xref: /qemu/target/arm/tcg/op_helper.c (revision a0e93dd8)
1 /*
2  *  ARM helper routines
3  *
4  *  Copyright (c) 2005-2007 CodeSourcery, LLC
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu/main-loop.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "internals.h"
24 #include "cpu-features.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
27 #include "cpregs.h"
28 
29 #define SIGNBIT (uint32_t)0x80000000
30 #define SIGNBIT64 ((uint64_t)1 << 63)
31 
32 int exception_target_el(CPUARMState *env)
33 {
34     int target_el = MAX(1, arm_current_el(env));
35 
36     /*
37      * No such thing as secure EL1 if EL3 is aarch32,
38      * so update the target EL to EL3 in this case.
39      */
40     if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
41         target_el = 3;
42     }
43 
44     return target_el;
45 }
46 
47 void raise_exception(CPUARMState *env, uint32_t excp,
48                      uint32_t syndrome, uint32_t target_el)
49 {
50     CPUState *cs = env_cpu(env);
51 
52     if (target_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
53         /*
54          * Redirect NS EL1 exceptions to NS EL2. These are reported with
55          * their original syndrome register value, with the exception of
56          * SIMD/FP access traps, which are reported as uncategorized
57          * (see DDI0478C.a D1.10.4)
58          */
59         target_el = 2;
60         if (syn_get_ec(syndrome) == EC_ADVSIMDFPACCESSTRAP) {
61             syndrome = syn_uncategorized();
62         }
63     }
64 
65     assert(!excp_is_internal(excp));
66     cs->exception_index = excp;
67     env->exception.syndrome = syndrome;
68     env->exception.target_el = target_el;
69     cpu_loop_exit(cs);
70 }
71 
72 void raise_exception_ra(CPUARMState *env, uint32_t excp, uint32_t syndrome,
73                         uint32_t target_el, uintptr_t ra)
74 {
75     CPUState *cs = env_cpu(env);
76 
77     /*
78      * restore_state_to_opc() will set env->exception.syndrome, so
79      * we must restore CPU state here before setting the syndrome
80      * the caller passed us, and cannot use cpu_loop_exit_restore().
81      */
82     cpu_restore_state(cs, ra);
83     raise_exception(env, excp, syndrome, target_el);
84 }
85 
86 uint64_t HELPER(neon_tbl)(CPUARMState *env, uint32_t desc,
87                           uint64_t ireg, uint64_t def)
88 {
89     uint64_t tmp, val = 0;
90     uint32_t maxindex = ((desc & 3) + 1) * 8;
91     uint32_t base_reg = desc >> 2;
92     uint32_t shift, index, reg;
93 
94     for (shift = 0; shift < 64; shift += 8) {
95         index = (ireg >> shift) & 0xff;
96         if (index < maxindex) {
97             reg = base_reg + (index >> 3);
98             tmp = *aa32_vfp_dreg(env, reg);
99             tmp = ((tmp >> ((index & 7) << 3)) & 0xff) << shift;
100         } else {
101             tmp = def & (0xffull << shift);
102         }
103         val |= tmp;
104     }
105     return val;
106 }
107 
108 void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue)
109 {
110     /*
111      * Perform the v8M stack limit check for SP updates from translated code,
112      * raising an exception if the limit is breached.
113      */
114     if (newvalue < v7m_sp_limit(env)) {
115         /*
116          * Stack limit exceptions are a rare case, so rather than syncing
117          * PC/condbits before the call, we use raise_exception_ra() so
118          * that cpu_restore_state() will sort them out.
