xref: /qemu/target/arm/ptw.c (revision 78f314cf)
1 /*
2  * ARM page table walking.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "idau.h"
17 
18 
19 typedef struct S1Translate {
20     ARMMMUIdx in_mmu_idx;
21     ARMMMUIdx in_ptw_idx;
22     bool in_secure;
23     bool in_debug;
24     bool out_secure;
25     bool out_rw;
26     bool out_be;
27     hwaddr out_virt;
28     hwaddr out_phys;
29     void *out_host;
30 } S1Translate;
31 
32 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
33                                uint64_t address,
34                                MMUAccessType access_type, bool s1_is_el0,
35                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
36     __attribute__((nonnull));
37 
38 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
39                                       target_ulong address,
40                                       MMUAccessType access_type,
41                                       GetPhysAddrResult *result,
42                                       ARMMMUFaultInfo *fi)
43     __attribute__((nonnull));
44 
45 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
46 static const uint8_t pamax_map[] = {
47     [0] = 32,
48     [1] = 36,
49     [2] = 40,
50     [3] = 42,
51     [4] = 44,
52     [5] = 48,
53     [6] = 52,
54 };
55 
56 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
57 unsigned int arm_pamax(ARMCPU *cpu)
58 {
59     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
60         unsigned int parange =
61             FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
62 
63         /*
64          * id_aa64mmfr0 is a read-only register so values outside of the
65          * supported mappings can be considered an implementation error.
66          */
67         assert(parange < ARRAY_SIZE(pamax_map));
68         return pamax_map[parange];
69     }
70 
71     /*
72      * In machvirt_init, we call arm_pamax on a cpu that is not fully
73      * initialized, so we can't rely on the propagation done in realize.
74      */
75     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
76         arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
77         /* v7 with LPAE */
78         return 40;
79     }
80     /* Anything else */
81     return 32;
82 }
83 
84 /*
85  * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
86  */
87 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
88 {
89     switch (mmu_idx) {
90     case ARMMMUIdx_E10_0:
91         return ARMMMUIdx_Stage1_E0;
92     case ARMMMUIdx_E10_1:
93         return ARMMMUIdx_Stage1_E1;
94     case ARMMMUIdx_E10_1_PAN:
95         return ARMMMUIdx_Stage1_E1_PAN;
96     default:
97         return mmu_idx;
98     }
99 }
100 
101 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
102 {
103     return stage_1_mmu_idx(arm_mmu_idx(env));
104 }
105 
106 /*
107  * Return where we should do ptw loads from for a stage 2 walk.
108  * This depends on whether the address we are looking up is a
109  * Secure IPA or a NonSecure IPA, which we know from whether this is
110  * Stage2 or Stage2_S.
111  * If this is the Secure EL1&0 regime we need to check the NSW and SW bits.
112  */
113 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx)
114 {
115     bool s2walk_secure;
116 
117     /*
118      * We're OK to check the current state of the CPU here because
119      * (1) we always invalidate all TLBs when the SCR_EL3.NS bit changes
120      * (2) there's no way to do a lookup that cares about Stage 2 for a
121      * different security state to the current one for AArch64, and AArch32
122      * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do
123      * an NS stage 1+2 lookup while the NS bit is 0.)
124      */
125     if (!arm_is_secure_below_el3(env) || !arm_el_is_aa64(env, 3)) {
126         return ARMMMUIdx_Phys_NS;
127     }
128     if (stage2idx == ARMMMUIdx_Stage2_S) {
129         s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
130     } else {
131         s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
132     }
133     return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
134 
135 }
136 
137 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
138 {
139     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
140 }
141 
142 /* Return the TTBR associated with this translation regime */
143 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
144 {
145     if (mmu_idx == ARMMMUIdx_Stage2) {
146         return env->cp15.vttbr_el2;
147     }
148     if (mmu_idx == ARMMMUIdx_Stage2_S) {
149         return env->cp15.vsttbr_el2;
150     }
151     if (ttbrn == 0) {
152         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
153     } else {
154         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
155     }
156 }
157 
158 /* Return true if the specified stage of address translation is disabled */
159 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
160                                         bool is_secure)
161 {
162     uint64_t hcr_el2;
163 
164     if (arm_feature(env, ARM_FEATURE_M)) {
165         switch (env->v7m.mpu_ctrl[is_secure] &
166                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
167         case R_V7M_MPU_CTRL_ENABLE_MASK:
168             /* Enabled, but not for HardFault and NMI */
169             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
170         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
171             /* Enabled for all cases */
172             return false;
173         case 0:
174         default:
175             /*
176              * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
177              * we warned about that in armv7m_nvic.c when the guest set it.
178              */
179             return true;
180         }
181     }
182 
183     hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure);
184 
185     switch (mmu_idx) {
186     case ARMMMUIdx_Stage2:
187     case ARMMMUIdx_Stage2_S:
188         /* HCR.DC means HCR.VM behaves as 1 */
189         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
190 
191     case ARMMMUIdx_E10_0:
192     case ARMMMUIdx_E10_1:
193     case ARMMMUIdx_E10_1_PAN:
194         /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
195         if (hcr_el2 & HCR_TGE) {
196             return true;
197         }
198         break;
199 
200     case ARMMMUIdx_Stage1_E0:
201     case ARMMMUIdx_Stage1_E1:
202     case ARMMMUIdx_Stage1_E1_PAN:
203         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
204         if (hcr_el2 & HCR_DC) {
205             return true;
206         }
207         break;
208 
209     case ARMMMUIdx_E20_0:
210     case ARMMMUIdx_E20_2:
211     case ARMMMUIdx_E20_2_PAN:
212     case ARMMMUIdx_E2:
213     case ARMMMUIdx_E3:
214         break;
215 
216     case ARMMMUIdx_Phys_NS:
217     case ARMMMUIdx_Phys_S:
218         /* No translation for physical address spaces. */
219         return true;
220 
221     default:
222         g_assert_not_reached();
223     }
224 
225     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
226 }
227 
228 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
229 {
230     /*
231      * For an S1 page table walk, the stage 1 attributes are always
232      * some form of "this is Normal memory". The combined S1+S2
233      * attributes are therefore only Device if stage 2 specifies Device.
234      * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
235      * ie when cacheattrs.attrs bits [3:2] are 0b00.
236      * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
237      * when cacheattrs.attrs bit [2] is 0.
238      */
239     if (hcr & HCR_FWB) {
240         return (attrs & 0x4) == 0;
241     } else {
242         return (attrs & 0xc) == 0;
243     }
244 }
245 
246 /* Translate a S1 pagetable walk through S2 if needed.  */
247 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
248                              hwaddr addr, ARMMMUFaultInfo *fi)
249 {
250     bool is_secure = ptw->in_secure;
251     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
252     ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
253     uint8_t pte_attrs;
254 
255     ptw->out_virt = addr;
256 
257     if (unlikely(ptw->in_debug)) {
258         /*
259          * From gdbstub, do not use softmmu so that we don't modify the
260          * state of the cpu at all, including softmmu tlb contents.
261          */
262         if (regime_is_stage2(s2_mmu_idx)) {
263             S1Translate s2ptw = {
264                 .in_mmu_idx = s2_mmu_idx,
265                 .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
266                 .in_secure = s2_mmu_idx == ARMMMUIdx_Stage2_S,
267                 .in_debug = true,
268             };
269             GetPhysAddrResult s2 = { };
270 
271             if (get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD,
272                                    false, &s2, fi)) {
273                 goto fail;
274             }
275             ptw->out_phys = s2.f.phys_addr;
276             pte_attrs = s2.cacheattrs.attrs;
277             ptw->out_secure = s2.f.attrs.secure;
278         } else {
279             /* Regime is physical. */
280             ptw->out_phys = addr;
281             pte_attrs = 0;
282             ptw->out_secure = s2_mmu_idx == ARMMMUIdx_Phys_S;
283         }
284         ptw->out_host = NULL;
285         ptw->out_rw = false;
286     } else {
287 #ifdef CONFIG_TCG
288         CPUTLBEntryFull *full;
289         int flags;
290 
291         env->tlb_fi = fi;
292         flags = probe_access_full(env, addr, 0, MMU_DATA_LOAD,
293                                   arm_to_core_mmu_idx(s2_mmu_idx),
294                                   true, &ptw->out_host, &full, 0);
295         env->tlb_fi = NULL;
296 
297         if (unlikely(flags & TLB_INVALID_MASK)) {
298             goto fail;
299         }
300         ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
301         ptw->out_rw = full->prot & PAGE_WRITE;
302         pte_attrs = full->pte_attrs;
303         ptw->out_secure = full->attrs.secure;
304 #else
305         g_assert_not_reached();
306 #endif
307     }
308 
309     if (regime_is_stage2(s2_mmu_idx)) {
310         uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
311 
312         if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
313             /*
314              * PTW set and S1 walk touched S2 Device memory:
315              * generate Permission fault.
316              */
317             fi->type = ARMFault_Permission;
318             fi->s2addr = addr;
319             fi->stage2 = true;
320             fi->s1ptw = true;
321             fi->s1ns = !is_secure;
322             return false;
323         }
324     }
325 
326     ptw->out_be = regime_translation_big_endian(env, mmu_idx);
327     return true;
328 
329  fail:
330     assert(fi->type != ARMFault_None);
331     fi->s2addr = addr;
332     fi->stage2 = true;
333     fi->s1ptw = true;
334     fi->s1ns = !is_secure;
335     return false;
336 }
337 
338 /* All loads done in the course of a page table walk go through here. */
339 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
340                             ARMMMUFaultInfo *fi)
341 {
342     CPUState *cs = env_cpu(env);
343     void *host = ptw->out_host;
344     uint32_t data;
345 
346     if (likely(host)) {
347         /* Page tables are in RAM, and we have the host address. */
348         data = qatomic_read((uint32_t *)host);
349         if (ptw->out_be) {
350             data = be32_to_cpu(data);
351         } else {
352             data = le32_to_cpu(data);
353         }
354     } else {
355         /* Page tables are in MMIO. */
356         MemTxAttrs attrs = { .secure = ptw->out_secure };
357         AddressSpace *as = arm_addressspace(cs, attrs);
358         MemTxResult result = MEMTX_OK;
359 
360         if (ptw->out_be) {
361             data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
362         } else {
363             data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
364         }
365         if (unlikely(result != MEMTX_OK)) {
366             fi->type = ARMFault_SyncExternalOnWalk;
367             fi->ea = arm_extabort_type(result);
368             return 0;
369         }
370     }
371     return data;
372 }
373 
374 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
375                             ARMMMUFaultInfo *fi)
376 {
377     CPUState *cs = env_cpu(env);
378     void *host = ptw->out_host;
379     uint64_t data;
380 
381     if (likely(host)) {
382         /* Page tables are in RAM, and we have the host address. */
383 #ifdef CONFIG_ATOMIC64
384         data = qatomic_read__nocheck((uint64_t *)host);
385         if (ptw->out_be) {
386             data = be64_to_cpu(data);
387         } else {
388             data = le64_to_cpu(data);
389         }
390 #else
391         if (ptw->out_be) {
392             data = ldq_be_p(host);
393         } else {
394             data = ldq_le_p(host);
395         }
396 #endif
397     } else {
398         /* Page tables are in MMIO. */
399         MemTxAttrs attrs = { .secure = ptw->out_secure };
400         AddressSpace *as = arm_addressspace(cs, attrs);
401         MemTxResult result = MEMTX_OK;
402 
403         if (ptw->out_be) {
404             data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
405         } else {
406             data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
407         }
408         if (unlikely(result != MEMTX_OK)) {
409             fi->type = ARMFault_SyncExternalOnWalk;
410             fi->ea = arm_extabort_type(result);
411             return 0;
412         }
413     }
414     return data;
415 }
416 
417 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
418                              uint64_t new_val, S1Translate *ptw,
419                              ARMMMUFaultInfo *fi)
420 {
421     uint64_t cur_val;
422     void *host = ptw->out_host;
423 
424     if (unlikely(!host)) {
425         fi->type = ARMFault_UnsuppAtomicUpdate;
426         fi->s1ptw = true;
427         return 0;
428     }
429 
430     /*
431      * Raising a stage2 Protection fault for an atomic update to a read-only
432      * page is delayed until it is certain that there is a change to make.
