type = ARMFault_Permission;
2126             fi->level = 1;
2127             return true;
2128         }
2129         result->f.prot = PAGE_READ | PAGE_WRITE;
2130         break;
2131     case 2:
2132         result->f.prot = PAGE_READ;
2133         if (!is_user) {
2134             result->f.prot |= PAGE_WRITE;
2135         }
2136         break;
2137     case 3:
2138         result->f.prot = PAGE_READ | PAGE_WRITE;
2139         break;
2140     case 5:
2141         if (is_user) {
2142             fi->type = ARMFault_Permission;
2143             fi->level = 1;
2144             return true;
2145         }
2146         result->f.prot = PAGE_READ;
2147         break;
2148     case 6:
2149         result->f.prot = PAGE_READ;
2150         break;
2151     default:
2152         /* Bad permission.  */
2153         fi->type = ARMFault_Permission;
2154         fi->level = 1;
2155         return true;
2156     }
2157     result->f.prot |= PAGE_EXEC;
2158     return false;
2159 }
2160 
2161 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
2162                                          int32_t address, uint8_t *prot)
2163 {
2164     if (!arm_feature(env, ARM_FEATURE_M)) {
2165         *prot = PAGE_READ | PAGE_WRITE;
2166         switch (address) {
2167         case 0xF0000000 ... 0xFFFFFFFF:
2168             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
2169                 /* hivecs execing is ok */
2170                 *prot |= PAGE_EXEC;
2171             }
2172             break;
2173         case 0x00000000 ... 0x7FFFFFFF:
2174             *prot |= PAGE_EXEC;
2175             break;
2176         }
2177     } else {
2178         /* Default system address map for M profile cores.
2179          * The architecture specifies which regions are execute-never;
2180          * at the MPU level no other checks are defined.
2181          */
2182         switch (address) {
2183         case 0x00000000 ... 0x1fffffff: /* ROM */
2184         case 0x20000000 ... 0x3fffffff: /* SRAM */
2185         case 0x60000000 ... 0x7fffffff: /* RAM */
2186         case 0x80000000 ... 0x9fffffff: /* RAM */
2187             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2188             break;
2189         case 0x40000000 ... 0x5fffffff: /* Peripheral */
2190         case 0xa0000000 ... 0xbfffffff: /* Device */
2191         case 0xc0000000 ... 0xdfffffff: /* Device */
2192         case 0xe0000000 ... 0xffffffff: /* System */
2193             *prot = PAGE_READ | PAGE_WRITE;
2194             break;
2195         default:
2196             g_assert_not_reached();
2197         }
2198     }
2199 }
2200 
2201 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
2202 {
2203     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
2204     return arm_feature(env, ARM_FEATURE_M) &&
2205         extract32(address, 20, 12) == 0xe00;
2206 }
2207 
2208 static bool m_is_system_region(CPUARMState *env, uint32_t address)
2209 {
2210     /*
2211      * True if address is in the M profile system region
2212      * 0xe0000000 - 0xffffffff
2213      */
2214     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
2215 }
2216 
2217 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
2218                                          bool is_secure, bool is_user)
2219 {
2220     /*
2221      * Return true if we should use the default memory map as a
2222      * "background" region if there are no hits against any MPU regions.
2223      */
2224     CPUARMState *env = &cpu->env;
2225 
2226     if (is_user) {
2227         return false;
2228     }
2229 
2230     if (arm_feature(env, ARM_FEATURE_M)) {
2231         return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
2232     }
2233 
2234     if (mmu_idx == ARMMMUIdx_Stage2) {
2235         return false;
2236     }
2237 
2238     return regime_sctlr(env, mmu_idx) & SCTLR_BR;
2239 }
2240 
2241 static bool get_phys_addr_pmsav7(CPUARMState *env,
2242                                  S1Translate *ptw,
2243                                  uint32_t address,
2244                                  MMUAccessType access_type,
2245                                  GetPhysAddrResult *result,
2246                                  ARMMMUFaultInfo *fi)
2247 {
2248     ARMCPU *cpu = env_archcpu(env);
2249     int n;
2250     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2251     bool is_user = regime_is_user(env, mmu_idx);
2252     bool secure = arm_space_is_secure(ptw->in_space);
2253 
2254     result->f.phys_addr = address;
2255     result->f.lg_page_size = TARGET_PAGE_BITS;
2256     result->f.prot = 0;
2257 
2258     if (regime_translation_disabled(env, mmu_idx, ptw->in_space) ||
2259         m_is_ppb_region(env, address)) {
2260         /*
2261          * MPU disabled or M profile PPB access: use default memory map.
2262          * The other case which uses the default memory map in the
2263          * v7M ARM ARM pseudocode is exception vector reads from the vector
2264          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
2265          * which always does a direct read using address_space_ldl(), rather
2266          * than going via this function, so we don't need to check that here.
2267          */
2268         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2269     } else { /* MPU enabled */
2270         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
2271             /* region search */
2272             uint32_t base = env->pmsav7.drbar[n];
2273             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
2274             uint32_t rmask;
2275             bool srdis = false;
2276 
2277             if (!(env->pmsav7.drsr[n] & 0x1)) {
2278                 continue;
2279             }
2280 
2281             if (!rsize) {
2282                 qemu_log_mask(LOG_GUEST_ERROR,
2283                               "DRSR[%d]: Rsize field cannot be 0\n", n);
2284                 continue;
2285             }
2286             rsize++;
2287             rmask = (1ull << rsize) - 1;
2288 
2289             if (base & rmask) {
2290                 qemu_log_mask(LOG_GUEST_ERROR,
2291                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
2292                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
2293                               n, base, rmask);
2294                 continue;
2295             }
2296 
2297             if (address < base || address > base + rmask) {
2298                 /*
2299                  * Address not in this region. We must check whether the
2300                  * region covers addresses in the same page as our address.
2301                  * In that case we must not report a size that covers the
2302                  * whole page for a subsequent hit against a different MPU
2303                  * region or the background region, because it would result in
2304                  * incorrect TLB hits for subsequent accesses to addresses that
2305                  * are in this MPU region.