119          */
120         raise_exception_ra(env, EXCP_STKOF, 0, 1, GETPC());
121     }
122 }
123 
124 /* Sign/zero extend */
125 uint32_t HELPER(sxtb16)(uint32_t x)
126 {
127     uint32_t res;
128     res = (uint16_t)(int8_t)x;
129     res |= (uint32_t)(int8_t)(x >> 16) << 16;
130     return res;
131 }
132 
133 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
134 {
135     /*
136      * Take a division-by-zero exception if necessary; otherwise return
137      * to get the usual non-trapping division behaviour (result of 0)
138      */
139     if (arm_feature(env, ARM_FEATURE_M)
140         && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
141         raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
142     }
143 }
144 
145 uint32_t HELPER(uxtb16)(uint32_t x)
146 {
147     uint32_t res;
148     res = (uint16_t)(uint8_t)x;
149     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
150     return res;
151 }
152 
153 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
154 {
155     if (den == 0) {
156         handle_possible_div0_trap(env, GETPC());
157         return 0;
158     }
159     if (num == INT_MIN && den == -1) {
160         return INT_MIN;
161     }
162     return num / den;
163 }
164 
165 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
166 {
167     if (den == 0) {
168         handle_possible_div0_trap(env, GETPC());
169         return 0;
170     }
171     return num / den;
172 }
173 
174 uint32_t HELPER(rbit)(uint32_t x)
175 {
176     return revbit32(x);
177 }
178 
179 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
180 {
181     uint32_t res = a + b;
182     if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
183         env->QF = 1;
184     return res;
185 }
186 
187 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
188 {
189     uint32_t res = a + b;
190     if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
191         env->QF = 1;
192         res = ~(((int32_t)a >> 31) ^ SIGNBIT);
193     }
194     return res;
195 }
196 
197 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
198 {
199     uint32_t res = a - b;
200     if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
201         env->QF = 1;
202         res = ~(((int32_t)a >> 31) ^ SIGNBIT);
203     }
204     return res;
205 }
206 
207 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
208 {
209     uint32_t res = a + b;
210     if (res < a) {
211         env->QF = 1;
212         res = ~0;
213     }
214     return res;
215 }
216 
217 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
218 {
219     uint32_t res = a - b;
220     if (res > a) {
221         env->QF = 1;
222         res = 0;
223     }
224     return res;
225 }
226 
227 /* Signed saturation.  */
228 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
229 {
230     int32_t top;
231     uint32_t mask;
232 
233     top = val >> shift;
234     mask = (1u << shift) - 1;
235     if (top > 0) {
236         env->QF = 1;
237         return mask;
238     } else if (top < -1) {
239         env->QF = 1;
240         return ~mask;
241     }
242     return val;
243 }
244 
245 /* Unsigned saturation.  */
246 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
247 {
248     uint32_t max;
249 
250     max = (1u << shift) - 1;
251     if (val < 0) {
252         env->QF = 1;
253         return 0;
254     } else if (val > max) {
255         env->QF = 1;
256         return max;
257     }
258     return val;
259 }
260 
261 /* Signed saturate.  */
262 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
263 {
264     return do_ssat(env, x, shift);
265 }
266 
267 /* Dual halfword signed saturate.  */
268 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
269 {
270     uint32_t res;
271 
272     res = (uint16_t)do_ssat(env, (int16_t)x, shift);
273     res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
274     return res;
275 }
276 
277 /* Unsigned saturate.  */
278 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
279 {
280     return do_usat(env, x, shift);
281 }
282 
283 /* Dual halfword unsigned saturate.  */
284 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
285 {
286     uint32_t res;
287 
288     res = (uint16_t)do_usat(env, (int16_t)x, shift);
289     res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
290     return res;
291 }
292 
293 void HELPER(setend)(CPUARMState *env)
294 {
295     env->uncached_cpsr ^= CPSR_E;
296     arm_rebuild_hflags(env);
297 }
298 
299 void HELPER(check_bxj_trap)(CPUARMState *env, uint32_t rm)
300 {
301     /*
302      * Only called if in NS EL0 or EL1 for a BXJ for a v7A CPU;
303      * check if HSTR.TJDBX means we need to trap to EL2.
304      */
305     if (env->cp15.hstr_el2 & HSTR_TJDBX) {
306         /*
307          * We know the condition code check passed, so take the IMPDEF
308          * choice to always report CV=1 COND 0xe
309          */
310         uint32_t syn = syn_bxjtrap(1, 0xe, rm);
311         raise_exception_ra(env, EXCP_HYP_TRAP, syn, 2, GETPC());
312     }
313 }
314 
315 #ifndef CONFIG_USER_ONLY
316 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
317  * The function returns the target EL (1-3) if the instruction is to be trapped;
318  * otherwise it returns 0 indicating it is not trapped.
319  */
320 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
321 {
322     int cur_el = arm_current_el(env);
323     uint64_t mask;
324 
325     if (arm_feature(env, ARM_FEATURE_M)) {
326         /* M profile cores can never trap WFI/WFE. */
327         return 0;
328     }
329 
330     /* If we are currently in EL0 then we need to check if SCTLR is set up for
331      * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
332      */
333     if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
334         int target_el;
335 
336         mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
337         if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
338             /* Secure EL0 and Secure PL1 is at EL3 */
339             target_el = 3;
340         } else {
341             target_el = 1;
342         }
343 
344         if (!(env->cp15.sctlr_el[target_el] & mask)) {
345             return target_el;
346         }
347     }
348 
349     /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
350      * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
351      * bits will be zero indicating no trap.
