xref: /qemu/target/arm/tcg/tlb_helper.c (revision 78f314cf)
1 /*
2  * ARM TLB (Translation lookaside buffer) helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 #include "qemu/osdep.h"
9 #include "cpu.h"
10 #include "internals.h"
11 #include "exec/exec-all.h"
12 #include "exec/helper-proto.h"
13 
14 
15 /*
16  * Returns true if the stage 1 translation regime is using LPAE format page
17  * tables. Used when raising alignment exceptions, whose FSR changes depending
18  * on whether the long or short descriptor format is in use.
19  */
20 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
21 {
22     mmu_idx = stage_1_mmu_idx(mmu_idx);
23     return regime_using_lpae_format(env, mmu_idx);
24 }
25 
26 static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
27                                             ARMMMUFaultInfo *fi,
28                                             unsigned int target_el,
29                                             bool same_el, bool is_write,
30                                             int fsc)
31 {
32     uint32_t syn;
33 
34     /*
35      * ISV is only set for stage-2 data aborts routed to EL2 and
36      * never for stage-1 page table walks faulting on stage 2
37      * or for stage-1 faults.
38      *
39      * Furthermore, ISV is only set for certain kinds of load/stores.
40      * If the template syndrome does not have ISV set, we should leave
41      * it cleared.
42      *
43      * See ARMv8 specs, D7-1974:
44      * ISS encoding for an exception from a Data Abort, the
45      * ISV field.
46      *
47      * TODO: FEAT_LS64/FEAT_LS64_V/FEAT_SL64_ACCDATA: Translation,
48      * Access Flag, and Permission faults caused by LD64B, ST64B,
49      * ST64BV, or ST64BV0 insns report syndrome info even for stage-1
50      * faults and regardless of the target EL.
51      */
52     if (!(template_syn & ARM_EL_ISV) || target_el != 2
53         || fi->s1ptw || !fi->stage2) {
54         syn = syn_data_abort_no_iss(same_el, 0,
55                                     fi->ea, 0, fi->s1ptw, is_write, fsc);
56     } else {
57         /*
58          * Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
59          * syndrome created at translation time.
60          * Now we create the runtime syndrome with the remaining fields.
61          */
62         syn = syn_data_abort_with_iss(same_el,
63                                       0, 0, 0, 0, 0,
64                                       fi->ea, 0, fi->s1ptw, is_write, fsc,
65                                       true);
66         /* Merge the runtime syndrome with the template syndrome.  */
67         syn |= template_syn;
68     }
69     return syn;
70 }
71 
72 static uint32_t compute_fsr_fsc(CPUARMState *env, ARMMMUFaultInfo *fi,
73                                 int target_el, int mmu_idx, uint32_t *ret_fsc)
74 {
75     ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
76     uint32_t fsr, fsc;
77 
78     /*
79      * For M-profile there is no guest-facing FSR. We compute a
80      * short-form value for env->exception.fsr which we will then
81      * examine in arm_v7m_cpu_do_interrupt(). In theory we could
82      * use the LPAE format instead as long as both bits of code agree
83      * (and arm_fi_to_lfsc() handled the M-profile specific
84      * ARMFault_QEMU_NSCExec and ARMFault_QEMU_SFault cases).
85      */
86     if (!arm_feature(env, ARM_FEATURE_M) &&
87         (target_el == 2 || arm_el_is_aa64(env, target_el) ||
88          arm_s1_regime_using_lpae_format(env, arm_mmu_idx))) {
89         /*
90          * LPAE format fault status register : bottom 6 bits are
91          * status code in the same form as needed for syndrome
92          */
93         fsr = arm_fi_to_lfsc(fi);
94         fsc = extract32(fsr, 0, 6);
95     } else {
96         fsr = arm_fi_to_sfsc(fi);
97         /*
98          * Short format FSR : this fault will never actually be reported
99          * to an EL that uses a syndrome register. Use a (currently)
100          * reserved FSR code in case the constructed syndrome does leak
101          * into the guest somehow.
102          */
103         fsc = 0x3f;
104     }
105 
106     *ret_fsc = fsc;
107     return fsr;
108 }
109 
110 static G_NORETURN
111 void arm_deliver_fault(ARMCPU *cpu, vaddr addr,
112                        MMUAccessType access_type,
113                        int mmu_idx, ARMMMUFaultInfo *fi)
114 {
115     CPUARMState *env = &cpu->env;
116     int target_el;
117     bool same_el;
118     uint32_t syn, exc, fsr, fsc;
119 
120     target_el = exception_target_el(env);
121     if (fi->stage2) {
122         target_el = 2;
123         env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
124         if (arm_is_secure_below_el3(env) && fi->s1ns) {
125             env->cp15.hpfar_el2 |= HPFAR_NS;
126         }
127     }
128     same_el = (arm_current_el(env) == target_el);
129 
130     fsr = compute_fsr_fsc(env, fi, target_el, mmu_idx, &fsc);
131 
132     if (access_type == MMU_INST_FETCH) {
133         syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
134         exc = EXCP_PREFETCH_ABORT;
135     } else {
136         syn = merge_syn_data_abort(env->exception.syndrome, fi, target_el,
137                                    same_el, access_type == MMU_DATA_STORE,
138                                    fsc);
139         if (access_type == MMU_DATA_STORE
140             && arm_feature(env, ARM_FEATURE_V6)) {
141             fsr |= (1 << 11);
142         }
143         exc = EXCP_DATA_ABORT;
144     }
145 
146     env->exception.vaddress = addr;
147     env->exception.fsr = fsr;
148     raise_exception(env, exc, syn, target_el);
149 }
150 
151 /* Raise a data fault alignment exception for the specified virtual address */
152 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
153                                  MMUAccessType access_type,
154                                  int mmu_idx, uintptr_t retaddr)
155 {
156     ARMCPU *cpu = ARM_CPU(cs);
157     ARMMMUFaultInfo fi = {};
158 
159     /* now we have a real cpu fault */
160     cpu_restore_state(cs, retaddr);
161 
162     fi.type = ARMFault_Alignment;
163     arm_deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi);
164 }
165 
166 void helper_exception_pc_alignment(CPUARMState *env, target_ulong pc)
167 {
168     ARMMMUFaultInfo fi = { .type = ARMFault_Alignment };
169     int target_el = exception_target_el(env);
170     int mmu_idx = cpu_mmu_index(env, true);
171     uint32_t fsc;
172 
173     env->exception.vaddress = pc;
174 
175     /*
176      * Note that the fsc is not applicable to this exception,
177      * since any syndrome is pcalignment not insn_abort.
