xref: /qemu/target/arm/tcg/mte_helper.c (revision de6cd759)
1 /*
2  * ARM v8.5-MemTag Operations
3  *
4  * Copyright (c) 2020 Linaro, Ltd.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "internals.h"
24 #include "exec/exec-all.h"
25 #include "exec/ram_addr.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/helper-proto.h"
28 #include "hw/core/tcg-cpu-ops.h"
29 #include "qapi/error.h"
30 #include "qemu/guest-random.h"
31 
32 
33 static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude)
34 {
35     if (exclude == 0xffff) {
36         return 0;
37     }
38     if (offset == 0) {
39         while (exclude & (1 << tag)) {
40             tag = (tag + 1) & 15;
41         }
42     } else {
43         do {
44             do {
45                 tag = (tag + 1) & 15;
46             } while (exclude & (1 << tag));
47         } while (--offset > 0);
48     }
49     return tag;
50 }
51 
52 /**
53  * allocation_tag_mem:
54  * @env: the cpu environment
55  * @ptr_mmu_idx: the addressing regime to use for the virtual address
56  * @ptr: the virtual address for which to look up tag memory
57  * @ptr_access: the access to use for the virtual address
58  * @ptr_size: the number of bytes in the normal memory access
59  * @tag_access: the access to use for the tag memory
60  * @tag_size: the number of bytes in the tag memory access
61  * @ra: the return address for exception handling
62  *
63  * Our tag memory is formatted as a sequence of little-endian nibbles.
64  * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two
65  * tags, with the tag at [3:0] for the lower addr and the tag at [7:4]
66  * for the higher addr.
67  *
68  * Here, resolve the physical address from the virtual address, and return
69  * a pointer to the corresponding tag byte.  Exit with exception if the
70  * virtual address is not accessible for @ptr_access.
71  *
72  * The @ptr_size and @tag_size values may not have an obvious relation
73  * due to the alignment of @ptr, and the number of tag checks required.
74  *
75  * If there is no tag storage corresponding to @ptr, return NULL.
76  */
77 static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx,
78                                    uint64_t ptr, MMUAccessType ptr_access,
79                                    int ptr_size, MMUAccessType tag_access,
80                                    int tag_size, uintptr_t ra)
81 {
82 #ifdef CONFIG_USER_ONLY
83     uint64_t clean_ptr = useronly_clean_ptr(ptr);
84     int flags = page_get_flags(clean_ptr);
85     uint8_t *tags;
86     uintptr_t index;
87 
88     if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) {
89         cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access,
90                               !(flags & PAGE_VALID), ra);
91     }
92 
93     /* Require both MAP_ANON and PROT_MTE for the page. */
94     if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) {
95         return NULL;
96     }
97 
98     tags = page_get_target_data(clean_ptr);
99 
100     index = extract32(ptr, LOG2_TAG_GRANULE + 1,
101                       TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1);
102     return tags + index;
103 #else
104     CPUTLBEntryFull *full;
105     MemTxAttrs attrs;
106     int in_page, flags;
107     hwaddr ptr_paddr, tag_paddr, xlat;
108     MemoryRegion *mr;
109     ARMASIdx tag_asi;
110     AddressSpace *tag_as;
111     void *host;
112 
113     /*
114      * Probe the first byte of the virtual address.  This raises an
115      * exception for inaccessible pages, and resolves the virtual address
116      * into the softmmu tlb.
117      *
118      * When RA == 0, this is for mte_probe.  The page is expected to be
119      * valid.  Indicate to probe_access_flags no-fault, then assert that
120      * we received a valid page.
121      */
122     flags = probe_access_full(env, ptr, 0, ptr_access, ptr_mmu_idx,
123                               ra == 0, &host, &full, ra);
124     assert(!(flags & TLB_INVALID_MASK));
125 
126     /* If the virtual page MemAttr != Tagged, access unchecked. */
127     if (full->pte_attrs != 0xf0) {
128         return NULL;
129     }
130 
131     /*
132      * If not backed by host ram, there is no tag storage: access unchecked.
133      * This is probably a guest os bug though, so log it.
