xref: /qemu/target/arm/tcg/mve_helper.c (revision cf1b2cab)
1 /*
2  * M-profile MVE Operations
3  *
4  * Copyright (c) 2021 Linaro, Ltd.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internals.h"
23 #include "vec_internal.h"
24 #include "exec/helper-proto.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/exec-all.h"
27 #include "tcg/tcg.h"
28 #include "fpu/softfloat.h"
29 #include "crypto/clmul.h"
30 
31 static uint16_t mve_eci_mask(CPUARMState *env)
32 {
33     /*
34      * Return the mask of which elements in the MVE vector correspond
35      * to beats being executed. The mask has 1 bits for executed lanes
36      * and 0 bits where ECI says this beat was already executed.
37      */
38     int eci;
39 
40     if ((env->condexec_bits & 0xf) != 0) {
41         return 0xffff;
42     }
43 
44     eci = env->condexec_bits >> 4;
45     switch (eci) {
46     case ECI_NONE:
47         return 0xffff;
48     case ECI_A0:
49         return 0xfff0;
50     case ECI_A0A1:
51         return 0xff00;
52     case ECI_A0A1A2:
53     case ECI_A0A1A2B0:
54         return 0xf000;
55     default:
56         g_assert_not_reached();
57     }
58 }
59 
60 static uint16_t mve_element_mask(CPUARMState *env)
61 {
62     /*
63      * Return the mask of which elements in the MVE vector should be
64      * updated. This is a combination of multiple things:
65      *  (1) by default, we update every lane in the vector
66      *  (2) VPT predication stores its state in the VPR register;
67      *  (3) low-overhead-branch tail predication will mask out part
68      *      the vector on the final iteration of the loop
69      *  (4) if EPSR.ECI is set then we must execute only some beats
70      *      of the insn
71      * We combine all these into a 16-bit result with the same semantics
72      * as VPR.P0: 0 to mask the lane, 1 if it is active.
73      * 8-bit vector ops will look at all bits of the result;
74      * 16-bit ops will look at bits 0, 2, 4, ...;
75      * 32-bit ops will look at bits 0, 4, 8 and 12.
76      * Compare pseudocode GetCurInstrBeat(), though that only returns
77      * the 4-bit slice of the mask corresponding to a single beat.
78      */
79     uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
80 
81     if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) {
82         mask |= 0xff;
83     }
84     if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) {
85         mask |= 0xff00;
86     }
87 
88     if (env->v7m.ltpsize < 4 &&
89         env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) {
90         /*
91          * Tail predication active, and this is the last loop iteration.
92          * The element size is (1 << ltpsize), and we only want to process
93          * loopcount elements, so we want to retain the least significant
94          * (loopcount * esize) predicate bits and zero out bits above that.
95          */
96         int masklen = env->regs[14] << env->v7m.ltpsize;
97         assert(masklen <= 16);
98         uint16_t ltpmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
99         mask &= ltpmask;
100     }
101 
102     /*
103      * ECI bits indicate which beats are already executed;
104      * we handle this by effectively predicating them out.
105      */
106     mask &= mve_eci_mask(env);
107     return mask;
108 }
109 
110 static void mve_advance_vpt(CPUARMState *env)
111 {
112     /* Advance the VPT and ECI state if necessary */
113     uint32_t vpr = env->v7m.vpr;
114     unsigned mask01, mask23;
115     uint16_t inv_mask;
116     uint16_t eci_mask = mve_eci_mask(env);
117 
118     if ((env->condexec_bits & 0xf) == 0) {
119         env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ?
120             (ECI_A0 << 4) : (ECI_NONE << 4);
121     }
122 
123     if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) {
124         /* VPT not enabled, nothing to do */
125         return;
126     }
127 
128     /* Invert P0 bits if needed, but only for beats we actually executed */
129     mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01);
130     mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23);
131     /* Start by assuming we invert all bits corresponding to executed beats */
132     inv_mask = eci_mask;
133     if (mask01 <= 8) {
134         /* MASK01 says don't invert low half of P0 */
135         inv_mask &= ~0xff;
136     }
137     if (mask23 <= 8) {
138         /* MASK23 says don't invert high half of P0 */
139         inv_mask &= ~0xff00;
140     }
141     vpr ^= inv_mask;
142     /* Only update MASK01 if beat 1 executed */
143     if (eci_mask & 0xf0) {
144         vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1);
145     }
146     /* Beat 3 always executes, so update MASK23 */
147     vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1);
148     env->v7m.vpr = vpr;
149 }
150 
151 /* For loads, predicated lanes are zeroed instead of keeping their old values */
152 #define DO_VLDR(OP, MSIZE, LDTYPE, ESIZE, TYPE)                         \
153     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
154     {                                                                   \
155         TYPE *d = vd;                                                   \
156         uint16_t mask = mve_element_mask(env);                          \
157         uint16_t eci_mask = mve_eci_mask(env);                          \
158         unsigned b, e;                                                  \
159         /*                                                              \
160          * R_SXTM allows the dest reg to become UNKNOWN for abandoned   \
161          * beats so we don't care if we update part of the dest and     \
162          * then take an exception.                                      \
163          */                                                             \
164         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
165             if (eci_mask & (1 << b)) {                                  \
166                 d[H##ESIZE(e)] = (mask & (1 << b)) ?                    \
167                     cpu_##LDTYPE##_data_ra(env, addr, GETPC()) : 0;     \
168             }                                                           \
169             addr += MSIZE;                                              \
170         }                                                               \
171         mve_advance_vpt(env);                                           \
172     }
173 
174 #define DO_VSTR(OP, MSIZE, STTYPE, ESIZE, TYPE)                         \
175     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
176     {                                                                   \
177         TYPE *d = vd;                                                   \
178         uint16_t mask = mve_element_mask(env);                          \
179         unsigned b, e;                                                  \
180         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
181             if (mask & (1 << b)) {                                      \
182                 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
183             }                                                           \
184             addr += MSIZE;                                              \
185         }                                                               \
186         mve_advance_vpt(env);                                           \
187     }
188 
189 DO_VLDR(vldrb, 1, ldub, 1, uint8_t)
190 DO_VLDR(vldrh, 2, lduw, 2, uint16_t)
191 DO_VLDR(vldrw, 4, ldl, 4, uint32_t)
192 
193 DO_VSTR(vstrb, 1, stb, 1, uint8_t)
194 DO_VSTR(vstrh, 2, stw, 2, uint16_t)
195 DO_VSTR(vstrw, 4, stl, 4, uint32_t)
196 
197 DO_VLDR(vldrb_sh, 1, ldsb, 2, int16_t)
198 DO_VLDR(vldrb_sw, 1, ldsb, 4, int32_t)
199 DO_VLDR(vldrb_uh, 1, ldub, 2, uint16_t)
200 DO_VLDR(vldrb_uw, 1, ldub, 4, uint32_t)
201 DO_VLDR(vldrh_sw, 2, ldsw, 4, int32_t)
202 DO_VLDR(vldrh_uw, 2, lduw, 4, uint32_t)
203 
204 DO_VSTR(vstrb_h, 1, stb, 2, int16_t)
205 DO_VSTR(vstrb_w, 1, stb, 4, int32_t)
206 DO_VSTR(vstrh_w, 2, stw, 4, int32_t)
207 
208 #undef DO_VLDR
209 #undef DO_VSTR
210 
211 /*
212  * Gather loads/scatter stores. Here each element of Qm specifies
213  * an offset to use from the base register Rm. In the _os_ versions
214  * that offset is scaled by the element size.
215  * For loads, predicated lanes are zeroed instead of retaining
216  * their previous values.
217  */
218 #define DO_VLDR_SG(OP, LDTYPE, ESIZE, TYPE, OFFTYPE, ADDRFN, WB)        \
219     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
220                           uint32_t base)                                \
221     {                                                                   \
222         TYPE *d = vd;                                                   \
223         OFFTYPE *m = vm;                                                \
224         uint16_t mask = mve_element_mask(env);                          \
225         uint16_t eci_mask = mve_eci_mask(env);                          \
226         unsigned e;                                                     \
227         uint32_t addr;                                                  \
228         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \
229             if (!(eci_mask & 1)) {                                      \
230                 continue;                                               \
231             }                                                           \
232             addr = ADDRFN(base, m[H##ESIZE(e)]);                        \
233             d[H##ESIZE(e)] = (mask & 1) ?                               \
234                 cpu_##LDTYPE##_data_ra(env, addr, GETPC()) : 0;         \
235             if (WB) {                                                   \
236                 m[H##ESIZE(e)] = addr;                                  \
237             }                                                           \
238         }                                                               \
239         mve_advance_vpt(env);                                           \
240     }
241 
242 /* We know here TYPE is unsigned so always the same as the offset type */
243 #define DO_VSTR_SG(OP, STTYPE, ESIZE, TYPE, ADDRFN, WB)                 \
244     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
245                           uint32_t base)                                \
246     {                                                                   \
247         TYPE *d = vd;                                                   \
248         TYPE *m = vm;                                                   \
249         uint16_t mask = mve_element_mask(env);                          \
250         uint16_t eci_mask = mve_eci_mask(env);                          \
251         unsigned e;                                                     \
252         uint32_t addr;                                                  \
253         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \
254             if (!(eci_mask & 1)) {                                      \
255                 continue;                                               \
256             }                                                           \
257             addr = ADDRFN(base, m[H##ESIZE(e)]);                        \
258             if (mask & 1) {                                             \
259                 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
260             }                                                           \
261             if (WB) {                                                   \
262                 m[H##ESIZE(e)] = addr;                                  \
263             }                                                           \
264         }                                                               \
265         mve_advance_vpt(env);                                           \
266     }
267 
268 /*
269  * 64-bit accesses are slightly different: they are done as two 32-bit
270  * accesses, controlled by the predicate mask for the relevant beat,
271  * and with a single 32-bit offset in the first of the two Qm elements.
272  * Note that for QEMU our IMPDEF AIRCR.ENDIANNESS is always 0 (little).
273  * Address writeback happens on the odd beats and updates the address
274  * stored in the even-beat element.
275  */
276 #define DO_VLDR64_SG(OP, ADDRFN, WB)                                    \
277     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
278                           uint32_t base)                                \
279     {                                                                   \
280         uint32_t *d = vd;                                               \
281         uint32_t *m = vm;                                               \
282         uint16_t mask = mve_element_mask(env);                          \
283         uint16_t eci_mask = mve_eci_mask(env);                          \
284         unsigned e;                                                     \
285         uint32_t addr;                                                  \
286         for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) {      \
287             if (!(eci_mask & 1)) {                                      \
288                 continue;                                               \
289             }                                                           \
290             addr = ADDRFN(base, m[H4(e & ~1)]);                         \
291             addr += 4 * (e & 1);                                        \
292             d[H4(e)] = (mask & 1) ? cpu_ldl_data_ra(env, addr, GETPC()) : 0; \
293             if (WB && (e & 1)) {                                        \
294                 m[H4(e & ~1)] = addr - 4;                               \
295             }                                                           \
296         }                                                               \
297         mve_advance_vpt(env);                                           \
298     }
299 
300 #define DO_VSTR64_SG(OP, ADDRFN, WB)                                    \
301     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
302                           uint32_t base)                                \
303     {                                                                   \
304         uint32_t *d = vd;                                               \
305         uint32_t *m = vm;                                               \
306         uint16_t mask = mve_element_mask(env);                          \
307         uint16_t eci_mask = mve_eci_mask(env);                          \
308         unsigned e;                                                     \
309         uint32_t addr;                                                  \
310         for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) {      \
311             if (!(eci_mask & 1)) {                                      \
312                 continue;                                               \
313             }                                                           \
314             addr = ADDRFN(base, m[H4(e & ~1)]);                         \
315             addr += 4 * (e & 1);                                        \
316             if (mask & 1) {                                             \
317                 cpu_stl_data_ra(env, addr, d[H4(e)], GETPC());          \
318             }                                                           \
319             if (WB && (e & 1)) {                                        \
320                 m[H4(e & ~1)] = addr - 4;                               \
321             }                                                           \
322         }                                                               \
323         mve_advance_vpt(env);                                           \
324     }
325 
326 #define ADDR_ADD(BASE, OFFSET) ((BASE) + (OFFSET))
327 #define ADDR_ADD_OSH(BASE, OFFSET) ((BASE) + ((OFFSET) << 1))
328 #define ADDR_ADD_OSW(BASE, OFFSET) ((BASE) + ((OFFSET) << 2))
329 #define ADDR_ADD_OSD(BASE, OFFSET) ((BASE) + ((OFFSET) << 3))
330 
331 DO_VLDR_SG(vldrb_sg_sh, ldsb, 2, int16_t, uint16_t, ADDR_ADD, false)
332 DO_VLDR_SG(vldrb_sg_sw, ldsb, 4, int32_t, uint32_t, ADDR_ADD, false)
333 DO_VLDR_SG(vldrh_sg_sw, ldsw, 4, int32_t, uint32_t, ADDR_ADD, false)
334 
335 DO_VLDR_SG(vldrb_sg_ub, ldub, 1, uint8_t, uint8_t, ADDR_ADD, false)
336 DO_VLDR_SG(vldrb_sg_uh, ldub, 2, uint16_t, uint16_t, ADDR_ADD, false)
337 DO_VLDR_SG(vldrb_sg_uw, ldub, 4, uint32_t, uint32_t, ADDR_ADD, false)
338 DO_VLDR_SG(vldrh_sg_uh, lduw, 2, uint16_t, uint16_t, ADDR_ADD, false)
339 DO_VLDR_SG(vldrh_sg_uw, lduw, 4, uint32_t, uint32_t, ADDR_ADD, false)
340 DO_VLDR_SG(vldrw_sg_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD, false)
341 DO_VLDR64_SG(vldrd_sg_ud, ADDR_ADD, false)
342 
343 DO_VLDR_SG(vldrh_sg_os_sw, ldsw, 4, int32_t, uint32_t, ADDR_ADD_OSH, false)
344 DO_VLDR_SG(vldrh_sg_os_uh, lduw, 2, uint16_t, uint16_t, ADDR_ADD_OSH, false)
345 DO_VLDR_SG(vldrh_sg_os_uw, lduw, 4, uint32_t, uint32_t, ADDR_ADD_OSH, false)
346 DO_VLDR_SG(vldrw_sg_os_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD_OSW, false)
347 DO_VLDR64_SG(vldrd_sg_os_ud, ADDR_ADD_OSD, false)
348 
349 DO_VSTR_SG(vstrb_sg_ub, stb, 1, uint8_t, ADDR_ADD, false)
350 DO_VSTR_SG(vstrb_sg_uh, stb, 2, uint16_t, ADDR_ADD, false)
351 DO_VSTR_SG(vstrb_sg_uw, stb, 4, uint32_t, ADDR_ADD, false)
352 DO_VSTR_SG(vstrh_sg_uh, stw, 2, uint16_t, ADDR_ADD, false)
353 DO_VSTR_SG(vstrh_sg_uw, stw, 4, uint32_t, ADDR_ADD, false)
354 DO_VSTR_SG(vstrw_sg_uw, stl, 4, uint32_t, ADDR_ADD, false)
355 DO_VSTR64_SG(vstrd_sg_ud, ADDR_ADD, false)
356 
357 DO_VSTR_SG(vstrh_sg_os_uh, stw, 2, uint16_t, ADDR_ADD_OSH, false)
358 DO_VSTR_SG(vstrh_sg_os_uw, stw, 4, uint32_t, ADDR_ADD_OSH, false)
359 DO_VSTR_SG(vstrw_sg_os_uw, stl, 4, uint32_t, ADDR_ADD_OSW, false)
360 DO_VSTR64_SG(vstrd_sg_os_ud, ADDR_ADD_OSD, false)
361 
362 DO_VLDR_SG(vldrw_sg_wb_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD, true)
363 DO_VLDR64_SG(vldrd_sg_wb_ud, ADDR_ADD, true)
364 DO_VSTR_SG(vstrw_sg_wb_uw, stl, 4, uint32_t, ADDR_ADD, true)
365 DO_VSTR64_SG(vstrd_sg_wb_ud, ADDR_ADD, true)
366 
367 /*
368  * Deinterleaving loads/interleaving stores.
369  *
370  * For these helpers we are passed the index of the first Qreg
371  * (VLD2/VST2 will also access Qn+1, VLD4/VST4 access Qn .. Qn+3)
372  * and the value of the base address register Rn.
373  * The helpers are specialized for pattern and element size, so
374  * for instance vld42h is VLD4 with pattern 2, element size MO_16.
375  *
376  * These insns are beatwise but not predicated, so we must honour ECI,
377  * but need not look at mve_element_mask().
378  *
379  * The pseudocode implements these insns with multiple memory accesses
380  * of the element size, but rules R_VVVG and R_FXDM permit us to make
381  * one 32-bit memory access per beat.