2306                  */
2307                 if (ranges_overlap(base, rmask,
2308                                    address & TARGET_PAGE_MASK,
2309                                    TARGET_PAGE_SIZE)) {
2310                     result->f.lg_page_size = 0;
2311                 }
2312                 continue;
2313             }
2314 
2315             /* Region matched */
2316 
2317             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
2318                 int i, snd;
2319                 uint32_t srdis_mask;
2320 
2321                 rsize -= 3; /* sub region size (power of 2) */
2322                 snd = ((address - base) >> rsize) & 0x7;
2323                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
2324 
2325                 srdis_mask = srdis ? 0x3 : 0x0;
2326                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
2327                     /*
2328                      * This will check in groups of 2, 4 and then 8, whether
2329                      * the subregion bits are consistent. rsize is incremented
2330                      * back up to give the region size, considering consistent
2331                      * adjacent subregions as one region. Stop testing if rsize
2332                      * is already big enough for an entire QEMU page.
2333                      */
2334                     int snd_rounded = snd & ~(i - 1);
2335                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
2336                                                      snd_rounded + 8, i);
2337                     if (srdis_mask ^ srdis_multi) {
2338                         break;
2339                     }
2340                     srdis_mask = (srdis_mask << i) | srdis_mask;
2341                     rsize++;
2342                 }
2343             }
2344             if (srdis) {
2345                 continue;
2346             }
2347             if (rsize < TARGET_PAGE_BITS) {
2348                 result->f.lg_page_size = rsize;
2349             }
2350             break;
2351         }
2352 
2353         if (n == -1) { /* no hits */
2354             if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2355                 /* background fault */
2356                 fi->type = ARMFault_Background;
2357                 return true;
2358             }
2359             get_phys_addr_pmsav7_default(env, mmu_idx, address,
2360                                          &result->f.prot);
2361         } else { /* a MPU hit! */
2362             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
2363             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
2364 
2365             if (m_is_system_region(env, address)) {
2366                 /* System space is always execute never */
2367                 xn = 1;
2368             }
2369 
2370             if (is_user) { /* User mode AP bit decoding */
2371                 switch (ap) {
2372                 case 0:
2373                 case 1:
2374                 case 5:
2375                     break; /* no access */
2376                 case 3:
2377                     result->f.prot |= PAGE_WRITE;
2378                     /* fall through */
2379                 case 2:
2380                 case 6:
2381                     result->f.prot |= PAGE_READ | PAGE_EXEC;
2382                     break;
2383                 case 7:
2384                     /* for v7M, same as 6; for R profile a reserved value */
2385                     if (arm_feature(env, ARM_FEATURE_M)) {
2386                         result->f.prot |= PAGE_READ | PAGE_EXEC;
2387                         break;
2388                     }
2389                     /* fall through */
2390                 default:
2391                     qemu_log_mask(LOG_GUEST_ERROR,
2392                                   "DRACR[%d]: Bad value for AP bits: 0x%"
2393                                   PRIx32 "\n", n, ap);
2394                 }
2395             } else { /* Priv. mode AP bits decoding */
2396                 switch (ap) {
2397                 case 0:
2398                     break; /* no access */
2399                 case 1:
2400                 case 2:
2401                 case 3:
2402                     result->f.prot |= PAGE_WRITE;
2403                     /* fall through */
2404                 case 5:
2405                 case 6:
2406                     result->f.prot |= PAGE_READ | PAGE_EXEC;
2407                     break;
2408                 case 7:
2409                     /* for v7M, same as 6; for R profile a reserved value */
2410                     if (arm_feature(env, ARM_FEATURE_M)) {
2411                         result->f.prot |= PAGE_READ | PAGE_EXEC;
2412                         break;
2413                     }
2414                     /* fall through */
2415                 default:
2416                     qemu_log_mask(LOG_GUEST_ERROR,
2417                                   "DRACR[%d]: Bad value for AP bits: 0x%"
2418                                   PRIx32 "\n", n, ap);
2419                 }
2420             }
2421 
2422             /* execute never */
2423             if (xn) {
2424                 result->f.prot &= ~PAGE_EXEC;
2425             }
2426         }
2427     }
2428 
2429     fi->type = ARMFault_Permission;
2430     fi->level = 1;
2431     return !(result->f.prot & (1 << access_type));
2432 }
2433 
2434 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
2435                              uint32_t secure)
2436 {
2437     if (regime_el(env, mmu_idx) == 2) {
2438         return env->pmsav8.hprbar;
2439     } else {
2440         return env->pmsav8.rbar[secure];
2441     }
2442 }
2443 
2444 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
2445                              uint32_t secure)
2446 {
2447     if (regime_el(env, mmu_idx) == 2) {
2448         return env->pmsav8.hprlar;
2449     } else {
2450         return env->pmsav8.rlar[secure];
2451     }
2452 }
2453 
2454 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2455                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
2456                        bool secure, GetPhysAddrResult *result,
2457                        ARMMMUFaultInfo *fi, uint32_t *mregion)
2458 {
2459     /*
2460      * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2461      * that a full phys-to-virt translation does).
2462      * mregion is (if not NULL) set to the region number which matched,
2463      * or -1 if no region number is returned (MPU off, address did not
2464      * hit a region, address hit in multiple regions).
2465      * If the region hit doesn't cover the entire TARGET_PAGE the address
2466      * is within, then we set the result page_size to 1 to force the
2467      * memory system to use a subpage.
2468      */
2469     ARMCPU *cpu = env_archcpu(env);
2470     bool is_user = regime_is_user(env, mmu_idx);
2471     int n;
2472     int matchregion = -1;
2473     bool hit = false;
2474     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2475     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2476     int region_counter;
2477 
2478     if (regime_el(env, mmu_idx) == 2) {
2479         region_counter = cpu->pmsav8r_hdregion;
2480     } else {
2481         region_counter = cpu->pmsav7_dregion;
2482     }
2483 
2484     result->f.lg_page_size = TARGET_PAGE_BITS;
2485     result->f.phys_addr = address;
2486     result->f.prot = 0;
2487     if (mregion) {
2488         *mregion = -1;
2489     }
2490 
2491     if (mmu_idx == ARMMMUIdx_Stage2) {
2492         fi->stage2 = true;
2493     }
2494 
2495     /*
2496      * Unlike the ARM ARM pseudocode, we don't need to check whether this
2497      * was an exception vector read from the vector table (which is always
2498      * done using the default system address map), because those accesses
2499      * are done in arm_v7m_load_vector(), which always does a direct
2500      * read using address_space_ldl(), rather than going via this function.