433      */
434     if (unlikely(!ptw->out_rw)) {
435         int flags;
436         void *discard;
437 
438         env->tlb_fi = fi;
439         flags = probe_access_flags(env, ptw->out_virt, 0, MMU_DATA_STORE,
440                                    arm_to_core_mmu_idx(ptw->in_ptw_idx),
441                                    true, &discard, 0);
442         env->tlb_fi = NULL;
443 
444         if (unlikely(flags & TLB_INVALID_MASK)) {
445             assert(fi->type != ARMFault_None);
446             fi->s2addr = ptw->out_virt;
447             fi->stage2 = true;
448             fi->s1ptw = true;
449             fi->s1ns = !ptw->in_secure;
450             return 0;
451         }
452 
453         /* In case CAS mismatches and we loop, remember writability. */
454         ptw->out_rw = true;
455     }
456 
457 #ifdef CONFIG_ATOMIC64
458     if (ptw->out_be) {
459         old_val = cpu_to_be64(old_val);
460         new_val = cpu_to_be64(new_val);
461         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
462         cur_val = be64_to_cpu(cur_val);
463     } else {
464         old_val = cpu_to_le64(old_val);
465         new_val = cpu_to_le64(new_val);
466         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
467         cur_val = le64_to_cpu(cur_val);
468     }
469 #else
470     /*
471      * We can't support the full 64-bit atomic cmpxchg on the host.
472      * Because this is only used for FEAT_HAFDBS, which is only for AA64,
473      * we know that TCG_OVERSIZED_GUEST is set, which means that we are
474      * running in round-robin mode and could only race with dma i/o.
475      */
476 #ifndef TCG_OVERSIZED_GUEST
477 # error "Unexpected configuration"
478 #endif
479     bool locked = qemu_mutex_iothread_locked();
480     if (!locked) {
481        qemu_mutex_lock_iothread();
482     }
483     if (ptw->out_be) {
484         cur_val = ldq_be_p(host);
485         if (cur_val == old_val) {
486             stq_be_p(host, new_val);
487         }
488     } else {
489         cur_val = ldq_le_p(host);
490         if (cur_val == old_val) {
491             stq_le_p(host, new_val);
492         }
493     }
494     if (!locked) {
495         qemu_mutex_unlock_iothread();
496     }
497 #endif
498 
499     return cur_val;
500 }
501 
502 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
503                                      uint32_t *table, uint32_t address)
504 {
505     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
506     uint64_t tcr = regime_tcr(env, mmu_idx);
507     int maskshift = extract32(tcr, 0, 3);
508     uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
509     uint32_t base_mask;
510 
511     if (address & mask) {
512         if (tcr & TTBCR_PD1) {
513             /* Translation table walk disabled for TTBR1 */
514             return false;
515         }
516         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
517     } else {
518         if (tcr & TTBCR_PD0) {
519             /* Translation table walk disabled for TTBR0 */
520             return false;
521         }
522         base_mask = ~((uint32_t)0x3fffu >> maskshift);
523         *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
524     }
525     *table |= (address >> 18) & 0x3ffc;
526     return true;
527 }
528 
529 /*
530  * Translate section/page access permissions to page R/W protection flags
531  * @env:         CPUARMState
532  * @mmu_idx:     MMU index indicating required translation regime
533  * @ap:          The 3-bit access permissions (AP[2:0])
534  * @domain_prot: The 2-bit domain access permissions
535  * @is_user: TRUE if accessing from PL0
536  */
537 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
538                          int ap, int domain_prot, bool is_user)
539 {
540     if (domain_prot == 3) {
541         return PAGE_READ | PAGE_WRITE;
542     }
543 
544     switch (ap) {
545     case 0:
546         if (arm_feature(env, ARM_FEATURE_V7)) {
547             return 0;
548         }
549         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
550         case SCTLR_S:
551             return is_user ? 0 : PAGE_READ;
552         case SCTLR_R:
553             return PAGE_READ;
554         default:
555             return 0;
556         }
557     case 1:
558         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
559     case 2:
560         if (is_user) {
561             return PAGE_READ;
562         } else {
563             return PAGE_READ | PAGE_WRITE;
564         }
565     case 3:
566         return PAGE_READ | PAGE_WRITE;
567     case 4: /* Reserved.  */
568         return 0;
569     case 5:
570         return is_user ? 0 : PAGE_READ;
571     case 6:
572         return PAGE_READ;
573     case 7:
574         if (!arm_feature(env, ARM_FEATURE_V6K)) {
575             return 0;
576         }
577         return PAGE_READ;
578     default:
579         g_assert_not_reached();
580     }
581 }
582 
583 /*
584  * Translate section/page access permissions to page R/W protection flags
585  * @env:         CPUARMState
586  * @mmu_idx:     MMU index indicating required translation regime
587  * @ap:          The 3-bit access permissions (AP[2:0])
588  * @domain_prot: The 2-bit domain access permissions
589  */
590 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
591                          int ap, int domain_prot)
592 {
593    return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
594                                 regime_is_user(env, mmu_idx));
595 }
596 
597 /*
598  * Translate section/page access permissions to page R/W protection flags.
599  * @ap:      The 2-bit simple AP (AP[2:1])
600  * @is_user: TRUE if accessing from PL0
601  */
602 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
603 {
604     switch (ap) {
605     case 0:
606         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
607     case 1:
608         return PAGE_READ | PAGE_WRITE;
609     case 2:
610         return is_user ? 0 : PAGE_READ;
611     case 3:
612         return PAGE_READ;
613     default:
614         g_assert_not_reached();
615     }
616 }
617 
618 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
619 {
620     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
621 }
622 
623 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
624                              uint32_t address, MMUAccessType access_type,
625                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
626 {
627     int level = 1;
628     uint32_t table;
629     uint32_t desc;
630     int type;
631     int ap;
632     int domain = 0;
633     int domain_prot;
634     hwaddr phys_addr;
635     uint32_t dacr;
636 
637     /* Pagetable walk.  */
638     /* Lookup l1 descriptor.  */
639     if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
640         /* Section translation fault if page walk is disabled by PD0 or PD1 */
641         fi->type = ARMFault_Translation;
642         goto do_fault;
643     }
644     if (!S1_ptw_translate(env, ptw, table, fi)) {
645         goto do_fault;
646     }
647     desc = arm_ldl_ptw(env, ptw, fi);
648     if (fi->type != ARMFault_None) {
649         goto do_fault;
650     }
651     type = (desc & 3);
652     domain = (desc >> 5) & 0x0f;
653     if (regime_el(env, ptw->in_mmu_idx) == 1) {
654         dacr = env->cp15.dacr_ns;
655     } else {
656         dacr = env->cp15.dacr_s;
657     }
658     domain_prot = (dacr >> (domain * 2)) & 3;
659     if (type == 0) {
660         /* Section translation fault.  */
661         fi->type = ARMFault_Translation;
662         goto do_fault;
663     }
664     if (type != 2) {
665         level = 2;
666     }
667     if (domain_prot == 0 || domain_prot == 2) {
668         fi->type = ARMFault_Domain;
669         goto do_fault;
670     }
671     if (type == 2) {
672         /* 1Mb section.  */
673         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
674         ap = (desc >> 10) & 3;
675         result->f.lg_page_size = 20; /* 1MB */
676     } else {
677         /* Lookup l2 entry.  */
678         if (type == 1) {
679             /* Coarse pagetable.  */
680             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
681         } else {
682             /* Fine pagetable.  */
683             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
684         }
685         if (!S1_ptw_translate(env, ptw, table, fi)) {
686             goto do_fault;
687         }
688         desc = arm_ldl_ptw(env, ptw, fi);
689         if (fi->type != ARMFault_None) {
690             goto do_fault;
691         }
692         switch (desc & 3) {
693         case 0: /* Page translation fault.  */
694             fi->type = ARMFault_Translation;
695             goto do_fault;
696         case 1: /* 64k page.  */
697             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
698             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
699             result->f.lg_page_size = 16;
700             break;
701         case 2: /* 4k page.  */
702             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
703             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
704             result->f.lg_page_size = 12;
705             break;
706         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
707             if (type == 1) {
708                 /* ARMv6/XScale extended small page format */
709                 if (arm_feature(env, ARM_FEATURE_XSCALE)
710                     || arm_feature(env, ARM_FEATURE_V6)) {
711                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
712                     result->f.lg_page_size = 12;
713                 } else {
714                     /*
715                      * UNPREDICTABLE in ARMv5; we choose to take a
716                      * page translation fault.
717                      */
718                     fi->type = ARMFault_Translation;
719                     goto do_fault;
720                 }
721             } else {
722                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
723                 result->f.lg_page_size = 10;
724             }
725             ap = (desc >> 4) & 3;
726             break;
727         default:
728             /* Never happens, but compiler isn't smart enough to tell.  */
729             g_assert_not_reached();
730         }
731     }
732     result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
733     result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
734     if (!(result->f.prot & (1 << access_type))) {
735         /* Access permission fault.  */
736         fi->type = ARMFault_Permission;
737         goto do_fault;
738     }
739     result->f.phys_addr = phys_addr;
740     return false;
741 do_fault:
742     fi->domain = domain;
743     fi->level = level;
744     return true;
745 }
746 
747 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
748                              uint32_t address, MMUAccessType access_type,
749                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
750 {
751     ARMCPU *cpu = env_archcpu(env);
752     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
753     int level = 1;
754     uint32_t table;
755     uint32_t desc;
756     uint32_t xn;
757     uint32_t pxn = 0;
758     int type;
759     int ap;
760     int domain = 0;
761     int domain_prot;
762     hwaddr phys_addr;
763     uint32_t dacr;
764     bool ns;
765     int user_prot;
766 
767     /* Pagetable walk.  */
768     /* Lookup l1 descriptor.  */
769     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
770         /* Section translation fault if page walk is disabled by PD0 or PD1 */
771         fi->type = ARMFault_Translation;
772         goto do_fault;
773     }
774     if (!S1_ptw_translate(env, ptw, table, fi)) {
775         goto do_fault;
776     }
777     desc = arm_ldl_ptw(env, ptw, fi);
778     if (fi->type != ARMFault_None) {
779         goto do_fault;
780     }
781     type = (desc & 3);
782     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
783         /* Section translation fault, or attempt to use the encoding
784          * which is Reserved on implementations without PXN.
785          */
786         fi->type = ARMFault_Translation;
787         goto do_fault;
788     }
789     if ((type == 1) || !(desc & (1 << 18))) {
790         /* Page or Section.  */
791         domain = (desc >> 5) & 0x0f;
792     }
793     if (regime_el(env, mmu_idx) == 1) {
794         dacr = env->cp15.dacr_ns;
795     } else {
796         dacr = env->cp15.dacr_s;
797     }
798     if (type == 1) {
799         level = 2;
800     }
801     domain_prot = (dacr >> (domain * 2)) & 3;
802     if (domain_prot == 0 || domain_prot == 2) {
803         /* Section or Page domain fault */
804         fi->type = ARMFault_Domain;
805         goto do_fault;
806     }
807     if (type != 1) {
808         if (desc & (1 << 18)) {
809             /* Supersection.  */
810             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
811             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
812             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
813             result->f.lg_page_size = 24;  /* 16MB */
814         } else {
815             /* Section.  */
816             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
817             result->f.lg_page_size = 20;  /* 1MB */
818         }
819         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
820         xn = desc & (1 << 4);
821         pxn = desc & 1;
822         ns = extract32(desc, 19, 1);
823     } else {
824         if (cpu_isar_feature(aa32_pxn, cpu)) {
825             pxn = (desc >> 2) & 1;
826         }
827         ns = extract32(desc, 3, 1);
828         /* Lookup l2 entry.  */
829         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
830         if (!S1_ptw_translate(env, ptw, table, fi)) {
831             goto do_fault;
832         }
833         desc = arm_ldl_ptw(env, ptw, fi);
834         if (fi->type != ARMFault_None) {
835             goto do_fault;
836         }
837         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
838         switch (desc & 3) {
839         case 0: /* Page translation fault.  */
840             fi->type = ARMFault_Translation;
841             goto do_fault;
842         case 1: /* 64k page.  */
843             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
844             xn = desc & (1 << 15);
845             result->f.lg_page_size = 16;
846             break;
847         case 2: case 3: /* 4k page.  */
848             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
849             xn = desc & 1;
850             result->f.lg_page_size = 12;
851             break;
852         default:
853             /* Never happens, but compiler isn't smart enough to tell.  */
854             g_assert_not_reached();
855         }
856     }
857     if (domain_prot == 3) {
858         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
859     } else {
860         if (pxn && !regime_is_user(env, mmu_idx)) {
861             xn = 1;
862         }
863         if (xn && access_type == MMU_INST_FETCH) {
864             fi->type = ARMFault_Permission;
865             goto do_fault;
866         }
867 
868         if (arm_feature(env, ARM_FEATURE_V6K) &&
869                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
870             /* The simplified model uses AP[0] as an access control bit.  */
871             if ((ap & 1) == 0) {
872                 /* Access flag fault.  */
873                 fi->type = ARMFault_AccessFlag;
874                 goto do_fault;
875             }
876             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
877             user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
878         } else {
879             result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
880             user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
881         }
882         if (result->f.prot && !xn) {
883             result->f.prot |= PAGE_EXEC;
884         }
885         if (!(result->f.prot & (1 << access_type))) {
886             /* Access permission fault.  */
887             fi->type = ARMFault_Permission;
888             goto do_fault;
889         }
890         if (regime_is_pan(env, mmu_idx) &&
891             !regime_is_user(env, mmu_idx) &&
892             user_prot &&
893             access_type != MMU_INST_FETCH) {
894             /* Privileged Access Never fault */
895             fi->type = ARMFault_Permission;
896             goto do_fault;
897         }
898     }
899     if (ns) {
900         /* The NS bit will (as required by the architecture) have no effect if
901          * the CPU doesn't support TZ or this is a non-secure translation
902          * regime, because the attribute will already be non-secure.
