xref: /qemu/target/arm/ptw.c (revision aa903cf3)
1 /*
2  * ARM page table walking.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "idau.h"
17 #ifdef CONFIG_TCG
18 # include "tcg/oversized-guest.h"
19 #endif
20 
21 typedef struct S1Translate {
22     ARMMMUIdx in_mmu_idx;
23     ARMMMUIdx in_ptw_idx;
24     ARMSecuritySpace in_space;
25     bool in_secure;
26     bool in_debug;
27     /*
28      * If this is stage 2 of a stage 1+2 page table walk, then this must
29      * be true if stage 1 is an EL0 access; otherwise this is ignored.
30      * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}.
31      */
32     bool in_s1_is_el0;
33     bool out_secure;
34     bool out_rw;
35     bool out_be;
36     ARMSecuritySpace out_space;
37     hwaddr out_virt;
38     hwaddr out_phys;
39     void *out_host;
40 } S1Translate;
41 
42 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
43                                 target_ulong address,
44                                 MMUAccessType access_type,
45                                 GetPhysAddrResult *result,
46                                 ARMMMUFaultInfo *fi);
47 
48 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
49                               target_ulong address,
50                               MMUAccessType access_type,
51                               GetPhysAddrResult *result,
52                               ARMMMUFaultInfo *fi);
53 
54 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
55 static const uint8_t pamax_map[] = {
56     [0] = 32,
57     [1] = 36,
58     [2] = 40,
59     [3] = 42,
60     [4] = 44,
61     [5] = 48,
62     [6] = 52,
63 };
64 
65 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
66 unsigned int arm_pamax(ARMCPU *cpu)
67 {
68     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
69         unsigned int parange =
70             FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
71 
72         /*
73          * id_aa64mmfr0 is a read-only register so values outside of the
74          * supported mappings can be considered an implementation error.
75          */
76         assert(parange < ARRAY_SIZE(pamax_map));
77         return pamax_map[parange];
78     }
79 
80     /*
81      * In machvirt_init, we call arm_pamax on a cpu that is not fully
82      * initialized, so we can't rely on the propagation done in realize.
83      */
84     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
85         arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
86         /* v7 with LPAE */
87         return 40;
88     }
89     /* Anything else */
90     return 32;
91 }
92 
93 /*
94  * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
95  */
96 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
97 {
98     switch (mmu_idx) {
99     case ARMMMUIdx_E10_0:
100         return ARMMMUIdx_Stage1_E0;
101     case ARMMMUIdx_E10_1:
102         return ARMMMUIdx_Stage1_E1;
103     case ARMMMUIdx_E10_1_PAN:
104         return ARMMMUIdx_Stage1_E1_PAN;
105     default:
106         return mmu_idx;
107     }
108 }
109 
110 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
111 {
112     return stage_1_mmu_idx(arm_mmu_idx(env));
113 }
114 
115 /*
116  * Return where we should do ptw loads from for a stage 2 walk.
117  * This depends on whether the address we are looking up is a
118  * Secure IPA or a NonSecure IPA, which we know from whether this is
119  * Stage2 or Stage2_S.
120  * If this is the Secure EL1&0 regime we need to check the NSW and SW bits.
121  */
122 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx)
123 {
124     bool s2walk_secure;
125 
126     /*
127      * We're OK to check the current state of the CPU here because
128      * (1) we always invalidate all TLBs when the SCR_EL3.NS bit changes
129      * (2) there's no way to do a lookup that cares about Stage 2 for a
130      * different security state to the current one for AArch64, and AArch32
131      * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do
132      * an NS stage 1+2 lookup while the NS bit is 0.)
133      */
134     if (!arm_is_secure_below_el3(env) || !arm_el_is_aa64(env, 3)) {
135         return ARMMMUIdx_Phys_NS;
136     }
137     if (stage2idx == ARMMMUIdx_Stage2_S) {
138         s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
139     } else {
140         s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
141     }
142     return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
143 
144 }
145 
146 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
147 {
148     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
149 }
150 
151 /* Return the TTBR associated with this translation regime */
152 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
153 {
154     if (mmu_idx == ARMMMUIdx_Stage2) {
155         return env->cp15.vttbr_el2;
156     }
157     if (mmu_idx == ARMMMUIdx_Stage2_S) {
158         return env->cp15.vsttbr_el2;
159     }
160     if (ttbrn == 0) {
161         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
162     } else {
163         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
164     }
165 }
166 
167 /* Return true if the specified stage of address translation is disabled */
168 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
169                                         bool is_secure)
170 {
171     uint64_t hcr_el2;
172 
173     if (arm_feature(env, ARM_FEATURE_M)) {
174         switch (env->v7m.mpu_ctrl[is_secure] &
175                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
176         case R_V7M_MPU_CTRL_ENABLE_MASK:
177             /* Enabled, but not for HardFault and NMI */
178             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
179         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
180             /* Enabled for all cases */
181             return false;
182         case 0:
183         default:
184             /*
185              * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
186              * we warned about that in armv7m_nvic.c when the guest set it.
187              */
188             return true;
189         }
190     }
191 
192     hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure);
193 
194     switch (mmu_idx) {
195     case ARMMMUIdx_Stage2:
196     case ARMMMUIdx_Stage2_S:
197         /* HCR.DC means HCR.VM behaves as 1 */
198         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
199 
200     case ARMMMUIdx_E10_0:
201     case ARMMMUIdx_E10_1:
202     case ARMMMUIdx_E10_1_PAN:
203         /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
204         if (hcr_el2 & HCR_TGE) {
205             return true;
206         }
207         break;
208 
209     case ARMMMUIdx_Stage1_E0:
210     case ARMMMUIdx_Stage1_E1:
211     case ARMMMUIdx_Stage1_E1_PAN:
212         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
213         if (hcr_el2 & HCR_DC) {
214             return true;
215         }
216         break;
217 
218     case ARMMMUIdx_E20_0:
219     case ARMMMUIdx_E20_2:
220     case ARMMMUIdx_E20_2_PAN:
221     case ARMMMUIdx_E2:
222     case ARMMMUIdx_E3:
223         break;
224 
225     case ARMMMUIdx_Phys_S:
226     case ARMMMUIdx_Phys_NS:
227     case ARMMMUIdx_Phys_Root:
228     case ARMMMUIdx_Phys_Realm:
229         /* No translation for physical address spaces. */
230         return true;
231 
232     default:
233         g_assert_not_reached();
234     }
235 
236     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
237 }
238 
239 static bool granule_protection_check(CPUARMState *env, uint64_t paddress,
240                                      ARMSecuritySpace pspace,
241                                      ARMMMUFaultInfo *fi)
242 {
243     MemTxAttrs attrs = {
244         .secure = true,
245         .space = ARMSS_Root,
246     };
247     ARMCPU *cpu = env_archcpu(env);
248     uint64_t gpccr = env->cp15.gpccr_el3;
249     unsigned pps, pgs, l0gptsz, level = 0;
250     uint64_t tableaddr, pps_mask, align, entry, index;
251     AddressSpace *as;
252     MemTxResult result;
253     int gpi;
254 
255     if (!FIELD_EX64(gpccr, GPCCR, GPC)) {
256         return true;
257     }
258 
259     /*
260      * GPC Priority 1 (R_GMGRR):
261      * R_JWCSM: If the configuration of GPCCR_EL3 is invalid,
262      * the access fails as GPT walk fault at level 0.
263      */
264 
265     /*
266      * Configuration of PPS to a value exceeding the implemented
267      * physical address size is invalid.
268      */
269     pps = FIELD_EX64(gpccr, GPCCR, PPS);
270     if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) {
271         goto fault_walk;
272     }
273     pps = pamax_map[pps];
274     pps_mask = MAKE_64BIT_MASK(0, pps);
275 
276     switch (FIELD_EX64(gpccr, GPCCR, SH)) {
277     case 0b10: /* outer shareable */
278         break;
279     case 0b00: /* non-shareable */
280     case 0b11: /* inner shareable */
281         /* Inner and Outer non-cacheable requires Outer shareable. */
282         if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 &&
283             FIELD_EX64(gpccr, GPCCR, IRGN) == 0) {
284             goto fault_walk;
285         }
286         break;
287     default:   /* reserved */
288         goto fault_walk;
289     }
290 
291     switch (FIELD_EX64(gpccr, GPCCR, PGS)) {
292     case 0b00: /* 4KB */
293         pgs = 12;
294         break;
295     case 0b01: /* 64KB */
296         pgs = 16;
297         break;
298     case 0b10: /* 16KB */
299         pgs = 14;
300         break;
301     default: /* reserved */
302         goto fault_walk;
303     }
304 
305     /* Note this field is read-only and fixed at reset. */
306     l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ);
307 
308     /*
309      * GPC Priority 2: Secure, Realm or Root address exceeds PPS.
310      * R_CPDSB: A NonSecure physical address input exceeding PPS
311      * does not experience any fault.
312      */
313     if (paddress & ~pps_mask) {
314         if (pspace == ARMSS_NonSecure) {
315             return true;
316         }
317         goto fault_size;
318     }
319 
320     /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */
321     tableaddr = env->cp15.gptbr_el3 << 12;
322     if (tableaddr & ~pps_mask) {
323         goto fault_size;
324     }
325 
326     /*
327      * BADDR is aligned per a function of PPS and L0GPTSZ.
328      * These bits of GPTBR_EL3 are RES0, but are not a configuration error,
329      * unlike the RES0 bits of the GPT entries (R_XNKFZ).
330      */
331     align = MAX(pps - l0gptsz + 3, 12);
332     align = MAKE_64BIT_MASK(0, align);
333     tableaddr &= ~align;
334 
335     as = arm_addressspace(env_cpu(env), attrs);
336 
337     /* Level 0 lookup. */
338     index = extract64(paddress, l0gptsz, pps - l0gptsz);
339     tableaddr += index * 8;
340     entry = address_space_ldq_le(as, tableaddr, attrs, &result);
341     if (result != MEMTX_OK) {
342         goto fault_eabt;
343     }
344 
345     switch (extract32(entry, 0, 4)) {
346     case 1: /* block descriptor */
347         if (entry >> 8) {
348             goto fault_walk; /* RES0 bits not 0 */
349         }
350         gpi = extract32(entry, 4, 4);
351         goto found;
352     case 3: /* table descriptor */
353         tableaddr = entry & ~0xf;
354         align = MAX(l0gptsz - pgs - 1, 12);
355         align = MAKE_64BIT_MASK(0, align);
356         if (tableaddr & (~pps_mask | align)) {
357             goto fault_walk; /* RES0 bits not 0 */
358         }
359         break;
360     default: /* invalid */
361         goto fault_walk;
362     }
363 
364     /* Level 1 lookup */
365     level = 1;
366     index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4);
367     tableaddr += index * 8;
368     entry = address_space_ldq_le(as, tableaddr, attrs, &result);
369     if (result != MEMTX_OK) {
370         goto fault_eabt;
371     }
372 
373     switch (extract32(entry, 0, 4)) {
374     case 1: /* contiguous descriptor */
375         if (entry >> 10) {
376             goto fault_walk; /* RES0 bits not 0 */
377         }
378         /*
379          * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE,
380          * and because we cannot invalidate by pa, and thus will always
381          * flush entire tlbs, we don't actually care about the range here
382          * and can simply extract the GPI as the result.
383          */
384         if (extract32(entry, 8, 2) == 0) {
385             goto fault_walk; /* reserved contig */
386         }
387         gpi = extract32(entry, 4, 4);
388         break;
389     default:
390         index = extract64(paddress, pgs, 4);
391         gpi = extract64(entry, index * 4, 4);
392         break;
393     }
394 
395  found:
396     switch (gpi) {
397     case 0b0000: /* no access */
398         break;
399     case 0b1111: /* all access */
400         return true;
401     case 0b1000:
402     case 0b1001:
403     case 0b1010:
404     case 0b1011:
405         if (pspace == (gpi & 3)) {
406             return true;
407         }
408         break;
409     default:
410         goto fault_walk; /* reserved */
411     }
412 
413     fi->gpcf = GPCF_Fail;
414     goto fault_common;
415  fault_eabt:
416     fi->gpcf = GPCF_EABT;
417     goto fault_common;
418  fault_size:
419     fi->gpcf = GPCF_AddressSize;
420     goto fault_common;
421  fault_walk:
422     fi->gpcf = GPCF_Walk;
423  fault_common:
424     fi->level = level;
425     fi->paddr = paddress;
426     fi->paddr_space = pspace;
427     return false;
428 }
429 
430 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
431 {
432     /*
433      * For an S1 page table walk, the stage 1 attributes are always
434      * some form of "this is Normal memory". The combined S1+S2
435      * attributes are therefore only Device if stage 2 specifies Device.
436      * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
437      * ie when cacheattrs.attrs bits [3:2] are 0b00.
438      * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
439      * when cacheattrs.attrs bit [2] is 0.
440      */
441     if (hcr & HCR_FWB) {
442         return (attrs & 0x4) == 0;
443     } else {
444         return (attrs & 0xc) == 0;
445     }
446 }
447 
448 /* Translate a S1 pagetable walk through S2 if needed.  */
449 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
450                              hwaddr addr, ARMMMUFaultInfo *fi)
451 {
452     ARMSecuritySpace space = ptw->in_space;
453     bool is_secure = ptw->in_secure;
454     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
455     ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
456     uint8_t pte_attrs;
457 
458     ptw->out_virt = addr;
459 
460     if (unlikely(ptw->in_debug)) {
461         /*
462          * From gdbstub, do not use softmmu so that we don't modify the
463          * state of the cpu at all, including softmmu tlb contents.