2501      */
2502     if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) {
2503         /* MPU disabled */
2504         hit = true;
2505     } else if (m_is_ppb_region(env, address)) {
2506         hit = true;
2507     } else {
2508         if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2509             hit = true;
2510         }
2511 
2512         uint32_t bitmask;
2513         if (arm_feature(env, ARM_FEATURE_M)) {
2514             bitmask = 0x1f;
2515         } else {
2516             bitmask = 0x3f;
2517             fi->level = 0;
2518         }
2519 
2520         for (n = region_counter - 1; n >= 0; n--) {
2521             /* region search */
2522             /*
2523              * Note that the base address is bits [31:x] from the register
2524              * with bits [x-1:0] all zeroes, but the limit address is bits
2525              * [31:x] from the register with bits [x:0] all ones. Where x is
2526              * 5 for Cortex-M and 6 for Cortex-R
2527              */
2528             uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2529             uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2530 
2531             if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2532                 /* Region disabled */
2533                 continue;
2534             }
2535 
2536             if (address < base || address > limit) {
2537                 /*
2538                  * Address not in this region. We must check whether the
2539                  * region covers addresses in the same page as our address.
2540                  * In that case we must not report a size that covers the
2541                  * whole page for a subsequent hit against a different MPU
2542                  * region or the background region, because it would result in
2543                  * incorrect TLB hits for subsequent accesses to addresses that
2544                  * are in this MPU region.
2545                  */
2546                 if (limit >= base &&
2547                     ranges_overlap(base, limit - base + 1,
2548                                    addr_page_base,
2549                                    TARGET_PAGE_SIZE)) {
2550                     result->f.lg_page_size = 0;
2551                 }
2552                 continue;
2553             }
2554 
2555             if (base > addr_page_base || limit < addr_page_limit) {
2556                 result->f.lg_page_size = 0;
2557             }
2558 
2559             if (matchregion != -1) {
2560                 /*
2561                  * Multiple regions match -- always a failure (unlike
2562                  * PMSAv7 where highest-numbered-region wins)
2563                  */
2564                 fi->type = ARMFault_Permission;
2565                 if (arm_feature(env, ARM_FEATURE_M)) {
2566                     fi->level = 1;
2567                 }
2568                 return true;
2569             }
2570 
2571             matchregion = n;
2572             hit = true;
2573         }
2574     }
2575 
2576     if (!hit) {
2577         if (arm_feature(env, ARM_FEATURE_M)) {
2578             fi->type = ARMFault_Background;
2579         } else {
2580             fi->type = ARMFault_Permission;
2581         }
2582         return true;
2583     }
2584 
2585     if (matchregion == -1) {
2586         /* hit using the background region */
2587         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2588     } else {
2589         uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2590         uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2591         uint32_t ap = extract32(matched_rbar, 1, 2);
2592         uint32_t xn = extract32(matched_rbar, 0, 1);
2593         bool pxn = false;
2594 
2595         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2596             pxn = extract32(matched_rlar, 4, 1);
2597         }
2598 
2599         if (m_is_system_region(env, address)) {
2600             /* System space is always execute never */
2601             xn = 1;
2602         }
2603 
2604         if (regime_el(env, mmu_idx) == 2) {
2605             result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2606                                             mmu_idx != ARMMMUIdx_E2);
2607         } else {
2608             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2609         }
2610 
2611         if (!arm_feature(env, ARM_FEATURE_M)) {
2612             uint8_t attrindx = extract32(matched_rlar, 1, 3);
2613             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2614             uint8_t sh = extract32(matched_rlar, 3, 2);
2615 
2616             if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2617                 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2618                 xn = 0x1;
2619             }
2620 
2621             if ((regime_el(env, mmu_idx) == 1) &&
2622                 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2623                 pxn = 0x1;
2624             }
2625 
2626             result->cacheattrs.is_s2_format = false;
2627             result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2628             result->cacheattrs.shareability = sh;
2629         }
2630 
2631         if (result->f.prot && !xn && !(pxn && !is_user)) {
2632             result->f.prot |= PAGE_EXEC;
2633         }
2634 
2635         if (mregion) {
2636             *mregion = matchregion;
2637         }
2638     }
2639 
2640     fi->type = ARMFault_Permission;
2641     if (arm_feature(env, ARM_FEATURE_M)) {
2642         fi->level = 1;
2643     }
2644     return !(result->f.prot & (1 << access_type));
2645 }
2646 
2647 static bool v8m_is_sau_exempt(CPUARMState *env,
2648                               uint32_t address, MMUAccessType access_type)
2649 {
2650     /*
2651      * The architecture specifies that certain address ranges are
2652      * exempt from v8M SAU/IDAU checks.
2653      */
2654     return
2655         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2656         (address >= 0xe0000000 && address <= 0xe0002fff) ||
2657         (address >= 0xe000e000 && address <= 0xe000efff) ||
2658         (address >= 0xe002e000 && address <= 0xe002efff) ||
2659         (address >= 0xe0040000 && address <= 0xe0041fff) ||
2660         (address >= 0xe00ff000 && address <= 0xe00fffff);
2661 }
2662 
2663 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2664                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
2665                          bool is_secure, V8M_SAttributes *sattrs)
2666 {
2667     /*
2668      * Look up the security attributes for this address. Compare the
2669      * pseudocode SecurityCheck() function.
2670      * We assume the caller has zero-initialized *sattrs.