903          */
904         result->f.attrs.secure = false;
905     }
906     result->f.phys_addr = phys_addr;
907     return false;
908 do_fault:
909     fi->domain = domain;
910     fi->level = level;
911     return true;
912 }
913 
914 /*
915  * Translate S2 section/page access permissions to protection flags
916  * @env:     CPUARMState
917  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
918  * @xn:      XN (execute-never) bits
919  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
920  */
921 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
922 {
923     int prot = 0;
924 
925     if (s2ap & 1) {
926         prot |= PAGE_READ;
927     }
928     if (s2ap & 2) {
929         prot |= PAGE_WRITE;
930     }
931 
932     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
933         switch (xn) {
934         case 0:
935             prot |= PAGE_EXEC;
936             break;
937         case 1:
938             if (s1_is_el0) {
939                 prot |= PAGE_EXEC;
940             }
941             break;
942         case 2:
943             break;
944         case 3:
945             if (!s1_is_el0) {
946                 prot |= PAGE_EXEC;
947             }
948             break;
949         default:
950             g_assert_not_reached();
951         }
952     } else {
953         if (!extract32(xn, 1, 1)) {
954             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
955                 prot |= PAGE_EXEC;
956             }
957         }
958     }
959     return prot;
960 }
961 
962 /*
963  * Translate section/page access permissions to protection flags
964  * @env:     CPUARMState
965  * @mmu_idx: MMU index indicating required translation regime
966  * @is_aa64: TRUE if AArch64
967  * @ap:      The 2-bit simple AP (AP[2:1])
968  * @ns:      NS (non-secure) bit
969  * @xn:      XN (execute-never) bit
970  * @pxn:     PXN (privileged execute-never) bit
971  */
972 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
973                       int ap, int ns, int xn, int pxn)
974 {
975     ARMCPU *cpu = env_archcpu(env);
976     bool is_user = regime_is_user(env, mmu_idx);
977     int prot_rw, user_rw;
978     bool have_wxn;
979     int wxn = 0;
980 
981     assert(!regime_is_stage2(mmu_idx));
982 
983     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
984     if (is_user) {
985         prot_rw = user_rw;
986     } else {
987         /*
988          * PAN controls can forbid data accesses but don't affect insn fetch.
989          * Plain PAN forbids data accesses if EL0 has data permissions;
990          * PAN3 forbids data accesses if EL0 has either data or exec perms.
991          * Note that for AArch64 the 'user can exec' case is exactly !xn.
992          * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
993          * do not affect EPAN.
994          */
995         if (user_rw && regime_is_pan(env, mmu_idx)) {
996             prot_rw = 0;
997         } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
998                    regime_is_pan(env, mmu_idx) &&
999                    (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
1000             prot_rw = 0;
1001         } else {
1002             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
1003         }
1004     }
1005 
1006     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
1007         return prot_rw;
1008     }
1009 
1010     /* TODO have_wxn should be replaced with
1011      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
1012      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
1013      * compatible processors have EL2, which is required for [U]WXN.
1014      */
1015     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
1016 
1017     if (have_wxn) {
1018         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
1019     }
1020 
1021     if (is_aa64) {
1022         if (regime_has_2_ranges(mmu_idx) && !is_user) {
1023             xn = pxn || (user_rw & PAGE_WRITE);
1024         }
1025     } else if (arm_feature(env, ARM_FEATURE_V7)) {
1026         switch (regime_el(env, mmu_idx)) {
1027         case 1:
1028         case 3:
1029             if (is_user) {
1030                 xn = xn || !(user_rw & PAGE_READ);
1031             } else {
1032                 int uwxn = 0;
1033                 if (have_wxn) {
1034                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
1035                 }
1036                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1037                      (uwxn && (user_rw & PAGE_WRITE));
1038             }
1039             break;
1040         case 2:
1041             break;
1042         }
1043     } else {
1044         xn = wxn = 0;
1045     }
1046 
1047     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1048         return prot_rw;
1049     }
1050     return prot_rw | PAGE_EXEC;
1051 }
1052 
1053 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1054                                           ARMMMUIdx mmu_idx)
1055 {
1056     uint64_t tcr = regime_tcr(env, mmu_idx);
1057     uint32_t el = regime_el(env, mmu_idx);
1058     int select, tsz;
1059     bool epd, hpd;
1060 
1061     assert(mmu_idx != ARMMMUIdx_Stage2_S);
1062 
1063     if (mmu_idx == ARMMMUIdx_Stage2) {
1064         /* VTCR */
1065         bool sext = extract32(tcr, 4, 1);
1066         bool sign = extract32(tcr, 3, 1);
1067 
1068         /*
1069          * If the sign-extend bit is not the same as t0sz[3], the result
1070          * is unpredictable. Flag this as a guest error.
1071          */
1072         if (sign != sext) {
1073             qemu_log_mask(LOG_GUEST_ERROR,
1074                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1075         }
1076         tsz = sextract32(tcr, 0, 4) + 8;
1077         select = 0;
1078         hpd = false;
1079         epd = false;
1080     } else if (el == 2) {
1081         /* HTCR */
1082         tsz = extract32(tcr, 0, 3);
1083         select = 0;
1084         hpd = extract64(tcr, 24, 1);
1085         epd = false;
1086     } else {
1087         int t0sz = extract32(tcr, 0, 3);
1088         int t1sz = extract32(tcr, 16, 3);
1089 
1090         if (t1sz == 0) {
1091             select = va > (0xffffffffu >> t0sz);
1092         } else {
1093             /* Note that we will detect errors later.  */
1094             select = va >= ~(0xffffffffu >> t1sz);
1095         }
1096         if (!select) {
1097             tsz = t0sz;
1098             epd = extract32(tcr, 7, 1);
1099             hpd = extract64(tcr, 41, 1);
1100         } else {
1101             tsz = t1sz;
1102             epd = extract32(tcr, 23, 1);
1103             hpd = extract64(tcr, 42, 1);
1104         }
1105         /* For aarch32, hpd0 is not enabled without t2e as well.  */
1106         hpd &= extract32(tcr, 6, 1);
1107     }
1108 
1109     return (ARMVAParameters) {
1110         .tsz = tsz,
1111         .select = select,
1112         .epd = epd,
1113         .hpd = hpd,
1114     };
1115 }
1116 
1117 /*
1118  * check_s2_mmu_setup
1119  * @cpu:        ARMCPU
1120  * @is_aa64:    True if the translation regime is in AArch64 state
1121  * @tcr:        VTCR_EL2 or VSTCR_EL2
1122  * @ds:         Effective value of TCR.DS.
1123  * @iasize:     Bitsize of IPAs
1124  * @stride:     Page-table stride (See the ARM ARM)
1125  *
1126  * Decode the starting level of the S2 lookup, returning INT_MIN if
1127  * the configuration is invalid.
1128  */
1129 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1130                               bool ds, int iasize, int stride)
1131 {
1132     int sl0, sl2, startlevel, granulebits, levels;
1133     int s1_min_iasize, s1_max_iasize;
1134 
1135     sl0 = extract32(tcr, 6, 2);
1136     if (is_aa64) {
1137         /*
1138          * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1139          * so interleave AArch64.S2StartLevel.
1140          */
1141         switch (stride) {
1142         case 9: /* 4KB */
1143             /* SL2 is RES0 unless DS=1 & 4KB granule. */
1144             sl2 = extract64(tcr, 33, 1);
1145             if (ds && sl2) {
1146                 if (sl0 != 0) {
1147                     goto fail;
1148                 }
1149                 startlevel = -1;
1150             } else {
1151                 startlevel = 2 - sl0;
1152                 switch (sl0) {
1153                 case 2:
1154                     if (arm_pamax(cpu) < 44) {
1155                         goto fail;
1156                     }
1157                     break;
1158                 case 3:
1159                     if (!cpu_isar_feature(aa64_st, cpu)) {
1160                         goto fail;
1161                     }
1162                     startlevel = 3;
1163                     break;
1164                 }
1165             }
1166             break;
1167         case 11: /* 16KB */
1168             switch (sl0) {
1169             case 2:
1170                 if (arm_pamax(cpu) < 42) {
1171                     goto fail;
1172                 }
1173                 break;
1174             case 3:
1175                 if (!ds) {
1176                     goto fail;
1177                 }
1178                 break;
1179             }
1180             startlevel = 3 - sl0;
1181             break;
1182         case 13: /* 64KB */
1183             switch (sl0) {
1184             case 2:
1185                 if (arm_pamax(cpu) < 44) {
1186                     goto fail;
1187                 }
1188                 break;
1189             case 3:
1190                 goto fail;
1191             }
1192             startlevel = 3 - sl0;
1193             break;
1194         default:
1195             g_assert_not_reached();
1196         }
1197     } else {
1198         /*
1199          * Things are simpler for AArch32 EL2, with only 4k pages.
1200          * There is no separate S2InvalidSL function, but AArch32.S2Walk
1201          * begins with walkparms.sl0 in {'1x'}.
1202          */
1203         assert(stride == 9);
1204         if (sl0 >= 2) {
1205             goto fail;
1206         }
1207         startlevel = 2 - sl0;
1208     }
1209 
1210     /* AArch{64,32}.S2InconsistentSL are functionally equivalent.  */
1211     levels = 3 - startlevel;
1212     granulebits = stride + 3;
1213 
1214     s1_min_iasize = levels * stride + granulebits + 1;
1215     s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1216 
1217     if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1218         return startlevel;
1219     }
1220 
1221  fail:
1222     return INT_MIN;
1223 }
1224 
1225 /**
1226  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1227  *
1228  * Returns false if the translation was successful. Otherwise, phys_ptr,
1229  * attrs, prot and page_size may not be filled in, and the populated fsr
1230  * value provides information on why the translation aborted, in the format
1231  * of a long-format DFSR/IFSR fault register, with the following caveat:
1232  * the WnR bit is never set (the caller must do this).
1233  *
1234  * @env: CPUARMState
1235  * @ptw: Current and next stage parameters for the walk.
1236  * @address: virtual address to get physical address for
1237  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1238  * @s1_is_el0: if @ptw->in_mmu_idx is ARMMMUIdx_Stage2
1239  *             (so this is a stage 2 page table walk),
1240  *             must be true if this is stage 2 of a stage 1+2
1241  *             walk for an EL0 access. If @mmu_idx is anything else,
1242  *             @s1_is_el0 is ignored.