352      */
353     if (cur_el < 2) {
354         mask = is_wfe ? HCR_TWE : HCR_TWI;
355         if (arm_hcr_el2_eff(env) & mask) {
356             return 2;
357         }
358     }
359 
360     /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
361     if (cur_el < 3) {
362         mask = (is_wfe) ? SCR_TWE : SCR_TWI;
363         if (env->cp15.scr_el3 & mask) {
364             return 3;
365         }
366     }
367 
368     return 0;
369 }
370 #endif
371 
372 void HELPER(wfi)(CPUARMState *env, uint32_t insn_len)
373 {
374 #ifdef CONFIG_USER_ONLY
375     /*
376      * WFI in the user-mode emulator is technically permitted but not
377      * something any real-world code would do. AArch64 Linux kernels
378      * trap it via SCTRL_EL1.nTWI and make it an (expensive) NOP;
379      * AArch32 kernels don't trap it so it will delay a bit.
380      * For QEMU, make it NOP here, because trying to raise EXCP_HLT
381      * would trigger an abort.
382      */
383     return;
384 #else
385     CPUState *cs = env_cpu(env);
386     int target_el = check_wfx_trap(env, false);
387 
388     if (cpu_has_work(cs)) {
389         /* Don't bother to go into our "low power state" if
390          * we would just wake up immediately.
391          */
392         return;
393     }
394 
395     if (target_el) {
396         if (env->aarch64) {
397             env->pc -= insn_len;
398         } else {
399             env->regs[15] -= insn_len;
400         }
401 
402         raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2),
403                         target_el);
404     }
405 
406     cs->exception_index = EXCP_HLT;
407     cs->halted = 1;
408     cpu_loop_exit(cs);
409 #endif
410 }
411 
412 void HELPER(wfe)(CPUARMState *env)
413 {
414     /* This is a hint instruction that is semantically different
415      * from YIELD even though we currently implement it identically.
416      * Don't actually halt the CPU, just yield back to top
417      * level loop. This is not going into a "low power state"
418      * (ie halting until some event occurs), so we never take
419      * a configurable trap to a different exception level.
420      */
421     HELPER(yield)(env);
422 }
423 
424 void HELPER(yield)(CPUARMState *env)
425 {
426     CPUState *cs = env_cpu(env);
427 
428     /* This is a non-trappable hint instruction that generally indicates
429      * that the guest is currently busy-looping. Yield control back to the
430      * top level loop so that a more deserving VCPU has a chance to run.
431      */
432     cs->exception_index = EXCP_YIELD;
433     cpu_loop_exit(cs);
434 }
435 
436 /* Raise an internal-to-QEMU exception. This is limited to only
437  * those EXCP values which are special cases for QEMU to interrupt
438  * execution and not to be used for exceptions which are passed to
439  * the guest (those must all have syndrome information and thus should
440  * use exception_with_syndrome*).
441  */
442 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
443 {
444     CPUState *cs = env_cpu(env);
445 
446     assert(excp_is_internal(excp));
447     cs->exception_index = excp;
448     cpu_loop_exit(cs);
449 }
450 
451 /* Raise an exception with the specified syndrome register value */
452 void HELPER(exception_with_syndrome_el)(CPUARMState *env, uint32_t excp,
453                                         uint32_t syndrome, uint32_t target_el)
454 {
455     raise_exception(env, excp, syndrome, target_el);
456 }
457 
458 /*
459  * Raise an exception with the specified syndrome register value
460  * to the default target el.
461  */
462 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
463                                      uint32_t syndrome)
464 {
465     raise_exception(env, excp, syndrome, exception_target_el(env));
466 }
467 
468 uint32_t HELPER(cpsr_read)(CPUARMState *env)
469 {
470     return cpsr_read(env) & ~CPSR_EXEC;
471 }
472 
473 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
474 {
475     cpsr_write(env, val, mask, CPSRWriteByInstr);
476     /* TODO: Not all cpsr bits are relevant to hflags.  */
477     arm_rebuild_hflags(env);
478 }
479 
480 /* Write the CPSR for a 32-bit exception return */
481 void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
482 {
483     uint32_t mask;
484 
485     bql_lock();
486     arm_call_pre_el_change_hook(env_archcpu(env));
487     bql_unlock();
488 
489     mask = aarch32_cpsr_valid_mask(env->features, &env_archcpu(env)->isar);
490     cpsr_write(env, val, mask, CPSRWriteExceptionReturn);
491 
492     /* Generated code has already stored the new PC value, but
493      * without masking out its low bits, because which bits need
494      * masking depends on whether we're returning to Thumb or ARM
495      * state. Do the masking now.