134      */
135     if (unlikely(flags & TLB_MMIO)) {
136         qemu_log_mask(LOG_GUEST_ERROR,
137                       "Page @ 0x%" PRIx64 " indicates Tagged Normal memory "
138                       "but is not backed by host ram\n", ptr);
139         return NULL;
140     }
141 
142     /*
143      * Remember these values across the second lookup below,
144      * which may invalidate this pointer via tlb resize.
145      */
146     ptr_paddr = full->phys_addr | (ptr & ~TARGET_PAGE_MASK);
147     attrs = full->attrs;
148     full = NULL;
149 
150     /*
151      * The Normal memory access can extend to the next page.  E.g. a single
152      * 8-byte access to the last byte of a page will check only the last
153      * tag on the first page.
154      * Any page access exception has priority over tag check exception.
155      */
156     in_page = -(ptr | TARGET_PAGE_MASK);
157     if (unlikely(ptr_size > in_page)) {
158         flags |= probe_access_full(env, ptr + in_page, 0, ptr_access,
159                                    ptr_mmu_idx, ra == 0, &host, &full, ra);
160         assert(!(flags & TLB_INVALID_MASK));
161     }
162 
163     /* Any debug exception has priority over a tag check exception. */
164     if (unlikely(flags & TLB_WATCHPOINT)) {
165         int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE;
166         assert(ra != 0);
167         cpu_check_watchpoint(env_cpu(env), ptr, ptr_size, attrs, wp, ra);
168     }
169 
170     /* Convert to the physical address in tag space.  */
171     tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1);
172 
173     /* Look up the address in tag space. */
174     tag_asi = attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS;
175     tag_as = cpu_get_address_space(env_cpu(env), tag_asi);
176     mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL,
177                                  tag_access == MMU_DATA_STORE, attrs);
178 
179     /*
180      * Note that @mr will never be NULL.  If there is nothing in the address
181      * space at @tag_paddr, the translation will return the unallocated memory
182      * region.  For our purposes, the result must be ram.
183      */
184     if (unlikely(!memory_region_is_ram(mr))) {
185         /* ??? Failure is a board configuration error. */
186         qemu_log_mask(LOG_UNIMP,
187                       "Tag Memory @ 0x%" HWADDR_PRIx " not found for "
188                       "Normal Memory @ 0x%" HWADDR_PRIx "\n",
189                       tag_paddr, ptr_paddr);
190         return NULL;
191     }
192 
193     /*
194      * Ensure the tag memory is dirty on write, for migration.
195      * Tag memory can never contain code or display memory (vga).
196      */
197     if (tag_access == MMU_DATA_STORE) {
198         ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat;
199         cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION);
200     }
201 
202     return memory_region_get_ram_ptr(mr) + xlat;
203 #endif
204 }
205 
206 uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm)
207 {
208     uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16);
209     int rrnd = extract32(env->cp15.gcr_el1, 16, 1);
210     int start = extract32(env->cp15.rgsr_el1, 0, 4);
211     int seed = extract32(env->cp15.rgsr_el1, 8, 16);
212     int offset, i, rtag;
213 
214     /*
215      * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the
216      * deterministic algorithm.  Except that with RRND==1 the kernel is
217      * not required to have set RGSR_EL1.SEED != 0, which is required for
218      * the deterministic algorithm to function.  So we force a non-zero
219      * SEED for that case.
220      */
221     if (unlikely(seed == 0) && rrnd) {
222         do {
223             Error *err = NULL;
224             uint16_t two;
225 
226             if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) {
227                 /*
228                  * Failed, for unknown reasons in the crypto subsystem.
229                  * Best we can do is log the reason and use a constant seed.