382  */
383 #define DO_VLD4B(OP, O1, O2, O3, O4)                                    \
384     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
385                           uint32_t base)                                \
386     {                                                                   \
387         int beat, e;                                                    \
388         uint16_t mask = mve_eci_mask(env);                              \
389         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
390         uint32_t addr, data;                                            \
391         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
392             if ((mask & 1) == 0) {                                      \
393                 /* ECI says skip this beat */                           \
394                 continue;                                               \
395             }                                                           \
396             addr = base + off[beat] * 4;                                \
397             data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
398             for (e = 0; e < 4; e++, data >>= 8) {                       \
399                 uint8_t *qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + e); \
400                 qd[H1(off[beat])] = data;                               \
401             }                                                           \
402         }                                                               \
403     }
404 
405 #define DO_VLD4H(OP, O1, O2)                                            \
406     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
407                           uint32_t base)                                \
408     {                                                                   \
409         int beat;                                                       \
410         uint16_t mask = mve_eci_mask(env);                              \
411         static const uint8_t off[4] = { O1, O1, O2, O2 };               \
412         uint32_t addr, data;                                            \
413         int y; /* y counts 0 2 0 2 */                                   \
414         uint16_t *qd;                                                   \
415         for (beat = 0, y = 0; beat < 4; beat++, mask >>= 4, y ^= 2) {   \
416             if ((mask & 1) == 0) {                                      \
417                 /* ECI says skip this beat */                           \
418                 continue;                                               \
419             }                                                           \
420             addr = base + off[beat] * 8 + (beat & 1) * 4;               \
421             data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
422             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y);             \
423             qd[H2(off[beat])] = data;                                   \
424             data >>= 16;                                                \
425             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y + 1);         \
426             qd[H2(off[beat])] = data;                                   \
427         }                                                               \
428     }
429 
430 #define DO_VLD4W(OP, O1, O2, O3, O4)                                    \
431     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
432                           uint32_t base)                                \
433     {                                                                   \
434         int beat;                                                       \
435         uint16_t mask = mve_eci_mask(env);                              \
436         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
437         uint32_t addr, data;                                            \
438         uint32_t *qd;                                                   \
439         int y;                                                          \
440         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
441             if ((mask & 1) == 0) {                                      \
442                 /* ECI says skip this beat */                           \
443                 continue;                                               \
444             }                                                           \
445             addr = base + off[beat] * 4;                                \
446             data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
447             y = (beat + (O1 & 2)) & 3;                                  \
448             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + y);             \
449             qd[H4(off[beat] >> 2)] = data;                              \
450         }                                                               \
451     }
452 
453 DO_VLD4B(vld40b, 0, 1, 10, 11)
454 DO_VLD4B(vld41b, 2, 3, 12, 13)
455 DO_VLD4B(vld42b, 4, 5, 14, 15)
456 DO_VLD4B(vld43b, 6, 7, 8, 9)
457 
458 DO_VLD4H(vld40h, 0, 5)
459 DO_VLD4H(vld41h, 1, 6)
460 DO_VLD4H(vld42h, 2, 7)
461 DO_VLD4H(vld43h, 3, 4)
462 
463 DO_VLD4W(vld40w, 0, 1, 10, 11)
464 DO_VLD4W(vld41w, 2, 3, 12, 13)
465 DO_VLD4W(vld42w, 4, 5, 14, 15)
466 DO_VLD4W(vld43w, 6, 7, 8, 9)
467 
468 #define DO_VLD2B(OP, O1, O2, O3, O4)                                    \
469     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
470                           uint32_t base)                                \
471     {                                                                   \
472         int beat, e;                                                    \
473         uint16_t mask = mve_eci_mask(env);                              \
474         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
475         uint32_t addr, data;                                            \
476         uint8_t *qd;                                                    \
477         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
478             if ((mask & 1) == 0) {                                      \
479                 /* ECI says skip this beat */                           \
480                 continue;                                               \
481             }                                                           \
482             addr = base + off[beat] * 2;                                \
483             data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
484             for (e = 0; e < 4; e++, data >>= 8) {                       \
485                 qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + (e & 1));    \
486                 qd[H1(off[beat] + (e >> 1))] = data;                    \
487             }                                                           \
488         }                                                               \
489     }
490 
491 #define DO_VLD2H(OP, O1, O2, O3, O4)                                    \
492     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
493                           uint32_t base)                                \
494     {                                                                   \
495         int beat;                                                       \
496         uint16_t mask = mve_eci_mask(env);                              \
497         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
498         uint32_t addr, data;                                            \
499         int e;                                                          \
500         uint16_t *qd;                                                   \
501         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
502             if ((mask & 1) == 0) {                                      \
503                 /* ECI says skip this beat */                           \
504                 continue;                                               \
505             }                                                           \
506             addr = base + off[beat] * 4;                                \
507             data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
508             for (e = 0; e < 2; e++, data >>= 16) {                      \
509                 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + e);         \
510                 qd[H2(off[beat])] = data;                               \
511             }                                                           \
512         }                                                               \
513     }
514 
515 #define DO_VLD2W(OP, O1, O2, O3, O4)                                    \
516     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
517                           uint32_t base)                                \
518     {                                                                   \
519         int beat;                                                       \
520         uint16_t mask = mve_eci_mask(env);                              \
521         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
522         uint32_t addr, data;                                            \
523         uint32_t *qd;                                                   \
524         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
525             if ((mask & 1) == 0) {                                      \
526                 /* ECI says skip this beat */                           \
527                 continue;                                               \
528             }                                                           \
529             addr = base + off[beat];                                    \
530             data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
531             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + (beat & 1));    \
532             qd[H4(off[beat] >> 3)] = data;                              \
533         }                                                               \
534     }
535 
536 DO_VLD2B(vld20b, 0, 2, 12, 14)
537 DO_VLD2B(vld21b, 4, 6, 8, 10)
538 
539 DO_VLD2H(vld20h, 0, 1, 6, 7)
540 DO_VLD2H(vld21h, 2, 3, 4, 5)
541 
542 DO_VLD2W(vld20w, 0, 4, 24, 28)
543 DO_VLD2W(vld21w, 8, 12, 16, 20)
544 
545 #define DO_VST4B(OP, O1, O2, O3, O4)                                    \
546     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
547                           uint32_t base)                                \
548     {                                                                   \
549         int beat, e;                                                    \
550         uint16_t mask = mve_eci_mask(env);                              \
551         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
552         uint32_t addr, data;                                            \
553         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
554             if ((mask & 1) == 0) {                                      \
555                 /* ECI says skip this beat */                           \
556                 continue;                                               \
557             }                                                           \
558             addr = base + off[beat] * 4;                                \
559             data = 0;                                                   \
560             for (e = 3; e >= 0; e--) {                                  \
561                 uint8_t *qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + e); \
562                 data = (data << 8) | qd[H1(off[beat])];                 \
563             }                                                           \
564             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
565         }                                                               \
566     }
567 
568 #define DO_VST4H(OP, O1, O2)                                            \
569     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
570                           uint32_t base)                                \
571     {                                                                   \
572         int beat;                                                       \
573         uint16_t mask = mve_eci_mask(env);                              \
574         static const uint8_t off[4] = { O1, O1, O2, O2 };               \
575         uint32_t addr, data;                                            \
576         int y; /* y counts 0 2 0 2 */                                   \
577         uint16_t *qd;                                                   \
578         for (beat = 0, y = 0; beat < 4; beat++, mask >>= 4, y ^= 2) {   \
579             if ((mask & 1) == 0) {                                      \
580                 /* ECI says skip this beat */                           \
581                 continue;                                               \
582             }                                                           \
583             addr = base + off[beat] * 8 + (beat & 1) * 4;               \
584             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y);             \
585             data = qd[H2(off[beat])];                                   \
586             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y + 1);         \
587             data |= qd[H2(off[beat])] << 16;                            \
588             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
589         }                                                               \
590     }
591 
592 #define DO_VST4W(OP, O1, O2, O3, O4)                                    \
593     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
594                           uint32_t base)                                \
595     {                                                                   \
596         int beat;                                                       \
597         uint16_t mask = mve_eci_mask(env);                              \
598         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
599         uint32_t addr, data;                                            \
600         uint32_t *qd;                                                   \
601         int y;                                                          \
602         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
603             if ((mask & 1) == 0) {                                      \
604                 /* ECI says skip this beat */                           \
605                 continue;                                               \
606             }                                                           \
607             addr = base + off[beat] * 4;                                \
608             y = (beat + (O1 & 2)) & 3;                                  \
609             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + y);             \
610             data = qd[H4(off[beat] >> 2)];                              \
611             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
612         }                                                               \
613     }
614 
615 DO_VST4B(vst40b, 0, 1, 10, 11)
616 DO_VST4B(vst41b, 2, 3, 12, 13)
617 DO_VST4B(vst42b, 4, 5, 14, 15)
618 DO_VST4B(vst43b, 6, 7, 8, 9)
619 
620 DO_VST4H(vst40h, 0, 5)
621 DO_VST4H(vst41h, 1, 6)
622 DO_VST4H(vst42h, 2, 7)
623 DO_VST4H(vst43h, 3, 4)
624 
625 DO_VST4W(vst40w, 0, 1, 10, 11)
626 DO_VST4W(vst41w, 2, 3, 12, 13)
627 DO_VST4W(vst42w, 4, 5, 14, 15)
628 DO_VST4W(vst43w, 6, 7, 8, 9)
629 
630 #define DO_VST2B(OP, O1, O2, O3, O4)                                    \
631     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
632                           uint32_t base)                                \
633     {                                                                   \
634         int beat, e;                                                    \
635         uint16_t mask = mve_eci_mask(env);                              \
636         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
637         uint32_t addr, data;                                            \
638         uint8_t *qd;                                                    \
639         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
640             if ((mask & 1) == 0) {                                      \
641                 /* ECI says skip this beat */                           \
642                 continue;                                               \
643             }                                                           \
644             addr = base + off[beat] * 2;                                \
645             data = 0;                                                   \
646             for (e = 3; e >= 0; e--) {                                  \
647                 qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + (e & 1));    \
648                 data = (data << 8) | qd[H1(off[beat] + (e >> 1))];      \
649             }                                                           \
650             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
651         }                                                               \
652     }
653 
654 #define DO_VST2H(OP, O1, O2, O3, O4)                                    \
655     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
656                           uint32_t base)                                \
657     {                                                                   \
658         int beat;                                                       \
659         uint16_t mask = mve_eci_mask(env);                              \
660         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
661         uint32_t addr, data;                                            \
662         int e;                                                          \
663         uint16_t *qd;                                                   \
664         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
665             if ((mask & 1) == 0) {                                      \
666                 /* ECI says skip this beat */                           \
667                 continue;                                               \
668             }                                                           \
669             addr = base + off[beat] * 4;                                \
670             data = 0;                                                   \
671             for (e = 1; e >= 0; e--) {                                  \
672                 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + e);         \
673                 data = (data << 16) | qd[H2(off[beat])];                \
674             }                                                           \
675             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
676         }                                                               \
677     }
678 
679 #define DO_VST2W(OP, O1, O2, O3, O4)                                    \
680     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
681                           uint32_t base)                                \
682     {                                                                   \
683         int beat;                                                       \
684         uint16_t mask = mve_eci_mask(env);                              \
685         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
686         uint32_t addr, data;                                            \
687         uint32_t *qd;                                                   \
688         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
689             if ((mask & 1) == 0) {                                      \
690                 /* ECI says skip this beat */                           \
691                 continue;                                               \
692             }                                                           \
693             addr = base + off[beat];                                    \
694             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + (beat & 1));    \
695             data = qd[H4(off[beat] >> 3)];                              \
696             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
697         }                                                               \
698     }
699 
700 DO_VST2B(vst20b, 0, 2, 12, 14)
701 DO_VST2B(vst21b, 4, 6, 8, 10)
702 
703 DO_VST2H(vst20h, 0, 1, 6, 7)
704 DO_VST2H(vst21h, 2, 3, 4, 5)
705 
706 DO_VST2W(vst20w, 0, 4, 24, 28)
707 DO_VST2W(vst21w, 8, 12, 16, 20)
708 
709 /*
710  * The mergemask(D, R, M) macro performs the operation "*D = R" but
711  * storing only the bytes which correspond to 1 bits in M,
712  * leaving other bytes in *D unchanged. We use _Generic
713  * to select the correct implementation based on the type of D.
714  */
715 
716 static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask)
717 {
718     if (mask & 1) {
719         *d = r;
720     }
721 }
722 
723 static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask)
724 {
725     mergemask_ub((uint8_t *)d, r, mask);
726 }
727 
728 static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask)
729 {
730     uint16_t bmask = expand_pred_b(mask);
731     *d = (*d & ~bmask) | (r & bmask);
732 }
733 
734 static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask)
735 {
736     mergemask_uh((uint16_t *)d, r, mask);
737 }
738 
739 static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask)
740 {
741     uint32_t bmask = expand_pred_b(mask);
742     *d = (*d & ~bmask) | (r & bmask);
743 }
744 
745 static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask)
746 {
747     mergemask_uw((uint32_t *)d, r, mask);
748 }
749 
750 static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask)
751 {
752     uint64_t bmask = expand_pred_b(mask);
753     *d = (*d & ~bmask) | (r & bmask);
754 }
755 
756 static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask)
757 {
758     mergemask_uq((uint64_t *)d, r, mask);
759 }
760 
761 #define mergemask(D, R, M)                      \
762     _Generic(D,                                 \
763              uint8_t *: mergemask_ub,           \
764              int8_t *:  mergemask_sb,           \
765              uint16_t *: mergemask_uh,          \
766              int16_t *:  mergemask_sh,          \
767              uint32_t *: mergemask_uw,          \
768              int32_t *:  mergemask_sw,          \
769              uint64_t *: mergemask_uq,          \
770              int64_t *:  mergemask_sq)(D, R, M)
771 
772 void HELPER(mve_vdup)(CPUARMState *env, void *vd, uint32_t val)
773 {
774     /*
775      * The generated code already replicated an 8 or 16 bit constant
776      * into the 32-bit value, so we only need to write the 32-bit
777      * value to all elements of the Qreg, allowing for predication.
778      */
779     uint32_t *d = vd;
780     uint16_t mask = mve_element_mask(env);
781     unsigned e;
782     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
783         mergemask(&d[H4(e)], val, mask);
784     }
785     mve_advance_vpt(env);
786 }
787 
788 #define DO_1OP(OP, ESIZE, TYPE, FN)                                     \
789     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
790     {                                                                   \
791         TYPE *d = vd, *m = vm;                                          \
792         uint16_t mask = mve_element_mask(env);                          \
793         unsigned e;                                                     \
794         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
795             mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask);       \
796         }                                                               \
797         mve_advance_vpt(env);                                           \
798     }
799 
800 #define DO_CLS_B(N)   (clrsb32(N) - 24)
801 #define DO_CLS_H(N)   (clrsb32(N) - 16)
802 
803 DO_1OP(vclsb, 1, int8_t, DO_CLS_B)
804 DO_1OP(vclsh, 2, int16_t, DO_CLS_H)
805 DO_1OP(vclsw, 4, int32_t, clrsb32)
806 
807 #define DO_CLZ_B(N)   (clz32(N) - 24)
808 #define DO_CLZ_H(N)   (clz32(N) - 16)
809 
810 DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B)
811 DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H)
812 DO_1OP(vclzw, 4, uint32_t, clz32)
813 
814 DO_1OP(vrev16b, 2, uint16_t, bswap16)
815 DO_1OP(vrev32b, 4, uint32_t, bswap32)
816 DO_1OP(vrev32h, 4, uint32_t, hswap32)
817 DO_1OP(vrev64b, 8, uint64_t, bswap64)
818 DO_1OP(vrev64h, 8, uint64_t, hswap64)
819 DO_1OP(vrev64w, 8, uint64_t, wswap64)
820 
821 #define DO_NOT(N) (~(N))
822 
823 DO_1OP(vmvn, 8, uint64_t, DO_NOT)
824 
825 #define DO_ABS(N) ((N) < 0 ? -(N) : (N))
826 #define DO_FABSH(N)  ((N) & dup_const(MO_16, 0x7fff))
827 #define DO_FABSS(N)  ((N) & dup_const(MO_32, 0x7fffffff))
828 
829 DO_1OP(vabsb, 1, int8_t, DO_ABS)
830 DO_1OP(vabsh, 2, int16_t, DO_ABS)
831 DO_1OP(vabsw, 4, int32_t, DO_ABS)
832 
833 /* We can do these 64 bits at a time */
834 DO_1OP(vfabsh, 8, uint64_t, DO_FABSH)
835 DO_1OP(vfabss, 8, uint64_t, DO_FABSS)
836 
837 #define DO_NEG(N)    (-(N))
838 #define DO_FNEGH(N) ((N) ^ dup_const(MO_16, 0x8000))
839 #define DO_FNEGS(N) ((N) ^ dup_const(MO_32, 0x80000000))
840 
841 DO_1OP(vnegb, 1, int8_t, DO_NEG)
842 DO_1OP(vnegh, 2, int16_t, DO_NEG)
843 DO_1OP(vnegw, 4, int32_t, DO_NEG)
844 
845 /* We can do these 64 bits at a time */
846 DO_1OP(vfnegh, 8, uint64_t, DO_FNEGH)
847 DO_1OP(vfnegs, 8, uint64_t, DO_FNEGS)
848 
849 /*
850  * 1 operand immediates: Vda is destination and possibly also one source.
851  * All these insns work at 64-bit widths.
852  */
853 #define DO_1OP_IMM(OP, FN)                                              \
854     void HELPER(mve_##OP)(CPUARMState *env, void *vda, uint64_t imm)    \
855     {                                                                   \
856         uint64_t *da = vda;                                             \
857         uint16_t mask = mve_element_mask(env);                          \
858         unsigned e;                                                     \
859         for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
860             mergemask(&da[H8(e)], FN(da[H8(e)], imm), mask);            \
861         }                                                               \
862         mve_advance_vpt(env);                                           \
863     }
864 
865 #define DO_MOVI(N, I) (I)
866 #define DO_ANDI(N, I) ((N) & (I))
867 #define DO_ORRI(N, I) ((N) | (I))
868 
869 DO_1OP_IMM(vmovi, DO_MOVI)
870 DO_1OP_IMM(vandi, DO_ANDI)
871 DO_1OP_IMM(vorri, DO_ORRI)
872 
873 #define DO_2OP(OP, ESIZE, TYPE, FN)                                     \
874     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
875                                 void *vd, void *vn, void *vm)           \
876     {                                                                   \
877         TYPE *d = vd, *n = vn, *m = vm;                                 \
878         uint16_t mask = mve_element_mask(env);                          \
879         unsigned e;                                                     \
880         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
881             mergemask(&d[H##ESIZE(e)],                                  \
882                       FN(n[H##ESIZE(e)], m[H##ESIZE(e)]), mask);        \
883         }                                                               \
884         mve_advance_vpt(env);                                           \
885     }
886 
887 /* provide unsigned 2-op helpers for all sizes */
888 #define DO_2OP_U(OP, FN)                        \
889     DO_2OP(OP##b, 1, uint8_t, FN)               \
890     DO_2OP(OP##h, 2, uint16_t, FN)              \
891     DO_2OP(OP##w, 4, uint32_t, FN)
892 
893 /* provide signed 2-op helpers for all sizes */
894 #define DO_2OP_S(OP, FN)                        \
895     DO_2OP(OP##b, 1, int8_t, FN)                \
896     DO_2OP(OP##h, 2, int16_t, FN)               \
897     DO_2OP(OP##w, 4, int32_t, FN)
898 
899 /*
900  * "Long" operations where two half-sized inputs (taken from either the
901  * top or the bottom of the input vector) produce a double-width result.
902  * Here ESIZE, TYPE are for the input, and LESIZE, LTYPE for the output.
903  */
904 #define DO_2OP_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)               \
905     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
906     {                                                                   \
907         LTYPE *d = vd;                                                  \
908         TYPE *n = vn, *m = vm;                                          \
909         uint16_t mask = mve_element_mask(env);                          \
910         unsigned le;                                                    \
911         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
912             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)],              \
913                          m[H##ESIZE(le * 2 + TOP)]);                    \
914             mergemask(&d[H##LESIZE(le)], r, mask);                      \
915         }                                                               \
916         mve_advance_vpt(env);                                           \
917     }
918 
919 #define DO_2OP_SAT(OP, ESIZE, TYPE, FN)                                 \
920     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
921     {                                                                   \
922         TYPE *d = vd, *n = vn, *m = vm;                                 \
923         uint16_t mask = mve_element_mask(env);                          \
924         unsigned e;                                                     \
925         bool qc = false;                                                \
926         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
927             bool sat = false;                                           \
928             TYPE r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], &sat);          \
929             mergemask(&d[H##ESIZE(e)], r, mask);                        \
930             qc |= sat & mask & 1;                                       \
931         }                                                               \
932         if (qc) {                                                       \
933             env->vfp.qc[0] = qc;                                        \
934         }                                                               \
935         mve_advance_vpt(env);                                           \
936     }
937 
938 /* provide unsigned 2-op helpers for all sizes */
939 #define DO_2OP_SAT_U(OP, FN)                    \
940     DO_2OP_SAT(OP##b, 1, uint8_t, FN)           \
941     DO_2OP_SAT(OP##h, 2, uint16_t, FN)          \
942     DO_2OP_SAT(OP##w, 4, uint32_t, FN)
943 
944 /* provide signed 2-op helpers for all sizes */
945 #define DO_2OP_SAT_S(OP, FN)                    \
946     DO_2OP_SAT(OP##b, 1, int8_t, FN)            \
947     DO_2OP_SAT(OP##h, 2, int16_t, FN)           \
948     DO_2OP_SAT(OP##w, 4, int32_t, FN)
949 
950 #define DO_AND(N, M)  ((N) & (M))
951 #define DO_BIC(N, M)  ((N) & ~(M))
952 #define DO_ORR(N, M)  ((N) | (M))
953 #define DO_ORN(N, M)  ((N) | ~(M))
954 #define DO_EOR(N, M)  ((N) ^ (M))
955 
956 DO_2OP(vand, 8, uint64_t, DO_AND)
957 DO_2OP(vbic, 8, uint64_t, DO_BIC)
958 DO_2OP(vorr, 8, uint64_t, DO_ORR)
959 DO_2OP(vorn, 8, uint64_t, DO_ORN)
960 DO_2OP(veor, 8, uint64_t, DO_EOR)
961 
962 #define DO_ADD(N, M) ((N) + (M))
963 #define DO_SUB(N, M) ((N) - (M))
964 #define DO_MUL(N, M) ((N) * (M))
965 
966 DO_2OP_U(vadd, DO_ADD)
967 DO_2OP_U(vsub, DO_SUB)
968 DO_2OP_U(vmul, DO_MUL)
969 
970 DO_2OP_L(vmullbsb, 0, 1, int8_t, 2, int16_t, DO_MUL)
971 DO_2OP_L(vmullbsh, 0, 2, int16_t, 4, int32_t, DO_MUL)
972 DO_2OP_L(vmullbsw, 0, 4, int32_t, 8, int64_t, DO_MUL)
973 DO_2OP_L(vmullbub, 0, 1, uint8_t, 2, uint16_t, DO_MUL)
974 DO_2OP_L(vmullbuh, 0, 2, uint16_t, 4, uint32_t, DO_MUL)
975 DO_2OP_L(vmullbuw, 0, 4, uint32_t, 8, uint64_t, DO_MUL)
976 
977 DO_2OP_L(vmulltsb, 1, 1, int8_t, 2, int16_t, DO_MUL)
978 DO_2OP_L(vmulltsh, 1, 2, int16_t, 4, int32_t, DO_MUL)
979 DO_2OP_L(vmulltsw, 1, 4, int32_t, 8, int64_t, DO_MUL)
980 DO_2OP_L(vmulltub, 1, 1, uint8_t, 2, uint16_t, DO_MUL)
981 DO_2OP_L(vmulltuh, 1, 2, uint16_t, 4, uint32_t, DO_MUL)
982 DO_2OP_L(vmulltuw, 1, 4, uint32_t, 8, uint64_t, DO_MUL)
983 
984 /*
985  * Polynomial multiply. We can always do this generating 64 bits
986  * of the result at a time, so we don't need to use DO_2OP_L.