464          */
465         S1Translate s2ptw = {
466             .in_mmu_idx = s2_mmu_idx,
467             .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
468             .in_secure = s2_mmu_idx == ARMMMUIdx_Stage2_S,
469             .in_space = (s2_mmu_idx == ARMMMUIdx_Stage2_S ? ARMSS_Secure
470                          : space == ARMSS_Realm ? ARMSS_Realm
471                          : ARMSS_NonSecure),
472             .in_debug = true,
473         };
474         GetPhysAddrResult s2 = { };
475 
476         if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, &s2, fi)) {
477             goto fail;
478         }
479 
480         ptw->out_phys = s2.f.phys_addr;
481         pte_attrs = s2.cacheattrs.attrs;
482         ptw->out_host = NULL;
483         ptw->out_rw = false;
484         ptw->out_secure = s2.f.attrs.secure;
485         ptw->out_space = s2.f.attrs.space;
486     } else {
487 #ifdef CONFIG_TCG
488         CPUTLBEntryFull *full;
489         int flags;
490 
491         env->tlb_fi = fi;
492         flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD,
493                                       arm_to_core_mmu_idx(s2_mmu_idx),
494                                       &ptw->out_host, &full);
495         env->tlb_fi = NULL;
496 
497         if (unlikely(flags & TLB_INVALID_MASK)) {
498             goto fail;
499         }
500         ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
501         ptw->out_rw = full->prot & PAGE_WRITE;
502         pte_attrs = full->pte_attrs;
503         ptw->out_secure = full->attrs.secure;
504         ptw->out_space = full->attrs.space;
505 #else
506         g_assert_not_reached();
507 #endif
508     }
509 
510     if (regime_is_stage2(s2_mmu_idx)) {
511         uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
512 
513         if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
514             /*
515              * PTW set and S1 walk touched S2 Device memory:
516              * generate Permission fault.
517              */
518             fi->type = ARMFault_Permission;
519             fi->s2addr = addr;
520             fi->stage2 = true;
521             fi->s1ptw = true;
522             fi->s1ns = !is_secure;
523             return false;
524         }
525     }
526 
527     ptw->out_be = regime_translation_big_endian(env, mmu_idx);
528     return true;
529 
530  fail:
531     assert(fi->type != ARMFault_None);
532     if (fi->type == ARMFault_GPCFOnOutput) {
533         fi->type = ARMFault_GPCFOnWalk;
534     }
535     fi->s2addr = addr;
536     fi->stage2 = true;
537     fi->s1ptw = true;
538     fi->s1ns = !is_secure;
539     return false;
540 }
541 
542 /* All loads done in the course of a page table walk go through here. */
543 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
544                             ARMMMUFaultInfo *fi)
545 {
546     CPUState *cs = env_cpu(env);
547     void *host = ptw->out_host;
548     uint32_t data;
549 
550     if (likely(host)) {
551         /* Page tables are in RAM, and we have the host address. */
552         data = qatomic_read((uint32_t *)host);
553         if (ptw->out_be) {
554             data = be32_to_cpu(data);
555         } else {
556             data = le32_to_cpu(data);
557         }
558     } else {
559         /* Page tables are in MMIO. */
560         MemTxAttrs attrs = {
561             .secure = ptw->out_secure,
562             .space = ptw->out_space,
563         };
564         AddressSpace *as = arm_addressspace(cs, attrs);
565         MemTxResult result = MEMTX_OK;
566 
567         if (ptw->out_be) {
568             data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
569         } else {
570             data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
571         }
572         if (unlikely(result != MEMTX_OK)) {
573             fi->type = ARMFault_SyncExternalOnWalk;
574             fi->ea = arm_extabort_type(result);
575             return 0;
576         }
577     }
578     return data;
579 }
580 
581 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
582                             ARMMMUFaultInfo *fi)
583 {
584     CPUState *cs = env_cpu(env);
585     void *host = ptw->out_host;
586     uint64_t data;
587 
588     if (likely(host)) {
589         /* Page tables are in RAM, and we have the host address. */
590 #ifdef CONFIG_ATOMIC64
591         data = qatomic_read__nocheck((uint64_t *)host);
592         if (ptw->out_be) {
593             data = be64_to_cpu(data);
594         } else {
595             data = le64_to_cpu(data);
596         }
597 #else
598         if (ptw->out_be) {
599             data = ldq_be_p(host);
600         } else {
601             data = ldq_le_p(host);
602         }
603 #endif
604     } else {
605         /* Page tables are in MMIO. */
606         MemTxAttrs attrs = {
607             .secure = ptw->out_secure,
608             .space = ptw->out_space,
609         };
610         AddressSpace *as = arm_addressspace(cs, attrs);
611         MemTxResult result = MEMTX_OK;
612 
613         if (ptw->out_be) {
614             data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
615         } else {
616             data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
617         }
618         if (unlikely(result != MEMTX_OK)) {
619             fi->type = ARMFault_SyncExternalOnWalk;
620             fi->ea = arm_extabort_type(result);
621             return 0;
622         }
623     }
624     return data;
625 }
626 
627 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
628                              uint64_t new_val, S1Translate *ptw,
629                              ARMMMUFaultInfo *fi)
630 {
631 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG)
632     uint64_t cur_val;
633     void *host = ptw->out_host;
634 
635     if (unlikely(!host)) {
636         fi->type = ARMFault_UnsuppAtomicUpdate;
637         fi->s1ptw = true;
638         return 0;
639     }
640 
641     /*
642      * Raising a stage2 Protection fault for an atomic update to a read-only
643      * page is delayed until it is certain that there is a change to make.
644      */
645     if (unlikely(!ptw->out_rw)) {
646         int flags;
647 
648         env->tlb_fi = fi;
649         flags = probe_access_full_mmu(env, ptw->out_virt, 0,
650                                       MMU_DATA_STORE,
651                                       arm_to_core_mmu_idx(ptw->in_ptw_idx),
652                                       NULL, NULL);
653         env->tlb_fi = NULL;
654 
655         if (unlikely(flags & TLB_INVALID_MASK)) {
656             assert(fi->type != ARMFault_None);
657             fi->s2addr = ptw->out_virt;
658             fi->stage2 = true;
659             fi->s1ptw = true;
660             fi->s1ns = !ptw->in_secure;
661             return 0;
662         }
663 
664         /* In case CAS mismatches and we loop, remember writability. */
665         ptw->out_rw = true;
666     }
667 
668 #ifdef CONFIG_ATOMIC64
669     if (ptw->out_be) {
670         old_val = cpu_to_be64(old_val);
671         new_val = cpu_to_be64(new_val);
672         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
673         cur_val = be64_to_cpu(cur_val);
674     } else {
675         old_val = cpu_to_le64(old_val);
676         new_val = cpu_to_le64(new_val);
677         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
678         cur_val = le64_to_cpu(cur_val);
679     }
680 #else
681     /*
682      * We can't support the full 64-bit atomic cmpxchg on the host.
683      * Because this is only used for FEAT_HAFDBS, which is only for AA64,
684      * we know that TCG_OVERSIZED_GUEST is set, which means that we are
685      * running in round-robin mode and could only race with dma i/o.
686      */
687 #if !TCG_OVERSIZED_GUEST
688 # error "Unexpected configuration"
689 #endif
690     bool locked = qemu_mutex_iothread_locked();
691     if (!locked) {
692        qemu_mutex_lock_iothread();
693     }
694     if (ptw->out_be) {
695         cur_val = ldq_be_p(host);
696         if (cur_val == old_val) {
697             stq_be_p(host, new_val);
698         }
699     } else {
700         cur_val = ldq_le_p(host);
701         if (cur_val == old_val) {
702             stq_le_p(host, new_val);
703         }
704     }
705     if (!locked) {
706         qemu_mutex_unlock_iothread();
707     }
708 #endif
709 
710     return cur_val;
711 #else
712     /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */
713     g_assert_not_reached();
714 #endif
715 }
716 
717 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
718                                      uint32_t *table, uint32_t address)
719 {
720     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
721     uint64_t tcr = regime_tcr(env, mmu_idx);
722     int maskshift = extract32(tcr, 0, 3);
723     uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
724     uint32_t base_mask;
725 
726     if (address & mask) {
727         if (tcr & TTBCR_PD1) {
728             /* Translation table walk disabled for TTBR1 */
729             return false;
730         }
731         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
732     } else {
733         if (tcr & TTBCR_PD0) {
734             /* Translation table walk disabled for TTBR0 */
735             return false;
736         }
737         base_mask = ~((uint32_t)0x3fffu >> maskshift);
738         *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
739     }
740     *table |= (address >> 18) & 0x3ffc;
741     return true;
742 }
743 
744 /*
745  * Translate section/page access permissions to page R/W protection flags
746  * @env:         CPUARMState
747  * @mmu_idx:     MMU index indicating required translation regime
748  * @ap:          The 3-bit access permissions (AP[2:0])
749  * @domain_prot: The 2-bit domain access permissions
750  * @is_user: TRUE if accessing from PL0
751  */
752 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
753                          int ap, int domain_prot, bool is_user)
754 {
755     if (domain_prot == 3) {
756         return PAGE_READ | PAGE_WRITE;
757     }
758 
759     switch (ap) {
760     case 0:
761         if (arm_feature(env, ARM_FEATURE_V7)) {
762             return 0;
763         }
764         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
765         case SCTLR_S:
766             return is_user ? 0 : PAGE_READ;
767         case SCTLR_R:
768             return PAGE_READ;
769         default:
770             return 0;
771         }
772     case 1:
773         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
774     case 2:
775         if (is_user) {
776             return PAGE_READ;
777         } else {
778             return PAGE_READ | PAGE_WRITE;
779         }
780     case 3:
781         return PAGE_READ | PAGE_WRITE;
782     case 4: /* Reserved.  */
783         return 0;
784     case 5:
785         return is_user ? 0 : PAGE_READ;
786     case 6:
787         return PAGE_READ;
788     case 7:
789         if (!arm_feature(env, ARM_FEATURE_V6K)) {
790             return 0;
791         }
792         return PAGE_READ;
793     default:
794         g_assert_not_reached();
795     }
796 }
797 
798 /*
799  * Translate section/page access permissions to page R/W protection flags
800  * @env:         CPUARMState
801  * @mmu_idx:     MMU index indicating required translation regime
802  * @ap:          The 3-bit access permissions (AP[2:0])
803  * @domain_prot: The 2-bit domain access permissions
804  */
805 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
806                          int ap, int domain_prot)
807 {
808    return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
809                                 regime_is_user(env, mmu_idx));
810 }
811 
812 /*
813  * Translate section/page access permissions to page R/W protection flags.
814  * @ap:      The 2-bit simple AP (AP[2:1])
815  * @is_user: TRUE if accessing from PL0
816  */
817 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
818 {
819     switch (ap) {
820     case 0:
821         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
822     case 1:
823         return PAGE_READ | PAGE_WRITE;
824     case 2:
825         return is_user ? 0 : PAGE_READ;
826     case 3:
827         return PAGE_READ;
828     default:
829         g_assert_not_reached();
830     }
831 }
832 
833 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
834 {
835     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
836 }
837 
838 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
839                              uint32_t address, MMUAccessType access_type,
840                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
841 {
842     int level = 1;
843     uint32_t table;
844     uint32_t desc;
845     int type;
846     int ap;
847     int domain = 0;
848     int domain_prot;
849     hwaddr phys_addr;
850     uint32_t dacr;
851 
852     /* Pagetable walk.  */
853     /* Lookup l1 descriptor.  */
854     if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
855         /* Section translation fault if page walk is disabled by PD0 or PD1 */
856         fi->type = ARMFault_Translation;
857         goto do_fault;
858     }
859     if (!S1_ptw_translate(env, ptw, table, fi)) {
860         goto do_fault;
861     }
862     desc = arm_ldl_ptw(env, ptw, fi);
863     if (fi->type != ARMFault_None) {
864         goto do_fault;
865     }
866     type = (desc & 3);
867     domain = (desc >> 5) & 0x0f;
868     if (regime_el(env, ptw->in_mmu_idx) == 1) {
869         dacr = env->cp15.dacr_ns;
870     } else {
871         dacr = env->cp15.dacr_s;
872     }
873     domain_prot = (dacr >> (domain * 2)) & 3;
874     if (type == 0) {
875         /* Section translation fault.  */
876         fi->type = ARMFault_Translation;
877         goto do_fault;
878     }
879     if (type != 2) {
880         level = 2;
881     }
882     if (domain_prot == 0 || domain_prot == 2) {
883         fi->type = ARMFault_Domain;
884         goto do_fault;
885     }
886     if (type == 2) {
887         /* 1Mb section.  */
888         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
889         ap = (desc >> 10) & 3;
890         result->f.lg_page_size = 20; /* 1MB */
891     } else {
892         /* Lookup l2 entry.  */
893         if (type == 1) {
894             /* Coarse pagetable.  */
895             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
896         } else {
897             /* Fine pagetable.  */
898             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
899         }
900         if (!S1_ptw_translate(env, ptw, table, fi)) {
901             goto do_fault;
902         }
903         desc = arm_ldl_ptw(env, ptw, fi);
904         if (fi->type != ARMFault_None) {
905             goto do_fault;
906         }
907         switch (desc & 3) {
908         case 0: /* Page translation fault.  */
909             fi->type = ARMFault_Translation;
910             goto do_fault;
911         case 1: /* 64k page.  */
912             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
913             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
914             result->f.lg_page_size = 16;
915             break;
916         case 2: /* 4k page.  */
917             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
918             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
919             result->f.lg_page_size = 12;
920             break;
921         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
922             if (type == 1) {
923                 /* ARMv6/XScale extended small page format */
924                 if (arm_feature(env, ARM_FEATURE_XSCALE)
925                     || arm_feature(env, ARM_FEATURE_V6)) {
926                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
927                     result->f.lg_page_size = 12;
928                 } else {
929                     /*
930                      * UNPREDICTABLE in ARMv5; we choose to take a
931                      * page translation fault.