230                  */
231                 qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n",
232                               error_get_pretty(err));
233                 error_free(err);
234                 two = 1;
235             }
236             seed = two;
237         } while (seed == 0);
238     }
239 
240     /* RandomTag */
241     for (i = offset = 0; i < 4; ++i) {
242         /* NextRandomTagBit */
243         int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^
244                    extract32(seed, 2, 1) ^ extract32(seed, 0, 1));
245         seed = (top << 15) | (seed >> 1);
246         offset |= top << i;
247     }
248     rtag = choose_nonexcluded_tag(start, offset, exclude);
249     env->cp15.rgsr_el1 = rtag | (seed << 8);
250 
251     return address_with_allocation_tag(rn, rtag);
252 }
253 
254 uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr,
255                          int32_t offset, uint32_t tag_offset)
256 {
257     int start_tag = allocation_tag_from_addr(ptr);
258     uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16);
259     int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude);
260 
261     return address_with_allocation_tag(ptr + offset, rtag);
262 }
263 
264 static int load_tag1(uint64_t ptr, uint8_t *mem)
265 {
266     int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
267     return extract32(*mem, ofs, 4);
268 }
269 
270 uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
271 {
272     int mmu_idx = cpu_mmu_index(env, false);
273     uint8_t *mem;
274     int rtag = 0;
275 
276     /* Trap if accessing an invalid page.  */
277     mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1,
278                              MMU_DATA_LOAD, 1, GETPC());
279 
280     /* Load if page supports tags. */
281     if (mem) {
282         rtag = load_tag1(ptr, mem);
283     }
284 
285     return address_with_allocation_tag(xt, rtag);
286 }
287 
288 static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra)
289 {
290     if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) {
291         arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
292                                     cpu_mmu_index(env, false), ra);
293         g_assert_not_reached();
294     }
295 }
296 
297 /* For use in a non-parallel context, store to the given nibble.  */
298 static void store_tag1(uint64_t ptr, uint8_t *mem, int tag)
299 {
300     int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
301     *mem = deposit32(*mem, ofs, 4, tag);
302 }
303 
304 /* For use in a parallel context, atomically store to the given nibble.  */
305 static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag)
306 {
307     int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
308     uint8_t old = qatomic_read(mem);
309 
310     while (1) {
311         uint8_t new = deposit32(old, ofs, 4, tag);
312         uint8_t cmp = qatomic_cmpxchg(mem, old, new);
313         if (likely(cmp == old)) {
314             return;
315         }
316         old = cmp;
317     }
318 }
319 
320 typedef void stg_store1(uint64_t, uint8_t *, int);
321 
322 static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt,
323                           uintptr_t ra, stg_store1 store1)
324 {
325     int mmu_idx = cpu_mmu_index(env, false);
326     uint8_t *mem;
327 
328     check_tag_aligned(env, ptr, ra);
329 
330     /* Trap if accessing an invalid page.  */
331     mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE,
332                              MMU_DATA_STORE, 1, ra);
333 
334     /* Store if page supports tags. */
335     if (mem) {
336         store1(ptr, mem, allocation_tag_from_addr(xt));
337     }
338 }
339 
340 void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
341 {
342     do_stg(env, ptr, xt, GETPC(), store_tag1);
343 }
344 
345 void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
346 {
347     do_stg(env, ptr, xt, GETPC(), store_tag1_parallel);
348 }
349 
350 void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr)
351 {
352     int mmu_idx = cpu_mmu_index(env, false);
353     uintptr_t ra = GETPC();
354 
355     check_tag_aligned(env, ptr, ra);
356     probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
357 }
358 
359 static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt,
360                            uintptr_t ra, stg_store1 store1)
361 {
362     int mmu_idx = cpu_mmu_index(env, false);
363     int tag = allocation_tag_from_addr(xt);
364     uint8_t *mem1, *mem2;
365 
366     check_tag_aligned(env, ptr, ra);
367 
368     /*
369      * Trap if accessing an invalid page(s).
370      * This takes priority over !allocation_tag_access_enabled.