987  */
988 #define VMULLPW_MASK 0x0000ffff0000ffffULL
989 #define DO_VMULLPBW(N, M) pmull_w((N) & VMULLPW_MASK, (M) & VMULLPW_MASK)
990 #define DO_VMULLPTW(N, M) DO_VMULLPBW((N) >> 16, (M) >> 16)
991 
992 DO_2OP(vmullpbh, 8, uint64_t, clmul_8x4_even)
993 DO_2OP(vmullpth, 8, uint64_t, clmul_8x4_odd)
994 DO_2OP(vmullpbw, 8, uint64_t, DO_VMULLPBW)
995 DO_2OP(vmullptw, 8, uint64_t, DO_VMULLPTW)
996 
997 /*
998  * Because the computation type is at least twice as large as required,
999  * these work for both signed and unsigned source types.
1000  */
1001 static inline uint8_t do_mulh_b(int32_t n, int32_t m)
1002 {
1003     return (n * m) >> 8;
1004 }
1005 
1006 static inline uint16_t do_mulh_h(int32_t n, int32_t m)
1007 {
1008     return (n * m) >> 16;
1009 }
1010 
1011 static inline uint32_t do_mulh_w(int64_t n, int64_t m)
1012 {
1013     return (n * m) >> 32;
1014 }
1015 
1016 static inline uint8_t do_rmulh_b(int32_t n, int32_t m)
1017 {
1018     return (n * m + (1U << 7)) >> 8;
1019 }
1020 
1021 static inline uint16_t do_rmulh_h(int32_t n, int32_t m)
1022 {
1023     return (n * m + (1U << 15)) >> 16;
1024 }
1025 
1026 static inline uint32_t do_rmulh_w(int64_t n, int64_t m)
1027 {
1028     return (n * m + (1U << 31)) >> 32;
1029 }
1030 
1031 DO_2OP(vmulhsb, 1, int8_t, do_mulh_b)
1032 DO_2OP(vmulhsh, 2, int16_t, do_mulh_h)
1033 DO_2OP(vmulhsw, 4, int32_t, do_mulh_w)
1034 DO_2OP(vmulhub, 1, uint8_t, do_mulh_b)
1035 DO_2OP(vmulhuh, 2, uint16_t, do_mulh_h)
1036 DO_2OP(vmulhuw, 4, uint32_t, do_mulh_w)
1037 
1038 DO_2OP(vrmulhsb, 1, int8_t, do_rmulh_b)
1039 DO_2OP(vrmulhsh, 2, int16_t, do_rmulh_h)
1040 DO_2OP(vrmulhsw, 4, int32_t, do_rmulh_w)
1041 DO_2OP(vrmulhub, 1, uint8_t, do_rmulh_b)
1042 DO_2OP(vrmulhuh, 2, uint16_t, do_rmulh_h)
1043 DO_2OP(vrmulhuw, 4, uint32_t, do_rmulh_w)
1044 
1045 #define DO_MAX(N, M)  ((N) >= (M) ? (N) : (M))
1046 #define DO_MIN(N, M)  ((N) >= (M) ? (M) : (N))
1047 
1048 DO_2OP_S(vmaxs, DO_MAX)
1049 DO_2OP_U(vmaxu, DO_MAX)
1050 DO_2OP_S(vmins, DO_MIN)
1051 DO_2OP_U(vminu, DO_MIN)
1052 
1053 #define DO_ABD(N, M)  ((N) >= (M) ? (N) - (M) : (M) - (N))
1054 
1055 DO_2OP_S(vabds, DO_ABD)
1056 DO_2OP_U(vabdu, DO_ABD)
1057 
1058 static inline uint32_t do_vhadd_u(uint32_t n, uint32_t m)
1059 {
1060     return ((uint64_t)n + m) >> 1;
1061 }
1062 
1063 static inline int32_t do_vhadd_s(int32_t n, int32_t m)
1064 {
1065     return ((int64_t)n + m) >> 1;
1066 }
1067 
1068 static inline uint32_t do_vhsub_u(uint32_t n, uint32_t m)
1069 {
1070     return ((uint64_t)n - m) >> 1;
1071 }
1072 
1073 static inline int32_t do_vhsub_s(int32_t n, int32_t m)
1074 {
1075     return ((int64_t)n - m) >> 1;
1076 }
1077 
1078 DO_2OP_S(vhadds, do_vhadd_s)
1079 DO_2OP_U(vhaddu, do_vhadd_u)
1080 DO_2OP_S(vhsubs, do_vhsub_s)
1081 DO_2OP_U(vhsubu, do_vhsub_u)
1082 
1083 #define DO_VSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
1084 #define DO_VSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
1085 #define DO_VRSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
1086 #define DO_VRSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
1087 
1088 DO_2OP_S(vshls, DO_VSHLS)
1089 DO_2OP_U(vshlu, DO_VSHLU)
1090 DO_2OP_S(vrshls, DO_VRSHLS)
1091 DO_2OP_U(vrshlu, DO_VRSHLU)
1092 
1093 #define DO_RHADD_S(N, M) (((int64_t)(N) + (M) + 1) >> 1)
1094 #define DO_RHADD_U(N, M) (((uint64_t)(N) + (M) + 1) >> 1)
1095 
1096 DO_2OP_S(vrhadds, DO_RHADD_S)
1097 DO_2OP_U(vrhaddu, DO_RHADD_U)
1098 
1099 static void do_vadc(CPUARMState *env, uint32_t *d, uint32_t *n, uint32_t *m,
1100                     uint32_t inv, uint32_t carry_in, bool update_flags)
1101 {
1102     uint16_t mask = mve_element_mask(env);
1103     unsigned e;
1104 
1105     /* If any additions trigger, we will update flags. */
1106     if (mask & 0x1111) {
1107         update_flags = true;
1108     }
1109 
1110     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
1111         uint64_t r = carry_in;
1112         r += n[H4(e)];
1113         r += m[H4(e)] ^ inv;
1114         if (mask & 1) {
1115             carry_in = r >> 32;
1116         }
1117         mergemask(&d[H4(e)], r, mask);
1118     }
1119 
1120     if (update_flags) {
1121         /* Store C, clear NZV. */
1122         env->vfp.xregs[ARM_VFP_FPSCR] &= ~FPCR_NZCV_MASK;
1123         env->vfp.xregs[ARM_VFP_FPSCR] |= carry_in * FPCR_C;
1124     }
1125     mve_advance_vpt(env);
1126 }
1127 
1128 void HELPER(mve_vadc)(CPUARMState *env, void *vd, void *vn, void *vm)
1129 {
1130     bool carry_in = env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_C;
1131     do_vadc(env, vd, vn, vm, 0, carry_in, false);
1132 }
1133 
1134 void HELPER(mve_vsbc)(CPUARMState *env, void *vd, void *vn, void *vm)
1135 {
1136     bool carry_in = env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_C;
1137     do_vadc(env, vd, vn, vm, -1, carry_in, false);
1138 }
1139 
1140 
1141 void HELPER(mve_vadci)(CPUARMState *env, void *vd, void *vn, void *vm)
1142 {
1143     do_vadc(env, vd, vn, vm, 0, 0, true);
1144 }
1145 
1146 void HELPER(mve_vsbci)(CPUARMState *env, void *vd, void *vn, void *vm)
1147 {
1148     do_vadc(env, vd, vn, vm, -1, 1, true);
1149 }
1150 
1151 #define DO_VCADD(OP, ESIZE, TYPE, FN0, FN1)                             \
1152     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
1153     {                                                                   \
1154         TYPE *d = vd, *n = vn, *m = vm;                                 \
1155         uint16_t mask = mve_element_mask(env);                          \
1156         unsigned e;                                                     \
1157         TYPE r[16 / ESIZE];                                             \
1158         /* Calculate all results first to avoid overwriting inputs */   \
1159         for (e = 0; e < 16 / ESIZE; e++) {                              \
1160             if (!(e & 1)) {                                             \
1161                 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)]);         \
1162             } else {                                                    \
1163                 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)]);         \
1164             }                                                           \
1165         }                                                               \
1166         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1167             mergemask(&d[H##ESIZE(e)], r[e], mask);                     \
1168         }                                                               \
1169         mve_advance_vpt(env);                                           \
1170     }
1171 
1172 #define DO_VCADD_ALL(OP, FN0, FN1)              \
1173     DO_VCADD(OP##b, 1, int8_t, FN0, FN1)        \
1174     DO_VCADD(OP##h, 2, int16_t, FN0, FN1)       \
1175     DO_VCADD(OP##w, 4, int32_t, FN0, FN1)
1176 
1177 DO_VCADD_ALL(vcadd90, DO_SUB, DO_ADD)
1178 DO_VCADD_ALL(vcadd270, DO_ADD, DO_SUB)
1179 DO_VCADD_ALL(vhcadd90, do_vhsub_s, do_vhadd_s)
1180 DO_VCADD_ALL(vhcadd270, do_vhadd_s, do_vhsub_s)
1181 
1182 static inline int32_t do_sat_bhw(int64_t val, int64_t min, int64_t max, bool *s)
1183 {
1184     if (val > max) {
1185         *s = true;
1186         return max;
1187     } else if (val < min) {
1188         *s = true;
1189         return min;
1190     }
1191     return val;
1192 }
1193 
1194 #define DO_SQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, INT8_MIN, INT8_MAX, s)
1195 #define DO_SQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, INT16_MIN, INT16_MAX, s)
1196 #define DO_SQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, INT32_MIN, INT32_MAX, s)
1197 
1198 #define DO_UQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT8_MAX, s)
1199 #define DO_UQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT16_MAX, s)
1200 #define DO_UQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT32_MAX, s)
1201 
1202 #define DO_SQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, INT8_MIN, INT8_MAX, s)
1203 #define DO_SQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, INT16_MIN, INT16_MAX, s)
1204 #define DO_SQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, INT32_MIN, INT32_MAX, s)
1205 
1206 #define DO_UQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT8_MAX, s)
1207 #define DO_UQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT16_MAX, s)
1208 #define DO_UQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT32_MAX, s)
1209 
1210 /*
1211  * For QDMULH and QRDMULH we simplify "double and shift by esize" into
1212  * "shift by esize-1", adjusting the QRDMULH rounding constant to match.
1213  */
1214 #define DO_QDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m) >> 7, \
1215                                         INT8_MIN, INT8_MAX, s)
1216 #define DO_QDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m) >> 15, \
1217                                         INT16_MIN, INT16_MAX, s)
1218 #define DO_QDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m) >> 31, \
1219                                         INT32_MIN, INT32_MAX, s)
1220 
1221 #define DO_QRDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 6)) >> 7, \
1222                                          INT8_MIN, INT8_MAX, s)
1223 #define DO_QRDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 14)) >> 15, \
1224                                          INT16_MIN, INT16_MAX, s)
1225 #define DO_QRDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 30)) >> 31, \
1226                                          INT32_MIN, INT32_MAX, s)
1227 
1228 DO_2OP_SAT(vqdmulhb, 1, int8_t, DO_QDMULH_B)
1229 DO_2OP_SAT(vqdmulhh, 2, int16_t, DO_QDMULH_H)
1230 DO_2OP_SAT(vqdmulhw, 4, int32_t, DO_QDMULH_W)
1231 
1232 DO_2OP_SAT(vqrdmulhb, 1, int8_t, DO_QRDMULH_B)
1233 DO_2OP_SAT(vqrdmulhh, 2, int16_t, DO_QRDMULH_H)
1234 DO_2OP_SAT(vqrdmulhw, 4, int32_t, DO_QRDMULH_W)
1235 
1236 DO_2OP_SAT(vqaddub, 1, uint8_t, DO_UQADD_B)
1237 DO_2OP_SAT(vqadduh, 2, uint16_t, DO_UQADD_H)
1238 DO_2OP_SAT(vqadduw, 4, uint32_t, DO_UQADD_W)
1239 DO_2OP_SAT(vqaddsb, 1, int8_t, DO_SQADD_B)
1240 DO_2OP_SAT(vqaddsh, 2, int16_t, DO_SQADD_H)
1241 DO_2OP_SAT(vqaddsw, 4, int32_t, DO_SQADD_W)
1242 
1243 DO_2OP_SAT(vqsubub, 1, uint8_t, DO_UQSUB_B)
1244 DO_2OP_SAT(vqsubuh, 2, uint16_t, DO_UQSUB_H)
1245 DO_2OP_SAT(vqsubuw, 4, uint32_t, DO_UQSUB_W)
1246 DO_2OP_SAT(vqsubsb, 1, int8_t, DO_SQSUB_B)
1247 DO_2OP_SAT(vqsubsh, 2, int16_t, DO_SQSUB_H)
1248 DO_2OP_SAT(vqsubsw, 4, int32_t, DO_SQSUB_W)
1249 
1250 /*
1251  * This wrapper fixes up the impedance mismatch between do_sqrshl_bhs()
1252  * and friends wanting a uint32_t* sat and our needing a bool*.
1253  */
1254 #define WRAP_QRSHL_HELPER(FN, N, M, ROUND, satp)                        \
1255     ({                                                                  \
1256         uint32_t su32 = 0;                                              \
1257         typeof(N) r = FN(N, (int8_t)(M), sizeof(N) * 8, ROUND, &su32);  \
1258         if (su32) {                                                     \
1259             *satp = true;                                               \
1260         }                                                               \
1261         r;                                                              \
1262     })
1263 
1264 #define DO_SQSHL_OP(N, M, satp) \
1265     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, false, satp)
1266 #define DO_UQSHL_OP(N, M, satp) \
1267     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, false, satp)
1268 #define DO_SQRSHL_OP(N, M, satp) \
1269     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, true, satp)
1270 #define DO_UQRSHL_OP(N, M, satp) \
1271     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, true, satp)
1272 #define DO_SUQSHL_OP(N, M, satp) \
1273     WRAP_QRSHL_HELPER(do_suqrshl_bhs, N, M, false, satp)
1274 
1275 DO_2OP_SAT_S(vqshls, DO_SQSHL_OP)
1276 DO_2OP_SAT_U(vqshlu, DO_UQSHL_OP)
1277 DO_2OP_SAT_S(vqrshls, DO_SQRSHL_OP)
1278 DO_2OP_SAT_U(vqrshlu, DO_UQRSHL_OP)
1279 
1280 /*
1281  * Multiply add dual returning high half
1282  * The 'FN' here takes four inputs A, B, C, D, a 0/1 indicator of
1283  * whether to add the rounding constant, and the pointer to the
1284  * saturation flag, and should do "(A * B + C * D) * 2 + rounding constant",
1285  * saturate to twice the input size and return the high half; or
1286  * (A * B - C * D) etc for VQDMLSDH.
1287  */
1288 #define DO_VQDMLADH_OP(OP, ESIZE, TYPE, XCHG, ROUND, FN)                \
1289     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1290                                 void *vm)                               \
1291     {                                                                   \
1292         TYPE *d = vd, *n = vn, *m = vm;                                 \
1293         uint16_t mask = mve_element_mask(env);                          \
1294         unsigned e;                                                     \
1295         bool qc = false;                                                \
1296         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1297             bool sat = false;                                           \
1298             if ((e & 1) == XCHG) {                                      \
1299                 TYPE r = FN(n[H##ESIZE(e)],                             \
1300                             m[H##ESIZE(e - XCHG)],                      \
1301                             n[H##ESIZE(e + (1 - 2 * XCHG))],            \
1302                             m[H##ESIZE(e + (1 - XCHG))],                \
1303                             ROUND, &sat);                               \
1304                 mergemask(&d[H##ESIZE(e)], r, mask);                    \
1305                 qc |= sat & mask & 1;                                   \
1306             }                                                           \
1307         }                                                               \
1308         if (qc) {                                                       \
1309             env->vfp.qc[0] = qc;                                        \
1310         }                                                               \
1311         mve_advance_vpt(env);                                           \
1312     }
1313 
1314 static int8_t do_vqdmladh_b(int8_t a, int8_t b, int8_t c, int8_t d,
1315                             int round, bool *sat)
1316 {
1317     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 7);
1318     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1319 }
1320 
1321 static int16_t do_vqdmladh_h(int16_t a, int16_t b, int16_t c, int16_t d,
1322                              int round, bool *sat)
1323 {
1324     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 15);
1325     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1326 }
1327 
1328 static int32_t do_vqdmladh_w(int32_t a, int32_t b, int32_t c, int32_t d,
1329                              int round, bool *sat)
1330 {
1331     int64_t m1 = (int64_t)a * b;
1332     int64_t m2 = (int64_t)c * d;
1333     int64_t r;
1334     /*
1335      * Architecturally we should do the entire add, double, round
1336      * and then check for saturation. We do three saturating adds,
1337      * but we need to be careful about the order. If the first
1338      * m1 + m2 saturates then it's impossible for the *2+rc to
1339      * bring it back into the non-saturated range. However, if
1340      * m1 + m2 is negative then it's possible that doing the doubling
1341      * would take the intermediate result below INT64_MAX and the
1342      * addition of the rounding constant then brings it back in range.
1343      * So we add half the rounding constant before doubling rather
1344      * than adding the rounding constant after the doubling.
