xref: /qemu/target/arm/tcg/translate-a64.c (revision 02326733)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "disas/disas.h"
26 #include "arm_ldst.h"
27 #include "semihosting/semihost.h"
28 #include "cpregs.h"
29 
30 static TCGv_i64 cpu_X[32];
31 static TCGv_i64 cpu_pc;
32 
33 /* Load/store exclusive handling */
34 static TCGv_i64 cpu_exclusive_high;
35 
36 static const char *regnames[] = {
37     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
38     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
39     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
40     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
41 };
42 
43 enum a64_shift_type {
44     A64_SHIFT_TYPE_LSL = 0,
45     A64_SHIFT_TYPE_LSR = 1,
46     A64_SHIFT_TYPE_ASR = 2,
47     A64_SHIFT_TYPE_ROR = 3
48 };
49 
50 /*
51  * Helpers for extracting complex instruction fields
52  */
53 
54 /*
55  * For load/store with an unsigned 12 bit immediate scaled by the element
56  * size. The input has the immediate field in bits [14:3] and the element
57  * size in [2:0].
58  */
59 static int uimm_scaled(DisasContext *s, int x)
60 {
61     unsigned imm = x >> 3;
62     unsigned scale = extract32(x, 0, 3);
63     return imm << scale;
64 }
65 
66 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
67 static int scale_by_log2_tag_granule(DisasContext *s, int x)
68 {
69     return x << LOG2_TAG_GRANULE;
70 }
71 
72 /*
73  * Include the generated decoders.
74  */
75 
76 #include "decode-sme-fa64.c.inc"
77 #include "decode-a64.c.inc"
78 
79 /* Table based decoder typedefs - used when the relevant bits for decode
80  * are too awkwardly scattered across the instruction (eg SIMD).
81  */
82 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
83 
84 typedef struct AArch64DecodeTable {
85     uint32_t pattern;
86     uint32_t mask;
87     AArch64DecodeFn *disas_fn;
88 } AArch64DecodeTable;
89 
90 /* initialize TCG globals.  */
91 void a64_translate_init(void)
92 {
93     int i;
94 
95     cpu_pc = tcg_global_mem_new_i64(tcg_env,
96                                     offsetof(CPUARMState, pc),
97                                     "pc");
98     for (i = 0; i < 32; i++) {
99         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
100                                           offsetof(CPUARMState, xregs[i]),
101                                           regnames[i]);
102     }
103 
104     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
105         offsetof(CPUARMState, exclusive_high), "exclusive_high");
106 }
107 
108 /*
109  * Return the core mmu_idx to use for A64 load/store insns which
110  * have a "unprivileged load/store" variant. Those insns access
111  * EL0 if executed from an EL which has control over EL0 (usually
112  * EL1) but behave like normal loads and stores if executed from
113  * elsewhere (eg EL3).
114  *
115  * @unpriv : true for the unprivileged encoding; false for the
116  *           normal encoding (in which case we will return the same
117  *           thing as get_mem_index().
118  */
119 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
120 {
121     /*
122      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
123      * which is the usual mmu_idx for this cpu state.
124      */
125     ARMMMUIdx useridx = s->mmu_idx;
126 
127     if (unpriv && s->unpriv) {
128         /*
129          * We have pre-computed the condition for AccType_UNPRIV.
130          * Therefore we should never get here with a mmu_idx for
131          * which we do not know the corresponding user mmu_idx.
132          */
133         switch (useridx) {
134         case ARMMMUIdx_E10_1:
135         case ARMMMUIdx_E10_1_PAN:
136             useridx = ARMMMUIdx_E10_0;
137             break;
138         case ARMMMUIdx_E20_2:
139         case ARMMMUIdx_E20_2_PAN:
140             useridx = ARMMMUIdx_E20_0;
141             break;
142         default:
143             g_assert_not_reached();
144         }
145     }
146     return arm_to_core_mmu_idx(useridx);
147 }
148 
149 static void set_btype_raw(int val)
150 {
151     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
152                    offsetof(CPUARMState, btype));
153 }
154 
155 static void set_btype(DisasContext *s, int val)
156 {
157     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
158     tcg_debug_assert(val >= 1 && val <= 3);
159     set_btype_raw(val);
160     s->btype = -1;
161 }
162 
163 static void reset_btype(DisasContext *s)
164 {
165     if (s->btype != 0) {
166         set_btype_raw(0);
167         s->btype = 0;
168     }
169 }
170 
171 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
172 {
173     assert(s->pc_save != -1);
174     if (tb_cflags(s->base.tb) & CF_PCREL) {
175         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
176     } else {
177         tcg_gen_movi_i64(dest, s->pc_curr + diff);
178     }
179 }
180 
181 void gen_a64_update_pc(DisasContext *s, target_long diff)
182 {
183     gen_pc_plus_diff(s, cpu_pc, diff);
184     s->pc_save = s->pc_curr + diff;
185 }
186 
187 /*
188  * Handle Top Byte Ignore (TBI) bits.
189  *
190  * If address tagging is enabled via the TCR TBI bits:
191  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
192  *    then the address is zero-extended, clearing bits [63:56]
193  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
194  *    and TBI1 controls addresses with bit 55 == 1.
195  *    If the appropriate TBI bit is set for the address then
196  *    the address is sign-extended from bit 55 into bits [63:56]
197  *
198  * Here We have concatenated TBI{1,0} into tbi.
199  */
200 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
201                                 TCGv_i64 src, int tbi)
202 {
203     if (tbi == 0) {
204         /* Load unmodified address */
205         tcg_gen_mov_i64(dst, src);
206     } else if (!regime_has_2_ranges(s->mmu_idx)) {
207         /* Force tag byte to all zero */
208         tcg_gen_extract_i64(dst, src, 0, 56);
209     } else {
210         /* Sign-extend from bit 55.  */
211         tcg_gen_sextract_i64(dst, src, 0, 56);
212 
213         switch (tbi) {
214         case 1:
215             /* tbi0 but !tbi1: only use the extension if positive */
216             tcg_gen_and_i64(dst, dst, src);
217             break;
218         case 2:
219             /* !tbi0 but tbi1: only use the extension if negative */
220             tcg_gen_or_i64(dst, dst, src);
221             break;
222         case 3:
223             /* tbi0 and tbi1: always use the extension */
224             break;
225         default:
226             g_assert_not_reached();
227         }
228     }
229 }
230 
231 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
232 {
233     /*
234      * If address tagging is enabled for instructions via the TCR TBI bits,
235      * then loading an address into the PC will clear out any tag.