2671      */
2672     ARMCPU *cpu = env_archcpu(env);
2673     int r;
2674     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2675     int idau_region = IREGION_NOTVALID;
2676     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2677     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2678 
2679     if (cpu->idau) {
2680         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2681         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2682 
2683         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2684                    &idau_nsc);
2685     }
2686 
2687     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2688         /* 0xf0000000..0xffffffff is always S for insn fetches */
2689         return;
2690     }
2691 
2692     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2693         sattrs->ns = !is_secure;
2694         return;
2695     }
2696 
2697     if (idau_region != IREGION_NOTVALID) {
2698         sattrs->irvalid = true;
2699         sattrs->iregion = idau_region;
2700     }
2701 
2702     switch (env->sau.ctrl & 3) {
2703     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2704         break;
2705     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2706         sattrs->ns = true;
2707         break;
2708     default: /* SAU.ENABLE == 1 */
2709         for (r = 0; r < cpu->sau_sregion; r++) {
2710             if (env->sau.rlar[r] & 1) {
2711                 uint32_t base = env->sau.rbar[r] & ~0x1f;
2712                 uint32_t limit = env->sau.rlar[r] | 0x1f;
2713 
2714                 if (base <= address && limit >= address) {
2715                     if (base > addr_page_base || limit < addr_page_limit) {
2716                         sattrs->subpage = true;
2717                     }
2718                     if (sattrs->srvalid) {
2719                         /*
2720                          * If we hit in more than one region then we must report
2721                          * as Secure, not NS-Callable, with no valid region
2722                          * number info.
2723                          */
2724                         sattrs->ns = false;
2725                         sattrs->nsc = false;
2726                         sattrs->sregion = 0;
2727                         sattrs->srvalid = false;
2728                         break;
2729                     } else {
2730                         if (env->sau.rlar[r] & 2) {
2731                             sattrs->nsc = true;
2732                         } else {
2733                             sattrs->ns = true;
2734                         }
2735                         sattrs->srvalid = true;
2736                         sattrs->sregion = r;
2737                     }
2738                 } else {
2739                     /*
2740                      * Address not in this region. We must check whether the
2741                      * region covers addresses in the same page as our address.
2742                      * In that case we must not report a size that covers the
2743                      * whole page for a subsequent hit against a different MPU
2744                      * region or the background region, because it would result
2745                      * in incorrect TLB hits for subsequent accesses to
2746                      * addresses that are in this MPU region.
2747                      */
2748                     if (limit >= base &&
2749                         ranges_overlap(base, limit - base + 1,
2750                                        addr_page_base,
2751                                        TARGET_PAGE_SIZE)) {
2752                         sattrs->subpage = true;
2753                     }
2754                 }
2755             }
2756         }
2757         break;
2758     }
2759 
2760     /*
2761      * The IDAU will override the SAU lookup results if it specifies
2762      * higher security than the SAU does.
2763      */
2764     if (!idau_ns) {
2765         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2766             sattrs->ns = false;
2767             sattrs->nsc = idau_nsc;
2768         }
2769     }
2770 }
2771 
2772 static bool get_phys_addr_pmsav8(CPUARMState *env,
2773                                  S1Translate *ptw,
2774                                  uint32_t address,
2775                                  MMUAccessType access_type,
2776                                  GetPhysAddrResult *result,
2777                                  ARMMMUFaultInfo *fi)
2778 {
2779     V8M_SAttributes sattrs = {};
2780     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2781     bool secure = arm_space_is_secure(ptw->in_space);
2782     bool ret;
2783 
2784     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2785         v8m_security_lookup(env, address, access_type, mmu_idx,
2786                             secure, &sattrs);
2787         if (access_type == MMU_INST_FETCH) {
2788             /*
2789              * Instruction fetches always use the MMU bank and the
2790              * transaction attribute determined by the fetch address,
2791              * regardless of CPU state. This is painful for QEMU
2792              * to handle, because it would mean we need to encode
2793              * into the mmu_idx not just the (user, negpri) information
2794              * for the current security state but also that for the
2795              * other security state, which would balloon the number
2796              * of mmu_idx values needed alarmingly.
2797              * Fortunately we can avoid this because it's not actually
2798              * possible to arbitrarily execute code from memory with
2799              * the wrong security attribute: it will always generate
2800              * an exception of some kind or another, apart from the
2801              * special case of an NS CPU executing an SG instruction
2802              * in S&NSC memory. So we always just fail the translation
2803              * here and sort things out in the exception handler
2804              * (including possibly emulating an SG instruction).
2805              */
2806             if (sattrs.ns != !secure) {
2807                 if (sattrs.nsc) {
2808                     fi->type = ARMFault_QEMU_NSCExec;
2809                 } else {
2810                     fi->type = ARMFault_QEMU_SFault;
2811                 }
2812                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2813                 result->f.phys_addr = address;
2814                 result->f.prot = 0;
2815                 return true;
2816             }
2817         } else {
2818             /*
2819              * For data accesses we always use the MMU bank indicated
2820              * by the current CPU state, but the security attributes
2821              * might downgrade a secure access to nonsecure.
2822              */
2823             if (sattrs.ns) {
2824                 result->f.attrs.secure = false;
2825                 result->f.attrs.space = ARMSS_NonSecure;
2826             } else if (!secure) {
2827                 /*
2828                  * NS access to S memory must fault.
2829                  * Architecturally we should first check whether the
2830                  * MPU information for this address indicates that we
2831                  * are doing an unaligned access to Device memory, which
2832                  * should generate a UsageFault instead. QEMU does not
2833                  * currently check for that kind of unaligned access though.
2834                  * If we added it we would need to do so as a special case
2835                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2836                  */
2837                 fi->type = ARMFault_QEMU_SFault;
2838                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2839                 result->f.phys_addr = address;
2840                 result->f.prot = 0;
2841                 return true;
2842             }
2843         }
2844     }
2845 
2846     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2847                             result, fi, NULL);
2848     if (sattrs.subpage) {
2849         result->f.lg_page_size = 0;
2850     }
2851     return ret;
2852 }
2853 
2854 /*
2855  * Translate from the 4-bit stage 2 representation of
2856  * memory attributes (without cache-allocation hints) to
2857  * the 8-bit representation of the stage 1 MAIR registers
2858  * (which includes allocation hints).