371      */
372     if (ptr & TAG_GRANULE) {
373         /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
374         mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
375                                   TAG_GRANULE, MMU_DATA_STORE, 1, ra);
376         mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE,
377                                   MMU_DATA_STORE, TAG_GRANULE,
378                                   MMU_DATA_STORE, 1, ra);
379 
380         /* Store if page(s) support tags. */
381         if (mem1) {
382             store1(TAG_GRANULE, mem1, tag);
383         }
384         if (mem2) {
385             store1(0, mem2, tag);
386         }
387     } else {
388         /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
389         mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
390                                   2 * TAG_GRANULE, MMU_DATA_STORE, 1, ra);
391         if (mem1) {
392             tag |= tag << 4;
393             qatomic_set(mem1, tag);
394         }
395     }
396 }
397 
398 void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt)
399 {
400     do_st2g(env, ptr, xt, GETPC(), store_tag1);
401 }
402 
403 void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
404 {
405     do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel);
406 }
407 
408 void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr)
409 {
410     int mmu_idx = cpu_mmu_index(env, false);
411     uintptr_t ra = GETPC();
412     int in_page = -(ptr | TARGET_PAGE_MASK);
413 
414     check_tag_aligned(env, ptr, ra);
415 
416     if (likely(in_page >= 2 * TAG_GRANULE)) {
417         probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra);
418     } else {
419         probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
420         probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra);
421     }
422 }
423 
424 #define LDGM_STGM_SIZE  (4 << GMID_EL1_BS)
425 
426 uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr)
427 {
428     int mmu_idx = cpu_mmu_index(env, false);
429     uintptr_t ra = GETPC();
430     void *tag_mem;
431 
432     ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);
433 
434     /* Trap if accessing an invalid page.  */
435     tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD,
436                                  LDGM_STGM_SIZE, MMU_DATA_LOAD,
437                                  LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);
438 
439     /* The tag is squashed to zero if the page does not support tags.  */
440     if (!tag_mem) {
441         return 0;
442     }
443 
444     QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
445     /*
446      * We are loading 64-bits worth of tags.  The ordering of elements
447      * within the word corresponds to a 64-bit little-endian operation.
448      */
449     return ldq_le_p(tag_mem);
450 }
451 
452 void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val)
453 {
454     int mmu_idx = cpu_mmu_index(env, false);
455     uintptr_t ra = GETPC();
456     void *tag_mem;
457 
458     ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);
459 
460     /* Trap if accessing an invalid page.  */
461     tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
462                                  LDGM_STGM_SIZE, MMU_DATA_LOAD,
463                                  LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);
464 
465     /*
466      * Tag store only happens if the page support tags,
467      * and if the OS has enabled access to the tags.
468      */
469     if (!tag_mem) {
470         return;
471     }
472 
473     QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
474     /*
475      * We are storing 64-bits worth of tags.  The ordering of elements
476      * within the word corresponds to a 64-bit little-endian operation.
477      */
478     stq_le_p(tag_mem, val);
479 }
480 
481 void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val)
482 {
483     uintptr_t ra = GETPC();
484     int mmu_idx = cpu_mmu_index(env, false);
485     int log2_dcz_bytes, log2_tag_bytes;
486     intptr_t dcz_bytes, tag_bytes;
487     uint8_t *mem;
488 
489     /*
490      * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1,
491      * i.e. 32 bytes, which is an unreasonably small dcz anyway,
492      * to make sure that we can access one complete tag byte here.
493      */
494     log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
495     log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
496     dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
497     tag_bytes = (intptr_t)1 << log2_tag_bytes;
498     ptr &= -dcz_bytes;
499 
500     mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes,
501                              MMU_DATA_STORE, tag_bytes, ra);
502     if (mem) {
503         int tag_pair = (val & 0xf) * 0x11;
504         memset(mem, tag_pair, tag_bytes);
505     }
506 }
507 
508 static void mte_sync_check_fail(CPUARMState *env, uint32_t desc,
509                                 uint64_t dirty_ptr, uintptr_t ra)
510 {
511     int is_write, syn;
512 
513     env->exception.vaddress = dirty_ptr;
514 
515     is_write = FIELD_EX32(desc, MTEDESC, WRITE);
516     syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write,
517                                 0x11);
518     raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra);
519     g_assert_not_reached();
520 }
521 
522 static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr,
523                                  uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el)
524 {
525     int select;
526 
527     if (regime_has_2_ranges(arm_mmu_idx)) {
528         select = extract64(dirty_ptr, 55, 1);
529     } else {
530         select = 0;
531     }
532     env->cp15.tfsr_el[el] |= 1 << select;
533 #ifdef CONFIG_USER_ONLY
534     /*
535      * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT,
536      * which then sends a SIGSEGV when the thread is next scheduled.
537      * This cpu will return to the main loop at the end of the TB,
538      * which is rather sooner than "normal".  But the alternative
539      * is waiting until the next syscall.