1243  * @result: set on translation success,
1244  * @fi: set to fault info if the translation fails
1245  */
1246 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1247                                uint64_t address,
1248                                MMUAccessType access_type, bool s1_is_el0,
1249                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1250 {
1251     ARMCPU *cpu = env_archcpu(env);
1252     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1253     bool is_secure = ptw->in_secure;
1254     int32_t level;
1255     ARMVAParameters param;
1256     uint64_t ttbr;
1257     hwaddr descaddr, indexmask, indexmask_grainsize;
1258     uint32_t tableattrs;
1259     target_ulong page_size;
1260     uint64_t attrs;
1261     int32_t stride;
1262     int addrsize, inputsize, outputsize;
1263     uint64_t tcr = regime_tcr(env, mmu_idx);
1264     int ap, ns, xn, pxn;
1265     uint32_t el = regime_el(env, mmu_idx);
1266     uint64_t descaddrmask;
1267     bool aarch64 = arm_el_is_aa64(env, el);
1268     uint64_t descriptor, new_descriptor;
1269     bool nstable;
1270 
1271     /* TODO: This code does not support shareability levels. */
1272     if (aarch64) {
1273         int ps;
1274 
1275         param = aa64_va_parameters(env, address, mmu_idx,
1276                                    access_type != MMU_INST_FETCH,
1277                                    !arm_el_is_aa64(env, 1));
1278         level = 0;
1279 
1280         /*
1281          * If TxSZ is programmed to a value larger than the maximum,
1282          * or smaller than the effective minimum, it is IMPLEMENTATION
1283          * DEFINED whether we behave as if the field were programmed
1284          * within bounds, or if a level 0 Translation fault is generated.
1285          *
1286          * With FEAT_LVA, fault on less than minimum becomes required,
1287          * so our choice is to always raise the fault.
1288          */
1289         if (param.tsz_oob) {
1290             goto do_translation_fault;
1291         }
1292 
1293         addrsize = 64 - 8 * param.tbi;
1294         inputsize = 64 - param.tsz;
1295 
1296         /*
1297          * Bound PS by PARANGE to find the effective output address size.
1298          * ID_AA64MMFR0 is a read-only register so values outside of the
1299          * supported mappings can be considered an implementation error.
1300          */
1301         ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1302         ps = MIN(ps, param.ps);
1303         assert(ps < ARRAY_SIZE(pamax_map));
1304         outputsize = pamax_map[ps];
1305 
1306         /*
1307          * With LPA2, the effective output address (OA) size is at most 48 bits
1308          * unless TCR.DS == 1
1309          */
1310         if (!param.ds && param.gran != Gran64K) {
1311             outputsize = MIN(outputsize, 48);
1312         }
1313     } else {
1314         param = aa32_va_parameters(env, address, mmu_idx);
1315         level = 1;
1316         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1317         inputsize = addrsize - param.tsz;
1318         outputsize = 40;
1319     }
1320 
1321     /*
1322      * We determined the region when collecting the parameters, but we
1323      * have not yet validated that the address is valid for the region.
1324      * Extract the top bits and verify that they all match select.
1325      *
1326      * For aa32, if inputsize == addrsize, then we have selected the
1327      * region by exclusion in aa32_va_parameters and there is no more
1328      * validation to do here.
1329      */
1330     if (inputsize < addrsize) {
1331         target_ulong top_bits = sextract64(address, inputsize,
1332                                            addrsize - inputsize);
1333         if (-top_bits != param.select) {
1334             /* The gap between the two regions is a Translation fault */
1335             goto do_translation_fault;
1336         }
1337     }
1338 
1339     stride = arm_granule_bits(param.gran) - 3;
1340 
1341     /*
1342      * Note that QEMU ignores shareability and cacheability attributes,
1343      * so we don't need to do anything with the SH, ORGN, IRGN fields
1344      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
1345      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1346      * implement any ASID-like capability so we can ignore it (instead
1347      * we will always flush the TLB any time the ASID is changed).
1348      */
1349     ttbr = regime_ttbr(env, mmu_idx, param.select);
1350 
1351     /*
1352      * Here we should have set up all the parameters for the translation:
1353      * inputsize, ttbr, epd, stride, tbi
1354      */
1355 
1356     if (param.epd) {
1357         /*
1358          * Translation table walk disabled => Translation fault on TLB miss
1359          * Note: This is always 0 on 64-bit EL2 and EL3.
1360          */
1361         goto do_translation_fault;
1362     }
1363 
1364     if (!regime_is_stage2(mmu_idx)) {
1365         /*
1366          * The starting level depends on the virtual address size (which can
1367          * be up to 48 bits) and the translation granule size. It indicates
1368          * the number of strides (stride bits at a time) needed to
1369          * consume the bits of the input address. In the pseudocode this is:
1370          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
1371          * where their 'inputsize' is our 'inputsize', 'grainsize' is
1372          * our 'stride + 3' and 'stride' is our 'stride'.
1373          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1374          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1375          * = 4 - (inputsize - 4) / stride;
1376          */
1377         level = 4 - (inputsize - 4) / stride;
1378     } else {
1379         int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1380                                             inputsize, stride);
1381         if (startlevel == INT_MIN) {
1382             level = 0;
1383             goto do_translation_fault;
1384         }
1385         level = startlevel;
1386     }
1387 
1388     indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1389     indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1390 
1391     /* Now we can extract the actual base address from the TTBR */
1392     descaddr = extract64(ttbr, 0, 48);
1393 
1394     /*
1395      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1396      *
1397      * Otherwise, if the base address is out of range, raise AddressSizeFault.
1398      * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1399      * but we've just cleared the bits above 47, so simplify the test.
1400      */
1401     if (outputsize > 48) {
1402         descaddr |= extract64(ttbr, 2, 4) << 48;
1403     } else if (descaddr >> outputsize) {
1404         level = 0;
1405         fi->type = ARMFault_AddressSize;
1406         goto do_fault;
1407     }
1408 
1409     /*
1410      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1411      * and also to mask out CnP (bit 0) which could validly be non-zero.
1412      */
1413     descaddr &= ~indexmask;
1414 
1415     /*
1416      * For AArch32, the address field in the descriptor goes up to bit 39
1417      * for both v7 and v8.  However, for v8 the SBZ bits [47:40] must be 0
1418      * or an AddressSize fault is raised.  So for v8 we extract those SBZ
1419      * bits as part of the address, which will be checked via outputsize.
1420      * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1421      * the highest bits of a 52-bit output are placed elsewhere.
1422      */
1423     if (param.ds) {
1424         descaddrmask = MAKE_64BIT_MASK(0, 50);
1425     } else if (arm_feature(env, ARM_FEATURE_V8)) {
1426         descaddrmask = MAKE_64BIT_MASK(0, 48);
1427     } else {
1428         descaddrmask = MAKE_64BIT_MASK(0, 40);
1429     }
1430     descaddrmask &= ~indexmask_grainsize;
1431 
1432     /*
1433      * Secure stage 1 accesses start with the page table in secure memory and
1434      * can be downgraded to non-secure at any step. Non-secure accesses
1435      * remain non-secure. We implement this by just ORing in the NSTable/NS
1436      * bits at each step.
1437      * Stage 2 never gets this kind of downgrade.
1438      */
1439     tableattrs = is_secure ? 0 : (1 << 4);
1440 
1441  next_level:
1442     descaddr |= (address >> (stride * (4 - level))) & indexmask;
1443     descaddr &= ~7ULL;
1444     nstable = !regime_is_stage2(mmu_idx) && extract32(tableattrs, 4, 1);
1445     if (nstable) {
1446         /*
1447          * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1448          * Assert that the non-secure idx are even, and relative order.
1449          */
1450         QEMU_BUILD_BUG_ON((ARMMMUIdx_Phys_NS & 1) != 0);
1451         QEMU_BUILD_BUG_ON((ARMMMUIdx_Stage2 & 1) != 0);
1452         QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS + 1 != ARMMMUIdx_Phys_S);
1453         QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2 + 1 != ARMMMUIdx_Stage2_S);
1454         ptw->in_ptw_idx &= ~1;
1455         ptw->in_secure = false;
1456     }
1457     if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1458         goto do_fault;
1459     }
1460     descriptor = arm_ldq_ptw(env, ptw, fi);
1461     if (fi->type != ARMFault_None) {
1462         goto do_fault;
1463     }
1464     new_descriptor = descriptor;
1465 
1466  restart_atomic_update:
1467     if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) {
1468         /* Invalid, or the Reserved level 3 encoding */
1469         goto do_translation_fault;
1470     }
1471 
1472     descaddr = descriptor & descaddrmask;
1473 
1474     /*
1475      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1476      * of descriptor.  For FEAT_LPA2 and effective DS, bits [51:50] of
1477      * descaddr are in [9:8].  Otherwise, if descaddr is out of range,
1478      * raise AddressSizeFault.
1479      */
1480     if (outputsize > 48) {
1481         if (param.ds) {
1482             descaddr |= extract64(descriptor, 8, 2) << 50;
1483         } else {
1484             descaddr |= extract64(descriptor, 12, 4) << 48;
1485         }
1486     } else if (descaddr >> outputsize) {
1487         fi->type = ARMFault_AddressSize;
1488         goto do_fault;
1489     }
1490 
1491     if ((descriptor & 2) && (level < 3)) {
1492         /*
1493          * Table entry. The top five bits are attributes which may
1494          * propagate down through lower levels of the table (and
1495          * which are all arranged so that 0 means "no effect", so
1496          * we can gather them up by ORing in the bits at each level).
1497          */
1498         tableattrs |= extract64(descriptor, 59, 5);
1499         level++;
1500         indexmask = indexmask_grainsize;
1501         goto next_level;
1502     }
1503 
1504     /*
1505      * Block entry at level 1 or 2, or page entry at level 3.
1506      * These are basically the same thing, although the number
1507      * of bits we pull in from the vaddr varies. Note that although
1508      * descaddrmask masks enough of the low bits of the descriptor
1509      * to give a correct page or table address, the address field
1510      * in a block descriptor is smaller; so we need to explicitly
1511      * clear the lower bits here before ORing in the low vaddr bits.
1512      *
1513      * Afterward, descaddr is the final physical address.
1514      */
1515     page_size = (1ULL << ((stride * (4 - level)) + 3));
1516     descaddr &= ~(hwaddr)(page_size - 1);
1517     descaddr |= (address & (page_size - 1));
1518 
1519     if (likely(!ptw->in_debug)) {
1520         /*
1521          * Access flag.
1522          * If HA is enabled, prepare to update the descriptor below.
1523          * Otherwise, pass the access fault on to software.
1524          */
1525         if (!(descriptor & (1 << 10))) {
1526             if (param.ha) {
1527                 new_descriptor |= 1 << 10; /* AF */
1528             } else {
1529                 fi->type = ARMFault_AccessFlag;
1530                 goto do_fault;
1531             }
1532         }
1533 
1534         /*
1535          * Dirty Bit.
1536          * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1537          * bit for writeback. The actual write protection test may still be
1538          * overridden by tableattrs, to be merged below.
1539          */
1540         if (param.hd
1541             && extract64(descriptor, 51, 1)  /* DBM */
1542             && access_type == MMU_DATA_STORE) {
1543             if (regime_is_stage2(mmu_idx)) {
1544                 new_descriptor |= 1ull << 7;    /* set S2AP[1] */
1545             } else {
1546                 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1547             }
1548         }
1549     }
1550 
1551     /*
1552      * Extract attributes from the (modified) descriptor, and apply
1553      * table descriptors. Stage 2 table descriptors do not include
1554      * any attribute fields. HPD disables all the table attributes
1555      * except NSTable.
1556      */
1557     attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1558     if (!regime_is_stage2(mmu_idx)) {
1559         attrs |= nstable << 5; /* NS */
1560         if (!param.hpd) {
1561             attrs |= extract64(tableattrs, 0, 2) << 53;     /* XN, PXN */
1562             /*
1563              * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1564              * means "force PL1 access only", which means forcing AP[1] to 0.