2859  *
2860  * ref: shared/translation/attrs/S2AttrDecode()
2861  *      .../S2ConvertAttrsHints()
2862  */
2863 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2864 {
2865     uint8_t hiattr = extract32(s2attrs, 2, 2);
2866     uint8_t loattr = extract32(s2attrs, 0, 2);
2867     uint8_t hihint = 0, lohint = 0;
2868 
2869     if (hiattr != 0) { /* normal memory */
2870         if (hcr & HCR_CD) { /* cache disabled */
2871             hiattr = loattr = 1; /* non-cacheable */
2872         } else {
2873             if (hiattr != 1) { /* Write-through or write-back */
2874                 hihint = 3; /* RW allocate */
2875             }
2876             if (loattr != 1) { /* Write-through or write-back */
2877                 lohint = 3; /* RW allocate */
2878             }
2879         }
2880     }
2881 
2882     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2883 }
2884 
2885 /*
2886  * Combine either inner or outer cacheability attributes for normal
2887  * memory, according to table D4-42 and pseudocode procedure
2888  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2889  *
2890  * NB: only stage 1 includes allocation hints (RW bits), leading to
2891  * some asymmetry.
2892  */
2893 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2894 {
2895     if (s1 == 4 || s2 == 4) {
2896         /* non-cacheable has precedence */
2897         return 4;
2898     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2899         /* stage 1 write-through takes precedence */
2900         return s1;
2901     } else if (extract32(s2, 2, 2) == 2) {
2902         /* stage 2 write-through takes precedence, but the allocation hint
2903          * is still taken from stage 1
2904          */
2905         return (2 << 2) | extract32(s1, 0, 2);
2906     } else { /* write-back */
2907         return s1;
2908     }
2909 }
2910 
2911 /*
2912  * Combine the memory type and cacheability attributes of
2913  * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2914  * combined attributes in MAIR_EL1 format.
2915  */
2916 static uint8_t combined_attrs_nofwb(uint64_t hcr,
2917                                     ARMCacheAttrs s1, ARMCacheAttrs s2)
2918 {
2919     uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2920 
2921     if (s2.is_s2_format) {
2922         s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
2923     } else {
2924         s2_mair_attrs = s2.attrs;
2925     }
2926 
2927     s1lo = extract32(s1.attrs, 0, 4);
2928     s2lo = extract32(s2_mair_attrs, 0, 4);
2929     s1hi = extract32(s1.attrs, 4, 4);
2930     s2hi = extract32(s2_mair_attrs, 4, 4);
2931 
2932     /* Combine memory type and cacheability attributes */
2933     if (s1hi == 0 || s2hi == 0) {
2934         /* Device has precedence over normal */
2935         if (s1lo == 0 || s2lo == 0) {
2936             /* nGnRnE has precedence over anything */
2937             ret_attrs = 0;
2938         } else if (s1lo == 4 || s2lo == 4) {
2939             /* non-Reordering has precedence over Reordering */
2940             ret_attrs = 4;  /* nGnRE */
2941         } else if (s1lo == 8 || s2lo == 8) {
2942             /* non-Gathering has precedence over Gathering */
2943             ret_attrs = 8;  /* nGRE */
2944         } else {
2945             ret_attrs = 0xc; /* GRE */
2946         }
2947     } else { /* Normal memory */
2948         /* Outer/inner cacheability combine independently */
2949         ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2950                   | combine_cacheattr_nibble(s1lo, s2lo);
2951     }
2952     return ret_attrs;
2953 }
2954 
2955 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2956 {
2957     /*
2958      * Given the 4 bits specifying the outer or inner cacheability
2959      * in MAIR format, return a value specifying Normal Write-Back,
2960      * with the allocation and transient hints taken from the input
2961      * if the input specified some kind of cacheable attribute.
2962      */
2963     if (attr == 0 || attr == 4) {
2964         /*
2965          * 0 == an UNPREDICTABLE encoding
2966          * 4 == Non-cacheable
2967          * Either way, force Write-Back RW allocate non-transient
2968          */
2969         return 0xf;
2970     }
2971     /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2972     return attr | 4;
2973 }
2974 
2975 /*
2976  * Combine the memory type and cacheability attributes of
2977  * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2978  * combined attributes in MAIR_EL1 format.
2979  */
2980 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
2981 {
2982     assert(s2.is_s2_format && !s1.is_s2_format);
2983 
2984     switch (s2.attrs) {
2985     case 7:
2986         /* Use stage 1 attributes */
2987         return s1.attrs;
2988     case 6:
2989         /*
2990          * Force Normal Write-Back. Note that if S1 is Normal cacheable
2991          * then we take the allocation hints from it; otherwise it is
2992          * RW allocate, non-transient.
2993          */
2994         if ((s1.attrs & 0xf0) == 0) {
2995             /* S1 is Device */
2996             return 0xff;
2997         }
2998         /* Need to check the Inner and Outer nibbles separately */
2999         return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
3000             force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
3001     case 5:
3002         /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
3003         if ((s1.attrs & 0xf0) == 0) {
3004             return s1.attrs;
3005         }
3006         return 0x44;
3007     case 0 ... 3:
3008         /* Force Device, of subtype specified by S2 */
3009         return s2.attrs << 2;
3010     default:
3011         /*
3012          * RESERVED values (including RES0 descriptor bit [5] being nonzero);
3013          * arbitrarily force Device.