540      */
541     qemu_cpu_kick(env_cpu(env));
542 #endif
543 }
544 
545 /* Record a tag check failure.  */
546 static void mte_check_fail(CPUARMState *env, uint32_t desc,
547                            uint64_t dirty_ptr, uintptr_t ra)
548 {
549     int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
550     ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx);
551     int el, reg_el, tcf;
552     uint64_t sctlr;
553 
554     reg_el = regime_el(env, arm_mmu_idx);
555     sctlr = env->cp15.sctlr_el[reg_el];
556 
557     switch (arm_mmu_idx) {
558     case ARMMMUIdx_E10_0:
559     case ARMMMUIdx_E20_0:
560         el = 0;
561         tcf = extract64(sctlr, 38, 2);
562         break;
563     default:
564         el = reg_el;
565         tcf = extract64(sctlr, 40, 2);
566     }
567 
568     switch (tcf) {
569     case 1:
570         /* Tag check fail causes a synchronous exception. */
571         mte_sync_check_fail(env, desc, dirty_ptr, ra);
572         break;
573 
574     case 0:
575         /*
576          * Tag check fail does not affect the PE.
577          * We eliminate this case by not setting MTE_ACTIVE
578          * in tb_flags, so that we never make this runtime call.
579          */
580         g_assert_not_reached();
581 
582     case 2:
583         /* Tag check fail causes asynchronous flag set.  */
584         mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
585         break;
586 
587     case 3:
588         /*
589          * Tag check fail causes asynchronous flag set for stores, or
590          * a synchronous exception for loads.
591          */
592         if (FIELD_EX32(desc, MTEDESC, WRITE)) {
593             mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
594         } else {
595             mte_sync_check_fail(env, desc, dirty_ptr, ra);
596         }
597         break;
598     }
599 }
600 
601 /**
602  * checkN:
603  * @tag: tag memory to test
604  * @odd: true to begin testing at tags at odd nibble
605  * @cmp: the tag to compare against
606  * @count: number of tags to test
607  *
608  * Return the number of successful tests.
609  * Thus a return value < @count indicates a failure.
610  *
611  * A note about sizes: count is expected to be small.
612  *
613  * The most common use will be LDP/STP of two integer registers,
614  * which means 16 bytes of memory touching at most 2 tags, but
615  * often the access is aligned and thus just 1 tag.
616  *
617  * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory,
618  * touching at most 5 tags.  SVE LDR/STR (vector) with the default
619  * vector length is also 64 bytes; the maximum architectural length
620  * is 256 bytes touching at most 9 tags.
621  *
622  * The loop below uses 7 logical operations and 1 memory operation
623  * per tag pair.  An implementation that loads an aligned word and
624  * uses masking to ignore adjacent tags requires 18 logical operations
625  * and thus does not begin to pay off until 6 tags.
626  * Which, according to the survey above, is unlikely to be common.
627  */
628 static int checkN(uint8_t *mem, int odd, int cmp, int count)
629 {
630     int n = 0, diff;
631 
632     /* Replicate the test tag and compare.  */
633     cmp *= 0x11;
634     diff = *mem++ ^ cmp;
635 
636     if (odd) {
637         goto start_odd;
638     }
639 
640     while (1) {
641         /* Test even tag. */
642         if (unlikely((diff) & 0x0f)) {
643             break;
644         }
645         if (++n == count) {
646             break;
647         }
648 
649     start_odd:
650         /* Test odd tag. */
651         if (unlikely((diff) & 0xf0)) {
652             break;
653         }
654         if (++n == count) {
655             break;
656         }
657 
658         diff = *mem++ ^ cmp;
659     }
660     return n;
661 }
662 
663 /**
664  * mte_probe_int() - helper for mte_probe and mte_check
665  * @env: CPU environment
666  * @desc: MTEDESC descriptor
667  * @ptr: virtual address of the base of the access
668  * @fault: return virtual address of the first check failure
669  *
670  * Internal routine for both mte_probe and mte_check.
671  * Return zero on failure, filling in *fault.
672  * Return negative on trivial success for tbi disabled.
673  * Return positive on success with tbi enabled.