932                      */
933                     fi->type = ARMFault_Translation;
934                     goto do_fault;
935                 }
936             } else {
937                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
938                 result->f.lg_page_size = 10;
939             }
940             ap = (desc >> 4) & 3;
941             break;
942         default:
943             /* Never happens, but compiler isn't smart enough to tell.  */
944             g_assert_not_reached();
945         }
946     }
947     result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
948     result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
949     if (!(result->f.prot & (1 << access_type))) {
950         /* Access permission fault.  */
951         fi->type = ARMFault_Permission;
952         goto do_fault;
953     }
954     result->f.phys_addr = phys_addr;
955     return false;
956 do_fault:
957     fi->domain = domain;
958     fi->level = level;
959     return true;
960 }
961 
962 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
963                              uint32_t address, MMUAccessType access_type,
964                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
965 {
966     ARMCPU *cpu = env_archcpu(env);
967     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
968     int level = 1;
969     uint32_t table;
970     uint32_t desc;
971     uint32_t xn;
972     uint32_t pxn = 0;
973     int type;
974     int ap;
975     int domain = 0;
976     int domain_prot;
977     hwaddr phys_addr;
978     uint32_t dacr;
979     bool ns;
980     int user_prot;
981 
982     /* Pagetable walk.  */
983     /* Lookup l1 descriptor.  */
984     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
985         /* Section translation fault if page walk is disabled by PD0 or PD1 */
986         fi->type = ARMFault_Translation;
987         goto do_fault;
988     }
989     if (!S1_ptw_translate(env, ptw, table, fi)) {
990         goto do_fault;
991     }
992     desc = arm_ldl_ptw(env, ptw, fi);
993     if (fi->type != ARMFault_None) {
994         goto do_fault;
995     }
996     type = (desc & 3);
997     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
998         /* Section translation fault, or attempt to use the encoding
999          * which is Reserved on implementations without PXN.
1000          */
1001         fi->type = ARMFault_Translation;
1002         goto do_fault;
1003     }
1004     if ((type == 1) || !(desc & (1 << 18))) {
1005         /* Page or Section.  */
1006         domain = (desc >> 5) & 0x0f;
1007     }
1008     if (regime_el(env, mmu_idx) == 1) {
1009         dacr = env->cp15.dacr_ns;
1010     } else {
1011         dacr = env->cp15.dacr_s;
1012     }
1013     if (type == 1) {
1014         level = 2;
1015     }
1016     domain_prot = (dacr >> (domain * 2)) & 3;
1017     if (domain_prot == 0 || domain_prot == 2) {
1018         /* Section or Page domain fault */
1019         fi->type = ARMFault_Domain;
1020         goto do_fault;
1021     }
1022     if (type != 1) {
1023         if (desc & (1 << 18)) {
1024             /* Supersection.  */
1025             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1026             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
1027             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
1028             result->f.lg_page_size = 24;  /* 16MB */
1029         } else {
1030             /* Section.  */
1031             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1032             result->f.lg_page_size = 20;  /* 1MB */
1033         }
1034         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1035         xn = desc & (1 << 4);
1036         pxn = desc & 1;
1037         ns = extract32(desc, 19, 1);
1038     } else {
1039         if (cpu_isar_feature(aa32_pxn, cpu)) {
1040             pxn = (desc >> 2) & 1;
1041         }
1042         ns = extract32(desc, 3, 1);
1043         /* Lookup l2 entry.  */
1044         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1045         if (!S1_ptw_translate(env, ptw, table, fi)) {
1046             goto do_fault;
1047         }
1048         desc = arm_ldl_ptw(env, ptw, fi);
1049         if (fi->type != ARMFault_None) {
1050             goto do_fault;
1051         }
1052         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1053         switch (desc & 3) {
1054         case 0: /* Page translation fault.  */
1055             fi->type = ARMFault_Translation;
1056             goto do_fault;
1057         case 1: /* 64k page.  */
1058             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1059             xn = desc & (1 << 15);
1060             result->f.lg_page_size = 16;
1061             break;
1062         case 2: case 3: /* 4k page.  */
1063             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1064             xn = desc & 1;
1065             result->f.lg_page_size = 12;
1066             break;
1067         default:
1068             /* Never happens, but compiler isn't smart enough to tell.  */
1069             g_assert_not_reached();
1070         }
1071     }
1072     if (domain_prot == 3) {
1073         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1074     } else {
1075         if (pxn && !regime_is_user(env, mmu_idx)) {
1076             xn = 1;
1077         }
1078         if (xn && access_type == MMU_INST_FETCH) {
1079             fi->type = ARMFault_Permission;
1080             goto do_fault;
1081         }
1082 
1083         if (arm_feature(env, ARM_FEATURE_V6K) &&
1084                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
1085             /* The simplified model uses AP[0] as an access control bit.  */
1086             if ((ap & 1) == 0) {
1087                 /* Access flag fault.  */
1088                 fi->type = ARMFault_AccessFlag;
1089                 goto do_fault;
1090             }
1091             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
1092             user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
1093         } else {
1094             result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
1095             user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
1096         }
1097         if (result->f.prot && !xn) {
1098             result->f.prot |= PAGE_EXEC;
1099         }
1100         if (!(result->f.prot & (1 << access_type))) {
1101             /* Access permission fault.  */
1102             fi->type = ARMFault_Permission;
1103             goto do_fault;
1104         }
1105         if (regime_is_pan(env, mmu_idx) &&
1106             !regime_is_user(env, mmu_idx) &&
1107             user_prot &&
1108             access_type != MMU_INST_FETCH) {
1109             /* Privileged Access Never fault */
1110             fi->type = ARMFault_Permission;
1111             goto do_fault;
1112         }
1113     }
1114     if (ns) {
1115         /* The NS bit will (as required by the architecture) have no effect if
1116          * the CPU doesn't support TZ or this is a non-secure translation
1117          * regime, because the attribute will already be non-secure.
1118          */
1119         result->f.attrs.secure = false;
1120         result->f.attrs.space = ARMSS_NonSecure;
1121     }
1122     result->f.phys_addr = phys_addr;
1123     return false;
1124 do_fault:
1125     fi->domain = domain;
1126     fi->level = level;
1127     return true;
1128 }
1129 
1130 /*
1131  * Translate S2 section/page access permissions to protection flags
1132  * @env:     CPUARMState
1133  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
1134  * @xn:      XN (execute-never) bits
1135  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
1136  */
1137 static int get_S2prot_noexecute(int s2ap)
1138 {
1139     int prot = 0;
1140 
1141     if (s2ap & 1) {
1142         prot |= PAGE_READ;
1143     }
1144     if (s2ap & 2) {
1145         prot |= PAGE_WRITE;
1146     }
1147     return prot;
1148 }
1149 
1150 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
1151 {
1152     int prot = get_S2prot_noexecute(s2ap);
1153 
1154     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
1155         switch (xn) {
1156         case 0:
1157             prot |= PAGE_EXEC;
1158             break;
1159         case 1:
1160             if (s1_is_el0) {
1161                 prot |= PAGE_EXEC;
1162             }
1163             break;
1164         case 2:
1165             break;
1166         case 3:
1167             if (!s1_is_el0) {
1168                 prot |= PAGE_EXEC;
1169             }
1170             break;
1171         default:
1172             g_assert_not_reached();
1173         }
1174     } else {
1175         if (!extract32(xn, 1, 1)) {
1176             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
1177                 prot |= PAGE_EXEC;
1178             }
1179         }
1180     }
1181     return prot;
1182 }
1183 
1184 /*
1185  * Translate section/page access permissions to protection flags
1186  * @env:     CPUARMState
1187  * @mmu_idx: MMU index indicating required translation regime
1188  * @is_aa64: TRUE if AArch64
1189  * @ap:      The 2-bit simple AP (AP[2:1])
1190  * @xn:      XN (execute-never) bit
1191  * @pxn:     PXN (privileged execute-never) bit
1192  * @in_pa:   The original input pa space
1193  * @out_pa:  The output pa space, modified by NSTable, NS, and NSE
1194  */
1195 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
1196                       int ap, int xn, int pxn,
1197                       ARMSecuritySpace in_pa, ARMSecuritySpace out_pa)
1198 {
1199     ARMCPU *cpu = env_archcpu(env);
1200     bool is_user = regime_is_user(env, mmu_idx);
1201     int prot_rw, user_rw;
1202     bool have_wxn;
1203     int wxn = 0;
1204 
1205     assert(!regime_is_stage2(mmu_idx));
1206 
1207     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
1208     if (is_user) {
1209         prot_rw = user_rw;
1210     } else {
1211         /*
1212          * PAN controls can forbid data accesses but don't affect insn fetch.
1213          * Plain PAN forbids data accesses if EL0 has data permissions;
1214          * PAN3 forbids data accesses if EL0 has either data or exec perms.
1215          * Note that for AArch64 the 'user can exec' case is exactly !xn.
1216          * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
1217          * do not affect EPAN.
1218          */
1219         if (user_rw && regime_is_pan(env, mmu_idx)) {
1220             prot_rw = 0;
1221         } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
1222                    regime_is_pan(env, mmu_idx) &&
1223                    (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
1224             prot_rw = 0;
1225         } else {
1226             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
1227         }
1228     }
1229 
1230     if (in_pa != out_pa) {
1231         switch (in_pa) {
1232         case ARMSS_Root:
1233             /*
1234              * R_ZWRVD: permission fault for insn fetched from non-Root,
1235              * I_WWBFB: SIF has no effect in EL3.
1236              */
1237             return prot_rw;
1238         case ARMSS_Realm:
1239             /*
1240              * R_PKTDS: permission fault for insn fetched from non-Realm,
1241              * for Realm EL2 or EL2&0.  The corresponding fault for EL1&0
1242              * happens during any stage2 translation.
1243              */
1244             switch (mmu_idx) {
1245             case ARMMMUIdx_E2:
1246             case ARMMMUIdx_E20_0:
1247             case ARMMMUIdx_E20_2:
1248             case ARMMMUIdx_E20_2_PAN:
1249                 return prot_rw;
1250             default:
1251                 break;
1252             }
1253             break;
1254         case ARMSS_Secure:
1255             if (env->cp15.scr_el3 & SCR_SIF) {
1256                 return prot_rw;
1257             }
1258             break;
1259         default:
1260             /* Input NonSecure must have output NonSecure. */
1261             g_assert_not_reached();
1262         }
1263     }
1264 
1265     /* TODO have_wxn should be replaced with
1266      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
1267      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
1268      * compatible processors have EL2, which is required for [U]WXN.
1269      */
1270     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
1271 
1272     if (have_wxn) {
1273         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
1274     }
1275 
1276     if (is_aa64) {
1277         if (regime_has_2_ranges(mmu_idx) && !is_user) {
1278             xn = pxn || (user_rw & PAGE_WRITE);
1279         }
1280     } else if (arm_feature(env, ARM_FEATURE_V7)) {
1281         switch (regime_el(env, mmu_idx)) {
1282         case 1:
1283         case 3:
1284             if (is_user) {
1285                 xn = xn || !(user_rw & PAGE_READ);
1286             } else {
1287                 int uwxn = 0;
1288                 if (have_wxn) {
1289                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
1290                 }
1291                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1292                      (uwxn && (user_rw & PAGE_WRITE));
1293             }
1294             break;
1295         case 2:
1296             break;
1297         }
1298     } else {
1299         xn = wxn = 0;
1300     }
1301 
1302     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1303         return prot_rw;
1304     }
1305     return prot_rw | PAGE_EXEC;
1306 }
1307 
1308 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1309                                           ARMMMUIdx mmu_idx)
1310 {
1311     uint64_t tcr = regime_tcr(env, mmu_idx);
1312     uint32_t el = regime_el(env, mmu_idx);
1313     int select, tsz;
1314     bool epd, hpd;
1315 
1316     assert(mmu_idx != ARMMMUIdx_Stage2_S);
1317 
1318     if (mmu_idx == ARMMMUIdx_Stage2) {
1319         /* VTCR */
1320         bool sext = extract32(tcr, 4, 1);
1321         bool sign = extract32(tcr, 3, 1);
1322 
1323         /*
1324          * If the sign-extend bit is not the same as t0sz[3], the result
1325          * is unpredictable. Flag this as a guest error.
1326          */
1327         if (sign != sext) {
1328             qemu_log_mask(LOG_GUEST_ERROR,
1329                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1330         }
1331         tsz = sextract32(tcr, 0, 4) + 8;
1332         select = 0;
1333         hpd = false;
1334         epd = false;
1335     } else if (el == 2) {
1336         /* HTCR */
1337         tsz = extract32(tcr, 0, 3);
1338         select = 0;
1339         hpd = extract64(tcr, 24, 1);
1340         epd = false;
1341     } else {
1342         int t0sz = extract32(tcr, 0, 3);
1343         int t1sz = extract32(tcr, 16, 3);
1344 
1345         if (t1sz == 0) {
1346             select = va > (0xffffffffu >> t0sz);
1347         } else {
1348             /* Note that we will detect errors later.  */
1349             select = va >= ~(0xffffffffu >> t1sz);
1350         }
1351         if (!select) {
1352             tsz = t0sz;
1353             epd = extract32(tcr, 7, 1);
1354             hpd = extract64(tcr, 41, 1);
1355         } else {
1356             tsz = t1sz;
1357             epd = extract32(tcr, 23, 1);
1358             hpd = extract64(tcr, 42, 1);
1359         }
1360         /* For aarch32, hpd0 is not enabled without t2e as well.  */
1361         hpd &= extract32(tcr, 6, 1);
1362     }
1363 
1364     return (ARMVAParameters) {
1365         .tsz = tsz,
1366         .select = select,
1367         .epd = epd,
1368         .hpd = hpd,
1369     };
1370 }
1371 
1372 /*
1373  * check_s2_mmu_setup
1374  * @cpu:        ARMCPU
1375  * @is_aa64:    True if the translation regime is in AArch64 state
1376  * @tcr:        VTCR_EL2 or VSTCR_EL2
1377  * @ds:         Effective value of TCR.DS.
