xref: /qemu/target/arm/tcg/tlb_helper.c (revision ebda3036)
1 /*
2  * ARM TLB (Translation lookaside buffer) helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 #include "qemu/osdep.h"
9 #include "cpu.h"
10 #include "internals.h"
11 #include "exec/exec-all.h"
12 #include "exec/helper-proto.h"
13 
14 
15 /*
16  * Returns true if the stage 1 translation regime is using LPAE format page
17  * tables. Used when raising alignment exceptions, whose FSR changes depending
18  * on whether the long or short descriptor format is in use.
19  */
20 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
21 {
22     mmu_idx = stage_1_mmu_idx(mmu_idx);
23     return regime_using_lpae_format(env, mmu_idx);
24 }
25 
26 static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
27                                             ARMMMUFaultInfo *fi,
28                                             unsigned int target_el,
29                                             bool same_el, bool is_write,
30                                             int fsc)
31 {
32     uint32_t syn;
33 
34     /*
35      * ISV is only set for stage-2 data aborts routed to EL2 and
36      * never for stage-1 page table walks faulting on stage 2
37      * or for stage-1 faults.
38      *
39      * Furthermore, ISV is only set for certain kinds of load/stores.
40      * If the template syndrome does not have ISV set, we should leave
41      * it cleared.
42      *
43      * See ARMv8 specs, D7-1974:
44      * ISS encoding for an exception from a Data Abort, the
45      * ISV field.
46      *
47      * TODO: FEAT_LS64/FEAT_LS64_V/FEAT_SL64_ACCDATA: Translation,
48      * Access Flag, and Permission faults caused by LD64B, ST64B,
49      * ST64BV, or ST64BV0 insns report syndrome info even for stage-1
50      * faults and regardless of the target EL.
51      */
52     if (!(template_syn & ARM_EL_ISV) || target_el != 2
53         || fi->s1ptw || !fi->stage2) {
54         syn = syn_data_abort_no_iss(same_el, 0,
55                                     fi->ea, 0, fi->s1ptw, is_write, fsc);
56     } else {
57         /*
58          * Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
59          * syndrome created at translation time.
60          * Now we create the runtime syndrome with the remaining fields.
61          */
62         syn = syn_data_abort_with_iss(same_el,
63                                       0, 0, 0, 0, 0,
64                                       fi->ea, 0, fi->s1ptw, is_write, fsc,
65                                       true);
66         /* Merge the runtime syndrome with the template syndrome.  */
67         syn |= template_syn;
68     }
69     return syn;
70 }
71 
72 static uint32_t compute_fsr_fsc(CPUARMState *env, ARMMMUFaultInfo *fi,
73                                 int target_el, int mmu_idx, uint32_t *ret_fsc)
74 {
75     ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
76     uint32_t fsr, fsc;
77 
78     /*
79      * For M-profile there is no guest-facing FSR. We compute a
80      * short-form value for env->exception.fsr which we will then
81      * examine in arm_v7m_cpu_do_interrupt(). In theory we could
82      * use the LPAE format instead as long as both bits of code agree
83      * (and arm_fi_to_lfsc() handled the M-profile specific
84      * ARMFault_QEMU_NSCExec and ARMFault_QEMU_SFault cases).
85      */
86     if (!arm_feature(env, ARM_FEATURE_M) &&
87         (target_el == 2 || arm_el_is_aa64(env, target_el) ||
88          arm_s1_regime_using_lpae_format(env, arm_mmu_idx))) {
89         /*
90          * LPAE format fault status register : bottom 6 bits are
91          * status code in the same form as needed for syndrome
92          */
93         fsr = arm_fi_to_lfsc(fi);
94         fsc = extract32(fsr, 0, 6);
95     } else {
96         fsr = arm_fi_to_sfsc(fi);
97         /*
98          * Short format FSR : this fault will never actually be reported
99          * to an EL that uses a syndrome register. Use a (currently)
100          * reserved FSR code in case the constructed syndrome does leak
101          * into the guest somehow.
102          */
103         fsc = 0x3f;
104     }
105 
106     *ret_fsc = fsc;
107     return fsr;
108 }
109 
110 static bool report_as_gpc_exception(ARMCPU *cpu, int current_el,
111                                     ARMMMUFaultInfo *fi)
112 {
113     bool ret;
114 
115     switch (fi->gpcf) {
116     case GPCF_None:
117         return false;
118     case GPCF_AddressSize:
119     case GPCF_Walk:
120     case GPCF_EABT:
121         /* R_PYTGX: GPT faults are reported as GPC. */
122         ret = true;
123         break;
124     case GPCF_Fail:
125         /*
126          * R_BLYPM: A GPF at EL3 is reported as insn or data abort.