236      */
237     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
238     s->pc_save = -1;
239 }
240 
241 /*
242  * Handle MTE and/or TBI.
243  *
244  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
245  * for the tag to be present in the FAR_ELx register.  But for user-only
246  * mode we do not have a TLB with which to implement this, so we must
247  * remove the top byte now.
248  *
249  * Always return a fresh temporary that we can increment independently
250  * of the write-back address.
251  */
252 
253 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
254 {
255     TCGv_i64 clean = tcg_temp_new_i64();
256 #ifdef CONFIG_USER_ONLY
257     gen_top_byte_ignore(s, clean, addr, s->tbid);
258 #else
259     tcg_gen_mov_i64(clean, addr);
260 #endif
261     return clean;
262 }
263 
264 /* Insert a zero tag into src, with the result at dst. */
265 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
266 {
267     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
268 }
269 
270 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
271                              MMUAccessType acc, int log2_size)
272 {
273     gen_helper_probe_access(tcg_env, ptr,
274                             tcg_constant_i32(acc),
275                             tcg_constant_i32(get_mem_index(s)),
276                             tcg_constant_i32(1 << log2_size));
277 }
278 
279 /*
280  * For MTE, check a single logical or atomic access.  This probes a single
281  * address, the exact one specified.  The size and alignment of the access
282  * is not relevant to MTE, per se, but watchpoints do require the size,
283  * and we want to recognize those before making any other changes to state.
284  */
285 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
286                                       bool is_write, bool tag_checked,
287                                       MemOp memop, bool is_unpriv,
288                                       int core_idx)
289 {
290     if (tag_checked && s->mte_active[is_unpriv]) {
291         TCGv_i64 ret;
292         int desc = 0;
293 
294         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
295         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
296         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
297         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
298         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
299         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
300 
301         ret = tcg_temp_new_i64();
302         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
303 
304         return ret;
305     }
306     return clean_data_tbi(s, addr);
307 }
308 
309 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
310                         bool tag_checked, MemOp memop)
311 {
312     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
313                                  false, get_mem_index(s));
314 }
315 
316 /*
317  * For MTE, check multiple logical sequential accesses.
318  */
319 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
320                         bool tag_checked, int total_size, MemOp single_mop)
321 {
322     if (tag_checked && s->mte_active[0]) {
323         TCGv_i64 ret;
324         int desc = 0;
325 
326         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
327         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
328         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
329         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
330         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
331         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
332 
333         ret = tcg_temp_new_i64();
334         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
335 
336         return ret;
337     }
338     return clean_data_tbi(s, addr);
339 }
340 
341 /*
342  * Generate the special alignment check that applies to AccType_ATOMIC
343  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
344  * naturally aligned, but it must not cross a 16-byte boundary.
345  * See AArch64.CheckAlignment().
346  */
347 static void check_lse2_align(DisasContext *s, int rn, int imm,
348                              bool is_write, MemOp mop)
349 {
350     TCGv_i32 tmp;
351     TCGv_i64 addr;
352     TCGLabel *over_label;
353     MMUAccessType type;
354     int mmu_idx;
355 
356     tmp = tcg_temp_new_i32();
357     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
358     tcg_gen_addi_i32(tmp, tmp, imm & 15);
359     tcg_gen_andi_i32(tmp, tmp, 15);
360     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
361 
362     over_label = gen_new_label();
363     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
364 
365     addr = tcg_temp_new_i64();
366     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
367 
368     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
369     mmu_idx = get_mem_index(s);
370     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
371                                 tcg_constant_i32(mmu_idx));
372 
373     gen_set_label(over_label);
374 
375 }
376 
377 /* Handle the alignment check for AccType_ATOMIC instructions. */
378 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
379 {
380     MemOp size = mop & MO_SIZE;
381 
382     if (size == MO_8) {
383         return mop;
384     }
385 
386     /*
387      * If size == MO_128, this is a LDXP, and the operation is single-copy
388      * atomic for each doubleword, not the entire quadword; it still must
389      * be quadword aligned.
390      */
391     if (size == MO_128) {
392         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
393                                    MO_ATOM_IFALIGN_PAIR);
394     }
395     if (dc_isar_feature(aa64_lse2, s)) {
396         check_lse2_align(s, rn, 0, true, mop);
397     } else {
398         mop |= MO_ALIGN;
399     }
400     return finalize_memop(s, mop);
401 }
402 
403 /* Handle the alignment check for AccType_ORDERED instructions. */
404 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
405                                  bool is_write, MemOp mop)
406 {
407     MemOp size = mop & MO_SIZE;
408 
409     if (size == MO_8) {
410         return mop;
411     }
412     if (size == MO_128) {
413         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
414                                    MO_ATOM_IFALIGN_PAIR);
415     }
416     if (!dc_isar_feature(aa64_lse2, s)) {
417         mop |= MO_ALIGN;
418     } else if (!s->naa) {
419         check_lse2_align(s, rn, imm, is_write, mop);
420     }
421     return finalize_memop(s, mop);
422 }
423 
424 typedef struct DisasCompare64 {
425     TCGCond cond;
426     TCGv_i64 value;
427 } DisasCompare64;
428 
429 static void a64_test_cc(DisasCompare64 *c64, int cc)
430 {
431     DisasCompare c32;
432 
433     arm_test_cc(&c32, cc);
434 
435     /*
436      * Sign-extend the 32-bit value so that the GE/LT comparisons work
437      * properly.  The NE/EQ comparisons are also fine with this choice.
438       */
439     c64->cond = c32.cond;
440     c64->value = tcg_temp_new_i64();
441     tcg_gen_ext_i32_i64(c64->value, c32.value);
442 }
443 
444 static void gen_rebuild_hflags(DisasContext *s)
445 {
446     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
447 }
448 
449 static void gen_exception_internal(int excp)
450 {
451     assert(excp_is_internal(excp));
452     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
453 }
454 
455 static void gen_exception_internal_insn(DisasContext *s, int excp)
456 {
457     gen_a64_update_pc(s, 0);
458     gen_exception_internal(excp);
459     s->base.is_jmp = DISAS_NORETURN;
460 }
461 
462 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
463 {
464     gen_a64_update_pc(s, 0);
465     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
466     s->base.is_jmp = DISAS_NORETURN;
467 }
468 
469 static void gen_step_complete_exception(DisasContext *s)
470 {
471     /* We just completed step of an insn. Move from Active-not-pending
472      * to Active-pending, and then also take the swstep exception.