3014          */
3015         return 0;
3016     }
3017 }
3018 
3019 /*
3020  * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
3021  * and CombineS1S2Desc()
3022  *
3023  * @env:     CPUARMState
3024  * @s1:      Attributes from stage 1 walk
3025  * @s2:      Attributes from stage 2 walk
3026  */
3027 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
3028                                         ARMCacheAttrs s1, ARMCacheAttrs s2)
3029 {
3030     ARMCacheAttrs ret;
3031     bool tagged = false;
3032 
3033     assert(!s1.is_s2_format);
3034     ret.is_s2_format = false;
3035 
3036     if (s1.attrs == 0xf0) {
3037         tagged = true;
3038         s1.attrs = 0xff;
3039     }
3040 
3041     /* Combine shareability attributes (table D4-43) */
3042     if (s1.shareability == 2 || s2.shareability == 2) {
3043         /* if either are outer-shareable, the result is outer-shareable */
3044         ret.shareability = 2;
3045     } else if (s1.shareability == 3 || s2.shareability == 3) {
3046         /* if either are inner-shareable, the result is inner-shareable */
3047         ret.shareability = 3;
3048     } else {
3049         /* both non-shareable */
3050         ret.shareability = 0;
3051     }
3052 
3053     /* Combine memory type and cacheability attributes */
3054     if (hcr & HCR_FWB) {
3055         ret.attrs = combined_attrs_fwb(s1, s2);
3056     } else {
3057         ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
3058     }
3059 
3060     /*
3061      * Any location for which the resultant memory type is any
3062      * type of Device memory is always treated as Outer Shareable.
3063      * Any location for which the resultant memory type is Normal
3064      * Inner Non-cacheable, Outer Non-cacheable is always treated
3065      * as Outer Shareable.
3066      * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
3067      */
3068     if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
3069         ret.shareability = 2;
3070     }
3071 
3072     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
3073     if (tagged && ret.attrs == 0xff) {
3074         ret.attrs = 0xf0;
3075     }
3076 
3077     return ret;
3078 }
3079 
3080 /*
3081  * MMU disabled.  S1 addresses within aa64 translation regimes are
3082  * still checked for bounds -- see AArch64.S1DisabledOutput().
3083  */
3084 static bool get_phys_addr_disabled(CPUARMState *env,
3085                                    S1Translate *ptw,
3086                                    target_ulong address,
3087                                    MMUAccessType access_type,
3088                                    GetPhysAddrResult *result,
3089                                    ARMMMUFaultInfo *fi)
3090 {
3091     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3092     uint8_t memattr = 0x00;    /* Device nGnRnE */
3093     uint8_t shareability = 0;  /* non-shareable */
3094     int r_el;
3095 
3096     switch (mmu_idx) {
3097     case ARMMMUIdx_Stage2:
3098     case ARMMMUIdx_Stage2_S:
3099     case ARMMMUIdx_Phys_S:
3100     case ARMMMUIdx_Phys_NS:
3101     case ARMMMUIdx_Phys_Root:
3102     case ARMMMUIdx_Phys_Realm:
3103         break;
3104 
3105     default:
3106         r_el = regime_el(env, mmu_idx);
3107         if (arm_el_is_aa64(env, r_el)) {
3108             int pamax = arm_pamax(env_archcpu(env));
3109             uint64_t tcr = env->cp15.tcr_el[r_el];
3110             int addrtop, tbi;
3111 
3112             tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
3113             if (access_type == MMU_INST_FETCH) {
3114                 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
3115             }
3116             tbi = (tbi >> extract64(address, 55, 1)) & 1;
3117             addrtop = (tbi ? 55 : 63);
3118 
3119             if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
3120                 fi->type = ARMFault_AddressSize;
3121                 fi->level = 0;
3122                 fi->stage2 = false;
3123                 return 1;
3124             }
3125 
3126             /*
3127              * When TBI is disabled, we've just validated that all of the
3128              * bits above PAMax are zero, so logically we only need to
3129              * clear the top byte for TBI.  But it's clearer to follow
3130              * the pseudocode set of addrdesc.paddress.
3131              */
3132             address = extract64(address, 0, 52);
3133         }
3134 
3135         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
3136         if (r_el == 1) {
3137             uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
3138             if (hcr & HCR_DC) {
3139                 if (hcr & HCR_DCT) {
3140                     memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
3141                 } else {
3142                     memattr = 0xff;  /* Normal, WB, RWA */
3143                 }
3144             }
3145         }
3146         if (memattr == 0) {
3147             if (access_type == MMU_INST_FETCH) {
3148                 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
3149                     memattr = 0xee;  /* Normal, WT, RA, NT */
3150                 } else {
3151                     memattr = 0x44;  /* Normal, NC, No */
3152                 }
3153             }
3154             shareability = 2; /* outer shareable */
3155         }
3156         result->cacheattrs.is_s2_format = false;
3157         break;
3158     }
3159 
3160     result->f.phys_addr = address;
3161     result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3162     result->f.lg_page_size = TARGET_PAGE_BITS;
3163     result->cacheattrs.shareability = shareability;
3164     result->cacheattrs.attrs = memattr;
3165     return false;
3166 }
3167 
3168 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
3169                                    target_ulong address,
3170                                    MMUAccessType access_type,
3171                                    GetPhysAddrResult *result,
3172                                    ARMMMUFaultInfo *fi)
3173 {
3174     hwaddr ipa;
3175     int s1_prot, s1_lgpgsz;
3176     ARMSecuritySpace in_space = ptw->in_space;
3177     bool ret, ipa_secure, s1_guarded;
3178     ARMCacheAttrs cacheattrs1;
3179     ARMSecuritySpace ipa_space;
3180     uint64_t hcr;
3181 
3182     ret = get_phys_addr_nogpc(env, ptw, address, access_type, result, fi);
3183 
3184     /* If S1 fails, return early.  */
3185     if (ret) {
3186         return ret;
3187     }
3188 
3189     ipa = result->f.phys_addr;
3190     ipa_secure = result->f.attrs.secure;
3191     ipa_space = result->f.attrs.space;
3192 
3193     ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
3194     ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3195     ptw->in_space = ipa_space;
3196     ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
3197 
3198     /*
3199      * S1 is done, now do S2 translation.
3200      * Save the stage1 results so that we may merge prot and cacheattrs later.