1378  * @iasize:     Bitsize of IPAs
1379  * @stride:     Page-table stride (See the ARM ARM)
1380  *
1381  * Decode the starting level of the S2 lookup, returning INT_MIN if
1382  * the configuration is invalid.
1383  */
1384 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1385                               bool ds, int iasize, int stride)
1386 {
1387     int sl0, sl2, startlevel, granulebits, levels;
1388     int s1_min_iasize, s1_max_iasize;
1389 
1390     sl0 = extract32(tcr, 6, 2);
1391     if (is_aa64) {
1392         /*
1393          * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1394          * so interleave AArch64.S2StartLevel.
1395          */
1396         switch (stride) {
1397         case 9: /* 4KB */
1398             /* SL2 is RES0 unless DS=1 & 4KB granule. */
1399             sl2 = extract64(tcr, 33, 1);
1400             if (ds && sl2) {
1401                 if (sl0 != 0) {
1402                     goto fail;
1403                 }
1404                 startlevel = -1;
1405             } else {
1406                 startlevel = 2 - sl0;
1407                 switch (sl0) {
1408                 case 2:
1409                     if (arm_pamax(cpu) < 44) {
1410                         goto fail;
1411                     }
1412                     break;
1413                 case 3:
1414                     if (!cpu_isar_feature(aa64_st, cpu)) {
1415                         goto fail;
1416                     }
1417                     startlevel = 3;
1418                     break;
1419                 }
1420             }
1421             break;
1422         case 11: /* 16KB */
1423             switch (sl0) {
1424             case 2:
1425                 if (arm_pamax(cpu) < 42) {
1426                     goto fail;
1427                 }
1428                 break;
1429             case 3:
1430                 if (!ds) {
1431                     goto fail;
1432                 }
1433                 break;
1434             }
1435             startlevel = 3 - sl0;
1436             break;
1437         case 13: /* 64KB */
1438             switch (sl0) {
1439             case 2:
1440                 if (arm_pamax(cpu) < 44) {
1441                     goto fail;
1442                 }
1443                 break;
1444             case 3:
1445                 goto fail;
1446             }
1447             startlevel = 3 - sl0;
1448             break;
1449         default:
1450             g_assert_not_reached();
1451         }
1452     } else {
1453         /*
1454          * Things are simpler for AArch32 EL2, with only 4k pages.
1455          * There is no separate S2InvalidSL function, but AArch32.S2Walk
1456          * begins with walkparms.sl0 in {'1x'}.
1457          */
1458         assert(stride == 9);
1459         if (sl0 >= 2) {
1460             goto fail;
1461         }
1462         startlevel = 2 - sl0;
1463     }
1464 
1465     /* AArch{64,32}.S2InconsistentSL are functionally equivalent.  */
1466     levels = 3 - startlevel;
1467     granulebits = stride + 3;
1468 
1469     s1_min_iasize = levels * stride + granulebits + 1;
1470     s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1471 
1472     if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1473         return startlevel;
1474     }
1475 
1476  fail:
1477     return INT_MIN;
1478 }
1479 
1480 /**
1481  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1482  *
1483  * Returns false if the translation was successful. Otherwise, phys_ptr,
1484  * attrs, prot and page_size may not be filled in, and the populated fsr
1485  * value provides information on why the translation aborted, in the format
1486  * of a long-format DFSR/IFSR fault register, with the following caveat:
1487  * the WnR bit is never set (the caller must do this).
1488  *
1489  * @env: CPUARMState
1490  * @ptw: Current and next stage parameters for the walk.
1491  * @address: virtual address to get physical address for
1492  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1493  * @result: set on translation success,
1494  * @fi: set to fault info if the translation fails
1495  */
1496 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1497                                uint64_t address,
1498                                MMUAccessType access_type,
1499                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1500 {
1501     ARMCPU *cpu = env_archcpu(env);
1502     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1503     int32_t level;
1504     ARMVAParameters param;
1505     uint64_t ttbr;
1506     hwaddr descaddr, indexmask, indexmask_grainsize;
1507     uint32_t tableattrs;
1508     target_ulong page_size;
1509     uint64_t attrs;
1510     int32_t stride;
1511     int addrsize, inputsize, outputsize;
1512     uint64_t tcr = regime_tcr(env, mmu_idx);
1513     int ap, xn, pxn;
1514     uint32_t el = regime_el(env, mmu_idx);
1515     uint64_t descaddrmask;
1516     bool aarch64 = arm_el_is_aa64(env, el);
1517     uint64_t descriptor, new_descriptor;
1518     ARMSecuritySpace out_space;
1519 
1520     /* TODO: This code does not support shareability levels. */
1521     if (aarch64) {
1522         int ps;
1523 
1524         param = aa64_va_parameters(env, address, mmu_idx,
1525                                    access_type != MMU_INST_FETCH,
1526                                    !arm_el_is_aa64(env, 1));
1527         level = 0;
1528 
1529         /*
1530          * If TxSZ is programmed to a value larger than the maximum,
1531          * or smaller than the effective minimum, it is IMPLEMENTATION
1532          * DEFINED whether we behave as if the field were programmed
1533          * within bounds, or if a level 0 Translation fault is generated.
1534          *
1535          * With FEAT_LVA, fault on less than minimum becomes required,
1536          * so our choice is to always raise the fault.
1537          */
1538         if (param.tsz_oob) {
1539             goto do_translation_fault;
1540         }
1541 
1542         addrsize = 64 - 8 * param.tbi;
1543         inputsize = 64 - param.tsz;
1544 
1545         /*
1546          * Bound PS by PARANGE to find the effective output address size.
1547          * ID_AA64MMFR0 is a read-only register so values outside of the
1548          * supported mappings can be considered an implementation error.
1549          */
1550         ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1551         ps = MIN(ps, param.ps);
1552         assert(ps < ARRAY_SIZE(pamax_map));
1553         outputsize = pamax_map[ps];
1554 
1555         /*
1556          * With LPA2, the effective output address (OA) size is at most 48 bits
1557          * unless TCR.DS == 1
1558          */
1559         if (!param.ds && param.gran != Gran64K) {
1560             outputsize = MIN(outputsize, 48);
1561         }
1562     } else {
1563         param = aa32_va_parameters(env, address, mmu_idx);
1564         level = 1;
1565         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1566         inputsize = addrsize - param.tsz;
1567         outputsize = 40;
1568     }
1569 
1570     /*
1571      * We determined the region when collecting the parameters, but we
1572      * have not yet validated that the address is valid for the region.
1573      * Extract the top bits and verify that they all match select.
1574      *
1575      * For aa32, if inputsize == addrsize, then we have selected the
1576      * region by exclusion in aa32_va_parameters and there is no more
1577      * validation to do here.
1578      */
1579     if (inputsize < addrsize) {
1580         target_ulong top_bits = sextract64(address, inputsize,
1581                                            addrsize - inputsize);
1582         if (-top_bits != param.select) {
1583             /* The gap between the two regions is a Translation fault */
1584             goto do_translation_fault;
1585         }
1586     }
1587 
1588     stride = arm_granule_bits(param.gran) - 3;
1589 
1590     /*
1591      * Note that QEMU ignores shareability and cacheability attributes,
1592      * so we don't need to do anything with the SH, ORGN, IRGN fields
1593      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
1594      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1595      * implement any ASID-like capability so we can ignore it (instead
1596      * we will always flush the TLB any time the ASID is changed).
1597      */
1598     ttbr = regime_ttbr(env, mmu_idx, param.select);
1599 
1600     /*
1601      * Here we should have set up all the parameters for the translation:
1602      * inputsize, ttbr, epd, stride, tbi
1603      */
1604 
1605     if (param.epd) {
1606         /*
1607          * Translation table walk disabled => Translation fault on TLB miss
1608          * Note: This is always 0 on 64-bit EL2 and EL3.
1609          */
1610         goto do_translation_fault;
1611     }
1612 
1613     if (!regime_is_stage2(mmu_idx)) {
1614         /*
1615          * The starting level depends on the virtual address size (which can
1616          * be up to 48 bits) and the translation granule size. It indicates
1617          * the number of strides (stride bits at a time) needed to
1618          * consume the bits of the input address. In the pseudocode this is:
1619          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
1620          * where their 'inputsize' is our 'inputsize', 'grainsize' is
1621          * our 'stride + 3' and 'stride' is our 'stride'.
1622          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1623          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1624          * = 4 - (inputsize - 4) / stride;
1625          */
1626         level = 4 - (inputsize - 4) / stride;
1627     } else {
1628         int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1629                                             inputsize, stride);
1630         if (startlevel == INT_MIN) {
1631             level = 0;
1632             goto do_translation_fault;
1633         }
1634         level = startlevel;
1635     }
1636 
1637     indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1638     indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1639 
1640     /* Now we can extract the actual base address from the TTBR */
1641     descaddr = extract64(ttbr, 0, 48);
1642 
1643     /*
1644      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1645      *
1646      * Otherwise, if the base address is out of range, raise AddressSizeFault.
1647      * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1648      * but we've just cleared the bits above 47, so simplify the test.
1649      */
1650     if (outputsize > 48) {
1651         descaddr |= extract64(ttbr, 2, 4) << 48;
1652     } else if (descaddr >> outputsize) {
1653         level = 0;
1654         fi->type = ARMFault_AddressSize;
1655         goto do_fault;
1656     }
1657 
1658     /*
1659      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1660      * and also to mask out CnP (bit 0) which could validly be non-zero.
1661      */
1662     descaddr &= ~indexmask;
1663 
1664     /*
1665      * For AArch32, the address field in the descriptor goes up to bit 39
1666      * for both v7 and v8.  However, for v8 the SBZ bits [47:40] must be 0
1667      * or an AddressSize fault is raised.  So for v8 we extract those SBZ
1668      * bits as part of the address, which will be checked via outputsize.
1669      * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1670      * the highest bits of a 52-bit output are placed elsewhere.
1671      */
1672     if (param.ds) {
1673         descaddrmask = MAKE_64BIT_MASK(0, 50);
1674     } else if (arm_feature(env, ARM_FEATURE_V8)) {
1675         descaddrmask = MAKE_64BIT_MASK(0, 48);
1676     } else {
1677         descaddrmask = MAKE_64BIT_MASK(0, 40);
1678     }
1679     descaddrmask &= ~indexmask_grainsize;
1680     tableattrs = 0;
1681 
1682  next_level:
1683     descaddr |= (address >> (stride * (4 - level))) & indexmask;
1684     descaddr &= ~7ULL;
1685 
1686     /*
1687      * Process the NSTable bit from the previous level.  This changes
1688      * the table address space and the output space from Secure to
1689      * NonSecure.  With RME, the EL3 translation regime does not change
1690      * from Root to NonSecure.
1691      */
1692     if (ptw->in_space == ARMSS_Secure
1693         && !regime_is_stage2(mmu_idx)
1694         && extract32(tableattrs, 4, 1)) {
1695         /*
1696          * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1697          * Assert the relative order of the secure/non-secure indexes.
1698          */
1699         QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS);
1700         QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2);
1701         ptw->in_ptw_idx += 1;
1702         ptw->in_secure = false;
1703         ptw->in_space = ARMSS_NonSecure;
1704     }
1705 
1706     if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1707         goto do_fault;
1708     }
1709     descriptor = arm_ldq_ptw(env, ptw, fi);
1710     if (fi->type != ARMFault_None) {
1711         goto do_fault;
1712     }
1713     new_descriptor = descriptor;
1714 
1715  restart_atomic_update:
1716     if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) {
1717         /* Invalid, or the Reserved level 3 encoding */
1718         goto do_translation_fault;
1719     }
1720 
1721     descaddr = descriptor & descaddrmask;
1722 
1723     /*
1724      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1725      * of descriptor.  For FEAT_LPA2 and effective DS, bits [51:50] of
1726      * descaddr are in [9:8].  Otherwise, if descaddr is out of range,
1727      * raise AddressSizeFault.
1728      */
1729     if (outputsize > 48) {
1730         if (param.ds) {
1731             descaddr |= extract64(descriptor, 8, 2) << 50;
1732         } else {
1733             descaddr |= extract64(descriptor, 12, 4) << 48;
1734         }
1735     } else if (descaddr >> outputsize) {
1736         fi->type = ARMFault_AddressSize;
1737         goto do_fault;
1738     }
1739 
1740     if ((descriptor & 2) && (level < 3)) {
1741         /*
1742          * Table entry. The top five bits are attributes which may
1743          * propagate down through lower levels of the table (and
1744          * which are all arranged so that 0 means "no effect", so
1745          * we can gather them up by ORing in the bits at each level).
1746          */
1747         tableattrs |= extract64(descriptor, 59, 5);
1748         level++;
1749         indexmask = indexmask_grainsize;
1750         goto next_level;
1751     }
1752 
1753     /*
1754      * Block entry at level 1 or 2, or page entry at level 3.
1755      * These are basically the same thing, although the number
1756      * of bits we pull in from the vaddr varies. Note that although
1757      * descaddrmask masks enough of the low bits of the descriptor
1758      * to give a correct page or table address, the address field
1759      * in a block descriptor is smaller; so we need to explicitly
1760      * clear the lower bits here before ORing in the low vaddr bits.
1761      *
1762      * Afterward, descaddr is the final physical address.
1763      */
1764     page_size = (1ULL << ((stride * (4 - level)) + 3));
1765     descaddr &= ~(hwaddr)(page_size - 1);
1766     descaddr |= (address & (page_size - 1));
1767 
1768     if (likely(!ptw->in_debug)) {
1769         /*
1770          * Access flag.
1771          * If HA is enabled, prepare to update the descriptor below.
1772          * Otherwise, pass the access fault on to software.