1345      */
1346     if (sadd64_overflow(m1, m2, &r) ||
1347         sadd64_overflow(r, (round << 30), &r) ||
1348         sadd64_overflow(r, r, &r)) {
1349         *sat = true;
1350         return r < 0 ? INT32_MAX : INT32_MIN;
1351     }
1352     return r >> 32;
1353 }
1354 
1355 static int8_t do_vqdmlsdh_b(int8_t a, int8_t b, int8_t c, int8_t d,
1356                             int round, bool *sat)
1357 {
1358     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 7);
1359     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1360 }
1361 
1362 static int16_t do_vqdmlsdh_h(int16_t a, int16_t b, int16_t c, int16_t d,
1363                              int round, bool *sat)
1364 {
1365     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 15);
1366     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1367 }
1368 
1369 static int32_t do_vqdmlsdh_w(int32_t a, int32_t b, int32_t c, int32_t d,
1370                              int round, bool *sat)
1371 {
1372     int64_t m1 = (int64_t)a * b;
1373     int64_t m2 = (int64_t)c * d;
1374     int64_t r;
1375     /* The same ordering issue as in do_vqdmladh_w applies here too */
1376     if (ssub64_overflow(m1, m2, &r) ||
1377         sadd64_overflow(r, (round << 30), &r) ||
1378         sadd64_overflow(r, r, &r)) {
1379         *sat = true;
1380         return r < 0 ? INT32_MAX : INT32_MIN;
1381     }
1382     return r >> 32;
1383 }
1384 
1385 DO_VQDMLADH_OP(vqdmladhb, 1, int8_t, 0, 0, do_vqdmladh_b)
1386 DO_VQDMLADH_OP(vqdmladhh, 2, int16_t, 0, 0, do_vqdmladh_h)
1387 DO_VQDMLADH_OP(vqdmladhw, 4, int32_t, 0, 0, do_vqdmladh_w)
1388 DO_VQDMLADH_OP(vqdmladhxb, 1, int8_t, 1, 0, do_vqdmladh_b)
1389 DO_VQDMLADH_OP(vqdmladhxh, 2, int16_t, 1, 0, do_vqdmladh_h)
1390 DO_VQDMLADH_OP(vqdmladhxw, 4, int32_t, 1, 0, do_vqdmladh_w)
1391 
1392 DO_VQDMLADH_OP(vqrdmladhb, 1, int8_t, 0, 1, do_vqdmladh_b)
1393 DO_VQDMLADH_OP(vqrdmladhh, 2, int16_t, 0, 1, do_vqdmladh_h)
1394 DO_VQDMLADH_OP(vqrdmladhw, 4, int32_t, 0, 1, do_vqdmladh_w)
1395 DO_VQDMLADH_OP(vqrdmladhxb, 1, int8_t, 1, 1, do_vqdmladh_b)
1396 DO_VQDMLADH_OP(vqrdmladhxh, 2, int16_t, 1, 1, do_vqdmladh_h)
1397 DO_VQDMLADH_OP(vqrdmladhxw, 4, int32_t, 1, 1, do_vqdmladh_w)
1398 
1399 DO_VQDMLADH_OP(vqdmlsdhb, 1, int8_t, 0, 0, do_vqdmlsdh_b)
1400 DO_VQDMLADH_OP(vqdmlsdhh, 2, int16_t, 0, 0, do_vqdmlsdh_h)
1401 DO_VQDMLADH_OP(vqdmlsdhw, 4, int32_t, 0, 0, do_vqdmlsdh_w)
1402 DO_VQDMLADH_OP(vqdmlsdhxb, 1, int8_t, 1, 0, do_vqdmlsdh_b)
1403 DO_VQDMLADH_OP(vqdmlsdhxh, 2, int16_t, 1, 0, do_vqdmlsdh_h)
1404 DO_VQDMLADH_OP(vqdmlsdhxw, 4, int32_t, 1, 0, do_vqdmlsdh_w)
1405 
1406 DO_VQDMLADH_OP(vqrdmlsdhb, 1, int8_t, 0, 1, do_vqdmlsdh_b)
1407 DO_VQDMLADH_OP(vqrdmlsdhh, 2, int16_t, 0, 1, do_vqdmlsdh_h)
1408 DO_VQDMLADH_OP(vqrdmlsdhw, 4, int32_t, 0, 1, do_vqdmlsdh_w)
1409 DO_VQDMLADH_OP(vqrdmlsdhxb, 1, int8_t, 1, 1, do_vqdmlsdh_b)
1410 DO_VQDMLADH_OP(vqrdmlsdhxh, 2, int16_t, 1, 1, do_vqdmlsdh_h)
1411 DO_VQDMLADH_OP(vqrdmlsdhxw, 4, int32_t, 1, 1, do_vqdmlsdh_w)
1412 
1413 #define DO_2OP_SCALAR(OP, ESIZE, TYPE, FN)                              \
1414     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1415                                 uint32_t rm)                            \
1416     {                                                                   \
1417         TYPE *d = vd, *n = vn;                                          \
1418         TYPE m = rm;                                                    \
1419         uint16_t mask = mve_element_mask(env);                          \
1420         unsigned e;                                                     \
1421         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1422             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m), mask);    \
1423         }                                                               \
1424         mve_advance_vpt(env);                                           \
1425     }
1426 
1427 #define DO_2OP_SAT_SCALAR(OP, ESIZE, TYPE, FN)                          \
1428     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1429                                 uint32_t rm)                            \
1430     {                                                                   \
1431         TYPE *d = vd, *n = vn;                                          \
1432         TYPE m = rm;                                                    \
1433         uint16_t mask = mve_element_mask(env);                          \
1434         unsigned e;                                                     \
1435         bool qc = false;                                                \
1436         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1437             bool sat = false;                                           \
1438             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m, &sat),     \
1439                       mask);                                            \
1440             qc |= sat & mask & 1;                                       \
1441         }                                                               \
1442         if (qc) {                                                       \
1443             env->vfp.qc[0] = qc;                                        \
1444         }                                                               \
1445         mve_advance_vpt(env);                                           \
1446     }
1447 
1448 /* "accumulating" version where FN takes d as well as n and m */
1449 #define DO_2OP_ACC_SCALAR(OP, ESIZE, TYPE, FN)                          \
1450     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1451                                 uint32_t rm)                            \
1452     {                                                                   \
1453         TYPE *d = vd, *n = vn;                                          \
1454         TYPE m = rm;                                                    \
1455         uint16_t mask = mve_element_mask(env);                          \
1456         unsigned e;                                                     \
1457         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1458             mergemask(&d[H##ESIZE(e)],                                  \
1459                       FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m), mask);     \
1460         }                                                               \
1461         mve_advance_vpt(env);                                           \
1462     }
1463 
1464 #define DO_2OP_SAT_ACC_SCALAR(OP, ESIZE, TYPE, FN)                      \
1465     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1466                                 uint32_t rm)                            \
1467     {                                                                   \
1468         TYPE *d = vd, *n = vn;                                          \
1469         TYPE m = rm;                                                    \
1470         uint16_t mask = mve_element_mask(env);                          \
1471         unsigned e;                                                     \
1472         bool qc = false;                                                \
1473         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1474             bool sat = false;                                           \
1475             mergemask(&d[H##ESIZE(e)],                                  \
1476                       FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m, &sat),      \
1477                       mask);                                            \
1478             qc |= sat & mask & 1;                                       \
1479         }                                                               \
1480         if (qc) {                                                       \
1481             env->vfp.qc[0] = qc;                                        \
1482         }                                                               \
1483         mve_advance_vpt(env);                                           \
1484     }
1485 
1486 /* provide unsigned 2-op scalar helpers for all sizes */
1487 #define DO_2OP_SCALAR_U(OP, FN)                 \
1488     DO_2OP_SCALAR(OP##b, 1, uint8_t, FN)        \
1489     DO_2OP_SCALAR(OP##h, 2, uint16_t, FN)       \
1490     DO_2OP_SCALAR(OP##w, 4, uint32_t, FN)
1491 #define DO_2OP_SCALAR_S(OP, FN)                 \
1492     DO_2OP_SCALAR(OP##b, 1, int8_t, FN)         \
1493     DO_2OP_SCALAR(OP##h, 2, int16_t, FN)        \
1494     DO_2OP_SCALAR(OP##w, 4, int32_t, FN)
1495 
1496 #define DO_2OP_ACC_SCALAR_U(OP, FN)             \
1497     DO_2OP_ACC_SCALAR(OP##b, 1, uint8_t, FN)    \
1498     DO_2OP_ACC_SCALAR(OP##h, 2, uint16_t, FN)   \
1499     DO_2OP_ACC_SCALAR(OP##w, 4, uint32_t, FN)
1500 
1501 DO_2OP_SCALAR_U(vadd_scalar, DO_ADD)
1502 DO_2OP_SCALAR_U(vsub_scalar, DO_SUB)
1503 DO_2OP_SCALAR_U(vmul_scalar, DO_MUL)
1504 DO_2OP_SCALAR_S(vhadds_scalar, do_vhadd_s)
1505 DO_2OP_SCALAR_U(vhaddu_scalar, do_vhadd_u)
1506 DO_2OP_SCALAR_S(vhsubs_scalar, do_vhsub_s)
1507 DO_2OP_SCALAR_U(vhsubu_scalar, do_vhsub_u)
1508 
1509 DO_2OP_SAT_SCALAR(vqaddu_scalarb, 1, uint8_t, DO_UQADD_B)
1510 DO_2OP_SAT_SCALAR(vqaddu_scalarh, 2, uint16_t, DO_UQADD_H)
1511 DO_2OP_SAT_SCALAR(vqaddu_scalarw, 4, uint32_t, DO_UQADD_W)
1512 DO_2OP_SAT_SCALAR(vqadds_scalarb, 1, int8_t, DO_SQADD_B)
1513 DO_2OP_SAT_SCALAR(vqadds_scalarh, 2, int16_t, DO_SQADD_H)
1514 DO_2OP_SAT_SCALAR(vqadds_scalarw, 4, int32_t, DO_SQADD_W)
1515 
1516 DO_2OP_SAT_SCALAR(vqsubu_scalarb, 1, uint8_t, DO_UQSUB_B)
1517 DO_2OP_SAT_SCALAR(vqsubu_scalarh, 2, uint16_t, DO_UQSUB_H)
1518 DO_2OP_SAT_SCALAR(vqsubu_scalarw, 4, uint32_t, DO_UQSUB_W)
1519 DO_2OP_SAT_SCALAR(vqsubs_scalarb, 1, int8_t, DO_SQSUB_B)
1520 DO_2OP_SAT_SCALAR(vqsubs_scalarh, 2, int16_t, DO_SQSUB_H)
1521 DO_2OP_SAT_SCALAR(vqsubs_scalarw, 4, int32_t, DO_SQSUB_W)
1522 
1523 DO_2OP_SAT_SCALAR(vqdmulh_scalarb, 1, int8_t, DO_QDMULH_B)
1524 DO_2OP_SAT_SCALAR(vqdmulh_scalarh, 2, int16_t, DO_QDMULH_H)
1525 DO_2OP_SAT_SCALAR(vqdmulh_scalarw, 4, int32_t, DO_QDMULH_W)
1526 DO_2OP_SAT_SCALAR(vqrdmulh_scalarb, 1, int8_t, DO_QRDMULH_B)
1527 DO_2OP_SAT_SCALAR(vqrdmulh_scalarh, 2, int16_t, DO_QRDMULH_H)
1528 DO_2OP_SAT_SCALAR(vqrdmulh_scalarw, 4, int32_t, DO_QRDMULH_W)
1529 
1530 static int8_t do_vqdmlah_b(int8_t a, int8_t b, int8_t c, int round, bool *sat)
1531 {
1532     int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 8) + (round << 7);
1533     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1534 }
1535 
1536 static int16_t do_vqdmlah_h(int16_t a, int16_t b, int16_t c,
1537                            int round, bool *sat)
1538 {
1539     int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 16) + (round << 15);
1540     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1541 }
1542 
1543 static int32_t do_vqdmlah_w(int32_t a, int32_t b, int32_t c,
1544                             int round, bool *sat)
1545 {
1546     /*
1547      * Architecturally we should do the entire add, double, round
1548      * and then check for saturation. We do three saturating adds,
1549      * but we need to be careful about the order. If the first
1550      * m1 + m2 saturates then it's impossible for the *2+rc to
1551      * bring it back into the non-saturated range. However, if
1552      * m1 + m2 is negative then it's possible that doing the doubling
1553      * would take the intermediate result below INT64_MAX and the
1554      * addition of the rounding constant then brings it back in range.
1555      * So we add half the rounding constant and half the "c << esize"
1556      * before doubling rather than adding the rounding constant after
1557      * the doubling.
1558      */
1559     int64_t m1 = (int64_t)a * b;
1560     int64_t m2 = (int64_t)c << 31;
1561     int64_t r;
1562     if (sadd64_overflow(m1, m2, &r) ||
1563         sadd64_overflow(r, (round << 30), &r) ||
1564         sadd64_overflow(r, r, &r)) {
1565         *sat = true;
1566         return r < 0 ? INT32_MAX : INT32_MIN;
1567     }
1568     return r >> 32;
1569 }
1570 
1571 /*
1572  * The *MLAH insns are vector * scalar + vector;
1573  * the *MLASH insns are vector * vector + scalar
1574  */
1575 #define DO_VQDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 0, S)
1576 #define DO_VQDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 0, S)
1577 #define DO_VQDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 0, S)
1578 #define DO_VQRDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 1, S)
1579 #define DO_VQRDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 1, S)
1580 #define DO_VQRDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 1, S)
1581 
1582 #define DO_VQDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 0, S)
1583 #define DO_VQDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 0, S)
1584 #define DO_VQDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 0, S)
1585 #define DO_VQRDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 1, S)
1586 #define DO_VQRDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 1, S)
1587 #define DO_VQRDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 1, S)
1588 
1589 DO_2OP_SAT_ACC_SCALAR(vqdmlahb, 1, int8_t, DO_VQDMLAH_B)
1590 DO_2OP_SAT_ACC_SCALAR(vqdmlahh, 2, int16_t, DO_VQDMLAH_H)
1591 DO_2OP_SAT_ACC_SCALAR(vqdmlahw, 4, int32_t, DO_VQDMLAH_W)
1592 DO_2OP_SAT_ACC_SCALAR(vqrdmlahb, 1, int8_t, DO_VQRDMLAH_B)
1593 DO_2OP_SAT_ACC_SCALAR(vqrdmlahh, 2, int16_t, DO_VQRDMLAH_H)
1594 DO_2OP_SAT_ACC_SCALAR(vqrdmlahw, 4, int32_t, DO_VQRDMLAH_W)
1595 
1596 DO_2OP_SAT_ACC_SCALAR(vqdmlashb, 1, int8_t, DO_VQDMLASH_B)
1597 DO_2OP_SAT_ACC_SCALAR(vqdmlashh, 2, int16_t, DO_VQDMLASH_H)
1598 DO_2OP_SAT_ACC_SCALAR(vqdmlashw, 4, int32_t, DO_VQDMLASH_W)
1599 DO_2OP_SAT_ACC_SCALAR(vqrdmlashb, 1, int8_t, DO_VQRDMLASH_B)
1600 DO_2OP_SAT_ACC_SCALAR(vqrdmlashh, 2, int16_t, DO_VQRDMLASH_H)
1601 DO_2OP_SAT_ACC_SCALAR(vqrdmlashw, 4, int32_t, DO_VQRDMLASH_W)
1602 
1603 /* Vector by scalar plus vector */
1604 #define DO_VMLA(D, N, M) ((N) * (M) + (D))
1605 
1606 DO_2OP_ACC_SCALAR_U(vmla, DO_VMLA)
1607 
1608 /* Vector by vector plus scalar */
1609 #define DO_VMLAS(D, N, M) ((N) * (D) + (M))
1610 
1611 DO_2OP_ACC_SCALAR_U(vmlas, DO_VMLAS)
1612 
1613 /*
1614  * Long saturating scalar ops. As with DO_2OP_L, TYPE and H are for the
1615  * input (smaller) type and LESIZE, LTYPE, LH for the output (long) type.
1616  * SATMASK specifies which bits of the predicate mask matter for determining
1617  * whether to propagate a saturation indication into FPSCR.QC -- for
1618  * the 16x16->32 case we must check only the bit corresponding to the T or B
1619  * half that we used, but for the 32x32->64 case we propagate if the mask
1620  * bit is set for either half.
1621  */
1622 #define DO_2OP_SAT_SCALAR_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \
1623     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1624                                 uint32_t rm)                            \
1625     {                                                                   \
1626         LTYPE *d = vd;                                                  \
1627         TYPE *n = vn;                                                   \
1628         TYPE m = rm;                                                    \
1629         uint16_t mask = mve_element_mask(env);                          \
1630         unsigned le;                                                    \
1631         bool qc = false;                                                \
1632         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1633             bool sat = false;                                           \
1634             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], m, &sat);    \
1635             mergemask(&d[H##LESIZE(le)], r, mask);                      \
1636             qc |= sat && (mask & SATMASK);                              \
1637         }                                                               \
1638         if (qc) {                                                       \
1639             env->vfp.qc[0] = qc;                                        \
1640         }                                                               \
1641         mve_advance_vpt(env);                                           \
1642     }
1643 
1644 static inline int32_t do_qdmullh(int16_t n, int16_t m, bool *sat)
1645 {
1646     int64_t r = ((int64_t)n * m) * 2;
1647     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat);
1648 }
1649 
1650 static inline int64_t do_qdmullw(int32_t n, int32_t m, bool *sat)
1651 {
1652     /* The multiply can't overflow, but the doubling might */
1653     int64_t r = (int64_t)n * m;
1654     if (r > INT64_MAX / 2) {
1655         *sat = true;
1656         return INT64_MAX;
1657     } else if (r < INT64_MIN / 2) {
1658         *sat = true;
1659         return INT64_MIN;
1660     } else {
1661         return r * 2;
1662     }
1663 }
1664 
1665 #define SATMASK16B 1
1666 #define SATMASK16T (1 << 2)
1667 #define SATMASK32 ((1 << 4) | 1)
1668 
1669 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarh, 0, 2, int16_t, 4, int32_t, \
1670                     do_qdmullh, SATMASK16B)
1671 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarw, 0, 4, int32_t, 8, int64_t, \
1672                     do_qdmullw, SATMASK32)
1673 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarh, 1, 2, int16_t, 4, int32_t, \
1674                     do_qdmullh, SATMASK16T)
1675 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarw, 1, 4, int32_t, 8, int64_t, \
1676                     do_qdmullw, SATMASK32)
1677 
1678 /*
1679  * Long saturating ops
1680  */
1681 #define DO_2OP_SAT_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK)  \
1682     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1683                                 void *vm)                               \
1684     {                                                                   \
1685         LTYPE *d = vd;                                                  \
1686         TYPE *n = vn, *m = vm;                                          \
1687         uint16_t mask = mve_element_mask(env);                          \
1688         unsigned le;                                                    \
1689         bool qc = false;                                                \
1690         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1691             bool sat = false;                                           \
1692             LTYPE op1 = n[H##ESIZE(le * 2 + TOP)];                      \
1693             LTYPE op2 = m[H##ESIZE(le * 2 + TOP)];                      \
1694             mergemask(&d[H##LESIZE(le)], FN(op1, op2, &sat), mask);     \
1695             qc |= sat && (mask & SATMASK);                              \
1696         }                                                               \
1697         if (qc) {                                                       \
1698             env->vfp.qc[0] = qc;                                        \
1699         }                                                               \
1700         mve_advance_vpt(env);                                           \
1701     }
1702 
1703 DO_2OP_SAT_L(vqdmullbh, 0, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16B)
1704 DO_2OP_SAT_L(vqdmullbw, 0, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1705 DO_2OP_SAT_L(vqdmullth, 1, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16T)
1706 DO_2OP_SAT_L(vqdmulltw, 1, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1707 
1708 static inline uint32_t do_vbrsrb(uint32_t n, uint32_t m)
1709 {
1710     m &= 0xff;
1711     if (m == 0) {
1712         return 0;
1713     }
1714     n = revbit8(n);
1715     if (m < 8) {
1716         n >>= 8 - m;
1717     }
1718     return n;
1719 }
1720 
1721 static inline uint32_t do_vbrsrh(uint32_t n, uint32_t m)
1722 {
1723     m &= 0xff;
1724     if (m == 0) {
1725         return 0;
1726     }
1727     n = revbit16(n);
1728     if (m < 16) {
1729         n >>= 16 - m;
1730     }
1731     return n;
1732 }
1733 
1734 static inline uint32_t do_vbrsrw(uint32_t n, uint32_t m)
1735 {
1736     m &= 0xff;
1737     if (m == 0) {
1738         return 0;
1739     }
1740     n = revbit32(n);
1741     if (m < 32) {
1742         n >>= 32 - m;
1743     }
1744     return n;
1745 }
1746 
1747 DO_2OP_SCALAR(vbrsrb, 1, uint8_t, do_vbrsrb)
1748 DO_2OP_SCALAR(vbrsrh, 2, uint16_t, do_vbrsrh)
1749 DO_2OP_SCALAR(vbrsrw, 4, uint32_t, do_vbrsrw)
1750 
1751 /*
1752  * Multiply add long dual accumulate ops.