1565              */
1566             attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1567             attrs |= extract32(tableattrs, 3, 1) << 7;    /* APT[1] => AP[2] */
1568         }
1569     }
1570 
1571     ap = extract32(attrs, 6, 2);
1572     if (regime_is_stage2(mmu_idx)) {
1573         ns = mmu_idx == ARMMMUIdx_Stage2;
1574         xn = extract64(attrs, 53, 2);
1575         result->f.prot = get_S2prot(env, ap, xn, s1_is_el0);
1576     } else {
1577         ns = extract32(attrs, 5, 1);
1578         xn = extract64(attrs, 54, 1);
1579         pxn = extract64(attrs, 53, 1);
1580         result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
1581     }
1582 
1583     if (!(result->f.prot & (1 << access_type))) {
1584         fi->type = ARMFault_Permission;
1585         goto do_fault;
1586     }
1587 
1588     /* If FEAT_HAFDBS has made changes, update the PTE. */
1589     if (new_descriptor != descriptor) {
1590         new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
1591         if (fi->type != ARMFault_None) {
1592             goto do_fault;
1593         }
1594         /*
1595          * I_YZSVV says that if the in-memory descriptor has changed,
1596          * then we must use the information in that new value
1597          * (which might include a different output address, different
1598          * attributes, or generate a fault).
1599          * Restart the handling of the descriptor value from scratch.
1600          */
1601         if (new_descriptor != descriptor) {
1602             descriptor = new_descriptor;
1603             goto restart_atomic_update;
1604         }
1605     }
1606 
1607     if (ns) {
1608         /*
1609          * The NS bit will (as required by the architecture) have no effect if
1610          * the CPU doesn't support TZ or this is a non-secure translation
1611          * regime, because the attribute will already be non-secure.
1612          */
1613         result->f.attrs.secure = false;
1614     }
1615 
1616     if (regime_is_stage2(mmu_idx)) {
1617         result->cacheattrs.is_s2_format = true;
1618         result->cacheattrs.attrs = extract32(attrs, 2, 4);
1619     } else {
1620         /* Index into MAIR registers for cache attributes */
1621         uint8_t attrindx = extract32(attrs, 2, 3);
1622         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
1623         assert(attrindx <= 7);
1624         result->cacheattrs.is_s2_format = false;
1625         result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
1626 
1627         /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
1628         if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
1629             result->f.guarded = extract64(attrs, 50, 1); /* GP */
1630         }
1631     }
1632 
1633     /*
1634      * For FEAT_LPA2 and effective DS, the SH field in the attributes
1635      * was re-purposed for output address bits.  The SH attribute in
1636      * that case comes from TCR_ELx, which we extracted earlier.
1637      */
1638     if (param.ds) {
1639         result->cacheattrs.shareability = param.sh;
1640     } else {
1641         result->cacheattrs.shareability = extract32(attrs, 8, 2);
1642     }
1643 
1644     result->f.phys_addr = descaddr;
1645     result->f.lg_page_size = ctz64(page_size);
1646     return false;
1647 
1648  do_translation_fault:
1649     fi->type = ARMFault_Translation;
1650  do_fault:
1651     fi->level = level;
1652     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
1653     fi->stage2 = fi->s1ptw || regime_is_stage2(mmu_idx);
1654     fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
1655     return true;
1656 }
1657 
1658 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
1659                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
1660                                  bool is_secure, GetPhysAddrResult *result,
1661                                  ARMMMUFaultInfo *fi)
1662 {
1663     int n;
1664     uint32_t mask;
1665     uint32_t base;
1666     bool is_user = regime_is_user(env, mmu_idx);
1667 
1668     if (regime_translation_disabled(env, mmu_idx, is_secure)) {
1669         /* MPU disabled.  */
1670         result->f.phys_addr = address;
1671         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1672         return false;
1673     }
1674 
1675     result->f.phys_addr = address;
1676     for (n = 7; n >= 0; n--) {
1677         base = env->cp15.c6_region[n];
1678         if ((base & 1) == 0) {
1679             continue;
1680         }
1681         mask = 1 << ((base >> 1) & 0x1f);
1682         /* Keep this shift separate from the above to avoid an
1683            (undefined) << 32.  */
1684         mask = (mask << 1) - 1;
1685         if (((base ^ address) & ~mask) == 0) {
1686             break;
1687         }
1688     }
1689     if (n < 0) {
1690         fi->type = ARMFault_Background;
1691         return true;
1692     }
1693 
1694     if (access_type == MMU_INST_FETCH) {
1695         mask = env->cp15.pmsav5_insn_ap;
1696     } else {
1697         mask = env->cp15.pmsav5_data_ap;
1698     }
1699     mask = (mask >> (n * 4)) & 0xf;
1700     switch (mask) {
1701     case 0:
1702         fi->type = ARMFault_Permission;
1703         fi->level = 1;
1704         return true;
1705     case 1:
1706         if (is_user) {
1707             fi->type = ARMFault_Permission;
1708             fi->level = 1;
1709             return true;
1710         }
1711         result->f.prot = PAGE_READ | PAGE_WRITE;
1712         break;
1713     case 2:
1714         result->f.prot = PAGE_READ;
1715         if (!is_user) {
1716             result->f.prot |= PAGE_WRITE;
1717         }
1718         break;
1719     case 3:
1720         result->f.prot = PAGE_READ | PAGE_WRITE;
1721         break;
1722     case 5:
1723         if (is_user) {
1724             fi->type = ARMFault_Permission;
1725             fi->level = 1;
1726             return true;
1727         }
1728         result->f.prot = PAGE_READ;
1729         break;
1730     case 6:
1731         result->f.prot = PAGE_READ;
1732         break;
1733     default:
1734         /* Bad permission.  */
1735         fi->type = ARMFault_Permission;
1736         fi->level = 1;
1737         return true;
1738     }
1739     result->f.prot |= PAGE_EXEC;
1740     return false;
1741 }
1742 
1743 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
1744                                          int32_t address, uint8_t *prot)
1745 {
1746     if (!arm_feature(env, ARM_FEATURE_M)) {
1747         *prot = PAGE_READ | PAGE_WRITE;
1748         switch (address) {
1749         case 0xF0000000 ... 0xFFFFFFFF:
1750             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
1751                 /* hivecs execing is ok */
1752                 *prot |= PAGE_EXEC;
1753             }
1754             break;
1755         case 0x00000000 ... 0x7FFFFFFF:
1756             *prot |= PAGE_EXEC;
1757             break;
1758         }
1759     } else {
1760         /* Default system address map for M profile cores.
1761          * The architecture specifies which regions are execute-never;
1762          * at the MPU level no other checks are defined.
1763          */
1764         switch (address) {
1765         case 0x00000000 ... 0x1fffffff: /* ROM */
1766         case 0x20000000 ... 0x3fffffff: /* SRAM */
1767         case 0x60000000 ... 0x7fffffff: /* RAM */
1768         case 0x80000000 ... 0x9fffffff: /* RAM */
1769             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1770             break;
1771         case 0x40000000 ... 0x5fffffff: /* Peripheral */
1772         case 0xa0000000 ... 0xbfffffff: /* Device */
1773         case 0xc0000000 ... 0xdfffffff: /* Device */
1774         case 0xe0000000 ... 0xffffffff: /* System */
1775             *prot = PAGE_READ | PAGE_WRITE;
1776             break;
1777         default:
1778             g_assert_not_reached();
1779         }
1780     }
1781 }
1782 
1783 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
1784 {
1785     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
1786     return arm_feature(env, ARM_FEATURE_M) &&
1787         extract32(address, 20, 12) == 0xe00;
1788 }
1789 
1790 static bool m_is_system_region(CPUARMState *env, uint32_t address)
1791 {
1792     /*
1793      * True if address is in the M profile system region
1794      * 0xe0000000 - 0xffffffff
1795      */
1796     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
1797 }
1798 
1799 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1800                                          bool is_secure, bool is_user)
1801 {
1802     /*
1803      * Return true if we should use the default memory map as a
1804      * "background" region if there are no hits against any MPU regions.
1805      */
1806     CPUARMState *env = &cpu->env;
1807 
1808     if (is_user) {
1809         return false;
1810     }
1811 
1812     if (arm_feature(env, ARM_FEATURE_M)) {
1813         return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
1814     }
1815 
1816     if (mmu_idx == ARMMMUIdx_Stage2) {
1817         return false;
1818     }
1819 
1820     return regime_sctlr(env, mmu_idx) & SCTLR_BR;
1821 }
1822 
1823 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
1824                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
1825                                  bool secure, GetPhysAddrResult *result,
1826                                  ARMMMUFaultInfo *fi)
1827 {
1828     ARMCPU *cpu = env_archcpu(env);
1829     int n;
1830     bool is_user = regime_is_user(env, mmu_idx);
1831 
1832     result->f.phys_addr = address;
1833     result->f.lg_page_size = TARGET_PAGE_BITS;
1834     result->f.prot = 0;
1835 
1836     if (regime_translation_disabled(env, mmu_idx, secure) ||
1837         m_is_ppb_region(env, address)) {
1838         /*
1839          * MPU disabled or M profile PPB access: use default memory map.
1840          * The other case which uses the default memory map in the
1841          * v7M ARM ARM pseudocode is exception vector reads from the vector
1842          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
1843          * which always does a direct read using address_space_ldl(), rather
1844          * than going via this function, so we don't need to check that here.
1845          */
1846         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
1847     } else { /* MPU enabled */
1848         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1849             /* region search */
1850             uint32_t base = env->pmsav7.drbar[n];
1851             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
1852             uint32_t rmask;
1853             bool srdis = false;
1854 
1855             if (!(env->pmsav7.drsr[n] & 0x1)) {
1856                 continue;
1857             }
1858 
1859             if (!rsize) {
1860                 qemu_log_mask(LOG_GUEST_ERROR,
1861                               "DRSR[%d]: Rsize field cannot be 0\n", n);
1862                 continue;
1863             }
1864             rsize++;
1865             rmask = (1ull << rsize) - 1;
1866 
1867             if (base & rmask) {
1868                 qemu_log_mask(LOG_GUEST_ERROR,
1869                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
1870                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
1871                               n, base, rmask);
1872                 continue;
1873             }
1874 
1875             if (address < base || address > base + rmask) {
1876                 /*
1877                  * Address not in this region. We must check whether the
1878                  * region covers addresses in the same page as our address.
1879                  * In that case we must not report a size that covers the
1880                  * whole page for a subsequent hit against a different MPU
1881                  * region or the background region, because it would result in
1882                  * incorrect TLB hits for subsequent accesses to addresses that
1883                  * are in this MPU region.
1884                  */
1885                 if (ranges_overlap(base, rmask,
1886                                    address & TARGET_PAGE_MASK,
1887                                    TARGET_PAGE_SIZE)) {
1888                     result->f.lg_page_size = 0;
1889                 }
1890                 continue;
1891             }
1892 
1893             /* Region matched */
1894 
1895             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
1896                 int i, snd;
1897                 uint32_t srdis_mask;
1898 
1899                 rsize -= 3; /* sub region size (power of 2) */
1900                 snd = ((address - base) >> rsize) & 0x7;
1901                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
1902 
1903                 srdis_mask = srdis ? 0x3 : 0x0;
1904                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
1905                     /*
1906                      * This will check in groups of 2, 4 and then 8, whether
1907                      * the subregion bits are consistent. rsize is incremented
1908                      * back up to give the region size, considering consistent
1909                      * adjacent subregions as one region. Stop testing if rsize
1910                      * is already big enough for an entire QEMU page.