178      */
179     env->exception.fsr = compute_fsr_fsc(env, &fi, target_el, mmu_idx, &fsc);
180     raise_exception(env, EXCP_PREFETCH_ABORT, syn_pcalignment(), target_el);
181 }
182 
183 #if !defined(CONFIG_USER_ONLY)
184 
185 /*
186  * arm_cpu_do_transaction_failed: handle a memory system error response
187  * (eg "no device/memory present at address") by raising an external abort
188  * exception
189  */
190 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
191                                    vaddr addr, unsigned size,
192                                    MMUAccessType access_type,
193                                    int mmu_idx, MemTxAttrs attrs,
194                                    MemTxResult response, uintptr_t retaddr)
195 {
196     ARMCPU *cpu = ARM_CPU(cs);
197     ARMMMUFaultInfo fi = {};
198 
199     /* now we have a real cpu fault */
200     cpu_restore_state(cs, retaddr);
201 
202     fi.ea = arm_extabort_type(response);
203     fi.type = ARMFault_SyncExternal;
204     arm_deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
205 }
206 
207 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
208                       MMUAccessType access_type, int mmu_idx,
209                       bool probe, uintptr_t retaddr)
210 {
211     ARMCPU *cpu = ARM_CPU(cs);
212     GetPhysAddrResult res = {};
213     ARMMMUFaultInfo local_fi, *fi;
214     int ret;
215 
216     /*
217      * Allow S1_ptw_translate to see any fault generated here.
218      * Since this may recurse, read and clear.
219      */
220     fi = cpu->env.tlb_fi;
221     if (fi) {
222         cpu->env.tlb_fi = NULL;
223     } else {
224         fi = memset(&local_fi, 0, sizeof(local_fi));
225     }
226 
227     /*
228      * Walk the page table and (if the mapping exists) add the page
229      * to the TLB.  On success, return true.  Otherwise, if probing,
230      * return false.  Otherwise populate fsr with ARM DFSR/IFSR fault
231      * register format, and signal the fault.
232      */
233     ret = get_phys_addr(&cpu->env, address, access_type,
234                         core_to_arm_mmu_idx(&cpu->env, mmu_idx),
235                         &res, fi);
236     if (likely(!ret)) {
237         /*
238          * Map a single [sub]page. Regions smaller than our declared
239          * target page size are handled specially, so for those we
240          * pass in the exact addresses.
241          */
242         if (res.f.lg_page_size >= TARGET_PAGE_BITS) {
243             res.f.phys_addr &= TARGET_PAGE_MASK;
244             address &= TARGET_PAGE_MASK;
245         }
246 
247         res.f.pte_attrs = res.cacheattrs.attrs;
248         res.f.shareability = res.cacheattrs.shareability;
249 
250         tlb_set_page_full(cs, mmu_idx, address, &res.f);
251         return true;
252     } else if (probe) {
253         return false;
254     } else {
255         /* now we have a real cpu fault */
256         cpu_restore_state(cs, retaddr);
257         arm_deliver_fault(cpu, address, access_type, mmu_idx, fi);
258     }
259 }
260 #else
261 void arm_cpu_record_sigsegv(CPUState *cs, vaddr addr,
262                             MMUAccessType access_type,
263                             bool maperr, uintptr_t ra)
264 {
265     ARMMMUFaultInfo fi = {
266         .type = maperr ? ARMFault_Translation : ARMFault_Permission,
267         .level = 3,
268     };
269     ARMCPU *cpu = ARM_CPU(cs);
270 
271     /*
272      * We report both ESR and FAR to signal handlers.
273      * For now, it's easiest to deliver the fault normally.
274      */
275     cpu_restore_state(cs, ra);
276     arm_deliver_fault(cpu, addr, access_type, MMU_USER_IDX, &fi);
277 }
278 
279 void arm_cpu_record_sigbus(CPUState *cs, vaddr addr,
280                            MMUAccessType access_type, uintptr_t ra)
281 {
282     arm_cpu_do_unaligned_access(cs, addr, access_type, MMU_USER_IDX, ra);
283 }
284 #endif /* !defined(CONFIG_USER_ONLY) */
285