473      * This corresponds to making the (IMPDEF) choice to prioritize
474      * swstep exceptions over asynchronous exceptions taken to an exception
475      * level where debug is disabled. This choice has the advantage that
476      * we do not need to maintain internal state corresponding to the
477      * ISV/EX syndrome bits between completion of the step and generation
478      * of the exception, and our syndrome information is always correct.
479      */
480     gen_ss_advance(s);
481     gen_swstep_exception(s, 1, s->is_ldex);
482     s->base.is_jmp = DISAS_NORETURN;
483 }
484 
485 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
486 {
487     if (s->ss_active) {
488         return false;
489     }
490     return translator_use_goto_tb(&s->base, dest);
491 }
492 
493 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
494 {
495     if (use_goto_tb(s, s->pc_curr + diff)) {
496         /*
497          * For pcrel, the pc must always be up-to-date on entry to
498          * the linked TB, so that it can use simple additions for all
499          * further adjustments.  For !pcrel, the linked TB is compiled
500          * to know its full virtual address, so we can delay the
501          * update to pc to the unlinked path.  A long chain of links
502          * can thus avoid many updates to the PC.
503          */
504         if (tb_cflags(s->base.tb) & CF_PCREL) {
505             gen_a64_update_pc(s, diff);
506             tcg_gen_goto_tb(n);
507         } else {
508             tcg_gen_goto_tb(n);
509             gen_a64_update_pc(s, diff);
510         }
511         tcg_gen_exit_tb(s->base.tb, n);
512         s->base.is_jmp = DISAS_NORETURN;
513     } else {
514         gen_a64_update_pc(s, diff);
515         if (s->ss_active) {
516             gen_step_complete_exception(s);
517         } else {
518             tcg_gen_lookup_and_goto_ptr();
519             s->base.is_jmp = DISAS_NORETURN;
520         }
521     }
522 }
523 
524 /*
525  * Register access functions
526  *
527  * These functions are used for directly accessing a register in where
528  * changes to the final register value are likely to be made. If you
529  * need to use a register for temporary calculation (e.g. index type
530  * operations) use the read_* form.
531  *
532  * B1.2.1 Register mappings
533  *
534  * In instruction register encoding 31 can refer to ZR (zero register) or
535  * the SP (stack pointer) depending on context. In QEMU's case we map SP
536  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
537  * This is the point of the _sp forms.
538  */
539 TCGv_i64 cpu_reg(DisasContext *s, int reg)
540 {
541     if (reg == 31) {
542         TCGv_i64 t = tcg_temp_new_i64();
543         tcg_gen_movi_i64(t, 0);
544         return t;
545     } else {
546         return cpu_X[reg];
547     }
548 }
549 
550 /* register access for when 31 == SP */
551 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
552 {
553     return cpu_X[reg];
554 }
555 
556 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
557  * representing the register contents. This TCGv is an auto-freed
558  * temporary so it need not be explicitly freed, and may be modified.
559  */
560 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
561 {
562     TCGv_i64 v = tcg_temp_new_i64();
563     if (reg != 31) {
564         if (sf) {
565             tcg_gen_mov_i64(v, cpu_X[reg]);
566         } else {
567             tcg_gen_ext32u_i64(v, cpu_X[reg]);
568         }
569     } else {
570         tcg_gen_movi_i64(v, 0);
571     }
572     return v;
573 }
574 
575 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
576 {
577     TCGv_i64 v = tcg_temp_new_i64();
578     if (sf) {
579         tcg_gen_mov_i64(v, cpu_X[reg]);
580     } else {
581         tcg_gen_ext32u_i64(v, cpu_X[reg]);
582     }
583     return v;
584 }
585 
586 /* Return the offset into CPUARMState of a slice (from
587  * the least significant end) of FP register Qn (ie
588  * Dn, Sn, Hn or Bn).
589  * (Note that this is not the same mapping as for A32; see cpu.h)
590  */
591 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
592 {
593     return vec_reg_offset(s, regno, 0, size);
594 }
595 
596 /* Offset of the high half of the 128 bit vector Qn */
597 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
598 {
599     return vec_reg_offset(s, regno, 1, MO_64);
600 }
601 
602 /* Convenience accessors for reading and writing single and double
603  * FP registers. Writing clears the upper parts of the associated
604  * 128 bit vector register, as required by the architecture.
605  * Note that unlike the GP register accessors, the values returned
606  * by the read functions must be manually freed.
607  */
608 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
609 {
610     TCGv_i64 v = tcg_temp_new_i64();
611 
612     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
613     return v;
614 }
615 
616 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
617 {
618     TCGv_i32 v = tcg_temp_new_i32();
619 
620     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
621     return v;
622 }
623 
624 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
625 {
626     TCGv_i32 v = tcg_temp_new_i32();
627 
628     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
629     return v;
630 }
631 
632 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
633  * If SVE is not enabled, then there are only 128 bits in the vector.
634  */
635 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
636 {
637     unsigned ofs = fp_reg_offset(s, rd, MO_64);
638     unsigned vsz = vec_full_reg_size(s);
639 
640     /* Nop move, with side effect of clearing the tail. */
641     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
642 }
643 
644 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
645 {
646     unsigned ofs = fp_reg_offset(s, reg, MO_64);
647 
648     tcg_gen_st_i64(v, tcg_env, ofs);
649     clear_vec_high(s, false, reg);
650 }
651 
652 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
653 {
654     TCGv_i64 tmp = tcg_temp_new_i64();
655 
656     tcg_gen_extu_i32_i64(tmp, v);
657     write_fp_dreg(s, reg, tmp);
658 }
659 
660 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
661 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
662                          GVecGen2Fn *gvec_fn, int vece)
663 {
664     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
665             is_q ? 16 : 8, vec_full_reg_size(s));
666 }
667 
668 /* Expand a 2-operand + immediate AdvSIMD vector operation using
669  * an expander function.