1911                      */
1912                     int snd_rounded = snd & ~(i - 1);
1913                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
1914                                                      snd_rounded + 8, i);
1915                     if (srdis_mask ^ srdis_multi) {
1916                         break;
1917                     }
1918                     srdis_mask = (srdis_mask << i) | srdis_mask;
1919                     rsize++;
1920                 }
1921             }
1922             if (srdis) {
1923                 continue;
1924             }
1925             if (rsize < TARGET_PAGE_BITS) {
1926                 result->f.lg_page_size = rsize;
1927             }
1928             break;
1929         }
1930 
1931         if (n == -1) { /* no hits */
1932             if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
1933                 /* background fault */
1934                 fi->type = ARMFault_Background;
1935                 return true;
1936             }
1937             get_phys_addr_pmsav7_default(env, mmu_idx, address,
1938                                          &result->f.prot);
1939         } else { /* a MPU hit! */
1940             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
1941             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
1942 
1943             if (m_is_system_region(env, address)) {
1944                 /* System space is always execute never */
1945                 xn = 1;
1946             }
1947 
1948             if (is_user) { /* User mode AP bit decoding */
1949                 switch (ap) {
1950                 case 0:
1951                 case 1:
1952                 case 5:
1953                     break; /* no access */
1954                 case 3:
1955                     result->f.prot |= PAGE_WRITE;
1956                     /* fall through */
1957                 case 2:
1958                 case 6:
1959                     result->f.prot |= PAGE_READ | PAGE_EXEC;
1960                     break;
1961                 case 7:
1962                     /* for v7M, same as 6; for R profile a reserved value */
1963                     if (arm_feature(env, ARM_FEATURE_M)) {
1964                         result->f.prot |= PAGE_READ | PAGE_EXEC;
1965                         break;
1966                     }
1967                     /* fall through */
1968                 default:
1969                     qemu_log_mask(LOG_GUEST_ERROR,
1970                                   "DRACR[%d]: Bad value for AP bits: 0x%"
1971                                   PRIx32 "\n", n, ap);
1972                 }
1973             } else { /* Priv. mode AP bits decoding */
1974                 switch (ap) {
1975                 case 0:
1976                     break; /* no access */
1977                 case 1:
1978                 case 2:
1979                 case 3:
1980                     result->f.prot |= PAGE_WRITE;
1981                     /* fall through */
1982                 case 5:
1983                 case 6:
1984                     result->f.prot |= PAGE_READ | PAGE_EXEC;
1985                     break;
1986                 case 7:
1987                     /* for v7M, same as 6; for R profile a reserved value */
1988                     if (arm_feature(env, ARM_FEATURE_M)) {
1989                         result->f.prot |= PAGE_READ | PAGE_EXEC;
1990                         break;
1991                     }
1992                     /* fall through */
1993                 default:
1994                     qemu_log_mask(LOG_GUEST_ERROR,
1995                                   "DRACR[%d]: Bad value for AP bits: 0x%"
1996                                   PRIx32 "\n", n, ap);
1997                 }
1998             }
1999 
2000             /* execute never */
2001             if (xn) {
2002                 result->f.prot &= ~PAGE_EXEC;
2003             }
2004         }
2005     }
2006 
2007     fi->type = ARMFault_Permission;
2008     fi->level = 1;
2009     return !(result->f.prot & (1 << access_type));
2010 }
2011 
2012 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
2013                              uint32_t secure)
2014 {
2015     if (regime_el(env, mmu_idx) == 2) {
2016         return env->pmsav8.hprbar;
2017     } else {
2018         return env->pmsav8.rbar[secure];
2019     }
2020 }
2021 
2022 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
2023                              uint32_t secure)
2024 {
2025     if (regime_el(env, mmu_idx) == 2) {
2026         return env->pmsav8.hprlar;
2027     } else {
2028         return env->pmsav8.rlar[secure];
2029     }
2030 }
2031 
2032 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2033                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
2034                        bool secure, GetPhysAddrResult *result,
2035                        ARMMMUFaultInfo *fi, uint32_t *mregion)
2036 {
2037     /*
2038      * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2039      * that a full phys-to-virt translation does).
2040      * mregion is (if not NULL) set to the region number which matched,
2041      * or -1 if no region number is returned (MPU off, address did not
2042      * hit a region, address hit in multiple regions).
2043      * If the region hit doesn't cover the entire TARGET_PAGE the address
2044      * is within, then we set the result page_size to 1 to force the
2045      * memory system to use a subpage.
2046      */
2047     ARMCPU *cpu = env_archcpu(env);
2048     bool is_user = regime_is_user(env, mmu_idx);
2049     int n;
2050     int matchregion = -1;
2051     bool hit = false;
2052     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2053     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2054     int region_counter;
2055 
2056     if (regime_el(env, mmu_idx) == 2) {
2057         region_counter = cpu->pmsav8r_hdregion;
2058     } else {
2059         region_counter = cpu->pmsav7_dregion;
2060     }
2061 
2062     result->f.lg_page_size = TARGET_PAGE_BITS;
2063     result->f.phys_addr = address;
2064     result->f.prot = 0;
2065     if (mregion) {
2066         *mregion = -1;
2067     }
2068 
2069     if (mmu_idx == ARMMMUIdx_Stage2) {
2070         fi->stage2 = true;
2071     }
2072 
2073     /*
2074      * Unlike the ARM ARM pseudocode, we don't need to check whether this
2075      * was an exception vector read from the vector table (which is always
2076      * done using the default system address map), because those accesses
2077      * are done in arm_v7m_load_vector(), which always does a direct
2078      * read using address_space_ldl(), rather than going via this function.
2079      */
2080     if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */
2081         hit = true;
2082     } else if (m_is_ppb_region(env, address)) {
2083         hit = true;
2084     } else {
2085         if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2086             hit = true;
2087         }
2088 
2089         uint32_t bitmask;
2090         if (arm_feature(env, ARM_FEATURE_M)) {
2091             bitmask = 0x1f;
2092         } else {
2093             bitmask = 0x3f;
2094             fi->level = 0;
2095         }
2096 
2097         for (n = region_counter - 1; n >= 0; n--) {
2098             /* region search */
2099             /*
2100              * Note that the base address is bits [31:x] from the register
2101              * with bits [x-1:0] all zeroes, but the limit address is bits
2102              * [31:x] from the register with bits [x:0] all ones. Where x is
2103              * 5 for Cortex-M and 6 for Cortex-R
2104              */
2105             uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2106             uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2107 
2108             if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2109                 /* Region disabled */
2110                 continue;
2111             }
2112 
2113             if (address < base || address > limit) {
2114                 /*
2115                  * Address not in this region. We must check whether the
2116                  * region covers addresses in the same page as our address.
2117                  * In that case we must not report a size that covers the
2118                  * whole page for a subsequent hit against a different MPU
2119                  * region or the background region, because it would result in
2120                  * incorrect TLB hits for subsequent accesses to addresses that
2121                  * are in this MPU region.
2122                  */
2123                 if (limit >= base &&
2124                     ranges_overlap(base, limit - base + 1,
2125                                    addr_page_base,
2126                                    TARGET_PAGE_SIZE)) {
2127                     result->f.lg_page_size = 0;
2128                 }
2129                 continue;
2130             }
2131 
2132             if (base > addr_page_base || limit < addr_page_limit) {
2133                 result->f.lg_page_size = 0;
2134             }
2135 
2136             if (matchregion != -1) {
2137                 /*
2138                  * Multiple regions match -- always a failure (unlike
2139                  * PMSAv7 where highest-numbered-region wins)
2140                  */
2141                 fi->type = ARMFault_Permission;
2142                 if (arm_feature(env, ARM_FEATURE_M)) {
2143                     fi->level = 1;
2144                 }
2145                 return true;
2146             }
2147 
2148             matchregion = n;
2149             hit = true;
2150         }
2151     }
2152 
2153     if (!hit) {
2154         if (arm_feature(env, ARM_FEATURE_M)) {
2155             fi->type = ARMFault_Background;
2156         } else {
2157             fi->type = ARMFault_Permission;
2158         }
2159         return true;
2160     }
2161 
2162     if (matchregion == -1) {
2163         /* hit using the background region */
2164         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2165     } else {
2166         uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2167         uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2168         uint32_t ap = extract32(matched_rbar, 1, 2);
2169         uint32_t xn = extract32(matched_rbar, 0, 1);
2170         bool pxn = false;
2171 
2172         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2173             pxn = extract32(matched_rlar, 4, 1);
2174         }
2175 
2176         if (m_is_system_region(env, address)) {
2177             /* System space is always execute never */
2178             xn = 1;
2179         }
2180 
2181         if (regime_el(env, mmu_idx) == 2) {
2182             result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2183                                             mmu_idx != ARMMMUIdx_E2);
2184         } else {
2185             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2186         }
2187 
2188         if (!arm_feature(env, ARM_FEATURE_M)) {
2189             uint8_t attrindx = extract32(matched_rlar, 1, 3);
2190             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2191             uint8_t sh = extract32(matched_rlar, 3, 2);
2192 
2193             if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2194                 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2195                 xn = 0x1;
2196             }
2197 
2198             if ((regime_el(env, mmu_idx) == 1) &&
2199                 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2200                 pxn = 0x1;
2201             }
2202 
2203             result->cacheattrs.is_s2_format = false;
2204             result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2205             result->cacheattrs.shareability = sh;
2206         }
2207 
2208         if (result->f.prot && !xn && !(pxn && !is_user)) {
2209             result->f.prot |= PAGE_EXEC;
2210         }
2211 
2212         if (mregion) {
2213             *mregion = matchregion;
2214         }
2215     }
2216 
2217     fi->type = ARMFault_Permission;
2218     if (arm_feature(env, ARM_FEATURE_M)) {
2219         fi->level = 1;
2220     }
2221     return !(result->f.prot & (1 << access_type));
2222 }
2223 
2224 static bool v8m_is_sau_exempt(CPUARMState *env,
2225                               uint32_t address, MMUAccessType access_type)
2226 {
2227     /*
2228      * The architecture specifies that certain address ranges are
2229      * exempt from v8M SAU/IDAU checks.
2230      */
2231     return
2232         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2233         (address >= 0xe0000000 && address <= 0xe0002fff) ||
2234         (address >= 0xe000e000 && address <= 0xe000efff) ||
2235         (address >= 0xe002e000 && address <= 0xe002efff) ||
2236         (address >= 0xe0040000 && address <= 0xe0041fff) ||
2237         (address >= 0xe00ff000 && address <= 0xe00fffff);
2238 }
2239 
2240 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2241                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
2242                          bool is_secure, V8M_SAttributes *sattrs)
2243 {
2244     /*
2245      * Look up the security attributes for this address. Compare the
2246      * pseudocode SecurityCheck() function.
2247      * We assume the caller has zero-initialized *sattrs.
2248      */
2249     ARMCPU *cpu = env_archcpu(env);
2250     int r;
2251     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2252     int idau_region = IREGION_NOTVALID;
2253     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2254     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2255 
2256     if (cpu->idau) {
2257         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2258         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2259 
2260         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2261                    &idau_nsc);
2262     }
2263 
2264     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2265         /* 0xf0000000..0xffffffff is always S for insn fetches */
2266         return;
2267     }
2268 
2269     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2270         sattrs->ns = !is_secure;
2271         return;
2272     }
2273 
2274     if (idau_region != IREGION_NOTVALID) {
2275         sattrs->irvalid = true;
2276         sattrs->iregion = idau_region;
2277     }
2278 
2279     switch (env->sau.ctrl & 3) {
2280     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2281         break;
2282     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2283         sattrs->ns = true;
2284         break;
2285     default: /* SAU.ENABLE == 1 */
2286         for (r = 0; r < cpu->sau_sregion; r++) {
2287             if (env->sau.rlar[r] & 1) {
2288                 uint32_t base = env->sau.rbar[r] & ~0x1f;
2289                 uint32_t limit = env->sau.rlar[r] | 0x1f;
2290 
2291                 if (base <= address && limit >= address) {
2292                     if (base > addr_page_base || limit < addr_page_limit) {
2293                         sattrs->subpage = true;
2294                     }
2295                     if (sattrs->srvalid) {
2296                         /*
2297                          * If we hit in more than one region then we must report
2298                          * as Secure, not NS-Callable, with no valid region
2299                          * number info.
2300                          */
2301                         sattrs->ns = false;
2302                         sattrs->nsc = false;
2303                         sattrs->sregion = 0;
2304                         sattrs->srvalid = false;
2305                         break;
2306                     } else {
2307                         if (env->sau.rlar[r] & 2) {
2308                             sattrs->nsc = true;
2309                         } else {
2310                             sattrs->ns = true;
2311                         }
2312                         sattrs->srvalid = true;
2313                         sattrs->sregion = r;
2314                     }
2315                 } else {
2316                     /*
2317                      * Address not in this region. We must check whether the
2318                      * region covers addresses in the same page as our address.
2319                      * In that case we must not report a size that covers the
2320                      * whole page for a subsequent hit against a different MPU
2321                      * region or the background region, because it would result
2322                      * in incorrect TLB hits for subsequent accesses to
2323                      * addresses that are in this MPU region.
2324                      */
2325                     if (limit >= base &&
2326                         ranges_overlap(base, limit - base + 1,
2327                                        addr_page_base,
2328                                        TARGET_PAGE_SIZE)) {
2329                         sattrs->subpage = true;
2330                     }
2331                 }
2332             }
2333         }
2334         break;
2335     }
2336 
2337     /*
2338      * The IDAU will override the SAU lookup results if it specifies
2339      * higher security than the SAU does.