1753  */
1754 #define DO_LDAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC)                 \
1755     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1756                                     void *vm, uint64_t a)               \
1757     {                                                                   \
1758         uint16_t mask = mve_element_mask(env);                          \
1759         unsigned e;                                                     \
1760         TYPE *n = vn, *m = vm;                                          \
1761         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1762             if (mask & 1) {                                             \
1763                 if (e & 1) {                                            \
1764                     a ODDACC                                            \
1765                         (int64_t)n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \
1766                 } else {                                                \
1767                     a EVENACC                                           \
1768                         (int64_t)n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \
1769                 }                                                       \
1770             }                                                           \
1771         }                                                               \
1772         mve_advance_vpt(env);                                           \
1773         return a;                                                       \
1774     }
1775 
1776 DO_LDAV(vmlaldavsh, 2, int16_t, false, +=, +=)
1777 DO_LDAV(vmlaldavxsh, 2, int16_t, true, +=, +=)
1778 DO_LDAV(vmlaldavsw, 4, int32_t, false, +=, +=)
1779 DO_LDAV(vmlaldavxsw, 4, int32_t, true, +=, +=)
1780 
1781 DO_LDAV(vmlaldavuh, 2, uint16_t, false, +=, +=)
1782 DO_LDAV(vmlaldavuw, 4, uint32_t, false, +=, +=)
1783 
1784 DO_LDAV(vmlsldavsh, 2, int16_t, false, +=, -=)
1785 DO_LDAV(vmlsldavxsh, 2, int16_t, true, +=, -=)
1786 DO_LDAV(vmlsldavsw, 4, int32_t, false, +=, -=)
1787 DO_LDAV(vmlsldavxsw, 4, int32_t, true, +=, -=)
1788 
1789 /*
1790  * Multiply add dual accumulate ops
1791  */
1792 #define DO_DAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC) \
1793     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1794                                     void *vm, uint32_t a)               \
1795     {                                                                   \
1796         uint16_t mask = mve_element_mask(env);                          \
1797         unsigned e;                                                     \
1798         TYPE *n = vn, *m = vm;                                          \
1799         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1800             if (mask & 1) {                                             \
1801                 if (e & 1) {                                            \
1802                     a ODDACC                                            \
1803                         n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)];     \
1804                 } else {                                                \
1805                     a EVENACC                                           \
1806                         n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)];     \
1807                 }                                                       \
1808             }                                                           \
1809         }                                                               \
1810         mve_advance_vpt(env);                                           \
1811         return a;                                                       \
1812     }
1813 
1814 #define DO_DAV_S(INSN, XCHG, EVENACC, ODDACC)           \
1815     DO_DAV(INSN##b, 1, int8_t, XCHG, EVENACC, ODDACC)   \
1816     DO_DAV(INSN##h, 2, int16_t, XCHG, EVENACC, ODDACC)  \
1817     DO_DAV(INSN##w, 4, int32_t, XCHG, EVENACC, ODDACC)
1818 
1819 #define DO_DAV_U(INSN, XCHG, EVENACC, ODDACC)           \
1820     DO_DAV(INSN##b, 1, uint8_t, XCHG, EVENACC, ODDACC)  \
1821     DO_DAV(INSN##h, 2, uint16_t, XCHG, EVENACC, ODDACC) \
1822     DO_DAV(INSN##w, 4, uint32_t, XCHG, EVENACC, ODDACC)
1823 
1824 DO_DAV_S(vmladavs, false, +=, +=)
1825 DO_DAV_U(vmladavu, false, +=, +=)
1826 DO_DAV_S(vmlsdav, false, +=, -=)
1827 DO_DAV_S(vmladavsx, true, +=, +=)
1828 DO_DAV_S(vmlsdavx, true, +=, -=)
1829 
1830 /*
1831  * Rounding multiply add long dual accumulate high. In the pseudocode
1832  * this is implemented with a 72-bit internal accumulator value of which
1833  * the top 64 bits are returned. We optimize this to avoid having to
1834  * use 128-bit arithmetic -- we can do this because the 74-bit accumulator
1835  * is squashed back into 64-bits after each beat.
1836  */
1837 #define DO_LDAVH(OP, TYPE, LTYPE, XCHG, SUB)                            \
1838     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1839                                     void *vm, uint64_t a)               \
1840     {                                                                   \
1841         uint16_t mask = mve_element_mask(env);                          \
1842         unsigned e;                                                     \
1843         TYPE *n = vn, *m = vm;                                          \
1844         for (e = 0; e < 16 / 4; e++, mask >>= 4) {                      \
1845             if (mask & 1) {                                             \
1846                 LTYPE mul;                                              \
1847                 if (e & 1) {                                            \
1848                     mul = (LTYPE)n[H4(e - 1 * XCHG)] * m[H4(e)];        \
1849                     if (SUB) {                                          \
1850                         mul = -mul;                                     \
1851                     }                                                   \
1852                 } else {                                                \
1853                     mul = (LTYPE)n[H4(e + 1 * XCHG)] * m[H4(e)];        \
1854                 }                                                       \
1855                 mul = (mul >> 8) + ((mul >> 7) & 1);                    \
1856                 a += mul;                                               \
1857             }                                                           \
1858         }                                                               \
1859         mve_advance_vpt(env);                                           \
1860         return a;                                                       \
1861     }
1862 
1863 DO_LDAVH(vrmlaldavhsw, int32_t, int64_t, false, false)
1864 DO_LDAVH(vrmlaldavhxsw, int32_t, int64_t, true, false)
1865 
1866 DO_LDAVH(vrmlaldavhuw, uint32_t, uint64_t, false, false)
1867 
1868 DO_LDAVH(vrmlsldavhsw, int32_t, int64_t, false, true)
1869 DO_LDAVH(vrmlsldavhxsw, int32_t, int64_t, true, true)
1870 
1871 /* Vector add across vector */
1872 #define DO_VADDV(OP, ESIZE, TYPE)                               \
1873     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1874                                     uint32_t ra)                \
1875     {                                                           \
1876         uint16_t mask = mve_element_mask(env);                  \
1877         unsigned e;                                             \
1878         TYPE *m = vm;                                           \
1879         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1880             if (mask & 1) {                                     \
1881                 ra += m[H##ESIZE(e)];                           \
1882             }                                                   \
1883         }                                                       \
1884         mve_advance_vpt(env);                                   \
1885         return ra;                                              \
1886     }                                                           \
1887 
1888 DO_VADDV(vaddvsb, 1, int8_t)
1889 DO_VADDV(vaddvsh, 2, int16_t)
1890 DO_VADDV(vaddvsw, 4, int32_t)
1891 DO_VADDV(vaddvub, 1, uint8_t)
1892 DO_VADDV(vaddvuh, 2, uint16_t)
1893 DO_VADDV(vaddvuw, 4, uint32_t)
1894 
1895 /*
1896  * Vector max/min across vector. Unlike VADDV, we must
1897  * read ra as the element size, not its full width.
1898  * We work with int64_t internally for simplicity.
1899  */
1900 #define DO_VMAXMINV(OP, ESIZE, TYPE, RATYPE, FN)                \
1901     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1902                                     uint32_t ra_in)             \
1903     {                                                           \
1904         uint16_t mask = mve_element_mask(env);                  \
1905         unsigned e;                                             \
1906         TYPE *m = vm;                                           \
1907         int64_t ra = (RATYPE)ra_in;                             \
1908         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1909             if (mask & 1) {                                     \
1910                 ra = FN(ra, m[H##ESIZE(e)]);                    \
1911             }                                                   \
1912         }                                                       \
1913         mve_advance_vpt(env);                                   \
1914         return ra;                                              \
1915     }                                                           \
1916 
1917 #define DO_VMAXMINV_U(INSN, FN)                         \
1918     DO_VMAXMINV(INSN##b, 1, uint8_t, uint8_t, FN)       \
1919     DO_VMAXMINV(INSN##h, 2, uint16_t, uint16_t, FN)     \
1920     DO_VMAXMINV(INSN##w, 4, uint32_t, uint32_t, FN)
1921 #define DO_VMAXMINV_S(INSN, FN)                         \
1922     DO_VMAXMINV(INSN##b, 1, int8_t, int8_t, FN)         \
1923     DO_VMAXMINV(INSN##h, 2, int16_t, int16_t, FN)       \
1924     DO_VMAXMINV(INSN##w, 4, int32_t, int32_t, FN)
1925 
1926 /*
1927  * Helpers for max and min of absolute values across vector:
1928  * note that we only take the absolute value of 'm', not 'n'
1929  */
1930 static int64_t do_maxa(int64_t n, int64_t m)
1931 {
1932     if (m < 0) {
1933         m = -m;
1934     }
1935     return MAX(n, m);
1936 }
1937 
1938 static int64_t do_mina(int64_t n, int64_t m)
1939 {
1940     if (m < 0) {
1941         m = -m;
1942     }
1943     return MIN(n, m);
1944 }
1945 
1946 DO_VMAXMINV_S(vmaxvs, DO_MAX)
1947 DO_VMAXMINV_U(vmaxvu, DO_MAX)
1948 DO_VMAXMINV_S(vminvs, DO_MIN)
1949 DO_VMAXMINV_U(vminvu, DO_MIN)
1950 /*
1951  * VMAXAV, VMINAV treat the general purpose input as unsigned
1952  * and the vector elements as signed.
1953  */
1954 DO_VMAXMINV(vmaxavb, 1, int8_t, uint8_t, do_maxa)
1955 DO_VMAXMINV(vmaxavh, 2, int16_t, uint16_t, do_maxa)
1956 DO_VMAXMINV(vmaxavw, 4, int32_t, uint32_t, do_maxa)
1957 DO_VMAXMINV(vminavb, 1, int8_t, uint8_t, do_mina)
1958 DO_VMAXMINV(vminavh, 2, int16_t, uint16_t, do_mina)
1959 DO_VMAXMINV(vminavw, 4, int32_t, uint32_t, do_mina)
1960 
1961 #define DO_VABAV(OP, ESIZE, TYPE)                               \
1962     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
1963                                     void *vm, uint32_t ra)      \
1964     {                                                           \
1965         uint16_t mask = mve_element_mask(env);                  \
1966         unsigned e;                                             \
1967         TYPE *m = vm, *n = vn;                                  \
1968         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1969             if (mask & 1) {                                     \
1970                 int64_t n0 = n[H##ESIZE(e)];                    \
1971                 int64_t m0 = m[H##ESIZE(e)];                    \
1972                 uint32_t r = n0 >= m0 ? (n0 - m0) : (m0 - n0);  \
1973                 ra += r;                                        \
1974             }                                                   \
1975         }                                                       \
1976         mve_advance_vpt(env);                                   \
1977         return ra;                                              \
1978     }
1979 
1980 DO_VABAV(vabavsb, 1, int8_t)
1981 DO_VABAV(vabavsh, 2, int16_t)
1982 DO_VABAV(vabavsw, 4, int32_t)
1983 DO_VABAV(vabavub, 1, uint8_t)
1984 DO_VABAV(vabavuh, 2, uint16_t)
1985 DO_VABAV(vabavuw, 4, uint32_t)
1986 
1987 #define DO_VADDLV(OP, TYPE, LTYPE)                              \
1988     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1989                                     uint64_t ra)                \
1990     {                                                           \
1991         uint16_t mask = mve_element_mask(env);                  \
1992         unsigned e;                                             \
1993         TYPE *m = vm;                                           \
1994         for (e = 0; e < 16 / 4; e++, mask >>= 4) {              \
1995             if (mask & 1) {                                     \
1996                 ra += (LTYPE)m[H4(e)];                          \
1997             }                                                   \
1998         }                                                       \
1999         mve_advance_vpt(env);                                   \
2000         return ra;                                              \
2001     }                                                           \
2002 
2003 DO_VADDLV(vaddlv_s, int32_t, int64_t)
2004 DO_VADDLV(vaddlv_u, uint32_t, uint64_t)
2005 
2006 /* Shifts by immediate */
2007 #define DO_2SHIFT(OP, ESIZE, TYPE, FN)                          \
2008     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2009                                 void *vm, uint32_t shift)       \
2010     {                                                           \
2011         TYPE *d = vd, *m = vm;                                  \
2012         uint16_t mask = mve_element_mask(env);                  \
2013         unsigned e;                                             \
2014         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2015             mergemask(&d[H##ESIZE(e)],                          \
2016                       FN(m[H##ESIZE(e)], shift), mask);         \
2017         }                                                       \
2018         mve_advance_vpt(env);                                   \
2019     }
2020 
2021 #define DO_2SHIFT_SAT(OP, ESIZE, TYPE, FN)                      \
2022     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2023                                 void *vm, uint32_t shift)       \
2024     {                                                           \
2025         TYPE *d = vd, *m = vm;                                  \
2026         uint16_t mask = mve_element_mask(env);                  \
2027         unsigned e;                                             \
2028         bool qc = false;                                        \
2029         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2030             bool sat = false;                                   \
2031             mergemask(&d[H##ESIZE(e)],                          \
2032                       FN(m[H##ESIZE(e)], shift, &sat), mask);   \
2033             qc |= sat & mask & 1;                               \
2034         }                                                       \
2035         if (qc) {                                               \
2036             env->vfp.qc[0] = qc;                                \
2037         }                                                       \
2038         mve_advance_vpt(env);                                   \
2039     }
2040 
2041 /* provide unsigned 2-op shift helpers for all sizes */
2042 #define DO_2SHIFT_U(OP, FN)                     \
2043     DO_2SHIFT(OP##b, 1, uint8_t, FN)            \
2044     DO_2SHIFT(OP##h, 2, uint16_t, FN)           \
2045     DO_2SHIFT(OP##w, 4, uint32_t, FN)
2046 #define DO_2SHIFT_S(OP, FN)                     \
2047     DO_2SHIFT(OP##b, 1, int8_t, FN)             \
2048     DO_2SHIFT(OP##h, 2, int16_t, FN)            \
2049     DO_2SHIFT(OP##w, 4, int32_t, FN)
2050 
2051 #define DO_2SHIFT_SAT_U(OP, FN)                 \
2052     DO_2SHIFT_SAT(OP##b, 1, uint8_t, FN)        \
2053     DO_2SHIFT_SAT(OP##h, 2, uint16_t, FN)       \
2054     DO_2SHIFT_SAT(OP##w, 4, uint32_t, FN)
2055 #define DO_2SHIFT_SAT_S(OP, FN)                 \
2056     DO_2SHIFT_SAT(OP##b, 1, int8_t, FN)         \
2057     DO_2SHIFT_SAT(OP##h, 2, int16_t, FN)        \
2058     DO_2SHIFT_SAT(OP##w, 4, int32_t, FN)
2059 
2060 DO_2SHIFT_U(vshli_u, DO_VSHLU)
2061 DO_2SHIFT_S(vshli_s, DO_VSHLS)
2062 DO_2SHIFT_SAT_U(vqshli_u, DO_UQSHL_OP)
2063 DO_2SHIFT_SAT_S(vqshli_s, DO_SQSHL_OP)
2064 DO_2SHIFT_SAT_S(vqshlui_s, DO_SUQSHL_OP)
2065 DO_2SHIFT_U(vrshli_u, DO_VRSHLU)
2066 DO_2SHIFT_S(vrshli_s, DO_VRSHLS)
2067 DO_2SHIFT_SAT_U(vqrshli_u, DO_UQRSHL_OP)
2068 DO_2SHIFT_SAT_S(vqrshli_s, DO_SQRSHL_OP)
2069 
2070 /* Shift-and-insert; we always work with 64 bits at a time */
2071 #define DO_2SHIFT_INSERT(OP, ESIZE, SHIFTFN, MASKFN)                    \
2072     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
2073                                 void *vm, uint32_t shift)               \
2074     {                                                                   \
2075         uint64_t *d = vd, *m = vm;                                      \
2076         uint16_t mask;                                                  \
2077         uint64_t shiftmask;                                             \
2078         unsigned e;                                                     \
2079         if (shift == ESIZE * 8) {                                       \
2080             /*                                                          \
2081              * Only VSRI can shift by <dt>; it should mean "don't       \
2082              * update the destination". The generic logic can't handle  \
2083              * this because it would try to shift by an out-of-range    \
2084              * amount, so special case it here.                         \
2085              */                                                         \
2086             goto done;                                                  \
2087         }                                                               \
2088         assert(shift < ESIZE * 8);                                      \
2089         mask = mve_element_mask(env);                                   \
2090         /* ESIZE / 2 gives the MO_* value if ESIZE is in [1,2,4] */     \
2091         shiftmask = dup_const(ESIZE / 2, MASKFN(ESIZE * 8, shift));     \
2092         for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
2093             uint64_t r = (SHIFTFN(m[H8(e)], shift) & shiftmask) |       \
2094                 (d[H8(e)] & ~shiftmask);                                \
2095             mergemask(&d[H8(e)], r, mask);                              \
2096         }                                                               \
2097 done:                                                                   \
2098         mve_advance_vpt(env);                                           \
2099     }
2100 
2101 #define DO_SHL(N, SHIFT) ((N) << (SHIFT))
2102 #define DO_SHR(N, SHIFT) ((N) >> (SHIFT))
2103 #define SHL_MASK(EBITS, SHIFT) MAKE_64BIT_MASK((SHIFT), (EBITS) - (SHIFT))
2104 #define SHR_MASK(EBITS, SHIFT) MAKE_64BIT_MASK(0, (EBITS) - (SHIFT))
2105 
2106 DO_2SHIFT_INSERT(vsrib, 1, DO_SHR, SHR_MASK)
2107 DO_2SHIFT_INSERT(vsrih, 2, DO_SHR, SHR_MASK)
2108 DO_2SHIFT_INSERT(vsriw, 4, DO_SHR, SHR_MASK)
2109 DO_2SHIFT_INSERT(vslib, 1, DO_SHL, SHL_MASK)
2110 DO_2SHIFT_INSERT(vslih, 2, DO_SHL, SHL_MASK)
2111 DO_2SHIFT_INSERT(vsliw, 4, DO_SHL, SHL_MASK)
2112 
2113 /*
2114  * Long shifts taking half-sized inputs from top or bottom of the input
2115  * vector and producing a double-width result. ESIZE, TYPE are for
2116  * the input, and LESIZE, LTYPE for the output.
2117  * Unlike the normal shift helpers, we do not handle negative shift counts,
2118  * because the long shift is strictly left-only.
2119  */
2120 #define DO_VSHLL(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE)                   \
2121     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
2122                                 void *vm, uint32_t shift)               \
2123     {                                                                   \
2124         LTYPE *d = vd;                                                  \
2125         TYPE *m = vm;                                                   \
2126         uint16_t mask = mve_element_mask(env);                          \
2127         unsigned le;                                                    \
2128         assert(shift <= 16);                                            \
2129         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
2130             LTYPE r = (LTYPE)m[H##ESIZE(le * 2 + TOP)] << shift;        \
2131             mergemask(&d[H##LESIZE(le)], r, mask);                      \
2132         }                                                               \
2133         mve_advance_vpt(env);                                           \
2134     }
2135 
2136 #define DO_VSHLL_ALL(OP, TOP)                                \
2137     DO_VSHLL(OP##sb, TOP, 1, int8_t, 2, int16_t)             \
2138     DO_VSHLL(OP##ub, TOP, 1, uint8_t, 2, uint16_t)           \
2139     DO_VSHLL(OP##sh, TOP, 2, int16_t, 4, int32_t)            \
2140     DO_VSHLL(OP##uh, TOP, 2, uint16_t, 4, uint32_t)          \
2141 
2142 DO_VSHLL_ALL(vshllb, false)
2143 DO_VSHLL_ALL(vshllt, true)
2144 
2145 /*
2146  * Narrowing right shifts, taking a double sized input, shifting it
2147  * and putting the result in either the top or bottom half of the output.
2148  * ESIZE, TYPE are the output, and LESIZE, LTYPE the input.