674  */
675 static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr,
676                          uintptr_t ra, uint64_t *fault)
677 {
678     int mmu_idx, ptr_tag, bit55;
679     uint64_t ptr_last, prev_page, next_page;
680     uint64_t tag_first, tag_last;
681     uint64_t tag_byte_first, tag_byte_last;
682     uint32_t sizem1, tag_count, tag_size, n, c;
683     uint8_t *mem1, *mem2;
684     MMUAccessType type;
685 
686     bit55 = extract64(ptr, 55, 1);
687     *fault = ptr;
688 
689     /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
690     if (unlikely(!tbi_check(desc, bit55))) {
691         return -1;
692     }
693 
694     ptr_tag = allocation_tag_from_addr(ptr);
695 
696     if (tcma_check(desc, bit55, ptr_tag)) {
697         return 1;
698     }
699 
700     mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
701     type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD;
702     sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1);
703 
704     /* Find the addr of the end of the access */
705     ptr_last = ptr + sizem1;
706 
707     /* Round the bounds to the tag granule, and compute the number of tags. */
708     tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
709     tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE);
710     tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
711 
712     /* Round the bounds to twice the tag granule, and compute the bytes. */
713     tag_byte_first = QEMU_ALIGN_DOWN(ptr, 2 * TAG_GRANULE);
714     tag_byte_last = QEMU_ALIGN_DOWN(ptr_last, 2 * TAG_GRANULE);
715 
716     /* Locate the page boundaries. */
717     prev_page = ptr & TARGET_PAGE_MASK;
718     next_page = prev_page + TARGET_PAGE_SIZE;
719 
720     if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) {
721         /* Memory access stays on one page. */
722         tag_size = ((tag_byte_last - tag_byte_first) / (2 * TAG_GRANULE)) + 1;
723         mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1,
724                                   MMU_DATA_LOAD, tag_size, ra);
725         if (!mem1) {
726             return 1;
727         }
728         /* Perform all of the comparisons. */
729         n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count);
730     } else {
731         /* Memory access crosses to next page. */
732         tag_size = (next_page - tag_byte_first) / (2 * TAG_GRANULE);
733         mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr,
734                                   MMU_DATA_LOAD, tag_size, ra);
735 
736         tag_size = ((tag_byte_last - next_page) / (2 * TAG_GRANULE)) + 1;
737         mem2 = allocation_tag_mem(env, mmu_idx, next_page, type,
738                                   ptr_last - next_page + 1,
739                                   MMU_DATA_LOAD, tag_size, ra);
740 
741         /*
742          * Perform all of the comparisons.
743          * Note the possible but unlikely case of the operation spanning
744          * two pages that do not both have tagging enabled.
745          */
746         n = c = (next_page - tag_first) / TAG_GRANULE;
747         if (mem1) {
748             n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c);
749         }
750         if (n == c) {
751             if (!mem2) {
752                 return 1;
753             }
754             n += checkN(mem2, 0, ptr_tag, tag_count - c);
755         }
756     }
757 
758     if (likely(n == tag_count)) {
759         return 1;
760     }
761 
762     /*
763      * If we failed, we know which granule.  For the first granule, the
764      * failure address is @ptr, the first byte accessed.  Otherwise the
765      * failure address is the first byte of the nth granule.
766      */
767     if (n > 0) {
768         *fault = tag_first + n * TAG_GRANULE;
769     }
770     return 0;
771 }
772 
773 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra)
774 {
775     uint64_t fault;
776     int ret = mte_probe_int(env, desc, ptr, ra, &fault);
777 
778     if (unlikely(ret == 0)) {
779         mte_check_fail(env, desc, fault, ra);
780     } else if (ret < 0) {
781         return ptr;
782     }
783     return useronly_clean_ptr(ptr);
784 }
785 
786 uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr)
787 {
788     /*
789      * R_XCHFJ: Alignment check not caused by memory type is priority 1,
790      * higher than any translation fault.  When MTE is disabled, tcg
791      * performs the alignment check during the code generated for the
792      * memory access.  With MTE enabled, we must check this here before
793      * raising any translation fault in allocation_tag_mem.
794      */
795     unsigned align = FIELD_EX32(desc, MTEDESC, ALIGN);
796     if (unlikely(align)) {
797         align = (1u << align) - 1;
798         if (unlikely(ptr & align)) {
799             int idx = FIELD_EX32(desc, MTEDESC, MIDX);
800             bool w = FIELD_EX32(desc, MTEDESC, WRITE);
801             MMUAccessType type = w ? MMU_DATA_STORE : MMU_DATA_LOAD;
802             arm_cpu_do_unaligned_access(env_cpu(env), ptr, type, idx, GETPC());
803         }
804     }
805 
806     return mte_check(env, desc, ptr, GETPC());
807 }
808 
809 /*
810  * No-fault version of mte_check, to be used by SVE for MemSingleNF.