2340      */
2341     if (!idau_ns) {
2342         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2343             sattrs->ns = false;
2344             sattrs->nsc = idau_nsc;
2345         }
2346     }
2347 }
2348 
2349 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
2350                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
2351                                  bool secure, GetPhysAddrResult *result,
2352                                  ARMMMUFaultInfo *fi)
2353 {
2354     V8M_SAttributes sattrs = {};
2355     bool ret;
2356 
2357     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2358         v8m_security_lookup(env, address, access_type, mmu_idx,
2359                             secure, &sattrs);
2360         if (access_type == MMU_INST_FETCH) {
2361             /*
2362              * Instruction fetches always use the MMU bank and the
2363              * transaction attribute determined by the fetch address,
2364              * regardless of CPU state. This is painful for QEMU
2365              * to handle, because it would mean we need to encode
2366              * into the mmu_idx not just the (user, negpri) information
2367              * for the current security state but also that for the
2368              * other security state, which would balloon the number
2369              * of mmu_idx values needed alarmingly.
2370              * Fortunately we can avoid this because it's not actually
2371              * possible to arbitrarily execute code from memory with
2372              * the wrong security attribute: it will always generate
2373              * an exception of some kind or another, apart from the
2374              * special case of an NS CPU executing an SG instruction
2375              * in S&NSC memory. So we always just fail the translation
2376              * here and sort things out in the exception handler
2377              * (including possibly emulating an SG instruction).
2378              */
2379             if (sattrs.ns != !secure) {
2380                 if (sattrs.nsc) {
2381                     fi->type = ARMFault_QEMU_NSCExec;
2382                 } else {
2383                     fi->type = ARMFault_QEMU_SFault;
2384                 }
2385                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2386                 result->f.phys_addr = address;
2387                 result->f.prot = 0;
2388                 return true;
2389             }
2390         } else {
2391             /*
2392              * For data accesses we always use the MMU bank indicated
2393              * by the current CPU state, but the security attributes
2394              * might downgrade a secure access to nonsecure.
2395              */
2396             if (sattrs.ns) {
2397                 result->f.attrs.secure = false;
2398             } else if (!secure) {
2399                 /*
2400                  * NS access to S memory must fault.
2401                  * Architecturally we should first check whether the
2402                  * MPU information for this address indicates that we
2403                  * are doing an unaligned access to Device memory, which
2404                  * should generate a UsageFault instead. QEMU does not
2405                  * currently check for that kind of unaligned access though.
2406                  * If we added it we would need to do so as a special case
2407                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2408                  */
2409                 fi->type = ARMFault_QEMU_SFault;
2410                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2411                 result->f.phys_addr = address;
2412                 result->f.prot = 0;
2413                 return true;
2414             }
2415         }
2416     }
2417 
2418     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2419                             result, fi, NULL);
2420     if (sattrs.subpage) {
2421         result->f.lg_page_size = 0;
2422     }
2423     return ret;
2424 }
2425 
2426 /*
2427  * Translate from the 4-bit stage 2 representation of
2428  * memory attributes (without cache-allocation hints) to
2429  * the 8-bit representation of the stage 1 MAIR registers
2430  * (which includes allocation hints).
2431  *
2432  * ref: shared/translation/attrs/S2AttrDecode()
2433  *      .../S2ConvertAttrsHints()
2434  */
2435 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2436 {
2437     uint8_t hiattr = extract32(s2attrs, 2, 2);
2438     uint8_t loattr = extract32(s2attrs, 0, 2);
2439     uint8_t hihint = 0, lohint = 0;
2440 
2441     if (hiattr != 0) { /* normal memory */
2442         if (hcr & HCR_CD) { /* cache disabled */
2443             hiattr = loattr = 1; /* non-cacheable */
2444         } else {
2445             if (hiattr != 1) { /* Write-through or write-back */
2446                 hihint = 3; /* RW allocate */
2447             }
2448             if (loattr != 1) { /* Write-through or write-back */
2449                 lohint = 3; /* RW allocate */
2450             }
2451         }
2452     }
2453 
2454     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2455 }
2456 
2457 /*
2458  * Combine either inner or outer cacheability attributes for normal
2459  * memory, according to table D4-42 and pseudocode procedure
2460  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2461  *
2462  * NB: only stage 1 includes allocation hints (RW bits), leading to
2463  * some asymmetry.
2464  */
2465 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2466 {
2467     if (s1 == 4 || s2 == 4) {
2468         /* non-cacheable has precedence */
2469         return 4;
2470     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2471         /* stage 1 write-through takes precedence */
2472         return s1;
2473     } else if (extract32(s2, 2, 2) == 2) {
2474         /* stage 2 write-through takes precedence, but the allocation hint
2475          * is still taken from stage 1
2476          */
2477         return (2 << 2) | extract32(s1, 0, 2);
2478     } else { /* write-back */
2479         return s1;
2480     }
2481 }
2482 
2483 /*
2484  * Combine the memory type and cacheability attributes of
2485  * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2486  * combined attributes in MAIR_EL1 format.
2487  */
2488 static uint8_t combined_attrs_nofwb(uint64_t hcr,
2489                                     ARMCacheAttrs s1, ARMCacheAttrs s2)
2490 {
2491     uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2492 
2493     if (s2.is_s2_format) {
2494         s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
2495     } else {
2496         s2_mair_attrs = s2.attrs;
2497     }
2498 
2499     s1lo = extract32(s1.attrs, 0, 4);
2500     s2lo = extract32(s2_mair_attrs, 0, 4);
2501     s1hi = extract32(s1.attrs, 4, 4);
2502     s2hi = extract32(s2_mair_attrs, 4, 4);
2503 
2504     /* Combine memory type and cacheability attributes */
2505     if (s1hi == 0 || s2hi == 0) {
2506         /* Device has precedence over normal */
2507         if (s1lo == 0 || s2lo == 0) {
2508             /* nGnRnE has precedence over anything */
2509             ret_attrs = 0;
2510         } else if (s1lo == 4 || s2lo == 4) {
2511             /* non-Reordering has precedence over Reordering */
2512             ret_attrs = 4;  /* nGnRE */
2513         } else if (s1lo == 8 || s2lo == 8) {
2514             /* non-Gathering has precedence over Gathering */
2515             ret_attrs = 8;  /* nGRE */
2516         } else {
2517             ret_attrs = 0xc; /* GRE */
2518         }
2519     } else { /* Normal memory */
2520         /* Outer/inner cacheability combine independently */
2521         ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2522                   | combine_cacheattr_nibble(s1lo, s2lo);
2523     }
2524     return ret_attrs;
2525 }
2526 
2527 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2528 {
2529     /*
2530      * Given the 4 bits specifying the outer or inner cacheability
2531      * in MAIR format, return a value specifying Normal Write-Back,
2532      * with the allocation and transient hints taken from the input
2533      * if the input specified some kind of cacheable attribute.
2534      */
2535     if (attr == 0 || attr == 4) {
2536         /*
2537          * 0 == an UNPREDICTABLE encoding
2538          * 4 == Non-cacheable
2539          * Either way, force Write-Back RW allocate non-transient
2540          */
2541         return 0xf;
2542     }
2543     /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2544     return attr | 4;
2545 }
2546 
2547 /*
2548  * Combine the memory type and cacheability attributes of
2549  * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2550  * combined attributes in MAIR_EL1 format.
2551  */
2552 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
2553 {
2554     assert(s2.is_s2_format && !s1.is_s2_format);
2555 
2556     switch (s2.attrs) {
2557     case 7:
2558         /* Use stage 1 attributes */
2559         return s1.attrs;
2560     case 6:
2561         /*
2562          * Force Normal Write-Back. Note that if S1 is Normal cacheable
2563          * then we take the allocation hints from it; otherwise it is
2564          * RW allocate, non-transient.
2565          */
2566         if ((s1.attrs & 0xf0) == 0) {
2567             /* S1 is Device */
2568             return 0xff;
2569         }
2570         /* Need to check the Inner and Outer nibbles separately */
2571         return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
2572             force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
2573     case 5:
2574         /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
2575         if ((s1.attrs & 0xf0) == 0) {
2576             return s1.attrs;
2577         }
2578         return 0x44;
2579     case 0 ... 3:
2580         /* Force Device, of subtype specified by S2 */
2581         return s2.attrs << 2;
2582     default:
2583         /*
2584          * RESERVED values (including RES0 descriptor bit [5] being nonzero);
2585          * arbitrarily force Device.
2586          */
2587         return 0;
2588     }
2589 }
2590 
2591 /*
2592  * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
2593  * and CombineS1S2Desc()
2594  *
2595  * @env:     CPUARMState
2596  * @s1:      Attributes from stage 1 walk
2597  * @s2:      Attributes from stage 2 walk
2598  */
2599 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
2600                                         ARMCacheAttrs s1, ARMCacheAttrs s2)
2601 {
2602     ARMCacheAttrs ret;
2603     bool tagged = false;
2604 
2605     assert(!s1.is_s2_format);
2606     ret.is_s2_format = false;
2607     ret.guarded = s1.guarded;
2608 
2609     if (s1.attrs == 0xf0) {
2610         tagged = true;
2611         s1.attrs = 0xff;
2612     }
2613 
2614     /* Combine shareability attributes (table D4-43) */
2615     if (s1.shareability == 2 || s2.shareability == 2) {
2616         /* if either are outer-shareable, the result is outer-shareable */
2617         ret.shareability = 2;
2618     } else if (s1.shareability == 3 || s2.shareability == 3) {
2619         /* if either are inner-shareable, the result is inner-shareable */
2620         ret.shareability = 3;
2621     } else {
2622         /* both non-shareable */
2623         ret.shareability = 0;
2624     }
2625 
2626     /* Combine memory type and cacheability attributes */
2627     if (hcr & HCR_FWB) {
2628         ret.attrs = combined_attrs_fwb(s1, s2);
2629     } else {
2630         ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
2631     }
2632 
2633     /*
2634      * Any location for which the resultant memory type is any
2635      * type of Device memory is always treated as Outer Shareable.
2636      * Any location for which the resultant memory type is Normal
2637      * Inner Non-cacheable, Outer Non-cacheable is always treated
2638      * as Outer Shareable.
2639      * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
2640      */
2641     if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
2642         ret.shareability = 2;
2643     }
2644 
2645     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
2646     if (tagged && ret.attrs == 0xff) {
2647         ret.attrs = 0xf0;
2648     }
2649 
2650     return ret;
2651 }
2652 
2653 /*
2654  * MMU disabled.  S1 addresses within aa64 translation regimes are
2655  * still checked for bounds -- see AArch64.S1DisabledOutput().
2656  */
2657 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address,
2658                                    MMUAccessType access_type,
2659                                    ARMMMUIdx mmu_idx, bool is_secure,
2660                                    GetPhysAddrResult *result,
2661                                    ARMMMUFaultInfo *fi)
2662 {
2663     uint8_t memattr = 0x00;    /* Device nGnRnE */
2664     uint8_t shareability = 0;  /* non-sharable */
2665     int r_el;
2666 
2667     switch (mmu_idx) {
2668     case ARMMMUIdx_Stage2:
2669     case ARMMMUIdx_Stage2_S:
2670     case ARMMMUIdx_Phys_NS:
2671     case ARMMMUIdx_Phys_S:
2672         break;
2673 
2674     default:
2675         r_el = regime_el(env, mmu_idx);
2676         if (arm_el_is_aa64(env, r_el)) {
2677             int pamax = arm_pamax(env_archcpu(env));
2678             uint64_t tcr = env->cp15.tcr_el[r_el];
2679             int addrtop, tbi;
2680 
2681             tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
2682             if (access_type == MMU_INST_FETCH) {
2683                 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
2684             }
2685             tbi = (tbi >> extract64(address, 55, 1)) & 1;
2686             addrtop = (tbi ? 55 : 63);
2687 
2688             if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
2689                 fi->type = ARMFault_AddressSize;
2690                 fi->level = 0;
2691                 fi->stage2 = false;
2692                 return 1;
2693             }
2694 
2695             /*
2696              * When TBI is disabled, we've just validated that all of the
2697              * bits above PAMax are zero, so logically we only need to
2698              * clear the top byte for TBI.  But it's clearer to follow
2699              * the pseudocode set of addrdesc.paddress.