670  */
671 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
672                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
673 {
674     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
675             imm, is_q ? 16 : 8, vec_full_reg_size(s));
676 }
677 
678 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
679 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
680                          GVecGen3Fn *gvec_fn, int vece)
681 {
682     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
683             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
684 }
685 
686 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
687 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
688                          int rx, GVecGen4Fn *gvec_fn, int vece)
689 {
690     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
691             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
692             is_q ? 16 : 8, vec_full_reg_size(s));
693 }
694 
695 /* Expand a 2-operand operation using an out-of-line helper.  */
696 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
697                              int rn, int data, gen_helper_gvec_2 *fn)
698 {
699     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
700                        vec_full_reg_offset(s, rn),
701                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
702 }
703 
704 /* Expand a 3-operand operation using an out-of-line helper.  */
705 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
706                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
707 {
708     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
709                        vec_full_reg_offset(s, rn),
710                        vec_full_reg_offset(s, rm),
711                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
712 }
713 
714 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
715  * an out-of-line helper.
716  */
717 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
718                               int rm, bool is_fp16, int data,
719                               gen_helper_gvec_3_ptr *fn)
720 {
721     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
722     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
723                        vec_full_reg_offset(s, rn),
724                        vec_full_reg_offset(s, rm), fpst,
725                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
726 }
727 
728 /* Expand a 3-operand + qc + operation using an out-of-line helper.  */
729 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
730                             int rm, gen_helper_gvec_3_ptr *fn)
731 {
732     TCGv_ptr qc_ptr = tcg_temp_new_ptr();
733 
734     tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc));
735     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
736                        vec_full_reg_offset(s, rn),
737                        vec_full_reg_offset(s, rm), qc_ptr,
738                        is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
739 }
740 
741 /* Expand a 4-operand operation using an out-of-line helper.  */
742 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
743                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
744 {
745     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
746                        vec_full_reg_offset(s, rn),
747                        vec_full_reg_offset(s, rm),
748                        vec_full_reg_offset(s, ra),
749                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
750 }
751 
752 /*
753  * Expand a 4-operand + fpstatus pointer + simd data value operation using
754  * an out-of-line helper.
755  */
756 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
757                               int rm, int ra, bool is_fp16, int data,
758                               gen_helper_gvec_4_ptr *fn)
759 {
760     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
761     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
762                        vec_full_reg_offset(s, rn),
763                        vec_full_reg_offset(s, rm),
764                        vec_full_reg_offset(s, ra), fpst,
765                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
766 }
767 
768 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
769  * than the 32 bit equivalent.
770  */
771 static inline void gen_set_NZ64(TCGv_i64 result)
772 {
773     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
774     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
775 }
776 
777 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
778 static inline void gen_logic_CC(int sf, TCGv_i64 result)
779 {
780     if (sf) {
781         gen_set_NZ64(result);
782     } else {
783         tcg_gen_extrl_i64_i32(cpu_ZF, result);
784         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
785     }
786     tcg_gen_movi_i32(cpu_CF, 0);
787     tcg_gen_movi_i32(cpu_VF, 0);
788 }
789 
790 /* dest = T0 + T1; compute C, N, V and Z flags */
791 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
792 {
793     TCGv_i64 result, flag, tmp;
794     result = tcg_temp_new_i64();
795     flag = tcg_temp_new_i64();
796     tmp = tcg_temp_new_i64();
797 
798     tcg_gen_movi_i64(tmp, 0);
799     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
800 
801     tcg_gen_extrl_i64_i32(cpu_CF, flag);
802 
803     gen_set_NZ64(result);
804 
805     tcg_gen_xor_i64(flag, result, t0);
806     tcg_gen_xor_i64(tmp, t0, t1);
807     tcg_gen_andc_i64(flag, flag, tmp);
808     tcg_gen_extrh_i64_i32(cpu_VF, flag);
809 
810     tcg_gen_mov_i64(dest, result);
811 }
812 
813 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
814 {
815     TCGv_i32 t0_32 = tcg_temp_new_i32();
816     TCGv_i32 t1_32 = tcg_temp_new_i32();
817     TCGv_i32 tmp = tcg_temp_new_i32();
818 
819     tcg_gen_movi_i32(tmp, 0);
820     tcg_gen_extrl_i64_i32(t0_32, t0);
821     tcg_gen_extrl_i64_i32(t1_32, t1);
822     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
823     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
824     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
825     tcg_gen_xor_i32(tmp, t0_32, t1_32);
826     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
827     tcg_gen_extu_i32_i64(dest, cpu_NF);
828 }
829 
830 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
831 {
832     if (sf) {
833         gen_add64_CC(dest, t0, t1);
834     } else {
835         gen_add32_CC(dest, t0, t1);
836     }
837 }
838 
839 /* dest = T0 - T1; compute C, N, V and Z flags */
840 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
841 {
842     /* 64 bit arithmetic */
843     TCGv_i64 result, flag, tmp;
844 
845     result = tcg_temp_new_i64();
846     flag = tcg_temp_new_i64();
847     tcg_gen_sub_i64(result, t0, t1);
848 
849     gen_set_NZ64(result);
850 
851     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
852     tcg_gen_extrl_i64_i32(cpu_CF, flag);
853 
854     tcg_gen_xor_i64(flag, result, t0);
855     tmp = tcg_temp_new_i64();
856     tcg_gen_xor_i64(tmp, t0, t1);
857     tcg_gen_and_i64(flag, flag, tmp);
858     tcg_gen_extrh_i64_i32(cpu_VF, flag);
859     tcg_gen_mov_i64(dest, result);
860 }
861 
862 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
863 {
864     /* 32 bit arithmetic */
865     TCGv_i32 t0_32 = tcg_temp_new_i32();
866     TCGv_i32 t1_32 = tcg_temp_new_i32();
867     TCGv_i32 tmp;
868 
869     tcg_gen_extrl_i64_i32(t0_32, t0);
870     tcg_gen_extrl_i64_i32(t1_32, t1);
871     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
872     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
873     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
874     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
875     tmp = tcg_temp_new_i32();
876     tcg_gen_xor_i32(tmp, t0_32, t1_32);
877     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
878     tcg_gen_extu_i32_i64(dest, cpu_NF);
879 }
880 
881 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
882 {
883     if (sf) {
884         gen_sub64_CC(dest, t0, t1);
885     } else {
886         gen_sub32_CC(dest, t0, t1);
887     }
888 }
889 
890 /* dest = T0 + T1 + CF; do not compute flags. */
891 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
892 {
893     TCGv_i64 flag = tcg_temp_new_i64();
894     tcg_gen_extu_i32_i64(flag, cpu_CF);
895     tcg_gen_add_i64(dest, t0, t1);
896     tcg_gen_add_i64(dest, dest, flag);
897 
898     if (!sf) {
899         tcg_gen_ext32u_i64(dest, dest);
900     }
901 }
902 
903 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
904 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
905 {
906     if (sf) {
907         TCGv_i64 result = tcg_temp_new_i64();
908         TCGv_i64 cf_64 = tcg_temp_new_i64();
909         TCGv_i64 vf_64 = tcg_temp_new_i64();
910         TCGv_i64 tmp = tcg_temp_new_i64();
911         TCGv_i64 zero = tcg_constant_i64(0);
912 
913         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
914         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
915         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
916         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
917         gen_set_NZ64(result);
918 
919         tcg_gen_xor_i64(vf_64, result, t0);
920         tcg_gen_xor_i64(tmp, t0, t1);
921         tcg_gen_andc_i64(vf_64, vf_64, tmp);
922         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
923 
924         tcg_gen_mov_i64(dest, result);
925     } else {
926         TCGv_i32 t0_32 = tcg_temp_new_i32();
927         TCGv_i32 t1_32 = tcg_temp_new_i32();
928         TCGv_i32 tmp = tcg_temp_new_i32();
929         TCGv_i32 zero = tcg_constant_i32(0);
930 
931         tcg_gen_extrl_i64_i32(t0_32, t0);
932         tcg_gen_extrl_i64_i32(t1_32, t1);
933         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
934         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
935 
936         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
937         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
938         tcg_gen_xor_i32(tmp, t0_32, t1_32);
939         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
940         tcg_gen_extu_i32_i64(dest, cpu_NF);
941     }
942 }
943 
944 /*
945  * Load/Store generators
946  */
947 
948 /*
949  * Store from GPR register to memory.