811  * Returns false if the access is Checked and the check failed.  This
812  * is only intended to probe the tag -- the validity of the page must
813  * be checked beforehand.
814  */
815 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr)
816 {
817     uint64_t fault;
818     int ret = mte_probe_int(env, desc, ptr, 0, &fault);
819 
820     return ret != 0;
821 }
822 
823 /*
824  * Perform an MTE checked access for DC_ZVA.
825  */
826 uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr)
827 {
828     uintptr_t ra = GETPC();
829     int log2_dcz_bytes, log2_tag_bytes;
830     int mmu_idx, bit55;
831     intptr_t dcz_bytes, tag_bytes, i;
832     void *mem;
833     uint64_t ptr_tag, mem_tag, align_ptr;
834 
835     bit55 = extract64(ptr, 55, 1);
836 
837     /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
838     if (unlikely(!tbi_check(desc, bit55))) {
839         return ptr;
840     }
841 
842     ptr_tag = allocation_tag_from_addr(ptr);
843 
844     if (tcma_check(desc, bit55, ptr_tag)) {
845         goto done;
846     }
847 
848     /*
849      * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1,
850      * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make
851      * sure that we can access one complete tag byte here.
852      */
853     log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
854     log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
855     dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
856     tag_bytes = (intptr_t)1 << log2_tag_bytes;
857     align_ptr = ptr & -dcz_bytes;
858 
859     /*
860      * Trap if accessing an invalid page.  DC_ZVA requires that we supply
861      * the original pointer for an invalid page.  But watchpoints require
862      * that we probe the actual space.  So do both.
863      */
864     mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
865     (void) probe_write(env, ptr, 1, mmu_idx, ra);
866     mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE,
867                              dcz_bytes, MMU_DATA_LOAD, tag_bytes, ra);
868     if (!mem) {
869         goto done;
870     }
871 
872     /*
873      * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus
874      * it is quite easy to perform all of the comparisons at once without
875      * any extra masking.
876      *
877      * The most common zva block size is 64; some of the thunderx cpus use
878      * a block size of 128.  For user-only, aarch64_max_initfn will set the
879      * block size to 512.  Fill out the other cases for future-proofing.
880      *
881      * In order to be able to find the first miscompare later, we want the
882      * tag bytes to be in little-endian order.
883      */
884     switch (log2_tag_bytes) {
885     case 0: /* zva_blocksize 32 */
886         mem_tag = *(uint8_t *)mem;
887         ptr_tag *= 0x11u;
888         break;
889     case 1: /* zva_blocksize 64 */
890         mem_tag = cpu_to_le16(*(uint16_t *)mem);
891         ptr_tag *= 0x1111u;
892         break;
893     case 2: /* zva_blocksize 128 */
894         mem_tag = cpu_to_le32(*(uint32_t *)mem);
895         ptr_tag *= 0x11111111u;
896         break;
897     case 3: /* zva_blocksize 256 */
898         mem_tag = cpu_to_le64(*(uint64_t *)mem);
899         ptr_tag *= 0x1111111111111111ull;
900         break;
901 
902     default: /* zva_blocksize 512, 1024, 2048 */
903         ptr_tag *= 0x1111111111111111ull;
904         i = 0;
905         do {
906             mem_tag = cpu_to_le64(*(uint64_t *)(mem + i));
907             if (unlikely(mem_tag != ptr_tag)) {
908                 goto fail;
909             }
910             i += 8;
911             align_ptr += 16 * TAG_GRANULE;
912         } while (i < tag_bytes);
913         goto done;
914     }
915 
916     if (likely(mem_tag == ptr_tag)) {
917         goto done;
918     }
919 
920  fail:
921     /* Locate the first nibble that differs. */
922     i = ctz64(mem_tag ^ ptr_tag) >> 4;
923     mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra);
924 
925  done:
926     return useronly_clean_ptr(ptr);
927 }
928