496      */
497     env->regs[15] &= (env->thumb ? ~1 : ~3);
498     arm_rebuild_hflags(env);
499 
500     bql_lock();
501     arm_call_el_change_hook(env_archcpu(env));
502     bql_unlock();
503 }
504 
505 /* Access to user mode registers from privileged modes.  */
506 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
507 {
508     uint32_t val;
509 
510     if (regno == 13) {
511         val = env->banked_r13[BANK_USRSYS];
512     } else if (regno == 14) {
513         val = env->banked_r14[BANK_USRSYS];
514     } else if (regno >= 8
515                && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
516         val = env->usr_regs[regno - 8];
517     } else {
518         val = env->regs[regno];
519     }
520     return val;
521 }
522 
523 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
524 {
525     if (regno == 13) {
526         env->banked_r13[BANK_USRSYS] = val;
527     } else if (regno == 14) {
528         env->banked_r14[BANK_USRSYS] = val;
529     } else if (regno >= 8
530                && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
531         env->usr_regs[regno - 8] = val;
532     } else {
533         env->regs[regno] = val;
534     }
535 }
536 
537 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
538 {
539     if ((env->uncached_cpsr & CPSR_M) == mode) {
540         env->regs[13] = val;
541     } else {
542         env->banked_r13[bank_number(mode)] = val;
543     }
544 }
545 
546 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
547 {
548     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
549         /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
550          * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
551          */
552         raise_exception(env, EXCP_UDEF, syn_uncategorized(),
553                         exception_target_el(env));
554     }
555 
556     if ((env->uncached_cpsr & CPSR_M) == mode) {
557         return env->regs[13];
558     } else {
559         return env->banked_r13[bank_number(mode)];
560     }
561 }
562 
563 static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
564                                       uint32_t regno)
565 {
566     /* Raise an exception if the requested access is one of the UNPREDICTABLE
567      * cases; otherwise return. This broadly corresponds to the pseudocode
568      * BankedRegisterAccessValid() and SPSRAccessValid(),
569      * except that we have already handled some cases at translate time.
570      */
571     int curmode = env->uncached_cpsr & CPSR_M;
572 
573     if (tgtmode == ARM_CPU_MODE_HYP) {
574         /*
575          * Handle Hyp target regs first because some are special cases
576          * which don't want the usual "not accessible from tgtmode" check.
577          */
578         switch (regno) {
579         case 16 ... 17: /* ELR_Hyp, SPSR_Hyp */
580             if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
581                 goto undef;
582             }
583             break;
584         case 13:
585             if (curmode != ARM_CPU_MODE_MON) {
586                 goto undef;
587             }
588             break;
589         default:
590             g_assert_not_reached();
591         }
592         return;
593     }
594 
595     if (curmode == tgtmode) {
596         goto undef;
597     }
598 
599     if (tgtmode == ARM_CPU_MODE_USR) {
600         switch (regno) {
601         case 8 ... 12:
602             if (curmode != ARM_CPU_MODE_FIQ) {
603                 goto undef;
604             }
605             break;
606         case 13:
607             if (curmode == ARM_CPU_MODE_SYS) {
608                 goto undef;
609             }
610             break;
611         case 14:
612             if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
613                 goto undef;
614             }
615             break;
616         default:
617             break;
618         }
619     }
620 
621     return;
622 
623 undef:
624     raise_exception(env, EXCP_UDEF, syn_uncategorized(),
625                     exception_target_el(env));
626 }
627 
628 void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
629                         uint32_t regno)
630 {
631     msr_mrs_banked_exc_checks(env, tgtmode, regno);
632 
633     switch (regno) {
634     case 16: /* SPSRs */
635         if (tgtmode == (env->uncached_cpsr & CPSR_M)) {
636             /* Only happens for SPSR_Hyp access in Hyp mode */
637             env->spsr = value;
638         } else {
639             env->banked_spsr[bank_number(tgtmode)] = value;
640         }
641         break;
642     case 17: /* ELR_Hyp */
643         env->elr_el[2] = value;
644         break;
645     case 13:
646         env->banked_r13[bank_number(tgtmode)] = value;
647         break;
648     case 14:
649         env->banked_r14[r14_bank_number(tgtmode)] = value;
650         break;
651     case 8 ... 12:
652         switch (tgtmode) {
653         case ARM_CPU_MODE_USR:
654             env->usr_regs[regno - 8] = value;
655             break;
656         case ARM_CPU_MODE_FIQ:
657             env->fiq_regs[regno - 8] = value;
658             break;
659         default:
660             g_assert_not_reached();
661         }
662         break;
663     default:
664         g_assert_not_reached();
665     }
666 }
667 
668 uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
669 {
670     msr_mrs_banked_exc_checks(env, tgtmode, regno);
671 
672     switch (regno) {
673     case 16: /* SPSRs */
674         if (tgtmode == (env->uncached_cpsr & CPSR_M)) {
675             /* Only happens for SPSR_Hyp access in Hyp mode */
676             return env->spsr;