950  */
951 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
952                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
953                              bool iss_valid,
954                              unsigned int iss_srt,
955                              bool iss_sf, bool iss_ar)
956 {
957     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
958 
959     if (iss_valid) {
960         uint32_t syn;
961 
962         syn = syn_data_abort_with_iss(0,
963                                       (memop & MO_SIZE),
964                                       false,
965                                       iss_srt,
966                                       iss_sf,
967                                       iss_ar,
968                                       0, 0, 0, 0, 0, false);
969         disas_set_insn_syndrome(s, syn);
970     }
971 }
972 
973 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
974                       TCGv_i64 tcg_addr, MemOp memop,
975                       bool iss_valid,
976                       unsigned int iss_srt,
977                       bool iss_sf, bool iss_ar)
978 {
979     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
980                      iss_valid, iss_srt, iss_sf, iss_ar);
981 }
982 
983 /*
984  * Load from memory to GPR register
985  */
986 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
987                              MemOp memop, bool extend, int memidx,
988                              bool iss_valid, unsigned int iss_srt,
989                              bool iss_sf, bool iss_ar)
990 {
991     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
992 
993     if (extend && (memop & MO_SIGN)) {
994         g_assert((memop & MO_SIZE) <= MO_32);
995         tcg_gen_ext32u_i64(dest, dest);
996     }
997 
998     if (iss_valid) {
999         uint32_t syn;
1000 
1001         syn = syn_data_abort_with_iss(0,
1002                                       (memop & MO_SIZE),
1003                                       (memop & MO_SIGN) != 0,
1004                                       iss_srt,
1005                                       iss_sf,
1006                                       iss_ar,
1007                                       0, 0, 0, 0, 0, false);
1008         disas_set_insn_syndrome(s, syn);
1009     }
1010 }
1011 
1012 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1013                       MemOp memop, bool extend,
1014                       bool iss_valid, unsigned int iss_srt,
1015                       bool iss_sf, bool iss_ar)
1016 {
1017     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1018                      iss_valid, iss_srt, iss_sf, iss_ar);
1019 }
1020 
1021 /*
1022  * Store from FP register to memory
1023  */
1024 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1025 {
1026     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1027     TCGv_i64 tmplo = tcg_temp_new_i64();
1028 
1029     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1030 
1031     if ((mop & MO_SIZE) < MO_128) {
1032         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1033     } else {
1034         TCGv_i64 tmphi = tcg_temp_new_i64();
1035         TCGv_i128 t16 = tcg_temp_new_i128();
1036 
1037         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1038         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1039 
1040         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1041     }
1042 }
1043 
1044 /*
1045  * Load from memory to FP register
1046  */
1047 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1048 {
1049     /* This always zero-extends and writes to a full 128 bit wide vector */
1050     TCGv_i64 tmplo = tcg_temp_new_i64();
1051     TCGv_i64 tmphi = NULL;
1052 
1053     if ((mop & MO_SIZE) < MO_128) {
1054         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1055     } else {
1056         TCGv_i128 t16 = tcg_temp_new_i128();
1057 
1058         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1059 
1060         tmphi = tcg_temp_new_i64();
1061         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1062     }
1063 
1064     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1065 
1066     if (tmphi) {
1067         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1068     }
1069     clear_vec_high(s, tmphi != NULL, destidx);
1070 }
1071 
1072 /*
1073  * Vector load/store helpers.
1074  *
1075  * The principal difference between this and a FP load is that we don't
1076  * zero extend as we are filling a partial chunk of the vector register.
1077  * These functions don't support 128 bit loads/stores, which would be
1078  * normal load/store operations.
1079  *
1080  * The _i32 versions are useful when operating on 32 bit quantities
1081  * (eg for floating point single or using Neon helper functions).