1773          */
1774         if (!(descriptor & (1 << 10))) {
1775             if (param.ha) {
1776                 new_descriptor |= 1 << 10; /* AF */
1777             } else {
1778                 fi->type = ARMFault_AccessFlag;
1779                 goto do_fault;
1780             }
1781         }
1782 
1783         /*
1784          * Dirty Bit.
1785          * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1786          * bit for writeback. The actual write protection test may still be
1787          * overridden by tableattrs, to be merged below.
1788          */
1789         if (param.hd
1790             && extract64(descriptor, 51, 1)  /* DBM */
1791             && access_type == MMU_DATA_STORE) {
1792             if (regime_is_stage2(mmu_idx)) {
1793                 new_descriptor |= 1ull << 7;    /* set S2AP[1] */
1794             } else {
1795                 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1796             }
1797         }
1798     }
1799 
1800     /*
1801      * Extract attributes from the (modified) descriptor, and apply
1802      * table descriptors. Stage 2 table descriptors do not include
1803      * any attribute fields. HPD disables all the table attributes
1804      * except NSTable.
1805      */
1806     attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1807     if (!regime_is_stage2(mmu_idx)) {
1808         attrs |= !ptw->in_secure << 5; /* NS */
1809         if (!param.hpd) {
1810             attrs |= extract64(tableattrs, 0, 2) << 53;     /* XN, PXN */
1811             /*
1812              * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1813              * means "force PL1 access only", which means forcing AP[1] to 0.
1814              */
1815             attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1816             attrs |= extract32(tableattrs, 3, 1) << 7;    /* APT[1] => AP[2] */
1817         }
1818     }
1819 
1820     ap = extract32(attrs, 6, 2);
1821     out_space = ptw->in_space;
1822     if (regime_is_stage2(mmu_idx)) {
1823         /*
1824          * R_GYNXY: For stage2 in Realm security state, bit 55 is NS.
1825          * The bit remains ignored for other security states.
1826          * R_YMCSL: Executing an insn fetched from non-Realm causes
1827          * a stage2 permission fault.
1828          */
1829         if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) {
1830             out_space = ARMSS_NonSecure;
1831             result->f.prot = get_S2prot_noexecute(ap);
1832         } else {
1833             xn = extract64(attrs, 53, 2);
1834             result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0);
1835         }
1836     } else {
1837         int nse, ns = extract32(attrs, 5, 1);
1838         switch (out_space) {
1839         case ARMSS_Root:
1840             /*
1841              * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime.
1842              * R_XTYPW: NSE and NS together select the output pa space.
1843              */
1844             nse = extract32(attrs, 11, 1);
1845             out_space = (nse << 1) | ns;
1846             if (out_space == ARMSS_Secure &&
1847                 !cpu_isar_feature(aa64_sel2, cpu)) {
1848                 out_space = ARMSS_NonSecure;
1849             }
1850             break;
1851         case ARMSS_Secure:
1852             if (ns) {
1853                 out_space = ARMSS_NonSecure;
1854             }
1855             break;
1856         case ARMSS_Realm:
1857             switch (mmu_idx) {
1858             case ARMMMUIdx_Stage1_E0:
1859             case ARMMMUIdx_Stage1_E1:
1860             case ARMMMUIdx_Stage1_E1_PAN:
1861                 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */
1862                 break;
1863             case ARMMMUIdx_E2:
1864             case ARMMMUIdx_E20_0:
1865             case ARMMMUIdx_E20_2:
1866             case ARMMMUIdx_E20_2_PAN:
1867                 /*
1868                  * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1,
1869                  * NS changes the output to non-secure space.
1870                  */
1871                 if (ns) {
1872                     out_space = ARMSS_NonSecure;
1873                 }
1874                 break;
1875             default:
1876                 g_assert_not_reached();
1877             }
1878             break;
1879         case ARMSS_NonSecure:
1880             /* R_QRMFF: For NonSecure state, the NS bit is RES0. */
1881             break;
1882         default:
1883             g_assert_not_reached();
1884         }
1885         xn = extract64(attrs, 54, 1);
1886         pxn = extract64(attrs, 53, 1);
1887 
1888         /*
1889          * Note that we modified ptw->in_space earlier for NSTable, but
1890          * result->f.attrs retains a copy of the original security space.
1891          */
1892         result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, xn, pxn,
1893                                     result->f.attrs.space, out_space);
1894     }
1895 
1896     if (!(result->f.prot & (1 << access_type))) {
1897         fi->type = ARMFault_Permission;
1898         goto do_fault;
1899     }
1900 
1901     /* If FEAT_HAFDBS has made changes, update the PTE. */
1902     if (new_descriptor != descriptor) {
1903         new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
1904         if (fi->type != ARMFault_None) {
1905             goto do_fault;
1906         }
1907         /*
1908          * I_YZSVV says that if the in-memory descriptor has changed,
1909          * then we must use the information in that new value
1910          * (which might include a different output address, different
1911          * attributes, or generate a fault).
1912          * Restart the handling of the descriptor value from scratch.
1913          */
1914         if (new_descriptor != descriptor) {
1915             descriptor = new_descriptor;
1916             goto restart_atomic_update;
1917         }
1918     }
1919 
1920     result->f.attrs.space = out_space;
1921     result->f.attrs.secure = arm_space_is_secure(out_space);
1922 
1923     if (regime_is_stage2(mmu_idx)) {
1924         result->cacheattrs.is_s2_format = true;
1925         result->cacheattrs.attrs = extract32(attrs, 2, 4);
1926     } else {
1927         /* Index into MAIR registers for cache attributes */
1928         uint8_t attrindx = extract32(attrs, 2, 3);
1929         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
1930         assert(attrindx <= 7);
1931         result->cacheattrs.is_s2_format = false;
1932         result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
1933 
1934         /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
1935         if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
1936             result->f.guarded = extract64(attrs, 50, 1); /* GP */
1937         }
1938     }
1939 
1940     /*
1941      * For FEAT_LPA2 and effective DS, the SH field in the attributes
1942      * was re-purposed for output address bits.  The SH attribute in
1943      * that case comes from TCR_ELx, which we extracted earlier.
1944      */
1945     if (param.ds) {
1946         result->cacheattrs.shareability = param.sh;
1947     } else {
1948         result->cacheattrs.shareability = extract32(attrs, 8, 2);
1949     }
1950 
1951     result->f.phys_addr = descaddr;
1952     result->f.lg_page_size = ctz64(page_size);
1953     return false;
1954 
1955  do_translation_fault:
1956     fi->type = ARMFault_Translation;
1957  do_fault:
1958     fi->level = level;
1959     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
1960     fi->stage2 = fi->s1ptw || regime_is_stage2(mmu_idx);
1961     fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
1962     return true;
1963 }
1964 
1965 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
1966                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
1967                                  bool is_secure, GetPhysAddrResult *result,
1968                                  ARMMMUFaultInfo *fi)
1969 {
1970     int n;
1971     uint32_t mask;
1972     uint32_t base;
1973     bool is_user = regime_is_user(env, mmu_idx);
1974 
1975     if (regime_translation_disabled(env, mmu_idx, is_secure)) {
1976         /* MPU disabled.  */
1977         result->f.phys_addr = address;
1978         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1979         return false;
1980     }
1981 
1982     result->f.phys_addr = address;
1983     for (n = 7; n >= 0; n--) {
1984         base = env->cp15.c6_region[n];
1985         if ((base & 1) == 0) {
1986             continue;
1987         }
1988         mask = 1 << ((base >> 1) & 0x1f);
1989         /* Keep this shift separate from the above to avoid an
1990            (undefined) << 32.  */
1991         mask = (mask << 1) - 1;
1992         if (((base ^ address) & ~mask) == 0) {
1993             break;
1994         }
1995     }
1996     if (n < 0) {
1997         fi->type = ARMFault_Background;
1998         return true;
1999     }
2000 
2001     if (access_type == MMU_INST_FETCH) {
2002         mask = env->cp15.pmsav5_insn_ap;
2003     } else {
2004         mask = env->cp15.pmsav5_data_ap;
2005     }
2006     mask = (mask >> (n * 4)) & 0xf;
2007     switch (mask) {
2008     case 0:
2009         fi->type = ARMFault_Permission;
2010         fi->level = 1;
2011         return true;
2012     case 1:
2013         if (is_user) {
2014             fi->type = ARMFault_Permission;
2015             fi->level = 1;
2016             return true;
2017         }
2018         result->f.prot = PAGE_READ | PAGE_WRITE;
2019         break;
2020     case 2:
2021         result->f.prot = PAGE_READ;
2022         if (!is_user) {
2023             result->f.prot |= PAGE_WRITE;
2024         }
2025         break;
2026     case 3:
2027         result->f.prot = PAGE_READ | PAGE_WRITE;
2028         break;
2029     case 5:
2030         if (is_user) {
2031             fi->type = ARMFault_Permission;
2032             fi->level = 1;
2033             return true;
2034         }
2035         result->f.prot = PAGE_READ;
2036         break;
2037     case 6:
2038         result->f.prot = PAGE_READ;
2039         break;
2040     default:
2041         /* Bad permission.  */
2042         fi->type = ARMFault_Permission;
2043         fi->level = 1;
2044         return true;
2045     }
2046     result->f.prot |= PAGE_EXEC;
2047     return false;
2048 }
2049 
2050 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
2051                                          int32_t address, uint8_t *prot)
2052 {
2053     if (!arm_feature(env, ARM_FEATURE_M)) {
2054         *prot = PAGE_READ | PAGE_WRITE;
2055         switch (address) {
2056         case 0xF0000000 ... 0xFFFFFFFF:
2057             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
2058                 /* hivecs execing is ok */
2059                 *prot |= PAGE_EXEC;
2060             }
2061             break;
2062         case 0x00000000 ... 0x7FFFFFFF:
2063             *prot |= PAGE_EXEC;
2064             break;
2065         }
2066     } else {
2067         /* Default system address map for M profile cores.
2068          * The architecture specifies which regions are execute-never;
2069          * at the MPU level no other checks are defined.
2070          */
2071         switch (address) {
2072         case 0x00000000 ... 0x1fffffff: /* ROM */
2073         case 0x20000000 ... 0x3fffffff: /* SRAM */
2074         case 0x60000000 ... 0x7fffffff: /* RAM */
2075         case 0x80000000 ... 0x9fffffff: /* RAM */
2076             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2077             break;
2078         case 0x40000000 ... 0x5fffffff: /* Peripheral */
2079         case 0xa0000000 ... 0xbfffffff: /* Device */
2080         case 0xc0000000 ... 0xdfffffff: /* Device */
2081         case 0xe0000000 ... 0xffffffff: /* System */
2082             *prot = PAGE_READ | PAGE_WRITE;
2083             break;
2084         default:
2085             g_assert_not_reached();
2086         }
2087     }
2088 }
2089 
2090 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
2091 {
2092     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
2093     return arm_feature(env, ARM_FEATURE_M) &&
2094         extract32(address, 20, 12) == 0xe00;
2095 }
2096 
2097 static bool m_is_system_region(CPUARMState *env, uint32_t address)
2098 {
2099     /*
2100      * True if address is in the M profile system region
2101      * 0xe0000000 - 0xffffffff
2102      */
2103     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
2104 }
2105 
2106 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
2107                                          bool is_secure, bool is_user)
2108 {
2109     /*
2110      * Return true if we should use the default memory map as a
2111      * "background" region if there are no hits against any MPU regions.
2112      */
2113     CPUARMState *env = &cpu->env;
2114 
2115     if (is_user) {
2116         return false;
2117     }
2118 
2119     if (arm_feature(env, ARM_FEATURE_M)) {
2120         return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
2121     }
2122 
2123     if (mmu_idx == ARMMMUIdx_Stage2) {
2124         return false;
2125     }
2126 
2127     return regime_sctlr(env, mmu_idx) & SCTLR_BR;
2128 }
2129 
2130 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
2131                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
2132                                  bool secure, GetPhysAddrResult *result,
2133                                  ARMMMUFaultInfo *fi)
2134 {
2135     ARMCPU *cpu = env_archcpu(env);
2136     int n;
2137     bool is_user = regime_is_user(env, mmu_idx);
2138 
2139     result->f.phys_addr = address;
2140     result->f.lg_page_size = TARGET_PAGE_BITS;
2141     result->f.prot = 0;
2142 
2143     if (regime_translation_disabled(env, mmu_idx, secure) ||
2144         m_is_ppb_region(env, address)) {
2145         /*
2146          * MPU disabled or M profile PPB access: use default memory map.
2147          * The other case which uses the default memory map in the
2148          * v7M ARM ARM pseudocode is exception vector reads from the vector
2149          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
2150          * which always does a direct read using address_space_ldl(), rather
2151          * than going via this function, so we don't need to check that here.
2152          */
2153         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2154     } else { /* MPU enabled */
2155         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
2156             /* region search */
2157             uint32_t base = env->pmsav7.drbar[n];
2158             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
2159             uint32_t rmask;
2160             bool srdis = false;
2161 
2162             if (!(env->pmsav7.drsr[n] & 0x1)) {
2163                 continue;
2164             }
2165 
2166             if (!rsize) {
2167                 qemu_log_mask(LOG_GUEST_ERROR,
2168                               "DRSR[%d]: Rsize field cannot be 0\n", n);
2169                 continue;
2170             }
2171             rsize++;
2172             rmask = (1ull << rsize) - 1;
2173 
2174             if (base & rmask) {
2175                 qemu_log_mask(LOG_GUEST_ERROR,
2176                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
2177                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
2178                               n, base, rmask);
2179                 continue;
2180             }
2181 
2182             if (address < base || address > base + rmask) {
2183                 /*
2184                  * Address not in this region. We must check whether the
2185                  * region covers addresses in the same page as our address.