677         } else {
678             return env->banked_spsr[bank_number(tgtmode)];
679         }
680     case 17: /* ELR_Hyp */
681         return env->elr_el[2];
682     case 13:
683         return env->banked_r13[bank_number(tgtmode)];
684     case 14:
685         return env->banked_r14[r14_bank_number(tgtmode)];
686     case 8 ... 12:
687         switch (tgtmode) {
688         case ARM_CPU_MODE_USR:
689             return env->usr_regs[regno - 8];
690         case ARM_CPU_MODE_FIQ:
691             return env->fiq_regs[regno - 8];
692         default:
693             g_assert_not_reached();
694         }
695     default:
696         g_assert_not_reached();
697     }
698 }
699 
700 const void *HELPER(access_check_cp_reg)(CPUARMState *env, uint32_t key,
701                                         uint32_t syndrome, uint32_t isread)
702 {
703     ARMCPU *cpu = env_archcpu(env);
704     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, key);
705     CPAccessResult res = CP_ACCESS_OK;
706     int target_el;
707 
708     assert(ri != NULL);
709 
710     if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
711         && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
712         res = CP_ACCESS_TRAP;
713         goto fail;
714     }
715 
716     if (ri->accessfn) {
717         res = ri->accessfn(env, ri, isread);
718     }
719 
720     /*
721      * If the access function indicates a trap from EL0 to EL1 then
722      * that always takes priority over the HSTR_EL2 trap. (If it indicates
723      * a trap to EL3, then the HSTR_EL2 trap takes priority; if it indicates
724      * a trap to EL2, then the syndrome is the same either way so we don't
725      * care whether technically the architecture says that HSTR_EL2 trap or
726      * the other trap takes priority. So we take the "check HSTR_EL2" path
727      * for all of those cases.)
728      */
729     if (res != CP_ACCESS_OK && ((res & CP_ACCESS_EL_MASK) == 0) &&
730         arm_current_el(env) == 0) {
731         goto fail;
732     }
733 
734     /*
735      * HSTR_EL2 traps from EL1 are checked earlier, in generated code;
736      * we only need to check here for traps from EL0.
737      */
738     if (!is_a64(env) && arm_current_el(env) == 0 && ri->cp == 15 &&
739         arm_is_el2_enabled(env) &&
740         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
741         uint32_t mask = 1 << ri->crn;
742 
743         if (ri->type & ARM_CP_64BIT) {
744             mask = 1 << ri->crm;
745         }
746 
747         /* T4 and T14 are RES0 */
748         mask &= ~((1 << 4) | (1 << 14));
749 
750         if (env->cp15.hstr_el2 & mask) {
751             res = CP_ACCESS_TRAP_EL2;
752             goto fail;
753         }
754     }
755 
756     /*
757      * Fine-grained traps also are lower priority than undef-to-EL1,
758      * higher priority than trap-to-EL3, and we don't care about priority
759      * order with other EL2 traps because the syndrome value is the same.
760      */
761     if (arm_fgt_active(env, arm_current_el(env))) {
762         uint64_t trapword = 0;
763         unsigned int idx = FIELD_EX32(ri->fgt, FGT, IDX);
764         unsigned int bitpos = FIELD_EX32(ri->fgt, FGT, BITPOS);
765         bool rev = FIELD_EX32(ri->fgt, FGT, REV);
766         bool trapbit;
767 
768         if (ri->fgt & FGT_EXEC) {
769             assert(idx < ARRAY_SIZE(env->cp15.fgt_exec));
770             trapword = env->cp15.fgt_exec[idx];
771         } else if (isread && (ri->fgt & FGT_R)) {
772             assert(idx < ARRAY_SIZE(env->cp15.fgt_read));
773             trapword = env->cp15.fgt_read[idx];
774         } else if (!isread && (ri->fgt & FGT_W)) {
775             assert(idx < ARRAY_SIZE(env->cp15.fgt_write));
776             trapword = env->cp15.fgt_write[idx];
777         }
778 
779         trapbit = extract64(trapword, bitpos, 1);
780         if (trapbit != rev) {
781             res = CP_ACCESS_TRAP_EL2;
782             goto fail;
783         }
784     }
785 
786     if (likely(res == CP_ACCESS_OK)) {
787         return ri;
788     }
789 
790  fail:
791     switch (res & ~CP_ACCESS_EL_MASK) {
792     case CP_ACCESS_TRAP:
793         break;
794     case CP_ACCESS_TRAP_UNCATEGORIZED:
795         /* Only CP_ACCESS_TRAP traps are direct to a specified EL */
796         assert((res & CP_ACCESS_EL_MASK) == 0);
797         if (cpu_isar_feature(aa64_ids, cpu) && isread &&
798             arm_cpreg_in_idspace(ri)) {
799             /*
800              * FEAT_IDST says this should be reported as EC_SYSTEMREGISTERTRAP,
801              * not EC_UNCATEGORIZED
802              */
803             break;
804         }
805         syndrome = syn_uncategorized();
806         break;
807     default:
808         g_assert_not_reached();
809     }
810 
811     target_el = res & CP_ACCESS_EL_MASK;
812     switch (target_el) {
813     case 0:
814         target_el = exception_target_el(env);
815         break;
816     case 2:
817         assert(arm_current_el(env) != 3);
818         assert(arm_is_el2_enabled(env));
819         break;
820     case 3:
821         assert(arm_feature(env, ARM_FEATURE_EL3));
822         break;
823     default:
824         /* No "direct" traps to EL1 */
825         g_assert_not_reached();
826     }
827 
828     raise_exception(env, EXCP_UDEF, syndrome, target_el);
829 }
830 
831 const void *HELPER(lookup_cp_reg)(CPUARMState *env, uint32_t key)
832 {
833     ARMCPU *cpu = env_archcpu(env);
834     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, key);
835 
836     assert(ri != NULL);
837     return ri;
838 }
839 
840 /*
841  * Test for HCR_EL2.TIDCP at EL1.