1082  */
1083 
1084 /* Get value of an element within a vector register */
1085 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1086                              int element, MemOp memop)
1087 {
1088     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1089     switch ((unsigned)memop) {
1090     case MO_8:
1091         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1092         break;
1093     case MO_16:
1094         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1095         break;
1096     case MO_32:
1097         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1098         break;
1099     case MO_8|MO_SIGN:
1100         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1101         break;
1102     case MO_16|MO_SIGN:
1103         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1104         break;
1105     case MO_32|MO_SIGN:
1106         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1107         break;
1108     case MO_64:
1109     case MO_64|MO_SIGN:
1110         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1111         break;
1112     default:
1113         g_assert_not_reached();
1114     }
1115 }
1116 
1117 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1118                                  int element, MemOp memop)
1119 {
1120     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1121     switch (memop) {
1122     case MO_8:
1123         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1124         break;
1125     case MO_16:
1126         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1127         break;
1128     case MO_8|MO_SIGN:
1129         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1130         break;
1131     case MO_16|MO_SIGN:
1132         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1133         break;
1134     case MO_32:
1135     case MO_32|MO_SIGN:
1136         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1137         break;
1138     default:
1139         g_assert_not_reached();
1140     }
1141 }
1142 
1143 /* Set value of an element within a vector register */
1144 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1145                               int element, MemOp memop)
1146 {
1147     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1148     switch (memop) {
1149     case MO_8:
1150         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1151         break;
1152     case MO_16:
1153         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1154         break;
1155     case MO_32:
1156         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1157         break;
1158     case MO_64:
1159         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1160         break;
1161     default:
1162         g_assert_not_reached();
1163     }
1164 }
1165 
1166 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1167                                   int destidx, int element, MemOp memop)
1168 {
1169     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1170     switch (memop) {
1171     case MO_8:
1172         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1173         break;
1174     case MO_16:
1175         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1176         break;
1177     case MO_32:
1178         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1179         break;
1180     default:
1181         g_assert_not_reached();
1182     }
1183 }
1184 
1185 /* Store from vector register to memory */
1186 static void do_vec_st(DisasContext *s, int srcidx, int element,
1187                       TCGv_i64 tcg_addr, MemOp mop)
1188 {
1189     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1190 
1191     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1192     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1193 }
1194 
1195 /* Load from memory to vector register */
1196 static void do_vec_ld(DisasContext *s, int destidx, int element,
1197                       TCGv_i64 tcg_addr, MemOp mop)
1198 {
1199     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1200 
1201     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1202     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1203 }
1204 
1205 /* Check that FP/Neon access is enabled. If it is, return
1206  * true. If not, emit code to generate an appropriate exception,
1207  * and return false; the caller should not emit any code for
1208  * the instruction. Note that this check must happen after all
1209  * unallocated-encoding checks (otherwise the syndrome information
1210  * for the resulting exception will be incorrect).
1211  */
1212 static bool fp_access_check_only(DisasContext *s)
1213 {
1214     if (s->fp_excp_el) {
1215         assert(!s->fp_access_checked);
1216         s->fp_access_checked = true;
1217 
1218         gen_exception_insn_el(s, 0, EXCP_UDEF,
1219                               syn_fp_access_trap(1, 0xe, false, 0),
1220                               s->fp_excp_el);
1221         return false;
1222     }
1223     s->fp_access_checked = true;
1224     return true;
1225 }
1226 
1227 static bool fp_access_check(DisasContext *s)
1228 {
1229     if (!fp_access_check_only(s)) {
1230         return false;
1231     }
1232     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1233         gen_exception_insn(s, 0, EXCP_UDEF,
1234                            syn_smetrap(SME_ET_Streaming, false));
1235         return false;
1236     }
1237     return true;
1238 }
1239 
1240 /*
1241  * Check that SVE access is enabled.  If it is, return true.
1242  * If not, emit code to generate an appropriate exception and return false.
1243  * This function corresponds to CheckSVEEnabled().
1244  */
1245 bool sve_access_check(DisasContext *s)
1246 {
1247     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1248         assert(dc_isar_feature(aa64_sme, s));
1249         if (!sme_sm_enabled_check(s)) {
1250             goto fail_exit;
1251         }
1252     } else if (s->sve_excp_el) {
1253         gen_exception_insn_el(s, 0, EXCP_UDEF,
1254                               syn_sve_access_trap(), s->sve_excp_el);
1255         goto fail_exit;
1256     }
1257     s->sve_access_checked = true;
1258     return fp_access_check(s);
1259 
1260  fail_exit:
1261     /* Assert that we only raise one exception per instruction. */
1262     assert(!s->sve_access_checked);
1263     s->sve_access_checked = true;
1264     return false;
1265 }
1266 
1267 /*
1268  * Check that SME access is enabled, raise an exception if not.
1269  * Note that this function corresponds to CheckSMEAccess and is
1270  * only used directly for cpregs.
1271  */
1272 static bool sme_access_check(DisasContext *s)
1273 {
1274     if (s->sme_excp_el) {
1275         gen_exception_insn_el(s, 0, EXCP_UDEF,
1276                               syn_smetrap(SME_ET_AccessTrap, false),
1277                               s->sme_excp_el);
1278         return false;
1279     }
1280     return true;
1281 }
1282 
1283 /* This function corresponds to CheckSMEEnabled. */
1284 bool sme_enabled_check(DisasContext *s)
1285 {
1286     /*
1287      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1288      * to be zero when fp_excp_el has priority.  This is because we need
1289      * sme_excp_el by itself for cpregs access checks.
1290      */
1291     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1292         s->fp_access_checked = true;
1293         return sme_access_check(s);
1294     }
1295     return fp_access_check_only(s);
1296 }
1297 
1298 /* Common subroutine for CheckSMEAnd*Enabled. */
1299 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1300 {
1301     if (!sme_enabled_check(s)) {
1302         return false;
1303     }
1304     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1305         gen_exception_insn(s, 0, EXCP_UDEF,
1306                            syn_smetrap(SME_ET_NotStreaming, false));
1307         return false;
1308     }
1309     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1310         gen_exception_insn(s, 0, EXCP_UDEF,
1311                            syn_smetrap(SME_ET_InactiveZA, false));
1312         return false;
1313     }
1314     return true;
1315 }
1316 
1317 /*
1318  * This utility function is for doing register extension with an
1319  * optional shift. You will likely want to pass a temporary for the
1320  * destination register. See DecodeRegExtend() in the ARM ARM.
1321  */
1322 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1323                               int option, unsigned int shift)
1324 {
1325     int extsize = extract32(option, 0, 2);
1326     bool is_signed = extract32(option, 2, 1);
1327 
1328     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1329     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1330 }
1331 
1332 static inline void gen_check_sp_alignment(DisasContext *s)
1333 {
1334     /* The AArch64 architecture mandates that (if enabled via PSTATE
1335      * or SCTLR bits) there is a check that SP is 16-aligned on every
1336      * SP-relative load or store (with an exception generated if it is not).
1337      * In line with general QEMU practice regarding misaligned accesses,
1338      * we omit these checks for the sake of guest program performance.
1339      * This function is provided as a hook so we can more easily add these
1340      * checks in future (possibly as a "favour catching guest program bugs
1341      * over speed" user selectable option).