3201      */
3202     s1_prot = result->f.prot;
3203     s1_lgpgsz = result->f.lg_page_size;
3204     s1_guarded = result->f.extra.arm.guarded;
3205     cacheattrs1 = result->cacheattrs;
3206     memset(result, 0, sizeof(*result));
3207 
3208     ret = get_phys_addr_nogpc(env, ptw, ipa, access_type, result, fi);
3209     fi->s2addr = ipa;
3210 
3211     /* Combine the S1 and S2 perms.  */
3212     result->f.prot &= s1_prot;
3213 
3214     /* If S2 fails, return early.  */
3215     if (ret) {
3216         return ret;
3217     }
3218 
3219     /*
3220      * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
3221      * this means "don't put this in the TLB"; in this case, return a
3222      * result with lg_page_size == 0 to achieve that. Otherwise,
3223      * use the maximum of the S1 & S2 page size, so that invalidation
3224      * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
3225      * we know the combined result permissions etc only cover the minimum
3226      * of the S1 and S2 page size, because we know that the common TLB code
3227      * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
3228      * and passing a larger page size value only affects invalidations.)
3229      */
3230     if (result->f.lg_page_size < TARGET_PAGE_BITS ||
3231         s1_lgpgsz < TARGET_PAGE_BITS) {
3232         result->f.lg_page_size = 0;
3233     } else if (result->f.lg_page_size < s1_lgpgsz) {
3234         result->f.lg_page_size = s1_lgpgsz;
3235     }
3236 
3237     /* Combine the S1 and S2 cache attributes. */
3238     hcr = arm_hcr_el2_eff_secstate(env, in_space);
3239     if (hcr & HCR_DC) {
3240         /*
3241          * HCR.DC forces the first stage attributes to
3242          *  Normal Non-Shareable,
3243          *  Inner Write-Back Read-Allocate Write-Allocate,
3244          *  Outer Write-Back Read-Allocate Write-Allocate.
3245          * Do not overwrite Tagged within attrs.
3246          */
3247         if (cacheattrs1.attrs != 0xf0) {
3248             cacheattrs1.attrs = 0xff;
3249         }
3250         cacheattrs1.shareability = 0;
3251     }
3252     result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
3253                                             result->cacheattrs);
3254 
3255     /* No BTI GP information in stage 2, we just use the S1 value */
3256     result->f.extra.arm.guarded = s1_guarded;
3257 
3258     /*
3259      * Check if IPA translates to secure or non-secure PA space.
3260      * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
3261      */
3262     if (in_space == ARMSS_Secure) {
3263         result->f.attrs.secure =
3264             !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
3265             && (ipa_secure
3266                 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)));
3267         result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure);
3268     }
3269 
3270     return false;
3271 }
3272 
3273 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
3274                                       target_ulong address,
3275                                       MMUAccessType access_type,
3276                                       GetPhysAddrResult *result,
3277                                       ARMMMUFaultInfo *fi)
3278 {
3279     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3280     ARMMMUIdx s1_mmu_idx;
3281 
3282     /*
3283      * The page table entries may downgrade Secure to NonSecure, but
3284      * cannot upgrade a NonSecure translation regime's attributes
3285      * to Secure or Realm.
3286      */
3287     result->f.attrs.space = ptw->in_space;
3288     result->f.attrs.secure = arm_space_is_secure(ptw->in_space);
3289 
3290     switch (mmu_idx) {
3291     case ARMMMUIdx_Phys_S:
3292     case ARMMMUIdx_Phys_NS:
3293     case ARMMMUIdx_Phys_Root:
3294     case ARMMMUIdx_Phys_Realm:
3295         /* Checking Phys early avoids special casing later vs regime_el. */
3296         return get_phys_addr_disabled(env, ptw, address, access_type,
3297                                       result, fi);
3298 
3299     case ARMMMUIdx_Stage1_E0:
3300     case ARMMMUIdx_Stage1_E1:
3301     case ARMMMUIdx_Stage1_E1_PAN:
3302         /*
3303          * First stage lookup uses second stage for ptw; only
3304          * Secure has both S and NS IPA and starts with Stage2_S.
3305          */
3306         ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ?
3307             ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3308         break;
3309 
3310     case ARMMMUIdx_Stage2:
3311     case ARMMMUIdx_Stage2_S:
3312         /*
3313          * Second stage lookup uses physical for ptw; whether this is S or
3314          * NS may depend on the SW/NSW bits if this is a stage 2 lookup for
3315          * the Secure EL2&0 regime.
3316          */
3317         ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx);
3318         break;
3319 
3320     case ARMMMUIdx_E10_0:
3321         s1_mmu_idx = ARMMMUIdx_Stage1_E0;
3322         goto do_twostage;
3323     case ARMMMUIdx_E10_1:
3324         s1_mmu_idx = ARMMMUIdx_Stage1_E1;
3325         goto do_twostage;
3326     case ARMMMUIdx_E10_1_PAN:
3327         s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3328     do_twostage:
3329         /*
3330          * Call ourselves recursively to do the stage 1 and then stage 2
3331          * translations if mmu_idx is a two-stage regime, and EL2 present.
3332          * Otherwise, a stage1+stage2 translation is just stage 1.
3333          */
3334         ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
3335         if (arm_feature(env, ARM_FEATURE_EL2) &&
3336             !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) {
3337             return get_phys_addr_twostage(env, ptw, address, access_type,
3338                                           result, fi);
3339         }
3340         /* fall through */
3341 
3342     default:
3343         /* Single stage uses physical for ptw. */
3344         ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space);
3345         break;
3346     }
3347 
3348     result->f.attrs.user = regime_is_user(env, mmu_idx);
3349 
3350     /*
3351      * Fast Context Switch Extension. This doesn't exist at all in v8.
3352      * In v7 and earlier it affects all stage 1 translations.