2186                  * In that case we must not report a size that covers the
2187                  * whole page for a subsequent hit against a different MPU
2188                  * region or the background region, because it would result in
2189                  * incorrect TLB hits for subsequent accesses to addresses that
2190                  * are in this MPU region.
2191                  */
2192                 if (ranges_overlap(base, rmask,
2193                                    address & TARGET_PAGE_MASK,
2194                                    TARGET_PAGE_SIZE)) {
2195                     result->f.lg_page_size = 0;
2196                 }
2197                 continue;
2198             }
2199 
2200             /* Region matched */
2201 
2202             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
2203                 int i, snd;
2204                 uint32_t srdis_mask;
2205 
2206                 rsize -= 3; /* sub region size (power of 2) */
2207                 snd = ((address - base) >> rsize) & 0x7;
2208                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
2209 
2210                 srdis_mask = srdis ? 0x3 : 0x0;
2211                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
2212                     /*
2213                      * This will check in groups of 2, 4 and then 8, whether
2214                      * the subregion bits are consistent. rsize is incremented
2215                      * back up to give the region size, considering consistent
2216                      * adjacent subregions as one region. Stop testing if rsize
2217                      * is already big enough for an entire QEMU page.
2218                      */
2219                     int snd_rounded = snd & ~(i - 1);
2220                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
2221                                                      snd_rounded + 8, i);
2222                     if (srdis_mask ^ srdis_multi) {
2223                         break;
2224                     }
2225                     srdis_mask = (srdis_mask << i) | srdis_mask;
2226                     rsize++;
2227                 }
2228             }
2229             if (srdis) {
2230                 continue;
2231             }
2232             if (rsize < TARGET_PAGE_BITS) {
2233                 result->f.lg_page_size = rsize;
2234             }
2235             break;
2236         }
2237 
2238         if (n == -1) { /* no hits */
2239             if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2240                 /* background fault */
2241                 fi->type = ARMFault_Background;
2242                 return true;
2243             }
2244             get_phys_addr_pmsav7_default(env, mmu_idx, address,
2245                                          &result->f.prot);
2246         } else { /* a MPU hit! */
2247             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
2248             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
2249 
2250             if (m_is_system_region(env, address)) {
2251                 /* System space is always execute never */
2252                 xn = 1;
2253             }
2254 
2255             if (is_user) { /* User mode AP bit decoding */
2256                 switch (ap) {
2257                 case 0:
2258                 case 1:
2259                 case 5:
2260                     break; /* no access */
2261                 case 3:
2262                     result->f.prot |= PAGE_WRITE;
2263                     /* fall through */
2264                 case 2:
2265                 case 6:
2266                     result->f.prot |= PAGE_READ | PAGE_EXEC;
2267                     break;
2268                 case 7:
2269                     /* for v7M, same as 6; for R profile a reserved value */
2270                     if (arm_feature(env, ARM_FEATURE_M)) {
2271                         result->f.prot |= PAGE_READ | PAGE_EXEC;
2272                         break;
2273                     }
2274                     /* fall through */
2275                 default:
2276                     qemu_log_mask(LOG_GUEST_ERROR,
2277                                   "DRACR[%d]: Bad value for AP bits: 0x%"
2278                                   PRIx32 "\n", n, ap);
2279                 }
2280             } else { /* Priv. mode AP bits decoding */
2281                 switch (ap) {
2282                 case 0:
2283                     break; /* no access */
2284                 case 1:
2285                 case 2:
2286                 case 3:
2287                     result->f.prot |= PAGE_WRITE;
2288                     /* fall through */
2289                 case 5:
2290                 case 6:
2291                     result->f.prot |= PAGE_READ | PAGE_EXEC;
2292                     break;
2293                 case 7:
2294                     /* for v7M, same as 6; for R profile a reserved value */
2295                     if (arm_feature(env, ARM_FEATURE_M)) {
2296                         result->f.prot |= PAGE_READ | PAGE_EXEC;
2297                         break;
2298                     }
2299                     /* fall through */
2300                 default:
2301                     qemu_log_mask(LOG_GUEST_ERROR,
2302                                   "DRACR[%d]: Bad value for AP bits: 0x%"
2303                                   PRIx32 "\n", n, ap);
2304                 }
2305             }
2306 
2307             /* execute never */
2308             if (xn) {
2309                 result->f.prot &= ~PAGE_EXEC;
2310             }
2311         }
2312     }
2313 
2314     fi->type = ARMFault_Permission;
2315     fi->level = 1;
2316     return !(result->f.prot & (1 << access_type));
2317 }
2318 
2319 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
2320                              uint32_t secure)
2321 {
2322     if (regime_el(env, mmu_idx) == 2) {
2323         return env->pmsav8.hprbar;
2324     } else {
2325         return env->pmsav8.rbar[secure];
2326     }
2327 }
2328 
2329 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
2330                              uint32_t secure)
2331 {
2332     if (regime_el(env, mmu_idx) == 2) {
2333         return env->pmsav8.hprlar;
2334     } else {
2335         return env->pmsav8.rlar[secure];
2336     }
2337 }
2338 
2339 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2340                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
2341                        bool secure, GetPhysAddrResult *result,
2342                        ARMMMUFaultInfo *fi, uint32_t *mregion)
2343 {
2344     /*
2345      * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2346      * that a full phys-to-virt translation does).
2347      * mregion is (if not NULL) set to the region number which matched,
2348      * or -1 if no region number is returned (MPU off, address did not
2349      * hit a region, address hit in multiple regions).
2350      * If the region hit doesn't cover the entire TARGET_PAGE the address
2351      * is within, then we set the result page_size to 1 to force the
2352      * memory system to use a subpage.
2353      */
2354     ARMCPU *cpu = env_archcpu(env);
2355     bool is_user = regime_is_user(env, mmu_idx);
2356     int n;
2357     int matchregion = -1;
2358     bool hit = false;
2359     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2360     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2361     int region_counter;
2362 
2363     if (regime_el(env, mmu_idx) == 2) {
2364         region_counter = cpu->pmsav8r_hdregion;
2365     } else {
2366         region_counter = cpu->pmsav7_dregion;
2367     }
2368 
2369     result->f.lg_page_size = TARGET_PAGE_BITS;
2370     result->f.phys_addr = address;
2371     result->f.prot = 0;
2372     if (mregion) {
2373         *mregion = -1;
2374     }
2375 
2376     if (mmu_idx == ARMMMUIdx_Stage2) {
2377         fi->stage2 = true;
2378     }
2379 
2380     /*
2381      * Unlike the ARM ARM pseudocode, we don't need to check whether this
2382      * was an exception vector read from the vector table (which is always
2383      * done using the default system address map), because those accesses
2384      * are done in arm_v7m_load_vector(), which always does a direct
2385      * read using address_space_ldl(), rather than going via this function.
2386      */
2387     if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */
2388         hit = true;
2389     } else if (m_is_ppb_region(env, address)) {
2390         hit = true;
2391     } else {
2392         if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2393             hit = true;
2394         }
2395 
2396         uint32_t bitmask;
2397         if (arm_feature(env, ARM_FEATURE_M)) {
2398             bitmask = 0x1f;
2399         } else {
2400             bitmask = 0x3f;
2401             fi->level = 0;
2402         }
2403 
2404         for (n = region_counter - 1; n >= 0; n--) {
2405             /* region search */
2406             /*
2407              * Note that the base address is bits [31:x] from the register
2408              * with bits [x-1:0] all zeroes, but the limit address is bits
2409              * [31:x] from the register with bits [x:0] all ones. Where x is
2410              * 5 for Cortex-M and 6 for Cortex-R
2411              */
2412             uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2413             uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2414 
2415             if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2416                 /* Region disabled */
2417                 continue;
2418             }
2419 
2420             if (address < base || address > limit) {
2421                 /*
2422                  * Address not in this region. We must check whether the
2423                  * region covers addresses in the same page as our address.
2424                  * In that case we must not report a size that covers the
2425                  * whole page for a subsequent hit against a different MPU
2426                  * region or the background region, because it would result in
2427                  * incorrect TLB hits for subsequent accesses to addresses that
2428                  * are in this MPU region.
2429                  */
2430                 if (limit >= base &&
2431                     ranges_overlap(base, limit - base + 1,
2432                                    addr_page_base,
2433                                    TARGET_PAGE_SIZE)) {
2434                     result->f.lg_page_size = 0;
2435                 }
2436                 continue;
2437             }
2438 
2439             if (base > addr_page_base || limit < addr_page_limit) {
2440                 result->f.lg_page_size = 0;
2441             }
2442 
2443             if (matchregion != -1) {
2444                 /*
2445                  * Multiple regions match -- always a failure (unlike
2446                  * PMSAv7 where highest-numbered-region wins)
2447                  */
2448                 fi->type = ARMFault_Permission;
2449                 if (arm_feature(env, ARM_FEATURE_M)) {
2450                     fi->level = 1;
2451                 }
2452                 return true;
2453             }
2454 
2455             matchregion = n;
2456             hit = true;
2457         }
2458     }
2459 
2460     if (!hit) {
2461         if (arm_feature(env, ARM_FEATURE_M)) {
2462             fi->type = ARMFault_Background;
2463         } else {
2464             fi->type = ARMFault_Permission;
2465         }
2466         return true;
2467     }
2468 
2469     if (matchregion == -1) {
2470         /* hit using the background region */
2471         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2472     } else {
2473         uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2474         uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2475         uint32_t ap = extract32(matched_rbar, 1, 2);
2476         uint32_t xn = extract32(matched_rbar, 0, 1);
2477         bool pxn = false;
2478 
2479         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2480             pxn = extract32(matched_rlar, 4, 1);
2481         }
2482 
2483         if (m_is_system_region(env, address)) {
2484             /* System space is always execute never */
2485             xn = 1;
2486         }
2487 
2488         if (regime_el(env, mmu_idx) == 2) {
2489             result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2490                                             mmu_idx != ARMMMUIdx_E2);
2491         } else {
2492             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2493         }
2494 
2495         if (!arm_feature(env, ARM_FEATURE_M)) {
2496             uint8_t attrindx = extract32(matched_rlar, 1, 3);
2497             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2498             uint8_t sh = extract32(matched_rlar, 3, 2);
2499 
2500             if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2501                 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2502                 xn = 0x1;
2503             }
2504 
2505             if ((regime_el(env, mmu_idx) == 1) &&
2506                 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2507                 pxn = 0x1;
2508             }
2509 
2510             result->cacheattrs.is_s2_format = false;
2511             result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2512             result->cacheattrs.shareability = sh;
2513         }
2514 
2515         if (result->f.prot && !xn && !(pxn && !is_user)) {
2516             result->f.prot |= PAGE_EXEC;
2517         }
2518 
2519         if (mregion) {
2520             *mregion = matchregion;
2521         }
2522     }
2523 
2524     fi->type = ARMFault_Permission;
2525     if (arm_feature(env, ARM_FEATURE_M)) {
2526         fi->level = 1;
2527     }
2528     return !(result->f.prot & (1 << access_type));
2529 }
2530 
2531 static bool v8m_is_sau_exempt(CPUARMState *env,
2532                               uint32_t address, MMUAccessType access_type)
2533 {
2534     /*
2535      * The architecture specifies that certain address ranges are
2536      * exempt from v8M SAU/IDAU checks.
2537      */
2538     return
2539         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2540         (address >= 0xe0000000 && address <= 0xe0002fff) ||
2541         (address >= 0xe000e000 && address <= 0xe000efff) ||
2542         (address >= 0xe002e000 && address <= 0xe002efff) ||
2543         (address >= 0xe0040000 && address <= 0xe0041fff) ||
2544         (address >= 0xe00ff000 && address <= 0xe00fffff);
2545 }
2546 
2547 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2548                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
2549                          bool is_secure, V8M_SAttributes *sattrs)
2550 {
2551     /*
2552      * Look up the security attributes for this address. Compare the
2553      * pseudocode SecurityCheck() function.
2554      * We assume the caller has zero-initialized *sattrs.
2555      */
2556     ARMCPU *cpu = env_archcpu(env);
2557     int r;
2558     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2559     int idau_region = IREGION_NOTVALID;
2560     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2561     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2562 
2563     if (cpu->idau) {
2564         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2565         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2566 
2567         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2568                    &idau_nsc);
2569     }
2570 
2571     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2572         /* 0xf0000000..0xffffffff is always S for insn fetches */
2573         return;
2574     }
2575 
2576     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2577         sattrs->ns = !is_secure;
2578         return;
2579     }
2580 
2581     if (idau_region != IREGION_NOTVALID) {
2582         sattrs->irvalid = true;
2583         sattrs->iregion = idau_region;
2584     }
2585 
2586     switch (env->sau.ctrl & 3) {
2587     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2588         break;
2589     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2590         sattrs->ns = true;
2591         break;
2592     default: /* SAU.ENABLE == 1 */
2593         for (r = 0; r < cpu->sau_sregion; r++) {
2594             if (env->sau.rlar[r] & 1) {
2595                 uint32_t base = env->sau.rbar[r] & ~0x1f;
2596                 uint32_t limit = env->sau.rlar[r] | 0x1f;
2597 
2598                 if (base <= address && limit >= address) {
2599                     if (base > addr_page_base || limit < addr_page_limit) {
2600                         sattrs->subpage = true;
2601                     }
2602                     if (sattrs->srvalid) {
2603                         /*
2604                          * If we hit in more than one region then we must report
2605                          * as Secure, not NS-Callable, with no valid region
2606                          * number info.
2607                          */
2608                         sattrs->ns = false;
2609                         sattrs->nsc = false;
2610                         sattrs->sregion = 0;
2611                         sattrs->srvalid = false;
2612                         break;
2613                     } else {
2614                         if (env->sau.rlar[r] & 2) {
2615                             sattrs->nsc = true;
2616                         } else {
2617                             sattrs->ns = true;
2618                         }
2619                         sattrs->srvalid = true;
2620                         sattrs->sregion = r;
2621                     }
2622                 } else {
2623                     /*
2624                      * Address not in this region. We must check whether the
2625                      * region covers addresses in the same page as our address.