2149  */
2150 #define DO_VSHRN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)       \
2151     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2152                                 void *vm, uint32_t shift)       \
2153     {                                                           \
2154         LTYPE *m = vm;                                          \
2155         TYPE *d = vd;                                           \
2156         uint16_t mask = mve_element_mask(env);                  \
2157         unsigned le;                                            \
2158         mask >>= ESIZE * TOP;                                   \
2159         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
2160             TYPE r = FN(m[H##LESIZE(le)], shift);               \
2161             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
2162         }                                                       \
2163         mve_advance_vpt(env);                                   \
2164     }
2165 
2166 #define DO_VSHRN_ALL(OP, FN)                                    \
2167     DO_VSHRN(OP##bb, false, 1, uint8_t, 2, uint16_t, FN)        \
2168     DO_VSHRN(OP##bh, false, 2, uint16_t, 4, uint32_t, FN)       \
2169     DO_VSHRN(OP##tb, true, 1, uint8_t, 2, uint16_t, FN)         \
2170     DO_VSHRN(OP##th, true, 2, uint16_t, 4, uint32_t, FN)
2171 
2172 static inline uint64_t do_urshr(uint64_t x, unsigned sh)
2173 {
2174     if (likely(sh < 64)) {
2175         return (x >> sh) + ((x >> (sh - 1)) & 1);
2176     } else if (sh == 64) {
2177         return x >> 63;
2178     } else {
2179         return 0;
2180     }
2181 }
2182 
2183 static inline int64_t do_srshr(int64_t x, unsigned sh)
2184 {
2185     if (likely(sh < 64)) {
2186         return (x >> sh) + ((x >> (sh - 1)) & 1);
2187     } else {
2188         /* Rounding the sign bit always produces 0. */
2189         return 0;
2190     }
2191 }
2192 
2193 DO_VSHRN_ALL(vshrn, DO_SHR)
2194 DO_VSHRN_ALL(vrshrn, do_urshr)
2195 
2196 static inline int32_t do_sat_bhs(int64_t val, int64_t min, int64_t max,
2197                                  bool *satp)
2198 {
2199     if (val > max) {
2200         *satp = true;
2201         return max;
2202     } else if (val < min) {
2203         *satp = true;
2204         return min;
2205     } else {
2206         return val;
2207     }
2208 }
2209 
2210 /* Saturating narrowing right shifts */
2211 #define DO_VSHRN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)   \
2212     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2213                                 void *vm, uint32_t shift)       \
2214     {                                                           \
2215         LTYPE *m = vm;                                          \
2216         TYPE *d = vd;                                           \
2217         uint16_t mask = mve_element_mask(env);                  \
2218         bool qc = false;                                        \
2219         unsigned le;                                            \
2220         mask >>= ESIZE * TOP;                                   \
2221         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
2222             bool sat = false;                                   \
2223             TYPE r = FN(m[H##LESIZE(le)], shift, &sat);         \
2224             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
2225             qc |= sat & mask & 1;                               \
2226         }                                                       \
2227         if (qc) {                                               \
2228             env->vfp.qc[0] = qc;                                \
2229         }                                                       \
2230         mve_advance_vpt(env);                                   \
2231     }
2232 
2233 #define DO_VSHRN_SAT_UB(BOP, TOP, FN)                           \
2234     DO_VSHRN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN)       \
2235     DO_VSHRN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
2236 
2237 #define DO_VSHRN_SAT_UH(BOP, TOP, FN)                           \
2238     DO_VSHRN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN)      \
2239     DO_VSHRN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
2240 
2241 #define DO_VSHRN_SAT_SB(BOP, TOP, FN)                           \
2242     DO_VSHRN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN)         \
2243     DO_VSHRN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
2244 
2245 #define DO_VSHRN_SAT_SH(BOP, TOP, FN)                           \
2246     DO_VSHRN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN)        \
2247     DO_VSHRN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
2248 
2249 #define DO_SHRN_SB(N, M, SATP)                                  \
2250     do_sat_bhs((int64_t)(N) >> (M), INT8_MIN, INT8_MAX, SATP)
2251 #define DO_SHRN_UB(N, M, SATP)                                  \
2252     do_sat_bhs((uint64_t)(N) >> (M), 0, UINT8_MAX, SATP)
2253 #define DO_SHRUN_B(N, M, SATP)                                  \
2254     do_sat_bhs((int64_t)(N) >> (M), 0, UINT8_MAX, SATP)
2255 
2256 #define DO_SHRN_SH(N, M, SATP)                                  \
2257     do_sat_bhs((int64_t)(N) >> (M), INT16_MIN, INT16_MAX, SATP)
2258 #define DO_SHRN_UH(N, M, SATP)                                  \
2259     do_sat_bhs((uint64_t)(N) >> (M), 0, UINT16_MAX, SATP)
2260 #define DO_SHRUN_H(N, M, SATP)                                  \
2261     do_sat_bhs((int64_t)(N) >> (M), 0, UINT16_MAX, SATP)
2262 
2263 #define DO_RSHRN_SB(N, M, SATP)                                 \
2264     do_sat_bhs(do_srshr(N, M), INT8_MIN, INT8_MAX, SATP)
2265 #define DO_RSHRN_UB(N, M, SATP)                                 \
2266     do_sat_bhs(do_urshr(N, M), 0, UINT8_MAX, SATP)
2267 #define DO_RSHRUN_B(N, M, SATP)                                 \
2268     do_sat_bhs(do_srshr(N, M), 0, UINT8_MAX, SATP)
2269 
2270 #define DO_RSHRN_SH(N, M, SATP)                                 \
2271     do_sat_bhs(do_srshr(N, M), INT16_MIN, INT16_MAX, SATP)
2272 #define DO_RSHRN_UH(N, M, SATP)                                 \
2273     do_sat_bhs(do_urshr(N, M), 0, UINT16_MAX, SATP)
2274 #define DO_RSHRUN_H(N, M, SATP)                                 \
2275     do_sat_bhs(do_srshr(N, M), 0, UINT16_MAX, SATP)
2276 
2277 DO_VSHRN_SAT_SB(vqshrnb_sb, vqshrnt_sb, DO_SHRN_SB)
2278 DO_VSHRN_SAT_SH(vqshrnb_sh, vqshrnt_sh, DO_SHRN_SH)
2279 DO_VSHRN_SAT_UB(vqshrnb_ub, vqshrnt_ub, DO_SHRN_UB)
2280 DO_VSHRN_SAT_UH(vqshrnb_uh, vqshrnt_uh, DO_SHRN_UH)
2281 DO_VSHRN_SAT_SB(vqshrunbb, vqshruntb, DO_SHRUN_B)
2282 DO_VSHRN_SAT_SH(vqshrunbh, vqshrunth, DO_SHRUN_H)
2283 
2284 DO_VSHRN_SAT_SB(vqrshrnb_sb, vqrshrnt_sb, DO_RSHRN_SB)
2285 DO_VSHRN_SAT_SH(vqrshrnb_sh, vqrshrnt_sh, DO_RSHRN_SH)
2286 DO_VSHRN_SAT_UB(vqrshrnb_ub, vqrshrnt_ub, DO_RSHRN_UB)
2287 DO_VSHRN_SAT_UH(vqrshrnb_uh, vqrshrnt_uh, DO_RSHRN_UH)
2288 DO_VSHRN_SAT_SB(vqrshrunbb, vqrshruntb, DO_RSHRUN_B)
2289 DO_VSHRN_SAT_SH(vqrshrunbh, vqrshrunth, DO_RSHRUN_H)
2290 
2291 #define DO_VMOVN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE)                   \
2292     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2293     {                                                                   \
2294         LTYPE *m = vm;                                                  \
2295         TYPE *d = vd;                                                   \
2296         uint16_t mask = mve_element_mask(env);                          \
2297         unsigned le;                                                    \
2298         mask >>= ESIZE * TOP;                                           \
2299         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
2300             mergemask(&d[H##ESIZE(le * 2 + TOP)],                       \
2301                       m[H##LESIZE(le)], mask);                          \
2302         }                                                               \
2303         mve_advance_vpt(env);                                           \
2304     }
2305 
2306 DO_VMOVN(vmovnbb, false, 1, uint8_t, 2, uint16_t)
2307 DO_VMOVN(vmovnbh, false, 2, uint16_t, 4, uint32_t)
2308 DO_VMOVN(vmovntb, true, 1, uint8_t, 2, uint16_t)
2309 DO_VMOVN(vmovnth, true, 2, uint16_t, 4, uint32_t)
2310 
2311 #define DO_VMOVN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)           \
2312     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2313     {                                                                   \
2314         LTYPE *m = vm;                                                  \
2315         TYPE *d = vd;                                                   \
2316         uint16_t mask = mve_element_mask(env);                          \
2317         bool qc = false;                                                \
2318         unsigned le;                                                    \
2319         mask >>= ESIZE * TOP;                                           \
2320         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
2321             bool sat = false;                                           \
2322             TYPE r = FN(m[H##LESIZE(le)], &sat);                        \
2323             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);             \
2324             qc |= sat & mask & 1;                                       \
2325         }                                                               \
2326         if (qc) {                                                       \
2327             env->vfp.qc[0] = qc;                                        \
2328         }                                                               \
2329         mve_advance_vpt(env);                                           \
2330     }
2331 
2332 #define DO_VMOVN_SAT_UB(BOP, TOP, FN)                           \
2333     DO_VMOVN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN)       \
2334     DO_VMOVN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
2335 
2336 #define DO_VMOVN_SAT_UH(BOP, TOP, FN)                           \
2337     DO_VMOVN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN)      \
2338     DO_VMOVN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
2339 
2340 #define DO_VMOVN_SAT_SB(BOP, TOP, FN)                           \
2341     DO_VMOVN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN)         \
2342     DO_VMOVN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
2343 
2344 #define DO_VMOVN_SAT_SH(BOP, TOP, FN)                           \
2345     DO_VMOVN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN)        \
2346     DO_VMOVN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
2347 
2348 #define DO_VQMOVN_SB(N, SATP)                           \
2349     do_sat_bhs((int64_t)(N), INT8_MIN, INT8_MAX, SATP)
2350 #define DO_VQMOVN_UB(N, SATP)                           \
2351     do_sat_bhs((uint64_t)(N), 0, UINT8_MAX, SATP)
2352 #define DO_VQMOVUN_B(N, SATP)                           \
2353     do_sat_bhs((int64_t)(N), 0, UINT8_MAX, SATP)
2354 
2355 #define DO_VQMOVN_SH(N, SATP)                           \
2356     do_sat_bhs((int64_t)(N), INT16_MIN, INT16_MAX, SATP)
2357 #define DO_VQMOVN_UH(N, SATP)                           \
2358     do_sat_bhs((uint64_t)(N), 0, UINT16_MAX, SATP)
2359 #define DO_VQMOVUN_H(N, SATP)                           \
2360     do_sat_bhs((int64_t)(N), 0, UINT16_MAX, SATP)
2361 
2362 DO_VMOVN_SAT_SB(vqmovnbsb, vqmovntsb, DO_VQMOVN_SB)
2363 DO_VMOVN_SAT_SH(vqmovnbsh, vqmovntsh, DO_VQMOVN_SH)
2364 DO_VMOVN_SAT_UB(vqmovnbub, vqmovntub, DO_VQMOVN_UB)
2365 DO_VMOVN_SAT_UH(vqmovnbuh, vqmovntuh, DO_VQMOVN_UH)
2366 DO_VMOVN_SAT_SB(vqmovunbb, vqmovuntb, DO_VQMOVUN_B)
2367 DO_VMOVN_SAT_SH(vqmovunbh, vqmovunth, DO_VQMOVUN_H)
2368 
2369 uint32_t HELPER(mve_vshlc)(CPUARMState *env, void *vd, uint32_t rdm,
2370                            uint32_t shift)
2371 {
2372     uint32_t *d = vd;
2373     uint16_t mask = mve_element_mask(env);
2374     unsigned e;
2375     uint32_t r;
2376 
2377     /*
2378      * For each 32-bit element, we shift it left, bringing in the
2379      * low 'shift' bits of rdm at the bottom. Bits shifted out at
2380      * the top become the new rdm, if the predicate mask permits.
2381      * The final rdm value is returned to update the register.
2382      * shift == 0 here means "shift by 32 bits".
2383      */
2384     if (shift == 0) {
2385         for (e = 0; e < 16 / 4; e++, mask >>= 4) {
2386             r = rdm;
2387             if (mask & 1) {
2388                 rdm = d[H4(e)];
2389             }
2390             mergemask(&d[H4(e)], r, mask);
2391         }
2392     } else {
2393         uint32_t shiftmask = MAKE_64BIT_MASK(0, shift);
2394 
2395         for (e = 0; e < 16 / 4; e++, mask >>= 4) {
2396             r = (d[H4(e)] << shift) | (rdm & shiftmask);
2397             if (mask & 1) {
2398                 rdm = d[H4(e)] >> (32 - shift);
2399             }
2400             mergemask(&d[H4(e)], r, mask);
2401         }
2402     }
2403     mve_advance_vpt(env);
2404     return rdm;
2405 }
2406 
2407 uint64_t HELPER(mve_sshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
2408 {
2409     return do_sqrshl_d(n, -(int8_t)shift, false, NULL);
2410 }
2411 
2412 uint64_t HELPER(mve_ushll)(CPUARMState *env, uint64_t n, uint32_t shift)
2413 {
2414     return do_uqrshl_d(n, (int8_t)shift, false, NULL);
2415 }
2416 
2417 uint64_t HELPER(mve_sqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2418 {
2419     return do_sqrshl_d(n, (int8_t)shift, false, &env->QF);
2420 }
2421 
2422 uint64_t HELPER(mve_uqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2423 {
2424     return do_uqrshl_d(n, (int8_t)shift, false, &env->QF);
2425 }
2426 
2427 uint64_t HELPER(mve_sqrshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
2428 {
2429     return do_sqrshl_d(n, -(int8_t)shift, true, &env->QF);
2430 }
2431 
2432 uint64_t HELPER(mve_uqrshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2433 {
2434     return do_uqrshl_d(n, (int8_t)shift, true, &env->QF);
2435 }
2436 
2437 /* Operate on 64-bit values, but saturate at 48 bits */
2438 static inline int64_t do_sqrshl48_d(int64_t src, int64_t shift,
2439                                     bool round, uint32_t *sat)
2440 {
2441     int64_t val, extval;
2442 
2443     if (shift <= -48) {
2444         /* Rounding the sign bit always produces 0. */
2445         if (round) {
2446             return 0;
2447         }
2448         return src >> 63;
2449     } else if (shift < 0) {
2450         if (round) {
2451             src >>= -shift - 1;
2452             val = (src >> 1) + (src & 1);
2453         } else {
2454             val = src >> -shift;
2455         }
2456         extval = sextract64(val, 0, 48);
2457         if (!sat || val == extval) {
2458             return extval;
2459         }
2460     } else if (shift < 48) {
2461         int64_t extval = sextract64(src << shift, 0, 48);
2462         if (!sat || src == (extval >> shift)) {
2463             return extval;
2464         }
2465     } else if (!sat || src == 0) {
2466         return 0;
2467     }
2468 
2469     *sat = 1;
2470     return src >= 0 ? MAKE_64BIT_MASK(0, 47) : MAKE_64BIT_MASK(47, 17);
2471 }
2472 
2473 /* Operate on 64-bit values, but saturate at 48 bits */
2474 static inline uint64_t do_uqrshl48_d(uint64_t src, int64_t shift,
2475                                      bool round, uint32_t *sat)
2476 {
2477     uint64_t val, extval;
2478 
2479     if (shift <= -(48 + round)) {
2480         return 0;
2481     } else if (shift < 0) {
2482         if (round) {
2483             val = src >> (-shift - 1);
2484             val = (val >> 1) + (val & 1);
2485         } else {
2486             val = src >> -shift;
2487         }
2488         extval = extract64(val, 0, 48);
2489         if (!sat || val == extval) {
2490             return extval;
2491         }
2492     } else if (shift < 48) {
2493         uint64_t extval = extract64(src << shift, 0, 48);
2494         if (!sat || src == (extval >> shift)) {
2495             return extval;
2496         }
2497     } else if (!sat || src == 0) {
2498         return 0;
2499     }
2500 
2501     *sat = 1;
2502     return MAKE_64BIT_MASK(0, 48);
2503 }
2504 
2505 uint64_t HELPER(mve_sqrshrl48)(CPUARMState *env, uint64_t n, uint32_t shift)
2506 {
2507     return do_sqrshl48_d(n, -(int8_t)shift, true, &env->QF);
2508 }
2509 
2510 uint64_t HELPER(mve_uqrshll48)(CPUARMState *env, uint64_t n, uint32_t shift)
2511 {
2512     return do_uqrshl48_d(n, (int8_t)shift, true, &env->QF);
2513 }
2514 
2515 uint32_t HELPER(mve_uqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2516 {
2517     return do_uqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
2518 }
2519 
2520 uint32_t HELPER(mve_sqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2521 {
2522     return do_sqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
2523 }
2524 
2525 uint32_t HELPER(mve_uqrshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2526 {
2527     return do_uqrshl_bhs(n, (int8_t)shift, 32, true, &env->QF);
2528 }
2529 
2530 uint32_t HELPER(mve_sqrshr)(CPUARMState *env, uint32_t n, uint32_t shift)
2531 {
2532     return do_sqrshl_bhs(n, -(int8_t)shift, 32, true, &env->QF);
2533 }
2534 
2535 #define DO_VIDUP(OP, ESIZE, TYPE, FN)                           \
2536     uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd,       \
2537                            uint32_t offset, uint32_t imm)       \
2538     {                                                           \
2539         TYPE *d = vd;                                           \
2540         uint16_t mask = mve_element_mask(env);                  \
2541         unsigned e;                                             \
2542         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2543             mergemask(&d[H##ESIZE(e)], offset, mask);           \
2544             offset = FN(offset, imm);                           \
2545         }                                                       \
2546         mve_advance_vpt(env);                                   \
2547         return offset;                                          \
2548     }
2549 
2550 #define DO_VIWDUP(OP, ESIZE, TYPE, FN)                          \
2551     uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd,       \
2552                               uint32_t offset, uint32_t wrap,   \
2553                               uint32_t imm)                     \
2554     {                                                           \
2555         TYPE *d = vd;                                           \
2556         uint16_t mask = mve_element_mask(env);                  \
2557         unsigned e;                                             \
2558         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2559             mergemask(&d[H##ESIZE(e)], offset, mask);           \
2560             offset = FN(offset, wrap, imm);                     \
2561         }                                                       \
2562         mve_advance_vpt(env);                                   \
2563         return offset;                                          \
2564     }
2565 
2566 #define DO_VIDUP_ALL(OP, FN)                    \
2567     DO_VIDUP(OP##b, 1, int8_t, FN)              \
2568     DO_VIDUP(OP##h, 2, int16_t, FN)             \
2569     DO_VIDUP(OP##w, 4, int32_t, FN)
2570 
2571 #define DO_VIWDUP_ALL(OP, FN)                   \
2572     DO_VIWDUP(OP##b, 1, int8_t, FN)             \
2573     DO_VIWDUP(OP##h, 2, int16_t, FN)            \
2574     DO_VIWDUP(OP##w, 4, int32_t, FN)
2575 
2576 static uint32_t do_add_wrap(uint32_t offset, uint32_t wrap, uint32_t imm)
2577 {
2578     offset += imm;
2579     if (offset == wrap) {
2580         offset = 0;
2581     }
2582     return offset;
2583 }
2584 
2585 static uint32_t do_sub_wrap(uint32_t offset, uint32_t wrap, uint32_t imm)
2586 {
2587     if (offset == 0) {
2588         offset = wrap;
2589     }
2590     offset -= imm;
2591     return offset;
2592 }
2593 
2594 DO_VIDUP_ALL(vidup, DO_ADD)
2595 DO_VIWDUP_ALL(viwdup, do_add_wrap)
2596 DO_VIWDUP_ALL(vdwdup, do_sub_wrap)
2597 
2598 /*
2599  * Vector comparison.
2600  * P0 bits for non-executed beats (where eci_mask is 0) are unchanged.
2601  * P0 bits for predicated lanes in executed beats (where mask is 0) are 0.
2602  * P0 bits otherwise are updated with the results of the comparisons.
2603  * We must also keep unchanged the MASK fields at the top of v7m.vpr.