1342      */
1343 }
1344 
1345 /*
1346  * This provides a simple table based table lookup decoder. It is
1347  * intended to be used when the relevant bits for decode are too
1348  * awkwardly placed and switch/if based logic would be confusing and
1349  * deeply nested. Since it's a linear search through the table, tables
1350  * should be kept small.
1351  *
1352  * It returns the first handler where insn & mask == pattern, or
1353  * NULL if there is no match.
1354  * The table is terminated by an empty mask (i.e. 0)
1355  */
1356 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1357                                                uint32_t insn)
1358 {
1359     const AArch64DecodeTable *tptr = table;
1360 
1361     while (tptr->mask) {
1362         if ((insn & tptr->mask) == tptr->pattern) {
1363             return tptr->disas_fn;
1364         }
1365         tptr++;
1366     }
1367     return NULL;
1368 }
1369 
1370 /*
1371  * The instruction disassembly implemented here matches
1372  * the instruction encoding classifications in chapter C4
1373  * of the ARM Architecture Reference Manual (DDI0487B_a);
1374  * classification names and decode diagrams here should generally
1375  * match up with those in the manual.
1376  */
1377 
1378 static bool trans_B(DisasContext *s, arg_i *a)
1379 {
1380     reset_btype(s);
1381     gen_goto_tb(s, 0, a->imm);
1382     return true;
1383 }
1384 
1385 static bool trans_BL(DisasContext *s, arg_i *a)
1386 {
1387     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1388     reset_btype(s);
1389     gen_goto_tb(s, 0, a->imm);
1390     return true;
1391 }
1392 
1393 
1394 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1395 {
1396     DisasLabel match;
1397     TCGv_i64 tcg_cmp;
1398 
1399     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1400     reset_btype(s);
1401 
1402     match = gen_disas_label(s);
1403     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1404                         tcg_cmp, 0, match.label);
1405     gen_goto_tb(s, 0, 4);
1406     set_disas_label(s, match);
1407     gen_goto_tb(s, 1, a->imm);
1408     return true;
1409 }
1410 
1411 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1412 {
1413     DisasLabel match;
1414     TCGv_i64 tcg_cmp;
1415 
1416     tcg_cmp = tcg_temp_new_i64();
1417     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1418 
1419     reset_btype(s);
1420 
1421     match = gen_disas_label(s);
1422     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1423                         tcg_cmp, 0, match.label);
1424     gen_goto_tb(s, 0, 4);
1425     set_disas_label(s, match);
1426     gen_goto_tb(s, 1, a->imm);
1427     return true;
1428 }
1429 
1430 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1431 {
1432     /* BC.cond is only present with FEAT_HBC */
1433     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1434         return false;
1435     }
1436     reset_btype(s);
1437     if (a->cond < 0x0e) {
1438         /* genuinely conditional branches */
1439         DisasLabel match = gen_disas_label(s);
1440         arm_gen_test_cc(a->cond, match.label);
1441         gen_goto_tb(s, 0, 4);
1442         set_disas_label(s, match);
1443         gen_goto_tb(s, 1, a->imm);
1444     } else {
1445         /* 0xe and 0xf are both "always" conditions */
1446         gen_goto_tb(s, 0, a->imm);
1447     }
1448     return true;
1449 }
1450 
1451 static void set_btype_for_br(DisasContext *s, int rn)
1452 {
1453     if (dc_isar_feature(aa64_bti, s)) {
1454         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1455         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1456     }
1457 }
1458 
1459 static void set_btype_for_blr(DisasContext *s)
1460 {
1461     if (dc_isar_feature(aa64_bti, s)) {
1462         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1463         set_btype(s, 2);
1464     }
1465 }
1466 
1467 static bool trans_BR(DisasContext *s, arg_r *a)
1468 {
1469     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1470     set_btype_for_br(s, a->rn);
1471     s->base.is_jmp = DISAS_JUMP;
1472     return true;
1473 }
1474 
1475 static bool trans_BLR(DisasContext *s, arg_r *a)
1476 {
1477     TCGv_i64 dst = cpu_reg(s, a->rn);
1478     TCGv_i64 lr = cpu_reg(s, 30);
1479     if (dst == lr) {
1480         TCGv_i64 tmp = tcg_temp_new_i64();
1481         tcg_gen_mov_i64(tmp, dst);
1482         dst = tmp;
1483     }
1484     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1485     gen_a64_set_pc(s, dst);
1486     set_btype_for_blr(s);
1487     s->base.is_jmp = DISAS_JUMP;
1488     return true;
1489 }
1490 
1491 static bool trans_RET(DisasContext *s, arg_r *a)
1492 {
1493     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1494     s->base.is_jmp = DISAS_JUMP;
1495     return true;
1496 }
1497 
1498 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1499                                    TCGv_i64 modifier, bool use_key_a)
1500 {
1501     TCGv_i64 truedst;
1502     /*
1503      * Return the branch target for a BRAA/RETA/etc, which is either
1504      * just the destination dst, or that value with the pauth check
1505      * done and the code removed from the high bits.