2626                      * In that case we must not report a size that covers the
2627                      * whole page for a subsequent hit against a different MPU
2628                      * region or the background region, because it would result
2629                      * in incorrect TLB hits for subsequent accesses to
2630                      * addresses that are in this MPU region.
2631                      */
2632                     if (limit >= base &&
2633                         ranges_overlap(base, limit - base + 1,
2634                                        addr_page_base,
2635                                        TARGET_PAGE_SIZE)) {
2636                         sattrs->subpage = true;
2637                     }
2638                 }
2639             }
2640         }
2641         break;
2642     }
2643 
2644     /*
2645      * The IDAU will override the SAU lookup results if it specifies
2646      * higher security than the SAU does.
2647      */
2648     if (!idau_ns) {
2649         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2650             sattrs->ns = false;
2651             sattrs->nsc = idau_nsc;
2652         }
2653     }
2654 }
2655 
2656 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
2657                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
2658                                  bool secure, GetPhysAddrResult *result,
2659                                  ARMMMUFaultInfo *fi)
2660 {
2661     V8M_SAttributes sattrs = {};
2662     bool ret;
2663 
2664     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2665         v8m_security_lookup(env, address, access_type, mmu_idx,
2666                             secure, &sattrs);
2667         if (access_type == MMU_INST_FETCH) {
2668             /*
2669              * Instruction fetches always use the MMU bank and the
2670              * transaction attribute determined by the fetch address,
2671              * regardless of CPU state. This is painful for QEMU
2672              * to handle, because it would mean we need to encode
2673              * into the mmu_idx not just the (user, negpri) information
2674              * for the current security state but also that for the
2675              * other security state, which would balloon the number
2676              * of mmu_idx values needed alarmingly.
2677              * Fortunately we can avoid this because it's not actually
2678              * possible to arbitrarily execute code from memory with
2679              * the wrong security attribute: it will always generate
2680              * an exception of some kind or another, apart from the
2681              * special case of an NS CPU executing an SG instruction
2682              * in S&NSC memory. So we always just fail the translation
2683              * here and sort things out in the exception handler
2684              * (including possibly emulating an SG instruction).
2685              */
2686             if (sattrs.ns != !secure) {
2687                 if (sattrs.nsc) {
2688                     fi->type = ARMFault_QEMU_NSCExec;
2689                 } else {
2690                     fi->type = ARMFault_QEMU_SFault;
2691                 }
2692                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2693                 result->f.phys_addr = address;
2694                 result->f.prot = 0;
2695                 return true;
2696             }
2697         } else {
2698             /*
2699              * For data accesses we always use the MMU bank indicated
2700              * by the current CPU state, but the security attributes
2701              * might downgrade a secure access to nonsecure.
2702              */
2703             if (sattrs.ns) {
2704                 result->f.attrs.secure = false;
2705                 result->f.attrs.space = ARMSS_NonSecure;
2706             } else if (!secure) {
2707                 /*
2708                  * NS access to S memory must fault.
2709                  * Architecturally we should first check whether the
2710                  * MPU information for this address indicates that we
2711                  * are doing an unaligned access to Device memory, which
2712                  * should generate a UsageFault instead. QEMU does not
2713                  * currently check for that kind of unaligned access though.
2714                  * If we added it we would need to do so as a special case
2715                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2716                  */
2717                 fi->type = ARMFault_QEMU_SFault;
2718                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2719                 result->f.phys_addr = address;
2720                 result->f.prot = 0;
2721                 return true;
2722             }
2723         }
2724     }
2725 
2726     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2727                             result, fi, NULL);
2728     if (sattrs.subpage) {
2729         result->f.lg_page_size = 0;
2730     }
2731     return ret;
2732 }
2733 
2734 /*
2735  * Translate from the 4-bit stage 2 representation of
2736  * memory attributes (without cache-allocation hints) to
2737  * the 8-bit representation of the stage 1 MAIR registers
2738  * (which includes allocation hints).
2739  *
2740  * ref: shared/translation/attrs/S2AttrDecode()
2741  *      .../S2ConvertAttrsHints()
2742  */
2743 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2744 {
2745     uint8_t hiattr = extract32(s2attrs, 2, 2);
2746     uint8_t loattr = extract32(s2attrs, 0, 2);
2747     uint8_t hihint = 0, lohint = 0;
2748 
2749     if (hiattr != 0) { /* normal memory */
2750         if (hcr & HCR_CD) { /* cache disabled */
2751             hiattr = loattr = 1; /* non-cacheable */
2752         } else {
2753             if (hiattr != 1) { /* Write-through or write-back */
2754                 hihint = 3; /* RW allocate */
2755             }
2756             if (loattr != 1) { /* Write-through or write-back */
2757                 lohint = 3; /* RW allocate */
2758             }
2759         }
2760     }
2761 
2762     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2763 }
2764 
2765 /*
2766  * Combine either inner or outer cacheability attributes for normal
2767  * memory, according to table D4-42 and pseudocode procedure
2768  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2769  *
2770  * NB: only stage 1 includes allocation hints (RW bits), leading to
2771  * some asymmetry.
2772  */
2773 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2774 {
2775     if (s1 == 4 || s2 == 4) {
2776         /* non-cacheable has precedence */
2777         return 4;
2778     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2779         /* stage 1 write-through takes precedence */
2780         return s1;
2781     } else if (extract32(s2, 2, 2) == 2) {
2782         /* stage 2 write-through takes precedence, but the allocation hint
2783          * is still taken from stage 1
2784          */
2785         return (2 << 2) | extract32(s1, 0, 2);
2786     } else { /* write-back */
2787         return s1;
2788     }
2789 }
2790 
2791 /*
2792  * Combine the memory type and cacheability attributes of
2793  * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2794  * combined attributes in MAIR_EL1 format.
2795  */
2796 static uint8_t combined_attrs_nofwb(uint64_t hcr,
2797                                     ARMCacheAttrs s1, ARMCacheAttrs s2)
2798 {
2799     uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2800 
2801     if (s2.is_s2_format) {
2802         s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
2803     } else {
2804         s2_mair_attrs = s2.attrs;
2805     }
2806 
2807     s1lo = extract32(s1.attrs, 0, 4);
2808     s2lo = extract32(s2_mair_attrs, 0, 4);
2809     s1hi = extract32(s1.attrs, 4, 4);
2810     s2hi = extract32(s2_mair_attrs, 4, 4);
2811 
2812     /* Combine memory type and cacheability attributes */
2813     if (s1hi == 0 || s2hi == 0) {
2814         /* Device has precedence over normal */
2815         if (s1lo == 0 || s2lo == 0) {
2816             /* nGnRnE has precedence over anything */
2817             ret_attrs = 0;
2818         } else if (s1lo == 4 || s2lo == 4) {
2819             /* non-Reordering has precedence over Reordering */
2820             ret_attrs = 4;  /* nGnRE */
2821         } else if (s1lo == 8 || s2lo == 8) {
2822             /* non-Gathering has precedence over Gathering */
2823             ret_attrs = 8;  /* nGRE */
2824         } else {
2825             ret_attrs = 0xc; /* GRE */
2826         }
2827     } else { /* Normal memory */
2828         /* Outer/inner cacheability combine independently */
2829         ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2830                   | combine_cacheattr_nibble(s1lo, s2lo);
2831     }
2832     return ret_attrs;
2833 }
2834 
2835 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2836 {
2837     /*
2838      * Given the 4 bits specifying the outer or inner cacheability
2839      * in MAIR format, return a value specifying Normal Write-Back,
2840      * with the allocation and transient hints taken from the input
2841      * if the input specified some kind of cacheable attribute.
2842      */
2843     if (attr == 0 || attr == 4) {
2844         /*
2845          * 0 == an UNPREDICTABLE encoding
2846          * 4 == Non-cacheable
2847          * Either way, force Write-Back RW allocate non-transient
2848          */
2849         return 0xf;
2850     }
2851     /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2852     return attr | 4;
2853 }
2854 
2855 /*
2856  * Combine the memory type and cacheability attributes of
2857  * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2858  * combined attributes in MAIR_EL1 format.
2859  */
2860 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
2861 {
2862     assert(s2.is_s2_format && !s1.is_s2_format);
2863 
2864     switch (s2.attrs) {
2865     case 7:
2866         /* Use stage 1 attributes */
2867         return s1.attrs;
2868     case 6:
2869         /*
2870          * Force Normal Write-Back. Note that if S1 is Normal cacheable
2871          * then we take the allocation hints from it; otherwise it is
2872          * RW allocate, non-transient.
2873          */
2874         if ((s1.attrs & 0xf0) == 0) {
2875             /* S1 is Device */
2876             return 0xff;
2877         }
2878         /* Need to check the Inner and Outer nibbles separately */
2879         return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
2880             force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
2881     case 5:
2882         /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
2883         if ((s1.attrs & 0xf0) == 0) {
2884             return s1.attrs;
2885         }
2886         return 0x44;
2887     case 0 ... 3:
2888         /* Force Device, of subtype specified by S2 */
2889         return s2.attrs << 2;
2890     default:
2891         /*
2892          * RESERVED values (including RES0 descriptor bit [5] being nonzero);
2893          * arbitrarily force Device.
2894          */
2895         return 0;
2896     }
2897 }
2898 
2899 /*
2900  * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
2901  * and CombineS1S2Desc()
2902  *
2903  * @env:     CPUARMState
2904  * @s1:      Attributes from stage 1 walk
2905  * @s2:      Attributes from stage 2 walk
2906  */
2907 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
2908                                         ARMCacheAttrs s1, ARMCacheAttrs s2)
2909 {
2910     ARMCacheAttrs ret;
2911     bool tagged = false;
2912 
2913     assert(!s1.is_s2_format);
2914     ret.is_s2_format = false;
2915     ret.guarded = s1.guarded;
2916 
2917     if (s1.attrs == 0xf0) {
2918         tagged = true;
2919         s1.attrs = 0xff;
2920     }
2921 
2922     /* Combine shareability attributes (table D4-43) */
2923     if (s1.shareability == 2 || s2.shareability == 2) {
2924         /* if either are outer-shareable, the result is outer-shareable */
2925         ret.shareability = 2;
2926     } else if (s1.shareability == 3 || s2.shareability == 3) {
2927         /* if either are inner-shareable, the result is inner-shareable */
2928         ret.shareability = 3;
2929     } else {
2930         /* both non-shareable */
2931         ret.shareability = 0;
2932     }
2933 
2934     /* Combine memory type and cacheability attributes */
2935     if (hcr & HCR_FWB) {
2936         ret.attrs = combined_attrs_fwb(s1, s2);
2937     } else {
2938         ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
2939     }
2940 
2941     /*
2942      * Any location for which the resultant memory type is any
2943      * type of Device memory is always treated as Outer Shareable.
2944      * Any location for which the resultant memory type is Normal
2945      * Inner Non-cacheable, Outer Non-cacheable is always treated
2946      * as Outer Shareable.
2947      * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
2948      */
2949     if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
2950         ret.shareability = 2;
2951     }
2952 
2953     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
2954     if (tagged && ret.attrs == 0xff) {
2955         ret.attrs = 0xf0;
2956     }
2957 
2958     return ret;
2959 }
2960 
2961 /*
2962  * MMU disabled.  S1 addresses within aa64 translation regimes are
2963  * still checked for bounds -- see AArch64.S1DisabledOutput().
2964  */
2965 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address,
2966                                    MMUAccessType access_type,
2967                                    ARMMMUIdx mmu_idx, bool is_secure,
2968                                    GetPhysAddrResult *result,
2969                                    ARMMMUFaultInfo *fi)
2970 {
2971     uint8_t memattr = 0x00;    /* Device nGnRnE */
2972     uint8_t shareability = 0;  /* non-shareable */
2973     int r_el;
2974 
2975     switch (mmu_idx) {
2976     case ARMMMUIdx_Stage2:
2977     case ARMMMUIdx_Stage2_S:
2978     case ARMMMUIdx_Phys_S:
2979     case ARMMMUIdx_Phys_NS:
2980     case ARMMMUIdx_Phys_Root:
2981     case ARMMMUIdx_Phys_Realm:
2982         break;
2983 
2984     default:
2985         r_el = regime_el(env, mmu_idx);
2986         if (arm_el_is_aa64(env, r_el)) {
2987             int pamax = arm_pamax(env_archcpu(env));
2988             uint64_t tcr = env->cp15.tcr_el[r_el];
2989             int addrtop, tbi;
2990 
2991             tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
2992             if (access_type == MMU_INST_FETCH) {
2993                 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
2994             }
2995             tbi = (tbi >> extract64(address, 55, 1)) & 1;
2996             addrtop = (tbi ? 55 : 63);
2997 
2998             if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
2999                 fi->type = ARMFault_AddressSize;
3000                 fi->level = 0;
3001                 fi->stage2 = false;
3002                 return 1;
3003             }
3004 
3005             /*
3006              * When TBI is disabled, we've just validated that all of the
3007              * bits above PAMax are zero, so logically we only need to
3008              * clear the top byte for TBI.  But it's clearer to follow
3009              * the pseudocode set of addrdesc.paddress.