842  * Since implementation defined registers are rare, and within QEMU
843  * most of them are no-op, do not waste HFLAGS space for this and
844  * always use a helper.
845  */
846 void HELPER(tidcp_el1)(CPUARMState *env, uint32_t syndrome)
847 {
848     if (arm_hcr_el2_eff(env) & HCR_TIDCP) {
849         raise_exception_ra(env, EXCP_UDEF, syndrome, 2, GETPC());
850     }
851 }
852 
853 /*
854  * Similarly, for FEAT_TIDCP1 at EL0.
855  * We have already checked for the presence of the feature.
856  */
857 void HELPER(tidcp_el0)(CPUARMState *env, uint32_t syndrome)
858 {
859     /* See arm_sctlr(), but we also need the sctlr el. */
860     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
861     int target_el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
862 
863     /*
864      * The bit is not valid unless the target el is aa64, but since the
865      * bit test is simpler perform that first and check validity after.
866      */
867     if ((env->cp15.sctlr_el[target_el] & SCTLR_TIDCP)
868         && arm_el_is_aa64(env, target_el)) {
869         raise_exception_ra(env, EXCP_UDEF, syndrome, target_el, GETPC());
870     }
871 }
872 
873 void HELPER(set_cp_reg)(CPUARMState *env, const void *rip, uint32_t value)
874 {
875     const ARMCPRegInfo *ri = rip;
876 
877     if (ri->type & ARM_CP_IO) {
878         bql_lock();
879         ri->writefn(env, ri, value);
880         bql_unlock();
881     } else {
882         ri->writefn(env, ri, value);
883     }
884 }
885 
886 uint32_t HELPER(get_cp_reg)(CPUARMState *env, const void *rip)
887 {
888     const ARMCPRegInfo *ri = rip;
889     uint32_t res;
890 
891     if (ri->type & ARM_CP_IO) {
892         bql_lock();
893         res = ri->readfn(env, ri);
894         bql_unlock();
895     } else {
896         res = ri->readfn(env, ri);
897     }
898 
899     return res;
900 }
901 
902 void HELPER(set_cp_reg64)(CPUARMState *env, const void *rip, uint64_t value)
903 {
904     const ARMCPRegInfo *ri = rip;
905 
906     if (ri->type & ARM_CP_IO) {
907         bql_lock();
908         ri->writefn(env, ri, value);
909         bql_unlock();
910     } else {
911         ri->writefn(env, ri, value);
912     }
913 }
914 
915 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, const void *rip)
916 {
917     const ARMCPRegInfo *ri = rip;
918     uint64_t res;
919 
920     if (ri->type & ARM_CP_IO) {
921         bql_lock();
922         res = ri->readfn(env, ri);
923         bql_unlock();
924     } else {
925         res = ri->readfn(env, ri);
926     }
927 
928     return res;
929 }
930 
931 void HELPER(pre_hvc)(CPUARMState *env)
932 {
933     ARMCPU *cpu = env_archcpu(env);
934     int cur_el = arm_current_el(env);
935     /* FIXME: Use actual secure state.  */
936     bool secure = false;
937     bool undef;
938 
939     if (arm_is_psci_call(cpu, EXCP_HVC)) {
940         /* If PSCI is enabled and this looks like a valid PSCI call then
941          * that overrides the architecturally mandated HVC behaviour.
942          */
943         return;
944     }
945 
946     if (!arm_feature(env, ARM_FEATURE_EL2)) {
947         /* If EL2 doesn't exist, HVC always UNDEFs */
948         undef = true;
949     } else if (arm_feature(env, ARM_FEATURE_EL3)) {
950         /* EL3.HCE has priority over EL2.HCD. */
951         undef = !(env->cp15.scr_el3 & SCR_HCE);
952     } else {
953         undef = env->cp15.hcr_el2 & HCR_HCD;
954     }
955 
956     /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
957      * For ARMv8/AArch64, HVC is allowed in EL3.