2604  */
2605 #define DO_VCMP(OP, ESIZE, TYPE, FN)                                    \
2606     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm)   \
2607     {                                                                   \
2608         TYPE *n = vn, *m = vm;                                          \
2609         uint16_t mask = mve_element_mask(env);                          \
2610         uint16_t eci_mask = mve_eci_mask(env);                          \
2611         uint16_t beatpred = 0;                                          \
2612         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
2613         unsigned e;                                                     \
2614         for (e = 0; e < 16 / ESIZE; e++) {                              \
2615             bool r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)]);                \
2616             /* Comparison sets 0/1 bits for each byte in the element */ \
2617             beatpred |= r * emask;                                      \
2618             emask <<= ESIZE;                                            \
2619         }                                                               \
2620         beatpred &= mask;                                               \
2621         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
2622             (beatpred & eci_mask);                                      \
2623         mve_advance_vpt(env);                                           \
2624     }
2625 
2626 #define DO_VCMP_SCALAR(OP, ESIZE, TYPE, FN)                             \
2627     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,             \
2628                                 uint32_t rm)                            \
2629     {                                                                   \
2630         TYPE *n = vn;                                                   \
2631         uint16_t mask = mve_element_mask(env);                          \
2632         uint16_t eci_mask = mve_eci_mask(env);                          \
2633         uint16_t beatpred = 0;                                          \
2634         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
2635         unsigned e;                                                     \
2636         for (e = 0; e < 16 / ESIZE; e++) {                              \
2637             bool r = FN(n[H##ESIZE(e)], (TYPE)rm);                      \
2638             /* Comparison sets 0/1 bits for each byte in the element */ \
2639             beatpred |= r * emask;                                      \
2640             emask <<= ESIZE;                                            \
2641         }                                                               \
2642         beatpred &= mask;                                               \
2643         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
2644             (beatpred & eci_mask);                                      \
2645         mve_advance_vpt(env);                                           \
2646     }
2647 
2648 #define DO_VCMP_S(OP, FN)                               \
2649     DO_VCMP(OP##b, 1, int8_t, FN)                       \
2650     DO_VCMP(OP##h, 2, int16_t, FN)                      \
2651     DO_VCMP(OP##w, 4, int32_t, FN)                      \
2652     DO_VCMP_SCALAR(OP##_scalarb, 1, int8_t, FN)         \
2653     DO_VCMP_SCALAR(OP##_scalarh, 2, int16_t, FN)        \
2654     DO_VCMP_SCALAR(OP##_scalarw, 4, int32_t, FN)
2655 
2656 #define DO_VCMP_U(OP, FN)                               \
2657     DO_VCMP(OP##b, 1, uint8_t, FN)                      \
2658     DO_VCMP(OP##h, 2, uint16_t, FN)                     \
2659     DO_VCMP(OP##w, 4, uint32_t, FN)                     \
2660     DO_VCMP_SCALAR(OP##_scalarb, 1, uint8_t, FN)        \
2661     DO_VCMP_SCALAR(OP##_scalarh, 2, uint16_t, FN)       \
2662     DO_VCMP_SCALAR(OP##_scalarw, 4, uint32_t, FN)
2663 
2664 #define DO_EQ(N, M) ((N) == (M))
2665 #define DO_NE(N, M) ((N) != (M))
2666 #define DO_EQ(N, M) ((N) == (M))
2667 #define DO_EQ(N, M) ((N) == (M))
2668 #define DO_GE(N, M) ((N) >= (M))
2669 #define DO_LT(N, M) ((N) < (M))
2670 #define DO_GT(N, M) ((N) > (M))
2671 #define DO_LE(N, M) ((N) <= (M))
2672 
2673 DO_VCMP_U(vcmpeq, DO_EQ)
2674 DO_VCMP_U(vcmpne, DO_NE)
2675 DO_VCMP_U(vcmpcs, DO_GE)
2676 DO_VCMP_U(vcmphi, DO_GT)
2677 DO_VCMP_S(vcmpge, DO_GE)
2678 DO_VCMP_S(vcmplt, DO_LT)
2679 DO_VCMP_S(vcmpgt, DO_GT)
2680 DO_VCMP_S(vcmple, DO_LE)
2681 
2682 void HELPER(mve_vpsel)(CPUARMState *env, void *vd, void *vn, void *vm)
2683 {
2684     /*
2685      * Qd[n] = VPR.P0[n] ? Qn[n] : Qm[n]
2686      * but note that whether bytes are written to Qd is still subject
2687      * to (all forms of) predication in the usual way.
2688      */
2689     uint64_t *d = vd, *n = vn, *m = vm;
2690     uint16_t mask = mve_element_mask(env);
2691     uint16_t p0 = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
2692     unsigned e;
2693     for (e = 0; e < 16 / 8; e++, mask >>= 8, p0 >>= 8) {
2694         uint64_t r = m[H8(e)];
2695         mergemask(&r, n[H8(e)], p0);
2696         mergemask(&d[H8(e)], r, mask);
2697     }
2698     mve_advance_vpt(env);
2699 }
2700 
2701 void HELPER(mve_vpnot)(CPUARMState *env)
2702 {
2703     /*
2704      * P0 bits for unexecuted beats (where eci_mask is 0) are unchanged.
2705      * P0 bits for predicated lanes in executed bits (where mask is 0) are 0.
2706      * P0 bits otherwise are inverted.
2707      * (This is the same logic as VCMP.)
2708      * This insn is itself subject to predication and to beat-wise execution,
2709      * and after it executes VPT state advances in the usual way.
2710      */
2711     uint16_t mask = mve_element_mask(env);
2712     uint16_t eci_mask = mve_eci_mask(env);
2713     uint16_t beatpred = ~env->v7m.vpr & mask;
2714     env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (beatpred & eci_mask);
2715     mve_advance_vpt(env);
2716 }
2717 
2718 /*
2719  * VCTP: P0 unexecuted bits unchanged, predicated bits zeroed,
2720  * otherwise set according to value of Rn. The calculation of
2721  * newmask here works in the same way as the calculation of the
2722  * ltpmask in mve_element_mask(), but we have pre-calculated
2723  * the masklen in the generated code.
2724  */
2725 void HELPER(mve_vctp)(CPUARMState *env, uint32_t masklen)
2726 {
2727     uint16_t mask = mve_element_mask(env);
2728     uint16_t eci_mask = mve_eci_mask(env);
2729     uint16_t newmask;
2730 
2731     assert(masklen <= 16);
2732     newmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
2733     newmask &= mask;
2734     env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (newmask & eci_mask);
2735     mve_advance_vpt(env);
2736 }
2737 
2738 #define DO_1OP_SAT(OP, ESIZE, TYPE, FN)                                 \
2739     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2740     {                                                                   \
2741         TYPE *d = vd, *m = vm;                                          \
2742         uint16_t mask = mve_element_mask(env);                          \
2743         unsigned e;                                                     \
2744         bool qc = false;                                                \
2745         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2746             bool sat = false;                                           \
2747             mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)], &sat), mask); \
2748             qc |= sat & mask & 1;                                       \
2749         }                                                               \
2750         if (qc) {                                                       \
2751             env->vfp.qc[0] = qc;                                        \
2752         }                                                               \
2753         mve_advance_vpt(env);                                           \
2754     }
2755 
2756 #define DO_VQABS_B(N, SATP) \
2757     do_sat_bhs(DO_ABS((int64_t)N), INT8_MIN, INT8_MAX, SATP)
2758 #define DO_VQABS_H(N, SATP) \
2759     do_sat_bhs(DO_ABS((int64_t)N), INT16_MIN, INT16_MAX, SATP)
2760 #define DO_VQABS_W(N, SATP) \
2761     do_sat_bhs(DO_ABS((int64_t)N), INT32_MIN, INT32_MAX, SATP)
2762 
2763 #define DO_VQNEG_B(N, SATP) do_sat_bhs(-(int64_t)N, INT8_MIN, INT8_MAX, SATP)
2764 #define DO_VQNEG_H(N, SATP) do_sat_bhs(-(int64_t)N, INT16_MIN, INT16_MAX, SATP)
2765 #define DO_VQNEG_W(N, SATP) do_sat_bhs(-(int64_t)N, INT32_MIN, INT32_MAX, SATP)
2766 
2767 DO_1OP_SAT(vqabsb, 1, int8_t, DO_VQABS_B)
2768 DO_1OP_SAT(vqabsh, 2, int16_t, DO_VQABS_H)
2769 DO_1OP_SAT(vqabsw, 4, int32_t, DO_VQABS_W)
2770 
2771 DO_1OP_SAT(vqnegb, 1, int8_t, DO_VQNEG_B)
2772 DO_1OP_SAT(vqnegh, 2, int16_t, DO_VQNEG_H)
2773 DO_1OP_SAT(vqnegw, 4, int32_t, DO_VQNEG_W)
2774 
2775 /*
2776  * VMAXA, VMINA: vd is unsigned; vm is signed, and we take its
2777  * absolute value; we then do an unsigned comparison.
2778  */
2779 #define DO_VMAXMINA(OP, ESIZE, STYPE, UTYPE, FN)                        \
2780     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2781     {                                                                   \
2782         UTYPE *d = vd;                                                  \
2783         STYPE *m = vm;                                                  \
2784         uint16_t mask = mve_element_mask(env);                          \
2785         unsigned e;                                                     \
2786         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2787             UTYPE r = DO_ABS(m[H##ESIZE(e)]);                           \
2788             r = FN(d[H##ESIZE(e)], r);                                  \
2789             mergemask(&d[H##ESIZE(e)], r, mask);                        \
2790         }                                                               \
2791         mve_advance_vpt(env);                                           \
2792     }
2793 
2794 DO_VMAXMINA(vmaxab, 1, int8_t, uint8_t, DO_MAX)
2795 DO_VMAXMINA(vmaxah, 2, int16_t, uint16_t, DO_MAX)
2796 DO_VMAXMINA(vmaxaw, 4, int32_t, uint32_t, DO_MAX)
2797 DO_VMAXMINA(vminab, 1, int8_t, uint8_t, DO_MIN)
2798 DO_VMAXMINA(vminah, 2, int16_t, uint16_t, DO_MIN)
2799 DO_VMAXMINA(vminaw, 4, int32_t, uint32_t, DO_MIN)
2800 
2801 /*
2802  * 2-operand floating point. Note that if an element is partially
2803  * predicated we must do the FP operation to update the non-predicated
2804  * bytes, but we must be careful to avoid updating the FP exception
2805  * state unless byte 0 of the element was unpredicated.
2806  */
2807 #define DO_2OP_FP(OP, ESIZE, TYPE, FN)                                  \
2808     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2809                                 void *vd, void *vn, void *vm)           \
2810     {                                                                   \
2811         TYPE *d = vd, *n = vn, *m = vm;                                 \
2812         TYPE r;                                                         \
2813         uint16_t mask = mve_element_mask(env);                          \
2814         unsigned e;                                                     \
2815         float_status *fpst;                                             \
2816         float_status scratch_fpst;                                      \
2817         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2818             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
2819                 continue;                                               \
2820             }                                                           \
2821             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
2822                 &env->vfp.standard_fp_status;                           \
2823             if (!(mask & 1)) {                                          \
2824                 /* We need the result but without updating flags */     \
2825                 scratch_fpst = *fpst;                                   \
2826                 fpst = &scratch_fpst;                                   \
2827             }                                                           \
2828             r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst);               \
2829             mergemask(&d[H##ESIZE(e)], r, mask);                        \
2830         }                                                               \
2831         mve_advance_vpt(env);                                           \
2832     }
2833 
2834 #define DO_2OP_FP_ALL(OP, FN)                  \
2835     DO_2OP_FP(OP##h, 2, float16, float16_##FN) \
2836     DO_2OP_FP(OP##s, 4, float32, float32_##FN)
2837 
2838 DO_2OP_FP_ALL(vfadd, add)
2839 DO_2OP_FP_ALL(vfsub, sub)
2840 DO_2OP_FP_ALL(vfmul, mul)
2841 
2842 static inline float16 float16_abd(float16 a, float16 b, float_status *s)
2843 {
2844     return float16_abs(float16_sub(a, b, s));
2845 }
2846 
2847 static inline float32 float32_abd(float32 a, float32 b, float_status *s)
2848 {
2849     return float32_abs(float32_sub(a, b, s));
2850 }
2851 
2852 DO_2OP_FP_ALL(vfabd, abd)
2853 DO_2OP_FP_ALL(vmaxnm, maxnum)
2854 DO_2OP_FP_ALL(vminnm, minnum)
2855 
2856 static inline float16 float16_maxnuma(float16 a, float16 b, float_status *s)
2857 {
2858     return float16_maxnum(float16_abs(a), float16_abs(b), s);
2859 }
2860 
2861 static inline float32 float32_maxnuma(float32 a, float32 b, float_status *s)
2862 {
2863     return float32_maxnum(float32_abs(a), float32_abs(b), s);
2864 }
2865 
2866 static inline float16 float16_minnuma(float16 a, float16 b, float_status *s)
2867 {
2868     return float16_minnum(float16_abs(a), float16_abs(b), s);
2869 }
2870 
2871 static inline float32 float32_minnuma(float32 a, float32 b, float_status *s)
2872 {
2873     return float32_minnum(float32_abs(a), float32_abs(b), s);
2874 }
2875 
2876 DO_2OP_FP_ALL(vmaxnma, maxnuma)
2877 DO_2OP_FP_ALL(vminnma, minnuma)
2878 
2879 #define DO_VCADD_FP(OP, ESIZE, TYPE, FN0, FN1)                          \
2880     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2881                                 void *vd, void *vn, void *vm)           \
2882     {                                                                   \
2883         TYPE *d = vd, *n = vn, *m = vm;                                 \
2884         TYPE r[16 / ESIZE];                                             \
2885         uint16_t tm, mask = mve_element_mask(env);                      \
2886         unsigned e;                                                     \
2887         float_status *fpst;                                             \
2888         float_status scratch_fpst;                                      \
2889         /* Calculate all results first to avoid overwriting inputs */   \
2890         for (e = 0, tm = mask; e < 16 / ESIZE; e++, tm >>= ESIZE) {     \
2891             if ((tm & MAKE_64BIT_MASK(0, ESIZE)) == 0) {                \
2892                 r[e] = 0;                                               \
2893                 continue;                                               \
2894             }                                                           \
2895             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
2896                 &env->vfp.standard_fp_status;                           \
2897             if (!(tm & 1)) {                                            \
2898                 /* We need the result but without updating flags */     \
2899                 scratch_fpst = *fpst;                                   \
2900                 fpst = &scratch_fpst;                                   \
2901             }                                                           \
2902             if (!(e & 1)) {                                             \
2903                 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)], fpst);   \
2904             } else {                                                    \
2905                 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)], fpst);   \
2906             }                                                           \
2907         }                                                               \
2908         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2909             mergemask(&d[H##ESIZE(e)], r[e], mask);                     \
2910         }                                                               \
2911         mve_advance_vpt(env);                                           \
2912     }
2913 
2914 DO_VCADD_FP(vfcadd90h, 2, float16, float16_sub, float16_add)
2915 DO_VCADD_FP(vfcadd90s, 4, float32, float32_sub, float32_add)
2916 DO_VCADD_FP(vfcadd270h, 2, float16, float16_add, float16_sub)
2917 DO_VCADD_FP(vfcadd270s, 4, float32, float32_add, float32_sub)
2918 
2919 #define DO_VFMA(OP, ESIZE, TYPE, CHS)                                   \
2920     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2921                                 void *vd, void *vn, void *vm)           \
2922     {                                                                   \
2923         TYPE *d = vd, *n = vn, *m = vm;                                 \
2924         TYPE r;                                                         \
2925         uint16_t mask = mve_element_mask(env);                          \
2926         unsigned e;                                                     \
2927         float_status *fpst;                                             \
2928         float_status scratch_fpst;                                      \
2929         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2930             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
2931                 continue;                                               \
2932             }                                                           \
2933             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
2934                 &env->vfp.standard_fp_status;                           \
2935             if (!(mask & 1)) {                                          \
2936                 /* We need the result but without updating flags */     \
2937                 scratch_fpst = *fpst;                                   \
2938                 fpst = &scratch_fpst;                                   \
2939             }                                                           \
2940             r = n[H##ESIZE(e)];                                         \
2941             if (CHS) {                                                  \
2942                 r = TYPE##_chs(r);                                      \
2943             }                                                           \
2944             r = TYPE##_muladd(r, m[H##ESIZE(e)], d[H##ESIZE(e)],        \
2945                               0, fpst);                                 \
2946             mergemask(&d[H##ESIZE(e)], r, mask);                        \
2947         }                                                               \
2948         mve_advance_vpt(env);                                           \
2949     }
2950 
2951 DO_VFMA(vfmah, 2, float16, false)
2952 DO_VFMA(vfmas, 4, float32, false)
2953 DO_VFMA(vfmsh, 2, float16, true)
2954 DO_VFMA(vfmss, 4, float32, true)
2955 
2956 #define DO_VCMLA(OP, ESIZE, TYPE, ROT, FN)                              \
2957     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2958                                 void *vd, void *vn, void *vm)           \
2959     {                                                                   \
2960         TYPE *d = vd, *n = vn, *m = vm;                                 \
2961         TYPE r0, r1, e1, e2, e3, e4;                                    \
2962         uint16_t mask = mve_element_mask(env);                          \
2963         unsigned e;                                                     \
2964         float_status *fpst0, *fpst1;                                    \
2965         float_status scratch_fpst;                                      \
2966         /* We loop through pairs of elements at a time */               \
2967         for (e = 0; e < 16 / ESIZE; e += 2, mask >>= ESIZE * 2) {       \
2968             if ((mask & MAKE_64BIT_MASK(0, ESIZE * 2)) == 0) {          \
2969                 continue;                                               \
2970             }                                                           \
2971             fpst0 = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :   \
2972                 &env->vfp.standard_fp_status;                           \
2973             fpst1 = fpst0;                                              \
2974             if (!(mask & 1)) {                                          \
2975                 scratch_fpst = *fpst0;                                  \
2976                 fpst0 = &scratch_fpst;                                  \
2977             }                                                           \
2978             if (!(mask & (1 << ESIZE))) {                               \
2979                 scratch_fpst = *fpst1;                                  \
2980                 fpst1 = &scratch_fpst;                                  \
2981             }                                                           \
2982             switch (ROT) {                                              \
2983             case 0:                                                     \
2984                 e1 = m[H##ESIZE(e)];                                    \
2985                 e2 = n[H##ESIZE(e)];                                    \
2986                 e3 = m[H##ESIZE(e + 1)];                                \
2987                 e4 = n[H##ESIZE(e)];                                    \
2988                 break;                                                  \
2989             case 1:                                                     \
2990                 e1 = TYPE##_chs(m[H##ESIZE(e + 1)]);                    \
2991                 e2 = n[H##ESIZE(e + 1)];                                \
2992                 e3 = m[H##ESIZE(e)];                                    \
2993                 e4 = n[H##ESIZE(e + 1)];                                \
2994                 break;                                                  \
2995             case 2:                                                     \
2996                 e1 = TYPE##_chs(m[H##ESIZE(e)]);                        \
2997                 e2 = n[H##ESIZE(e)];                                    \
2998                 e3 = TYPE##_chs(m[H##ESIZE(e + 1)]);                    \
2999                 e4 = n[H##ESIZE(e)];                                    \
3000                 break;                                                  \
3001             case 3:                                                     \
3002                 e1 = m[H##ESIZE(e + 1)];                                \
3003                 e2 = n[H##ESIZE(e + 1)];                                \
3004                 e3 = TYPE##_chs(m[H##ESIZE(e)]);                        \
3005                 e4 = n[H##ESIZE(e + 1)];                                \
3006                 break;                                                  \
3007             default:                                                    \
3008                 g_assert_not_reached();                                 \
3009             }                                                           \
3010             r0 = FN(e2, e1, d[H##ESIZE(e)], fpst0);                     \
3011             r1 = FN(e4, e3, d[H##ESIZE(e + 1)], fpst1);                 \
3012             mergemask(&d[H##ESIZE(e)], r0, mask);                       \
3013             mergemask(&d[H##ESIZE(e + 1)], r1, mask >> ESIZE);          \
3014         }                                                               \
3015         mve_advance_vpt(env);                                           \
3016     }
3017 
3018 #define DO_VCMULH(N, M, D, S) float16_mul(N, M, S)
3019 #define DO_VCMULS(N, M, D, S) float32_mul(N, M, S)
3020 
3021 #define DO_VCMLAH(N, M, D, S) float16_muladd(N, M, D, 0, S)
3022 #define DO_VCMLAS(N, M, D, S) float32_muladd(N, M, D, 0, S)
3023 
3024 DO_VCMLA(vcmul0h, 2, float16, 0, DO_VCMULH)
3025 DO_VCMLA(vcmul0s, 4, float32, 0, DO_VCMULS)
3026 DO_VCMLA(vcmul90h, 2, float16, 1, DO_VCMULH)
3027 DO_VCMLA(vcmul90s, 4, float32, 1, DO_VCMULS)
3028 DO_VCMLA(vcmul180h, 2, float16, 2, DO_VCMULH)
3029 DO_VCMLA(vcmul180s, 4, float32, 2, DO_VCMULS)
3030 DO_VCMLA(vcmul270h, 2, float16, 3, DO_VCMULH)
3031 DO_VCMLA(vcmul270s, 4, float32, 3, DO_VCMULS)
3032 
3033 DO_VCMLA(vcmla0h, 2, float16, 0, DO_VCMLAH)