2700              */
2701             address = extract64(address, 0, 52);
2702         }
2703 
2704         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
2705         if (r_el == 1) {
2706             uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2707             if (hcr & HCR_DC) {
2708                 if (hcr & HCR_DCT) {
2709                     memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
2710                 } else {
2711                     memattr = 0xff;  /* Normal, WB, RWA */
2712                 }
2713             }
2714         }
2715         if (memattr == 0 && access_type == MMU_INST_FETCH) {
2716             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
2717                 memattr = 0xee;  /* Normal, WT, RA, NT */
2718             } else {
2719                 memattr = 0x44;  /* Normal, NC, No */
2720             }
2721             shareability = 2; /* outer sharable */
2722         }
2723         result->cacheattrs.is_s2_format = false;
2724         break;
2725     }
2726 
2727     result->f.phys_addr = address;
2728     result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2729     result->f.lg_page_size = TARGET_PAGE_BITS;
2730     result->cacheattrs.shareability = shareability;
2731     result->cacheattrs.attrs = memattr;
2732     return false;
2733 }
2734 
2735 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
2736                                    target_ulong address,
2737                                    MMUAccessType access_type,
2738                                    GetPhysAddrResult *result,
2739                                    ARMMMUFaultInfo *fi)
2740 {
2741     hwaddr ipa;
2742     int s1_prot, s1_lgpgsz;
2743     bool is_secure = ptw->in_secure;
2744     bool ret, ipa_secure;
2745     ARMCacheAttrs cacheattrs1;
2746     bool is_el0;
2747     uint64_t hcr;
2748 
2749     ret = get_phys_addr_with_struct(env, ptw, address, access_type, result, fi);
2750 
2751     /* If S1 fails, return early.  */
2752     if (ret) {
2753         return ret;
2754     }
2755 
2756     ipa = result->f.phys_addr;
2757     ipa_secure = result->f.attrs.secure;
2758 
2759     is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
2760     ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2761     ptw->in_secure = ipa_secure;
2762     ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
2763 
2764     /*
2765      * S1 is done, now do S2 translation.
2766      * Save the stage1 results so that we may merge prot and cacheattrs later.
2767      */
2768     s1_prot = result->f.prot;
2769     s1_lgpgsz = result->f.lg_page_size;
2770     cacheattrs1 = result->cacheattrs;
2771     memset(result, 0, sizeof(*result));
2772 
2773     if (arm_feature(env, ARM_FEATURE_PMSA)) {
2774         ret = get_phys_addr_pmsav8(env, ipa, access_type,
2775                                    ptw->in_mmu_idx, is_secure, result, fi);
2776     } else {
2777         ret = get_phys_addr_lpae(env, ptw, ipa, access_type,
2778                                  is_el0, result, fi);
2779     }
2780     fi->s2addr = ipa;
2781 
2782     /* Combine the S1 and S2 perms.  */
2783     result->f.prot &= s1_prot;
2784 
2785     /* If S2 fails, return early.  */
2786     if (ret) {
2787         return ret;
2788     }
2789 
2790     /*
2791      * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
2792      * this means "don't put this in the TLB"; in this case, return a
2793      * result with lg_page_size == 0 to achieve that. Otherwise,
2794      * use the maximum of the S1 & S2 page size, so that invalidation
2795      * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
2796      * we know the combined result permissions etc only cover the minimum
2797      * of the S1 and S2 page size, because we know that the common TLB code
2798      * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
2799      * and passing a larger page size value only affects invalidations.)
2800      */
2801     if (result->f.lg_page_size < TARGET_PAGE_BITS ||
2802         s1_lgpgsz < TARGET_PAGE_BITS) {
2803         result->f.lg_page_size = 0;
2804     } else if (result->f.lg_page_size < s1_lgpgsz) {
2805         result->f.lg_page_size = s1_lgpgsz;
2806     }
2807 
2808     /* Combine the S1 and S2 cache attributes. */
2809     hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2810     if (hcr & HCR_DC) {
2811         /*
2812          * HCR.DC forces the first stage attributes to
2813          *  Normal Non-Shareable,
2814          *  Inner Write-Back Read-Allocate Write-Allocate,
2815          *  Outer Write-Back Read-Allocate Write-Allocate.
2816          * Do not overwrite Tagged within attrs.
2817          */
2818         if (cacheattrs1.attrs != 0xf0) {
2819             cacheattrs1.attrs = 0xff;
2820         }
2821         cacheattrs1.shareability = 0;
2822     }
2823     result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
2824                                             result->cacheattrs);
2825 
2826     /*
2827      * Check if IPA translates to secure or non-secure PA space.
2828      * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
2829      */
2830     result->f.attrs.secure =
2831         (is_secure
2832          && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
2833          && (ipa_secure
2834              || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))));
2835 
2836     return false;
2837 }
2838 
2839 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
2840                                       target_ulong address,
2841                                       MMUAccessType access_type,
2842                                       GetPhysAddrResult *result,
2843                                       ARMMMUFaultInfo *fi)
2844 {
2845     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2846     bool is_secure = ptw->in_secure;
2847     ARMMMUIdx s1_mmu_idx;
2848 
2849     /*
2850      * The page table entries may downgrade secure to non-secure, but
2851      * cannot upgrade an non-secure translation regime's attributes
2852      * to secure.
2853      */
2854     result->f.attrs.secure = is_secure;
2855 
2856     switch (mmu_idx) {
2857     case ARMMMUIdx_Phys_S:
2858     case ARMMMUIdx_Phys_NS:
2859         /* Checking Phys early avoids special casing later vs regime_el. */
2860         return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2861                                       is_secure, result, fi);
2862 
2863     case ARMMMUIdx_Stage1_E0:
2864     case ARMMMUIdx_Stage1_E1:
2865     case ARMMMUIdx_Stage1_E1_PAN:
2866         /* First stage lookup uses second stage for ptw. */
2867         ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2868         break;
2869 
2870     case ARMMMUIdx_Stage2:
2871     case ARMMMUIdx_Stage2_S:
2872         /*
2873          * Second stage lookup uses physical for ptw; whether this is S or
2874          * NS may depend on the SW/NSW bits if this is a stage 2 lookup for
2875          * the Secure EL2&0 regime.
2876          */
2877         ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx);
2878         break;
2879 
2880     case ARMMMUIdx_E10_0:
2881         s1_mmu_idx = ARMMMUIdx_Stage1_E0;
2882         goto do_twostage;
2883     case ARMMMUIdx_E10_1:
2884         s1_mmu_idx = ARMMMUIdx_Stage1_E1;
2885         goto do_twostage;
2886     case ARMMMUIdx_E10_1_PAN:
2887         s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
2888     do_twostage:
2889         /*
2890          * Call ourselves recursively to do the stage 1 and then stage 2
2891          * translations if mmu_idx is a two-stage regime, and EL2 present.
2892          * Otherwise, a stage1+stage2 translation is just stage 1.
2893          */
2894         ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
2895         if (arm_feature(env, ARM_FEATURE_EL2) &&
2896             !regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) {
2897             return get_phys_addr_twostage(env, ptw, address, access_type,
2898                                           result, fi);
2899         }
2900         /* fall through */
2901 
2902     default:
2903         /* Single stage uses physical for ptw. */
2904         ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
2905         break;
2906     }
2907 
2908     result->f.attrs.user = regime_is_user(env, mmu_idx);
2909 
2910     /*
2911      * Fast Context Switch Extension. This doesn't exist at all in v8.
2912      * In v7 and earlier it affects all stage 1 translations.
2913      */
2914     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
2915         && !arm_feature(env, ARM_FEATURE_V8)) {
2916         if (regime_el(env, mmu_idx) == 3) {
2917             address += env->cp15.fcseidr_s;
2918         } else {
2919             address += env->cp15.fcseidr_ns;
2920         }
2921     }
2922 
2923     if (arm_feature(env, ARM_FEATURE_PMSA)) {
2924         bool ret;
2925         result->f.lg_page_size = TARGET_PAGE_BITS;
2926 
2927         if (arm_feature(env, ARM_FEATURE_V8)) {
2928             /* PMSAv8 */
2929             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
2930                                        is_secure, result, fi);
2931         } else if (arm_feature(env, ARM_FEATURE_V7)) {
2932             /* PMSAv7 */
2933             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
2934                                        is_secure, result, fi);
2935         } else {
2936             /* Pre-v7 MPU */
2937             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
2938                                        is_secure, result, fi);
2939         }
2940         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
2941                       " mmu_idx %u -> %s (prot %c%c%c)\n",
2942                       access_type == MMU_DATA_LOAD ? "reading" :
2943                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
2944                       (uint32_t)address, mmu_idx,
2945                       ret ? "Miss" : "Hit",
2946                       result->f.prot & PAGE_READ ? 'r' : '-',
2947                       result->f.prot & PAGE_WRITE ? 'w' : '-',
2948                       result->f.prot & PAGE_EXEC ? 'x' : '-');
2949 
2950         return ret;
2951     }
2952 
2953     /* Definitely a real MMU, not an MPU */
2954 
2955     if (regime_translation_disabled(env, mmu_idx, is_secure)) {
2956         return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2957                                       is_secure, result, fi);
2958     }
2959 
2960     if (regime_using_lpae_format(env, mmu_idx)) {
2961         return get_phys_addr_lpae(env, ptw, address, access_type, false,
2962                                   result, fi);
2963     } else if (arm_feature(env, ARM_FEATURE_V7) ||
2964                regime_sctlr(env, mmu_idx) & SCTLR_XP) {
2965         return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
2966     } else {
2967         return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
2968     }
2969 }
2970 
2971 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
2972                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
2973                                bool is_secure, GetPhysAddrResult *result,
2974                                ARMMMUFaultInfo *fi)
2975 {
2976     S1Translate ptw = {
2977         .in_mmu_idx = mmu_idx,
2978         .in_secure = is_secure,
2979     };
2980     return get_phys_addr_with_struct(env, &ptw, address, access_type,
2981                                      result, fi);
2982 }
2983 
2984 bool get_phys_addr(CPUARMState *env, target_ulong address,
2985                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
2986                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
2987 {
2988     bool is_secure;
2989 
2990     switch (mmu_idx) {
2991     case ARMMMUIdx_E10_0:
2992     case ARMMMUIdx_E10_1:
2993     case ARMMMUIdx_E10_1_PAN:
2994     case ARMMMUIdx_E20_0:
2995     case ARMMMUIdx_E20_2:
2996     case ARMMMUIdx_E20_2_PAN:
2997     case ARMMMUIdx_Stage1_E0:
2998     case ARMMMUIdx_Stage1_E1:
2999     case ARMMMUIdx_Stage1_E1_PAN:
3000     case ARMMMUIdx_E2:
3001         is_secure = arm_is_secure_below_el3(env);
3002         break;
3003     case ARMMMUIdx_Stage2:
3004     case ARMMMUIdx_Phys_NS:
3005     case ARMMMUIdx_MPrivNegPri:
3006     case ARMMMUIdx_MUserNegPri:
3007     case ARMMMUIdx_MPriv:
3008     case ARMMMUIdx_MUser:
3009         is_secure = false;
3010         break;
3011     case ARMMMUIdx_E3:
3012     case ARMMMUIdx_Stage2_S:
3013     case ARMMMUIdx_Phys_S:
3014     case ARMMMUIdx_MSPrivNegPri:
3015     case ARMMMUIdx_MSUserNegPri:
3016     case ARMMMUIdx_MSPriv:
3017     case ARMMMUIdx_MSUser:
3018         is_secure = true;
3019         break;
3020     default:
3021         g_assert_not_reached();
3022     }
3023     return get_phys_addr_with_secure(env, address, access_type, mmu_idx,
3024                                      is_secure, result, fi);
3025 }
3026 
3027 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
3028                                          MemTxAttrs *attrs)
3029 {
3030     ARMCPU *cpu = ARM_CPU(cs);
3031     CPUARMState *env = &cpu->env;
3032     S1Translate ptw = {
3033         .in_mmu_idx = arm_mmu_idx(env),
3034         .in_secure = arm_is_secure(env),
3035         .in_debug = true,
3036     };
3037     GetPhysAddrResult res = {};
3038     ARMMMUFaultInfo fi = {};
3039     bool ret;
3040 
3041     ret = get_phys_addr_with_struct(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
3042     *attrs = res.f.attrs;
3043 
3044     if (ret) {
3045         return -1;
3046     }
3047     return res.f.phys_addr;
3048 }
3049