958      * Note that we've already trapped HVC from EL0 at translation
959      * time.
960      */
961     if (secure && (!is_a64(env) || cur_el == 1)) {
962         undef = true;
963     }
964 
965     if (undef) {
966         raise_exception(env, EXCP_UDEF, syn_uncategorized(),
967                         exception_target_el(env));
968     }
969 }
970 
971 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
972 {
973     ARMCPU *cpu = env_archcpu(env);
974     int cur_el = arm_current_el(env);
975     bool secure = arm_is_secure(env);
976     bool smd_flag = env->cp15.scr_el3 & SCR_SMD;
977 
978     /*
979      * SMC behaviour is summarized in the following table.
980      * This helper handles the "Trap to EL2" and "Undef insn" cases.
981      * The "Trap to EL3" and "PSCI call" cases are handled in the exception
982      * helper.
983      *
984      *  -> ARM_FEATURE_EL3 and !SMD
985      *                           HCR_TSC && NS EL1   !HCR_TSC || !NS EL1
986      *
987      *  Conduit SMC, valid call  Trap to EL2         PSCI Call
988      *  Conduit SMC, inval call  Trap to EL2         Trap to EL3
989      *  Conduit not SMC          Trap to EL2         Trap to EL3
990      *
991      *
992      *  -> ARM_FEATURE_EL3 and SMD
993      *                           HCR_TSC && NS EL1   !HCR_TSC || !NS EL1
994      *
995      *  Conduit SMC, valid call  Trap to EL2         PSCI Call
996      *  Conduit SMC, inval call  Trap to EL2         Undef insn
997      *  Conduit not SMC          Trap to EL2         Undef insn
998      *
999      *
1000      *  -> !ARM_FEATURE_EL3
1001      *                           HCR_TSC && NS EL1   !HCR_TSC || !NS EL1
1002      *
1003      *  Conduit SMC, valid call  Trap to EL2         PSCI Call
1004      *  Conduit SMC, inval call  Trap to EL2         Undef insn
1005      *  Conduit not SMC          Undef or trap[1]    Undef insn
1006      *
1007      * [1] In this case:
1008      *  - if HCR_EL2.NV == 1 we must trap to EL2
1009      *  - if HCR_EL2.NV == 0 then newer architecture revisions permit
1010      *    AArch64 (but not AArch32) to trap to EL2 as an IMPDEF choice
1011      *  - otherwise we must UNDEF
1012      * We take the IMPDEF choice to always UNDEF if HCR_EL2.NV == 0.
1013      */
1014 
1015     /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
1016      * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
1017      *  extensions, SMD only applies to NS state.
1018      * On ARMv7 without the Virtualization extensions, the SMD bit
1019      * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
1020      * so we need not special case this here.
1021      */
1022     bool smd = arm_feature(env, ARM_FEATURE_AARCH64) ? smd_flag
1023                                                      : smd_flag && !secure;
1024 
1025     if (!arm_feature(env, ARM_FEATURE_EL3) &&
1026         !(arm_hcr_el2_eff(env) & HCR_NV) &&
1027         cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
1028         /*
1029          * If we have no EL3 then traditionally SMC always UNDEFs and can't be
1030          * trapped to EL2. For nested virtualization, SMC can be trapped to
1031          * the outer hypervisor. PSCI-via-SMC is a sort of ersatz EL3
1032          * firmware within QEMU, and we want an EL2 guest to be able
1033          * to forbid its EL1 from making PSCI calls into QEMU's
1034          * "firmware" via HCR.TSC, so for these purposes treat
1035          * PSCI-via-SMC as implying an EL3.
1036          * This handles the very last line of the previous table.
1037          */
1038         raise_exception(env, EXCP_UDEF, syn_uncategorized(),
1039                         exception_target_el(env));
1040     }
1041 
1042     if (cur_el == 1 && (arm_hcr_el2_eff(env) & HCR_TSC)) {
1043         /* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
1044          * We also want an EL2 guest to be able to forbid its EL1 from
1045          * making PSCI calls into QEMU's "firmware" via HCR.TSC.
1046          * This handles all the "Trap to EL2" cases of the previous table.
1047          */
1048         raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
1049     }
1050 
1051     /* Catch the two remaining "Undef insn" cases of the previous table:
1052      *    - PSCI conduit is SMC but we don't have a valid PCSI call,
1053      *    - We don't have EL3 or SMD is set.