3353      */
3354     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
3355         && !arm_feature(env, ARM_FEATURE_V8)) {
3356         if (regime_el(env, mmu_idx) == 3) {
3357             address += env->cp15.fcseidr_s;
3358         } else {
3359             address += env->cp15.fcseidr_ns;
3360         }
3361     }
3362 
3363     if (arm_feature(env, ARM_FEATURE_PMSA)) {
3364         bool ret;
3365         result->f.lg_page_size = TARGET_PAGE_BITS;
3366 
3367         if (arm_feature(env, ARM_FEATURE_V8)) {
3368             /* PMSAv8 */
3369             ret = get_phys_addr_pmsav8(env, ptw, address, access_type,
3370                                        result, fi);
3371         } else if (arm_feature(env, ARM_FEATURE_V7)) {
3372             /* PMSAv7 */
3373             ret = get_phys_addr_pmsav7(env, ptw, address, access_type,
3374                                        result, fi);
3375         } else {
3376             /* Pre-v7 MPU */
3377             ret = get_phys_addr_pmsav5(env, ptw, address, access_type,
3378                                        result, fi);
3379         }
3380         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
3381                       " mmu_idx %u -> %s (prot %c%c%c)\n",
3382                       access_type == MMU_DATA_LOAD ? "reading" :
3383                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
3384                       (uint32_t)address, mmu_idx,
3385                       ret ? "Miss" : "Hit",
3386                       result->f.prot & PAGE_READ ? 'r' : '-',
3387                       result->f.prot & PAGE_WRITE ? 'w' : '-',
3388                       result->f.prot & PAGE_EXEC ? 'x' : '-');
3389 
3390         return ret;
3391     }
3392 
3393     /* Definitely a real MMU, not an MPU */
3394 
3395     if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
3396         return get_phys_addr_disabled(env, ptw, address, access_type,
3397                                       result, fi);
3398     }
3399 
3400     if (regime_using_lpae_format(env, mmu_idx)) {
3401         return get_phys_addr_lpae(env, ptw, address, access_type, result, fi);
3402     } else if (arm_feature(env, ARM_FEATURE_V7) ||
3403                regime_sctlr(env, mmu_idx) & SCTLR_XP) {
3404         return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
3405     } else {
3406         return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
3407     }
3408 }
3409 
3410 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
3411                               target_ulong address,
3412                               MMUAccessType access_type,
3413                               GetPhysAddrResult *result,
3414                               ARMMMUFaultInfo *fi)
3415 {
3416     if (get_phys_addr_nogpc(env, ptw, address, access_type, result, fi)) {
3417         return true;
3418     }
3419     if (!granule_protection_check(env, result->f.phys_addr,
3420                                   result->f.attrs.space, fi)) {
3421         fi->type = ARMFault_GPCFOnOutput;
3422         return true;
3423     }
3424     return false;
3425 }
3426 
3427 bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address,
3428                                     MMUAccessType access_type,
3429                                     ARMMMUIdx mmu_idx, ARMSecuritySpace space,
3430                                     GetPhysAddrResult *result,
3431                                     ARMMMUFaultInfo *fi)
3432 {
3433     S1Translate ptw = {
3434         .in_mmu_idx = mmu_idx,
3435         .in_space = space,
3436     };
3437     return get_phys_addr_nogpc(env, &ptw, address, access_type, result, fi);
3438 }
3439 
3440 bool get_phys_addr(CPUARMState *env, target_ulong address,
3441                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
3442                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
3443 {
3444     S1Translate ptw = {
3445         .in_mmu_idx = mmu_idx,
3446     };
3447     ARMSecuritySpace ss;
3448 
3449     switch (mmu_idx) {
3450     case ARMMMUIdx_E10_0:
3451     case ARMMMUIdx_E10_1:
3452     case ARMMMUIdx_E10_1_PAN:
3453     case ARMMMUIdx_E20_0:
3454     case ARMMMUIdx_E20_2:
3455     case ARMMMUIdx_E20_2_PAN:
3456     case ARMMMUIdx_Stage1_E0:
3457     case ARMMMUIdx_Stage1_E1:
3458     case ARMMMUIdx_Stage1_E1_PAN:
3459     case ARMMMUIdx_E2:
3460         ss = arm_security_space_below_el3(env);
3461         break;
3462     case ARMMMUIdx_Stage2:
3463         /*
3464          * For Secure EL2, we need this index to be NonSecure;
3465          * otherwise this will already be NonSecure or Realm.
3466          */
3467         ss = arm_security_space_below_el3(env);
3468         if (ss == ARMSS_Secure) {
3469             ss = ARMSS_NonSecure;
3470         }
3471         break;
3472     case ARMMMUIdx_Phys_NS:
3473     case ARMMMUIdx_MPrivNegPri:
3474     case ARMMMUIdx_MUserNegPri:
3475     case ARMMMUIdx_MPriv:
3476     case ARMMMUIdx_MUser:
3477         ss = ARMSS_NonSecure;
3478         break;
3479     case ARMMMUIdx_Stage2_S:
3480     case ARMMMUIdx_Phys_S:
3481     case ARMMMUIdx_MSPrivNegPri:
3482     case ARMMMUIdx_MSUserNegPri:
3483     case ARMMMUIdx_MSPriv:
3484     case ARMMMUIdx_MSUser:
3485         ss = ARMSS_Secure;
3486         break;
3487     case ARMMMUIdx_E3:
3488         if (arm_feature(env, ARM_FEATURE_AARCH64) &&
3489             cpu_isar_feature(aa64_rme, env_archcpu(env))) {
3490             ss = ARMSS_Root;
3491         } else {
3492             ss = ARMSS_Secure;
3493         }
3494         break;
3495     case ARMMMUIdx_Phys_Root:
3496         ss = ARMSS_Root;
3497         break;
3498     case ARMMMUIdx_Phys_Realm:
3499         ss = ARMSS_Realm;
3500         break;
3501     default:
3502         g_assert_not_reached();
3503     }
3504 
3505     ptw.in_space = ss;
3506     return get_phys_addr_gpc(env, &ptw, address, access_type, result, fi);
3507 }
3508 
3509 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
3510                                          MemTxAttrs *attrs)
3511 {
3512     ARMCPU *cpu = ARM_CPU(cs);
3513     CPUARMState *env = &cpu->env;
3514     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
3515     ARMSecuritySpace ss = arm_security_space(env);
3516     S1Translate ptw = {
3517         .in_mmu_idx = mmu_idx,
3518         .in_space = ss,
3519         .in_debug = true,
3520     };
3521     GetPhysAddrResult res = {};
3522     ARMMMUFaultInfo fi = {};
3523     bool ret;
3524 
3525     ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
3526     *attrs = res.f.attrs;
3527 
3528     if (ret) {
3529         return -1;
3530     }
3531     return res.f.phys_addr;
3532 }
3533