127          * R_VBZMW, R_LXHQR: A GPF at EL[0-2] is reported as a GPC
128          * if SCR_EL3.GPF is set, otherwise an insn or data abort.
129          */
130         ret = (cpu->env.cp15.scr_el3 & SCR_GPF) && current_el != 3;
131         break;
132     default:
133         g_assert_not_reached();
134     }
135 
136     assert(cpu_isar_feature(aa64_rme, cpu));
137     assert(fi->type == ARMFault_GPCFOnWalk ||
138            fi->type == ARMFault_GPCFOnOutput);
139     if (fi->gpcf == GPCF_AddressSize) {
140         assert(fi->level == 0);
141     } else {
142         assert(fi->level >= 0 && fi->level <= 1);
143     }
144 
145     return ret;
146 }
147 
148 static unsigned encode_gpcsc(ARMMMUFaultInfo *fi)
149 {
150     static uint8_t const gpcsc[] = {
151         [GPCF_AddressSize] = 0b000000,
152         [GPCF_Walk]        = 0b000100,
153         [GPCF_Fail]        = 0b001100,
154         [GPCF_EABT]        = 0b010100,
155     };
156 
157     /* Note that we've validated fi->gpcf and fi->level above. */
158     return gpcsc[fi->gpcf] | fi->level;
159 }
160 
161 static G_NORETURN
162 void arm_deliver_fault(ARMCPU *cpu, vaddr addr,
163                        MMUAccessType access_type,
164                        int mmu_idx, ARMMMUFaultInfo *fi)
165 {
166     CPUARMState *env = &cpu->env;
167     int target_el = exception_target_el(env);
168     int current_el = arm_current_el(env);
169     bool same_el;
170     uint32_t syn, exc, fsr, fsc;
171 
172     if (report_as_gpc_exception(cpu, current_el, fi)) {
173         target_el = 3;
174 
175         fsr = compute_fsr_fsc(env, fi, target_el, mmu_idx, &fsc);
176 
177         syn = syn_gpc(fi->stage2 && fi->type == ARMFault_GPCFOnWalk,
178                       access_type == MMU_INST_FETCH,
179                       encode_gpcsc(fi), 0, fi->s1ptw,
180                       access_type == MMU_DATA_STORE, fsc);
181 
182         env->cp15.mfar_el3 = fi->paddr;
183         switch (fi->paddr_space) {
184         case ARMSS_Secure:
185             break;
186         case ARMSS_NonSecure:
187             env->cp15.mfar_el3 |= R_MFAR_NS_MASK;
188             break;
189         case ARMSS_Root:
190             env->cp15.mfar_el3 |= R_MFAR_NSE_MASK;
191             break;
192         case ARMSS_Realm:
193             env->cp15.mfar_el3 |= R_MFAR_NSE_MASK | R_MFAR_NS_MASK;
194             break;
195         default:
196             g_assert_not_reached();
197         }
198 
199         exc = EXCP_GPC;
200         goto do_raise;
201     }
202 
203     /* If SCR_EL3.GPF is unset, GPF may still be routed to EL2. */
204     if (fi->gpcf == GPCF_Fail && target_el < 2) {
205         if (arm_hcr_el2_eff(env) & HCR_GPF) {
206             target_el = 2;
207         }
208     }
209 
210     if (fi->stage2) {
211         target_el = 2;
212         env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
213         if (arm_is_secure_below_el3(env) && fi->s1ns) {
214             env->cp15.hpfar_el2 |= HPFAR_NS;
215         }
216     }
217 
218     same_el = current_el == target_el;
219     fsr = compute_fsr_fsc(env, fi, target_el, mmu_idx, &fsc);
220 
221     if (access_type == MMU_INST_FETCH) {
222         syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
223         exc = EXCP_PREFETCH_ABORT;
224     } else {
225         syn = merge_syn_data_abort(env->exception.syndrome, fi, target_el,
226                                    same_el, access_type == MMU_DATA_STORE,
227                                    fsc);
228         if (access_type == MMU_DATA_STORE
229             && arm_feature(env, ARM_FEATURE_V6)) {
230             fsr |= (1 << 11);
231         }
232         exc = EXCP_DATA_ABORT;
233     }
234 
235  do_raise:
236     env->exception.vaddress = addr;
237     env->exception.fsr = fsr;
238     raise_exception(env, exc, syn, target_el);
239 }
240 
241 /* Raise a data fault alignment exception for the specified virtual address */
242 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
243                                  MMUAccessType access_type,
244                                  int mmu_idx, uintptr_t retaddr)
245 {
246     ARMCPU *cpu = ARM_CPU(cs);
247     ARMMMUFaultInfo fi = {};
248 
249     /* now we have a real cpu fault */
250     cpu_restore_state(cs, retaddr);
251 
252     fi.type = ARMFault_Alignment;
253     arm_deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi);
254 }
255 
256 void helper_exception_pc_alignment(CPUARMState *env, target_ulong pc)
257 {
258     ARMMMUFaultInfo fi = { .type = ARMFault_Alignment };
259     int target_el = exception_target_el(env);
260     int mmu_idx = cpu_mmu_index(env, true);
261     uint32_t fsc;
262 
263     env->exception.vaddress = pc;
264 
265     /*
266      * Note that the fsc is not applicable to this exception,
267      * since any syndrome is pcalignment not insn_abort.