3010              */
3011             address = extract64(address, 0, 52);
3012         }
3013 
3014         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
3015         if (r_el == 1) {
3016             uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
3017             if (hcr & HCR_DC) {
3018                 if (hcr & HCR_DCT) {
3019                     memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
3020                 } else {
3021                     memattr = 0xff;  /* Normal, WB, RWA */
3022                 }
3023             }
3024         }
3025         if (memattr == 0 && access_type == MMU_INST_FETCH) {
3026             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
3027                 memattr = 0xee;  /* Normal, WT, RA, NT */
3028             } else {
3029                 memattr = 0x44;  /* Normal, NC, No */
3030             }
3031             shareability = 2; /* outer shareable */
3032         }
3033         result->cacheattrs.is_s2_format = false;
3034         break;
3035     }
3036 
3037     result->f.phys_addr = address;
3038     result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3039     result->f.lg_page_size = TARGET_PAGE_BITS;
3040     result->cacheattrs.shareability = shareability;
3041     result->cacheattrs.attrs = memattr;
3042     return false;
3043 }
3044 
3045 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
3046                                    target_ulong address,
3047                                    MMUAccessType access_type,
3048                                    GetPhysAddrResult *result,
3049                                    ARMMMUFaultInfo *fi)
3050 {
3051     hwaddr ipa;
3052     int s1_prot, s1_lgpgsz;
3053     bool is_secure = ptw->in_secure;
3054     bool ret, ipa_secure;
3055     ARMCacheAttrs cacheattrs1;
3056     ARMSecuritySpace ipa_space;
3057     uint64_t hcr;
3058 
3059     ret = get_phys_addr_nogpc(env, ptw, address, access_type, result, fi);
3060 
3061     /* If S1 fails, return early.  */
3062     if (ret) {
3063         return ret;
3064     }
3065 
3066     ipa = result->f.phys_addr;
3067     ipa_secure = result->f.attrs.secure;
3068     ipa_space = result->f.attrs.space;
3069 
3070     ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
3071     ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3072     ptw->in_secure = ipa_secure;
3073     ptw->in_space = ipa_space;
3074     ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
3075 
3076     /*
3077      * S1 is done, now do S2 translation.
3078      * Save the stage1 results so that we may merge prot and cacheattrs later.
3079      */
3080     s1_prot = result->f.prot;
3081     s1_lgpgsz = result->f.lg_page_size;
3082     cacheattrs1 = result->cacheattrs;
3083     memset(result, 0, sizeof(*result));
3084 
3085     ret = get_phys_addr_nogpc(env, ptw, ipa, access_type, result, fi);
3086     fi->s2addr = ipa;
3087 
3088     /* Combine the S1 and S2 perms.  */
3089     result->f.prot &= s1_prot;
3090 
3091     /* If S2 fails, return early.  */
3092     if (ret) {
3093         return ret;
3094     }
3095 
3096     /*
3097      * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
3098      * this means "don't put this in the TLB"; in this case, return a
3099      * result with lg_page_size == 0 to achieve that. Otherwise,
3100      * use the maximum of the S1 & S2 page size, so that invalidation
3101      * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
3102      * we know the combined result permissions etc only cover the minimum
3103      * of the S1 and S2 page size, because we know that the common TLB code
3104      * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
3105      * and passing a larger page size value only affects invalidations.)
3106      */
3107     if (result->f.lg_page_size < TARGET_PAGE_BITS ||
3108         s1_lgpgsz < TARGET_PAGE_BITS) {
3109         result->f.lg_page_size = 0;
3110     } else if (result->f.lg_page_size < s1_lgpgsz) {
3111         result->f.lg_page_size = s1_lgpgsz;
3112     }
3113 
3114     /* Combine the S1 and S2 cache attributes. */
3115     hcr = arm_hcr_el2_eff_secstate(env, is_secure);
3116     if (hcr & HCR_DC) {
3117         /*
3118          * HCR.DC forces the first stage attributes to
3119          *  Normal Non-Shareable,
3120          *  Inner Write-Back Read-Allocate Write-Allocate,
3121          *  Outer Write-Back Read-Allocate Write-Allocate.
3122          * Do not overwrite Tagged within attrs.
3123          */
3124         if (cacheattrs1.attrs != 0xf0) {
3125             cacheattrs1.attrs = 0xff;
3126         }
3127         cacheattrs1.shareability = 0;
3128     }
3129     result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
3130                                             result->cacheattrs);
3131 
3132     /*
3133      * Check if IPA translates to secure or non-secure PA space.
3134      * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
3135      */
3136     result->f.attrs.secure =
3137         (is_secure
3138          && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
3139          && (ipa_secure
3140              || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))));
3141 
3142     return false;
3143 }
3144 
3145 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
3146                                       target_ulong address,
3147                                       MMUAccessType access_type,
3148                                       GetPhysAddrResult *result,
3149                                       ARMMMUFaultInfo *fi)
3150 {
3151     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3152     bool is_secure = ptw->in_secure;
3153     ARMMMUIdx s1_mmu_idx;
3154 
3155     /*
3156      * The page table entries may downgrade Secure to NonSecure, but
3157      * cannot upgrade a NonSecure translation regime's attributes
3158      * to Secure or Realm.
3159      */
3160     result->f.attrs.secure = is_secure;
3161     result->f.attrs.space = ptw->in_space;
3162 
3163     switch (mmu_idx) {
3164     case ARMMMUIdx_Phys_S:
3165     case ARMMMUIdx_Phys_NS:
3166     case ARMMMUIdx_Phys_Root:
3167     case ARMMMUIdx_Phys_Realm:
3168         /* Checking Phys early avoids special casing later vs regime_el. */
3169         return get_phys_addr_disabled(env, address, access_type, mmu_idx,
3170                                       is_secure, result, fi);
3171 
3172     case ARMMMUIdx_Stage1_E0:
3173     case ARMMMUIdx_Stage1_E1:
3174     case ARMMMUIdx_Stage1_E1_PAN:
3175         /* First stage lookup uses second stage for ptw. */
3176         ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3177         break;
3178 
3179     case ARMMMUIdx_Stage2:
3180     case ARMMMUIdx_Stage2_S:
3181         /*
3182          * Second stage lookup uses physical for ptw; whether this is S or
3183          * NS may depend on the SW/NSW bits if this is a stage 2 lookup for
3184          * the Secure EL2&0 regime.
3185          */
3186         ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx);
3187         break;
3188 
3189     case ARMMMUIdx_E10_0:
3190         s1_mmu_idx = ARMMMUIdx_Stage1_E0;
3191         goto do_twostage;
3192     case ARMMMUIdx_E10_1:
3193         s1_mmu_idx = ARMMMUIdx_Stage1_E1;
3194         goto do_twostage;
3195     case ARMMMUIdx_E10_1_PAN:
3196         s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3197     do_twostage:
3198         /*
3199          * Call ourselves recursively to do the stage 1 and then stage 2
3200          * translations if mmu_idx is a two-stage regime, and EL2 present.
3201          * Otherwise, a stage1+stage2 translation is just stage 1.
3202          */
3203         ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
3204         if (arm_feature(env, ARM_FEATURE_EL2) &&
3205             !regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) {
3206             return get_phys_addr_twostage(env, ptw, address, access_type,
3207                                           result, fi);
3208         }
3209         /* fall through */
3210 
3211     default:
3212         /* Single stage uses physical for ptw. */
3213         ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space);
3214         break;
3215     }
3216 
3217     result->f.attrs.user = regime_is_user(env, mmu_idx);
3218 
3219     /*
3220      * Fast Context Switch Extension. This doesn't exist at all in v8.
3221      * In v7 and earlier it affects all stage 1 translations.
3222      */
3223     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
3224         && !arm_feature(env, ARM_FEATURE_V8)) {
3225         if (regime_el(env, mmu_idx) == 3) {
3226             address += env->cp15.fcseidr_s;
3227         } else {
3228             address += env->cp15.fcseidr_ns;
3229         }
3230     }
3231 
3232     if (arm_feature(env, ARM_FEATURE_PMSA)) {
3233         bool ret;
3234         result->f.lg_page_size = TARGET_PAGE_BITS;
3235 
3236         if (arm_feature(env, ARM_FEATURE_V8)) {
3237             /* PMSAv8 */
3238             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
3239                                        is_secure, result, fi);
3240         } else if (arm_feature(env, ARM_FEATURE_V7)) {
3241             /* PMSAv7 */
3242             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
3243                                        is_secure, result, fi);
3244         } else {
3245             /* Pre-v7 MPU */
3246             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
3247                                        is_secure, result, fi);
3248         }
3249         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
3250                       " mmu_idx %u -> %s (prot %c%c%c)\n",
3251                       access_type == MMU_DATA_LOAD ? "reading" :
3252                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
3253                       (uint32_t)address, mmu_idx,
3254                       ret ? "Miss" : "Hit",
3255                       result->f.prot & PAGE_READ ? 'r' : '-',
3256                       result->f.prot & PAGE_WRITE ? 'w' : '-',
3257                       result->f.prot & PAGE_EXEC ? 'x' : '-');
3258 
3259         return ret;
3260     }
3261 
3262     /* Definitely a real MMU, not an MPU */
3263 
3264     if (regime_translation_disabled(env, mmu_idx, is_secure)) {
3265         return get_phys_addr_disabled(env, address, access_type, mmu_idx,
3266                                       is_secure, result, fi);
3267     }
3268 
3269     if (regime_using_lpae_format(env, mmu_idx)) {
3270         return get_phys_addr_lpae(env, ptw, address, access_type, result, fi);
3271     } else if (arm_feature(env, ARM_FEATURE_V7) ||
3272                regime_sctlr(env, mmu_idx) & SCTLR_XP) {
3273         return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
3274     } else {
3275         return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
3276     }
3277 }
3278 
3279 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
3280                               target_ulong address,
3281                               MMUAccessType access_type,
3282                               GetPhysAddrResult *result,
3283                               ARMMMUFaultInfo *fi)
3284 {
3285     if (get_phys_addr_nogpc(env, ptw, address, access_type, result, fi)) {
3286         return true;
3287     }
3288     if (!granule_protection_check(env, result->f.phys_addr,
3289                                   result->f.attrs.space, fi)) {
3290         fi->type = ARMFault_GPCFOnOutput;
3291         return true;
3292     }
3293     return false;
3294 }
3295 
3296 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
3297                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
3298                                bool is_secure, GetPhysAddrResult *result,
3299                                ARMMMUFaultInfo *fi)
3300 {
3301     S1Translate ptw = {
3302         .in_mmu_idx = mmu_idx,
3303         .in_secure = is_secure,
3304         .in_space = arm_secure_to_space(is_secure),
3305     };
3306     return get_phys_addr_gpc(env, &ptw, address, access_type, result, fi);
3307 }
3308 
3309 bool get_phys_addr(CPUARMState *env, target_ulong address,
3310                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
3311                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
3312 {
3313     S1Translate ptw = {
3314         .in_mmu_idx = mmu_idx,
3315     };
3316     ARMSecuritySpace ss;
3317 
3318     switch (mmu_idx) {
3319     case ARMMMUIdx_E10_0:
3320     case ARMMMUIdx_E10_1:
3321     case ARMMMUIdx_E10_1_PAN:
3322     case ARMMMUIdx_E20_0:
3323     case ARMMMUIdx_E20_2:
3324     case ARMMMUIdx_E20_2_PAN:
3325     case ARMMMUIdx_Stage1_E0:
3326     case ARMMMUIdx_Stage1_E1:
3327     case ARMMMUIdx_Stage1_E1_PAN:
3328     case ARMMMUIdx_E2:
3329         ss = arm_security_space_below_el3(env);
3330         break;
3331     case ARMMMUIdx_Stage2:
3332         /*
3333          * For Secure EL2, we need this index to be NonSecure;
3334          * otherwise this will already be NonSecure or Realm.
3335          */
3336         ss = arm_security_space_below_el3(env);
3337         if (ss == ARMSS_Secure) {
3338             ss = ARMSS_NonSecure;
3339         }
3340         break;
3341     case ARMMMUIdx_Phys_NS:
3342     case ARMMMUIdx_MPrivNegPri:
3343     case ARMMMUIdx_MUserNegPri:
3344     case ARMMMUIdx_MPriv:
3345     case ARMMMUIdx_MUser:
3346         ss = ARMSS_NonSecure;
3347         break;
3348     case ARMMMUIdx_Stage2_S:
3349     case ARMMMUIdx_Phys_S:
3350     case ARMMMUIdx_MSPrivNegPri:
3351     case ARMMMUIdx_MSUserNegPri:
3352     case ARMMMUIdx_MSPriv:
3353     case ARMMMUIdx_MSUser:
3354         ss = ARMSS_Secure;
3355         break;
3356     case ARMMMUIdx_E3:
3357         if (arm_feature(env, ARM_FEATURE_AARCH64) &&
3358             cpu_isar_feature(aa64_rme, env_archcpu(env))) {
3359             ss = ARMSS_Root;
3360         } else {
3361             ss = ARMSS_Secure;
3362         }
3363         break;
3364     case ARMMMUIdx_Phys_Root:
3365         ss = ARMSS_Root;
3366         break;
3367     case ARMMMUIdx_Phys_Realm:
3368         ss = ARMSS_Realm;
3369         break;
3370     default:
3371         g_assert_not_reached();
3372     }
3373 
3374     ptw.in_space = ss;
3375     ptw.in_secure = arm_space_is_secure(ss);
3376     return get_phys_addr_gpc(env, &ptw, address, access_type, result, fi);
3377 }
3378 
3379 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
3380                                          MemTxAttrs *attrs)
3381 {
3382     ARMCPU *cpu = ARM_CPU(cs);
3383     CPUARMState *env = &cpu->env;
3384     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
3385     ARMSecuritySpace ss = arm_security_space(env);
3386     S1Translate ptw = {
3387         .in_mmu_idx = mmu_idx,
3388         .in_space = ss,
3389         .in_secure = arm_space_is_secure(ss),
3390         .in_debug = true,
3391     };
3392     GetPhysAddrResult res = {};
3393     ARMMMUFaultInfo fi = {};
3394     bool ret;
3395 
3396     ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
3397     *attrs = res.f.attrs;
3398 
3399     if (ret) {
3400         return -1;
3401     }
3402     return res.f.phys_addr;
3403 }
3404