3034 DO_VCMLA(vcmla0s, 4, float32, 0, DO_VCMLAS)
3035 DO_VCMLA(vcmla90h, 2, float16, 1, DO_VCMLAH)
3036 DO_VCMLA(vcmla90s, 4, float32, 1, DO_VCMLAS)
3037 DO_VCMLA(vcmla180h, 2, float16, 2, DO_VCMLAH)
3038 DO_VCMLA(vcmla180s, 4, float32, 2, DO_VCMLAS)
3039 DO_VCMLA(vcmla270h, 2, float16, 3, DO_VCMLAH)
3040 DO_VCMLA(vcmla270s, 4, float32, 3, DO_VCMLAS)
3041 
3042 #define DO_2OP_FP_SCALAR(OP, ESIZE, TYPE, FN)                           \
3043     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
3044                                 void *vd, void *vn, uint32_t rm)        \
3045     {                                                                   \
3046         TYPE *d = vd, *n = vn;                                          \
3047         TYPE r, m = rm;                                                 \
3048         uint16_t mask = mve_element_mask(env);                          \
3049         unsigned e;                                                     \
3050         float_status *fpst;                                             \
3051         float_status scratch_fpst;                                      \
3052         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3053             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3054                 continue;                                               \
3055             }                                                           \
3056             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
3057                 &env->vfp.standard_fp_status;                           \
3058             if (!(mask & 1)) {                                          \
3059                 /* We need the result but without updating flags */     \
3060                 scratch_fpst = *fpst;                                   \
3061                 fpst = &scratch_fpst;                                   \
3062             }                                                           \
3063             r = FN(n[H##ESIZE(e)], m, fpst);                            \
3064             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3065         }                                                               \
3066         mve_advance_vpt(env);                                           \
3067     }
3068 
3069 #define DO_2OP_FP_SCALAR_ALL(OP, FN)                    \
3070     DO_2OP_FP_SCALAR(OP##h, 2, float16, float16_##FN)   \
3071     DO_2OP_FP_SCALAR(OP##s, 4, float32, float32_##FN)
3072 
3073 DO_2OP_FP_SCALAR_ALL(vfadd_scalar, add)
3074 DO_2OP_FP_SCALAR_ALL(vfsub_scalar, sub)
3075 DO_2OP_FP_SCALAR_ALL(vfmul_scalar, mul)
3076 
3077 #define DO_2OP_FP_ACC_SCALAR(OP, ESIZE, TYPE, FN)                       \
3078     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
3079                                 void *vd, void *vn, uint32_t rm)        \
3080     {                                                                   \
3081         TYPE *d = vd, *n = vn;                                          \
3082         TYPE r, m = rm;                                                 \
3083         uint16_t mask = mve_element_mask(env);                          \
3084         unsigned e;                                                     \
3085         float_status *fpst;                                             \
3086         float_status scratch_fpst;                                      \
3087         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3088             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3089                 continue;                                               \
3090             }                                                           \
3091             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
3092                 &env->vfp.standard_fp_status;                           \
3093             if (!(mask & 1)) {                                          \
3094                 /* We need the result but without updating flags */     \
3095                 scratch_fpst = *fpst;                                   \
3096                 fpst = &scratch_fpst;                                   \
3097             }                                                           \
3098             r = FN(n[H##ESIZE(e)], m, d[H##ESIZE(e)], 0, fpst);         \
3099             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3100         }                                                               \
3101         mve_advance_vpt(env);                                           \
3102     }
3103 
3104 /* VFMAS is vector * vector + scalar, so swap op2 and op3 */
3105 #define DO_VFMAS_SCALARH(N, M, D, F, S) float16_muladd(N, D, M, F, S)
3106 #define DO_VFMAS_SCALARS(N, M, D, F, S) float32_muladd(N, D, M, F, S)
3107 
3108 /* VFMA is vector * scalar + vector */
3109 DO_2OP_FP_ACC_SCALAR(vfma_scalarh, 2, float16, float16_muladd)
3110 DO_2OP_FP_ACC_SCALAR(vfma_scalars, 4, float32, float32_muladd)
3111 DO_2OP_FP_ACC_SCALAR(vfmas_scalarh, 2, float16, DO_VFMAS_SCALARH)
3112 DO_2OP_FP_ACC_SCALAR(vfmas_scalars, 4, float32, DO_VFMAS_SCALARS)
3113 
3114 /* Floating point max/min across vector. */
3115 #define DO_FP_VMAXMINV(OP, ESIZE, TYPE, ABS, FN)                \
3116     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
3117                                     uint32_t ra_in)             \
3118     {                                                           \
3119         uint16_t mask = mve_element_mask(env);                  \
3120         unsigned e;                                             \
3121         TYPE *m = vm;                                           \
3122         TYPE ra = (TYPE)ra_in;                                  \
3123         float_status *fpst = (ESIZE == 2) ?                     \
3124             &env->vfp.standard_fp_status_f16 :                  \
3125             &env->vfp.standard_fp_status;                       \
3126         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
3127             if (mask & 1) {                                     \
3128                 TYPE v = m[H##ESIZE(e)];                        \
3129                 if (TYPE##_is_signaling_nan(ra, fpst)) {        \
3130                     ra = TYPE##_silence_nan(ra, fpst);          \
3131                     float_raise(float_flag_invalid, fpst);      \
3132                 }                                               \
3133                 if (TYPE##_is_signaling_nan(v, fpst)) {         \
3134                     v = TYPE##_silence_nan(v, fpst);            \
3135                     float_raise(float_flag_invalid, fpst);      \
3136                 }                                               \
3137                 if (ABS) {                                      \
3138                     v = TYPE##_abs(v);                          \
3139                 }                                               \
3140                 ra = FN(ra, v, fpst);                           \
3141             }                                                   \
3142         }                                                       \
3143         mve_advance_vpt(env);                                   \
3144         return ra;                                              \
3145     }                                                           \
3146 
3147 #define NOP(X) (X)
3148 
3149 DO_FP_VMAXMINV(vmaxnmvh, 2, float16, false, float16_maxnum)
3150 DO_FP_VMAXMINV(vmaxnmvs, 4, float32, false, float32_maxnum)
3151 DO_FP_VMAXMINV(vminnmvh, 2, float16, false, float16_minnum)
3152 DO_FP_VMAXMINV(vminnmvs, 4, float32, false, float32_minnum)
3153 DO_FP_VMAXMINV(vmaxnmavh, 2, float16, true, float16_maxnum)
3154 DO_FP_VMAXMINV(vmaxnmavs, 4, float32, true, float32_maxnum)
3155 DO_FP_VMAXMINV(vminnmavh, 2, float16, true, float16_minnum)
3156 DO_FP_VMAXMINV(vminnmavs, 4, float32, true, float32_minnum)
3157 
3158 /* FP compares; note that all comparisons signal InvalidOp for QNaNs */
3159 #define DO_VCMP_FP(OP, ESIZE, TYPE, FN)                                 \
3160     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm)   \
3161     {                                                                   \
3162         TYPE *n = vn, *m = vm;                                          \
3163         uint16_t mask = mve_element_mask(env);                          \
3164         uint16_t eci_mask = mve_eci_mask(env);                          \
3165         uint16_t beatpred = 0;                                          \
3166         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
3167         unsigned e;                                                     \
3168         float_status *fpst;                                             \
3169         float_status scratch_fpst;                                      \
3170         bool r;                                                         \
3171         for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) {             \
3172             if ((mask & emask) == 0) {                                  \
3173                 continue;                                               \
3174             }                                                           \
3175             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
3176                 &env->vfp.standard_fp_status;                           \
3177             if (!(mask & (1 << (e * ESIZE)))) {                         \
3178                 /* We need the result but without updating flags */     \
3179                 scratch_fpst = *fpst;                                   \
3180                 fpst = &scratch_fpst;                                   \
3181             }                                                           \
3182             r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst);               \
3183             /* Comparison sets 0/1 bits for each byte in the element */ \
3184             beatpred |= r * emask;                                      \
3185         }                                                               \
3186         beatpred &= mask;                                               \
3187         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
3188             (beatpred & eci_mask);                                      \
3189         mve_advance_vpt(env);                                           \
3190     }
3191 
3192 #define DO_VCMP_FP_SCALAR(OP, ESIZE, TYPE, FN)                          \
3193     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,             \
3194                                 uint32_t rm)                            \
3195     {                                                                   \
3196         TYPE *n = vn;                                                   \
3197         uint16_t mask = mve_element_mask(env);                          \
3198         uint16_t eci_mask = mve_eci_mask(env);                          \
3199         uint16_t beatpred = 0;                                          \
3200         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
3201         unsigned e;                                                     \
3202         float_status *fpst;                                             \
3203         float_status scratch_fpst;                                      \
3204         bool r;                                                         \
3205         for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) {             \
3206             if ((mask & emask) == 0) {                                  \
3207                 continue;                                               \
3208             }                                                           \
3209             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
3210                 &env->vfp.standard_fp_status;                           \
3211             if (!(mask & (1 << (e * ESIZE)))) {                         \
3212                 /* We need the result but without updating flags */     \
3213                 scratch_fpst = *fpst;                                   \
3214                 fpst = &scratch_fpst;                                   \
3215             }                                                           \
3216             r = FN(n[H##ESIZE(e)], (TYPE)rm, fpst);                     \
3217             /* Comparison sets 0/1 bits for each byte in the element */ \
3218             beatpred |= r * emask;                                      \
3219         }                                                               \
3220         beatpred &= mask;                                               \
3221         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
3222             (beatpred & eci_mask);                                      \
3223         mve_advance_vpt(env);                                           \
3224     }
3225 
3226 #define DO_VCMP_FP_BOTH(VOP, SOP, ESIZE, TYPE, FN)      \
3227     DO_VCMP_FP(VOP, ESIZE, TYPE, FN)                    \
3228     DO_VCMP_FP_SCALAR(SOP, ESIZE, TYPE, FN)
3229 
3230 /*
3231  * Some care is needed here to get the correct result for the unordered case.
3232  * Architecturally EQ, GE and GT are defined to be false for unordered, but
3233  * the NE, LT and LE comparisons are defined as simple logical inverses of
3234  * EQ, GE and GT and so they must return true for unordered. The softfloat
3235  * comparison functions float*_{eq,le,lt} all return false for unordered.
3236  */
3237 #define DO_GE16(X, Y, S) float16_le(Y, X, S)
3238 #define DO_GE32(X, Y, S) float32_le(Y, X, S)
3239 #define DO_GT16(X, Y, S) float16_lt(Y, X, S)
3240 #define DO_GT32(X, Y, S) float32_lt(Y, X, S)
3241 
3242 DO_VCMP_FP_BOTH(vfcmpeqh, vfcmpeq_scalarh, 2, float16, float16_eq)
3243 DO_VCMP_FP_BOTH(vfcmpeqs, vfcmpeq_scalars, 4, float32, float32_eq)
3244 
3245 DO_VCMP_FP_BOTH(vfcmpneh, vfcmpne_scalarh, 2, float16, !float16_eq)
3246 DO_VCMP_FP_BOTH(vfcmpnes, vfcmpne_scalars, 4, float32, !float32_eq)
3247 
3248 DO_VCMP_FP_BOTH(vfcmpgeh, vfcmpge_scalarh, 2, float16, DO_GE16)
3249 DO_VCMP_FP_BOTH(vfcmpges, vfcmpge_scalars, 4, float32, DO_GE32)
3250 
3251 DO_VCMP_FP_BOTH(vfcmplth, vfcmplt_scalarh, 2, float16, !DO_GE16)
3252 DO_VCMP_FP_BOTH(vfcmplts, vfcmplt_scalars, 4, float32, !DO_GE32)
3253 
3254 DO_VCMP_FP_BOTH(vfcmpgth, vfcmpgt_scalarh, 2, float16, DO_GT16)
3255 DO_VCMP_FP_BOTH(vfcmpgts, vfcmpgt_scalars, 4, float32, DO_GT32)
3256 
3257 DO_VCMP_FP_BOTH(vfcmpleh, vfcmple_scalarh, 2, float16, !DO_GT16)
3258 DO_VCMP_FP_BOTH(vfcmples, vfcmple_scalars, 4, float32, !DO_GT32)
3259 
3260 #define DO_VCVT_FIXED(OP, ESIZE, TYPE, FN)                              \
3261     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm,   \
3262                                 uint32_t shift)                         \
3263     {                                                                   \
3264         TYPE *d = vd, *m = vm;                                          \
3265         TYPE r;                                                         \
3266         uint16_t mask = mve_element_mask(env);                          \
3267         unsigned e;                                                     \
3268         float_status *fpst;                                             \
3269         float_status scratch_fpst;                                      \
3270         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3271             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3272                 continue;                                               \
3273             }                                                           \
3274             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
3275                 &env->vfp.standard_fp_status;                           \
3276             if (!(mask & 1)) {                                          \
3277                 /* We need the result but without updating flags */     \
3278                 scratch_fpst = *fpst;                                   \
3279                 fpst = &scratch_fpst;                                   \
3280             }                                                           \
3281             r = FN(m[H##ESIZE(e)], shift, fpst);                        \
3282             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3283         }                                                               \
3284         mve_advance_vpt(env);                                           \
3285     }
3286 
3287 DO_VCVT_FIXED(vcvt_sh, 2, int16_t, helper_vfp_shtoh)
3288 DO_VCVT_FIXED(vcvt_uh, 2, uint16_t, helper_vfp_uhtoh)
3289 DO_VCVT_FIXED(vcvt_hs, 2, int16_t, helper_vfp_toshh_round_to_zero)
3290 DO_VCVT_FIXED(vcvt_hu, 2, uint16_t, helper_vfp_touhh_round_to_zero)
3291 DO_VCVT_FIXED(vcvt_sf, 4, int32_t, helper_vfp_sltos)
3292 DO_VCVT_FIXED(vcvt_uf, 4, uint32_t, helper_vfp_ultos)
3293 DO_VCVT_FIXED(vcvt_fs, 4, int32_t, helper_vfp_tosls_round_to_zero)
3294 DO_VCVT_FIXED(vcvt_fu, 4, uint32_t, helper_vfp_touls_round_to_zero)
3295 
3296 /* VCVT with specified rmode */
3297 #define DO_VCVT_RMODE(OP, ESIZE, TYPE, FN)                              \
3298     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
3299                                 void *vd, void *vm, uint32_t rmode)     \
3300     {                                                                   \
3301         TYPE *d = vd, *m = vm;                                          \
3302         TYPE r;                                                         \
3303         uint16_t mask = mve_element_mask(env);                          \
3304         unsigned e;                                                     \
3305         float_status *fpst;                                             \
3306         float_status scratch_fpst;                                      \
3307         float_status *base_fpst = (ESIZE == 2) ?                        \
3308             &env->vfp.standard_fp_status_f16 :                          \
3309             &env->vfp.standard_fp_status;                               \
3310         uint32_t prev_rmode = get_float_rounding_mode(base_fpst);       \
3311         set_float_rounding_mode(rmode, base_fpst);                      \
3312         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3313             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3314                 continue;                                               \
3315             }                                                           \
3316             fpst = base_fpst;                                           \
3317             if (!(mask & 1)) {                                          \
3318                 /* We need the result but without updating flags */     \
3319                 scratch_fpst = *fpst;                                   \
3320                 fpst = &scratch_fpst;                                   \
3321             }                                                           \
3322             r = FN(m[H##ESIZE(e)], 0, fpst);                            \
3323             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3324         }                                                               \
3325         set_float_rounding_mode(prev_rmode, base_fpst);                 \
3326         mve_advance_vpt(env);                                           \
3327     }
3328 
3329 DO_VCVT_RMODE(vcvt_rm_sh, 2, uint16_t, helper_vfp_toshh)
3330 DO_VCVT_RMODE(vcvt_rm_uh, 2, uint16_t, helper_vfp_touhh)
3331 DO_VCVT_RMODE(vcvt_rm_ss, 4, uint32_t, helper_vfp_tosls)
3332 DO_VCVT_RMODE(vcvt_rm_us, 4, uint32_t, helper_vfp_touls)
3333 
3334 #define DO_VRINT_RM_H(M, F, S) helper_rinth(M, S)
3335 #define DO_VRINT_RM_S(M, F, S) helper_rints(M, S)
3336 
3337 DO_VCVT_RMODE(vrint_rm_h, 2, uint16_t, DO_VRINT_RM_H)
3338 DO_VCVT_RMODE(vrint_rm_s, 4, uint32_t, DO_VRINT_RM_S)
3339 
3340 /*
3341  * VCVT between halfprec and singleprec. As usual for halfprec
3342  * conversions, FZ16 is ignored and AHP is observed.
3343  */
3344 static void do_vcvt_sh(CPUARMState *env, void *vd, void *vm, int top)
3345 {
3346     uint16_t *d = vd;
3347     uint32_t *m = vm;
3348     uint16_t r;
3349     uint16_t mask = mve_element_mask(env);
3350     bool ieee = !(env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_AHP);
3351     unsigned e;
3352     float_status *fpst;
3353     float_status scratch_fpst;
3354     float_status *base_fpst = &env->vfp.standard_fp_status;
3355     bool old_fz = get_flush_to_zero(base_fpst);
3356     set_flush_to_zero(false, base_fpst);
3357     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
3358         if ((mask & MAKE_64BIT_MASK(0, 4)) == 0) {
3359             continue;
3360         }
3361         fpst = base_fpst;
3362         if (!(mask & 1)) {
3363             /* We need the result but without updating flags */
3364             scratch_fpst = *fpst;
3365             fpst = &scratch_fpst;
3366         }
3367         r = float32_to_float16(m[H4(e)], ieee, fpst);
3368         mergemask(&d[H2(e * 2 + top)], r, mask >> (top * 2));
3369     }
3370     set_flush_to_zero(old_fz, base_fpst);
3371     mve_advance_vpt(env);
3372 }
3373 
3374 static void do_vcvt_hs(CPUARMState *env, void *vd, void *vm, int top)
3375 {
3376     uint32_t *d = vd;
3377     uint16_t *m = vm;
3378     uint32_t r;
3379     uint16_t mask = mve_element_mask(env);
3380     bool ieee = !(env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_AHP);
3381     unsigned e;
3382     float_status *fpst;
3383     float_status scratch_fpst;
3384     float_status *base_fpst = &env->vfp.standard_fp_status;
3385     bool old_fiz = get_flush_inputs_to_zero(base_fpst);
3386     set_flush_inputs_to_zero(false, base_fpst);
3387     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
3388         if ((mask & MAKE_64BIT_MASK(0, 4)) == 0) {
3389             continue;
3390         }
3391         fpst = base_fpst;
3392         if (!(mask & (1 << (top * 2)))) {
3393             /* We need the result but without updating flags */
3394             scratch_fpst = *fpst;
3395             fpst = &scratch_fpst;
3396         }
3397         r = float16_to_float32(m[H2(e * 2 + top)], ieee, fpst);
3398         mergemask(&d[H4(e)], r, mask);
3399     }
3400     set_flush_inputs_to_zero(old_fiz, base_fpst);
3401     mve_advance_vpt(env);
3402 }
3403 
3404 void HELPER(mve_vcvtb_sh)(CPUARMState *env, void *vd, void *vm)
3405 {
3406     do_vcvt_sh(env, vd, vm, 0);
3407 }
3408 void HELPER(mve_vcvtt_sh)(CPUARMState *env, void *vd, void *vm)
3409 {
3410     do_vcvt_sh(env, vd, vm, 1);
3411 }
3412 void HELPER(mve_vcvtb_hs)(CPUARMState *env, void *vd, void *vm)
3413 {
3414     do_vcvt_hs(env, vd, vm, 0);
3415 }
3416 void HELPER(mve_vcvtt_hs)(CPUARMState *env, void *vd, void *vm)
3417 {
3418     do_vcvt_hs(env, vd, vm, 1);
3419 }
3420 
3421 #define DO_1OP_FP(OP, ESIZE, TYPE, FN)                                  \
3422     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm)   \
3423     {                                                                   \
3424         TYPE *d = vd, *m = vm;                                          \
3425         TYPE r;                                                         \
3426         uint16_t mask = mve_element_mask(env);                          \
3427         unsigned e;                                                     \
3428         float_status *fpst;                                             \
3429         float_status scratch_fpst;                                      \
3430         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3431             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3432                 continue;                                               \
3433             }                                                           \
3434             fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
3435                 &env->vfp.standard_fp_status;                           \
3436             if (!(mask & 1)) {                                          \
3437                 /* We need the result but without updating flags */     \
3438                 scratch_fpst = *fpst;                                   \
3439                 fpst = &scratch_fpst;                                   \
3440             }                                                           \
3441             r = FN(m[H##ESIZE(e)], fpst);                               \
3442             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3443         }                                                               \
3444         mve_advance_vpt(env);                                           \
3445     }
3446 
3447 DO_1OP_FP(vrintx_h, 2, float16, float16_round_to_int)
3448 DO_1OP_FP(vrintx_s, 4, float32, float32_round_to_int)
3449