268      */
269     env->exception.fsr = compute_fsr_fsc(env, &fi, target_el, mmu_idx, &fsc);
270     raise_exception(env, EXCP_PREFETCH_ABORT, syn_pcalignment(), target_el);
271 }
272 
273 #if !defined(CONFIG_USER_ONLY)
274 
275 /*
276  * arm_cpu_do_transaction_failed: handle a memory system error response
277  * (eg "no device/memory present at address") by raising an external abort
278  * exception
279  */
280 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
281                                    vaddr addr, unsigned size,
282                                    MMUAccessType access_type,
283                                    int mmu_idx, MemTxAttrs attrs,
284                                    MemTxResult response, uintptr_t retaddr)
285 {
286     ARMCPU *cpu = ARM_CPU(cs);
287     ARMMMUFaultInfo fi = {};
288 
289     /* now we have a real cpu fault */
290     cpu_restore_state(cs, retaddr);
291 
292     fi.ea = arm_extabort_type(response);
293     fi.type = ARMFault_SyncExternal;
294     arm_deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
295 }
296 
297 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
298                       MMUAccessType access_type, int mmu_idx,
299                       bool probe, uintptr_t retaddr)
300 {
301     ARMCPU *cpu = ARM_CPU(cs);
302     GetPhysAddrResult res = {};
303     ARMMMUFaultInfo local_fi, *fi;
304     int ret;
305 
306     /*
307      * Allow S1_ptw_translate to see any fault generated here.
308      * Since this may recurse, read and clear.
309      */
310     fi = cpu->env.tlb_fi;
311     if (fi) {
312         cpu->env.tlb_fi = NULL;
313     } else {
314         fi = memset(&local_fi, 0, sizeof(local_fi));
315     }
316 
317     /*
318      * Walk the page table and (if the mapping exists) add the page
319      * to the TLB.  On success, return true.  Otherwise, if probing,
320      * return false.  Otherwise populate fsr with ARM DFSR/IFSR fault
321      * register format, and signal the fault.
322      */
323     ret = get_phys_addr(&cpu->env, address, access_type,
324                         core_to_arm_mmu_idx(&cpu->env, mmu_idx),
325                         &res, fi);
326     if (likely(!ret)) {
327         /*
328          * Map a single [sub]page. Regions smaller than our declared
329          * target page size are handled specially, so for those we
330          * pass in the exact addresses.
331          */
332         if (res.f.lg_page_size >= TARGET_PAGE_BITS) {
333             res.f.phys_addr &= TARGET_PAGE_MASK;
334             address &= TARGET_PAGE_MASK;
335         }
336 
337         res.f.pte_attrs = res.cacheattrs.attrs;
338         res.f.shareability = res.cacheattrs.shareability;
339 
340         tlb_set_page_full(cs, mmu_idx, address, &res.f);
341         return true;
342     } else if (probe) {
343         return false;
344     } else {
345         /* now we have a real cpu fault */
346         cpu_restore_state(cs, retaddr);
347         arm_deliver_fault(cpu, address, access_type, mmu_idx, fi);
348     }
349 }
350 #else
351 void arm_cpu_record_sigsegv(CPUState *cs, vaddr addr,
352                             MMUAccessType access_type,
353                             bool maperr, uintptr_t ra)
354 {
355     ARMMMUFaultInfo fi = {
356         .type = maperr ? ARMFault_Translation : ARMFault_Permission,
357         .level = 3,
358     };
359     ARMCPU *cpu = ARM_CPU(cs);
360 
361     /*
362      * We report both ESR and FAR to signal handlers.
363      * For now, it's easiest to deliver the fault normally.
364      */
365     cpu_restore_state(cs, ra);
366     arm_deliver_fault(cpu, addr, access_type, MMU_USER_IDX, &fi);
367 }
368 
369 void arm_cpu_record_sigbus(CPUState *cs, vaddr addr,
370                            MMUAccessType access_type, uintptr_t ra)
371 {
372     arm_cpu_do_unaligned_access(cs, addr, access_type, MMU_USER_IDX, ra);
373 }
374 #endif /* !defined(CONFIG_USER_ONLY) */
375