1054      */
1055     if (!arm_is_psci_call(cpu, EXCP_SMC) &&
1056         (smd || !arm_feature(env, ARM_FEATURE_EL3))) {
1057         raise_exception(env, EXCP_UDEF, syn_uncategorized(),
1058                         exception_target_el(env));
1059     }
1060 }
1061 
1062 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
1063    The only way to do that in TCG is a conditional branch, which clobbers
1064    all our temporaries.  For now implement these as helper functions.  */
1065 
1066 /* Similarly for variable shift instructions.  */
1067 
1068 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1069 {
1070     int shift = i & 0xff;
1071     if (shift >= 32) {
1072         if (shift == 32)
1073             env->CF = x & 1;
1074         else
1075             env->CF = 0;
1076         return 0;
1077     } else if (shift != 0) {
1078         env->CF = (x >> (32 - shift)) & 1;
1079         return x << shift;
1080     }
1081     return x;
1082 }
1083 
1084 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1085 {
1086     int shift = i & 0xff;
1087     if (shift >= 32) {
1088         if (shift == 32)
1089             env->CF = (x >> 31) & 1;
1090         else
1091             env->CF = 0;
1092         return 0;
1093     } else if (shift != 0) {
1094         env->CF = (x >> (shift - 1)) & 1;
1095         return x >> shift;
1096     }
1097     return x;
1098 }
1099 
1100 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1101 {
1102     int shift = i & 0xff;
1103     if (shift >= 32) {
1104         env->CF = (x >> 31) & 1;
1105         return (int32_t)x >> 31;
1106     } else if (shift != 0) {
1107         env->CF = (x >> (shift - 1)) & 1;
1108         return (int32_t)x >> shift;
1109     }
1110     return x;
1111 }
1112 
1113 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1114 {
1115     int shift1, shift;
1116     shift1 = i & 0xff;
1117     shift = shift1 & 0x1f;
1118     if (shift == 0) {
1119         if (shift1 != 0)
1120             env->CF = (x >> 31) & 1;
1121         return x;
1122     } else {
1123         env->CF = (x >> (shift - 1)) & 1;
1124         return ((uint32_t)x >> shift) | (x << (32 - shift));
1125     }
1126 }
1127 
1128 void HELPER(probe_access)(CPUARMState *env, target_ulong ptr,
1129                           uint32_t access_type, uint32_t mmu_idx,
1130                           uint32_t size)
1131 {
1132     uint32_t in_page = -((uint32_t)ptr | TARGET_PAGE_SIZE);
1133     uintptr_t ra = GETPC();
1134 
1135     if (likely(size <= in_page)) {
1136         probe_access(env, ptr, size, access_type, mmu_idx, ra);
1137     } else {
1138         probe_access(env, ptr, in_page, access_type, mmu_idx, ra);
1139         probe_access(env, ptr + in_page, size - in_page,
1140                      access_type, mmu_idx, ra);
1141     }
1142 }
1143 
1144 /*
1145  * This function corresponds to AArch64.vESBOperation().
1146  * Note that the AArch32 version is not functionally different.
1147  */
1148 void HELPER(vesb)(CPUARMState *env)
1149 {
1150     /*
1151      * The EL2Enabled() check is done inside arm_hcr_el2_eff,
1152      * and will return HCR_EL2.VSE == 0, so nothing happens.
1153      */
1154     uint64_t hcr = arm_hcr_el2_eff(env);
1155     bool enabled = !(hcr & HCR_TGE) && (hcr & HCR_AMO);
1156     bool pending = enabled && (hcr & HCR_VSE);
1157     bool masked  = (env->daif & PSTATE_A);
1158 
1159     /* If VSE pending and masked, defer the exception.  */
1160     if (pending && masked) {
1161         uint32_t syndrome;
1162 
1163         if (arm_el_is_aa64(env, 1)) {
1164             /* Copy across IDS and ISS from VSESR. */
1165             syndrome = env->cp15.vsesr_el2 & 0x1ffffff;
1166         } else {
1167             ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal };
1168 
1169             if (extended_addresses_enabled(env)) {
1170                 syndrome = arm_fi_to_lfsc(&fi);
1171             } else {
1172                 syndrome = arm_fi_to_sfsc(&fi);
1173             }
1174             /* Copy across AET and ExT from VSESR. */
1175             syndrome |= env->cp15.vsesr_el2 & 0xd000;
1176         }
1177 
1178         /* Set VDISR_EL2.A along with the syndrome. */
1179         env->cp15.vdisr_el2 = syndrome | (1u << 31);
1180 
1181         /* Clear pending virtual SError */
1182         env->cp15.hcr_el2 &= ~HCR_VSE;
1183         cpu_reset_interrupt(env_cpu(env), CPU_INTERRUPT_VSERR);
1184     }
1185 }
1186