1506      */
1507     if (!s->pauth_active) {
1508         return dst;
1509     }
1510 
1511     truedst = tcg_temp_new_i64();
1512     if (use_key_a) {
1513         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1514     } else {
1515         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1516     }
1517     return truedst;
1518 }
1519 
1520 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1521 {
1522     TCGv_i64 dst;
1523 
1524     if (!dc_isar_feature(aa64_pauth, s)) {
1525         return false;
1526     }
1527 
1528     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1529     gen_a64_set_pc(s, dst);
1530     set_btype_for_br(s, a->rn);
1531     s->base.is_jmp = DISAS_JUMP;
1532     return true;
1533 }
1534 
1535 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1536 {
1537     TCGv_i64 dst, lr;
1538 
1539     if (!dc_isar_feature(aa64_pauth, s)) {
1540         return false;
1541     }
1542 
1543     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1544     lr = cpu_reg(s, 30);
1545     if (dst == lr) {
1546         TCGv_i64 tmp = tcg_temp_new_i64();
1547         tcg_gen_mov_i64(tmp, dst);
1548         dst = tmp;
1549     }
1550     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1551     gen_a64_set_pc(s, dst);
1552     set_btype_for_blr(s);
1553     s->base.is_jmp = DISAS_JUMP;
1554     return true;
1555 }
1556 
1557 static bool trans_RETA(DisasContext *s, arg_reta *a)
1558 {
1559     TCGv_i64 dst;
1560 
1561     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1562     gen_a64_set_pc(s, dst);
1563     s->base.is_jmp = DISAS_JUMP;
1564     return true;
1565 }
1566 
1567 static bool trans_BRA(DisasContext *s, arg_bra *a)
1568 {
1569     TCGv_i64 dst;
1570 
1571     if (!dc_isar_feature(aa64_pauth, s)) {
1572         return false;
1573     }
1574     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1575     gen_a64_set_pc(s, dst);
1576     set_btype_for_br(s, a->rn);
1577     s->base.is_jmp = DISAS_JUMP;
1578     return true;
1579 }
1580 
1581 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1582 {
1583     TCGv_i64 dst, lr;
1584 
1585     if (!dc_isar_feature(aa64_pauth, s)) {
1586         return false;
1587     }
1588     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1589     lr = cpu_reg(s, 30);
1590     if (dst == lr) {
1591         TCGv_i64 tmp = tcg_temp_new_i64();
1592         tcg_gen_mov_i64(tmp, dst);
1593         dst = tmp;
1594     }
1595     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1596     gen_a64_set_pc(s, dst);
1597     set_btype_for_blr(s);
1598     s->base.is_jmp = DISAS_JUMP;
1599     return true;
1600 }
1601 
1602 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1603 {
1604     TCGv_i64 dst;
1605 
1606     if (s->current_el == 0) {
1607         return false;
1608     }
1609     if (s->trap_eret) {
1610         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1611         return true;
1612     }
1613     dst = tcg_temp_new_i64();
1614     tcg_gen_ld_i64(dst, tcg_env,
1615                    offsetof(CPUARMState, elr_el[s->current_el]));
1616 
1617     translator_io_start(&s->base);
1618 
1619     gen_helper_exception_return(tcg_env, dst);
1620     /* Must exit loop to check un-masked IRQs */
1621     s->base.is_jmp = DISAS_EXIT;
1622     return true;
1623 }
1624 
1625 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1626 {
1627     TCGv_i64 dst;
1628 
1629     if (!dc_isar_feature(aa64_pauth, s)) {
1630         return false;
1631     }
1632     if (s->current_el == 0) {
1633         return false;
1634     }
1635     /* The FGT trap takes precedence over an auth trap. */
1636     if (s->trap_eret) {
1637         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1638         return true;
1639     }
1640     dst = tcg_temp_new_i64();
1641     tcg_gen_ld_i64(dst, tcg_env,
1642                    offsetof(CPUARMState, elr_el[s->current_el]));
1643 
1644     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1645 
1646     translator_io_start(&s->base);
1647 
1648     gen_helper_exception_return(tcg_env, dst);
1649     /* Must exit loop to check un-masked IRQs */
1650     s->base.is_jmp = DISAS_EXIT;
1651     return true;
1652 }
1653 
1654 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1655 {
1656     return true;
1657 }
1658 
1659 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1660 {
1661     /*
1662      * When running in MTTCG we don't generate jumps to the yield and
1663      * WFE helpers as it won't affect the scheduling of other vCPUs.
1664      * If we wanted to more completely model WFE/SEV so we don't busy
1665      * spin unnecessarily we would need to do something more involved.
1666      */
1667     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1668         s->base.is_jmp = DISAS_YIELD;
1669     }
1670     return true;
1671 }
1672 
1673 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1674 {
1675     s->base.is_jmp = DISAS_WFI;
1676     return true;
1677 }
1678 
1679 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1680 {
1681     /*
1682      * When running in MTTCG we don't generate jumps to the yield and
1683      * WFE helpers as it won't affect the scheduling of other vCPUs.
1684      * If we wanted to more completely model WFE/SEV so we don't busy
1685      * spin unnecessarily we would need to do something more involved.
1686      */
1687     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1688         s->base.is_jmp = DISAS_WFE;
1689     }
1690     return true;
1691 }
1692 
1693 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1694 {
1695     if (s->pauth_active) {
1696         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1697     }
1698     return true;
1699 }
1700 
1701 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1702 {
1703     if (s->pauth_active) {
1704         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1705     }
1706     return true;
1707 }
1708 
1709 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1710 {
1711     if (s->pauth_active) {
1712         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1713     }
1714     return true;
1715 }
1716 
1717 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1718 {
1719     if (s->pauth_active) {
1720         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1721     }
1722     return true;
1723 }
1724 
1725 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1726 {
1727     if (s->pauth_active) {
1728         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1729     }
1730     return true;
1731 }
1732 
1733 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1734 {
1735     /* Without RAS, we must implement this as NOP. */
1736     if (dc_isar_feature(aa64_ras, s)) {
1737         /*
1738          * QEMU does not have a source of physical SErrors,
1739          * so we are only concerned with virtual SErrors.
1740          * The pseudocode in the ARM for this case is
1741          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1742          *      AArch64.vESBOperation();
1743          * Most of the condition can be evaluated at translation time.
1744          * Test for EL2 present, and defer test for SEL2 to runtime.
1745          */
1746         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1747             gen_helper_vesb(tcg_env);
1748         }
1749     }
1750     return true;
1751 }
1752 
1753 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1754 {
1755     if (s->pauth_active) {
1756         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1757     }
1758     return true;
1759 }
1760 
1761 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1762 {
1763     if (s->pauth_active) {
1764         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1765     }
1766     return true;
1767 }
1768 
1769 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1770 {
1771     if (s->pauth_active) {
1772         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1773     }
1774     return true;
1775 }
1776 
1777 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1778 {
1779     if (s->pauth_active) {
1780         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1781     }
1782     return true;
1783 }
1784 
1785 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1786 {
1787     if (s->pauth_active) {
1788         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1789     }
1790     return true;
1791 }
1792 
1793 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1794 {
1795     if (s->pauth_active) {
1796         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1797     }
1798     return true;
1799 }
1800 
1801 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1802 {
1803     if (s->pauth_active) {
1804         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1805     }
1806     return true;
1807 }
1808 
1809 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1810 {
1811     if (s->pauth_active) {
1812         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1813     }
1814     return true;
1815 }
1816 
1817 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1818 {
1819     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1820     return true;
1821 }
1822 
1823 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1824 {
1825     /* We handle DSB and DMB the same way */
1826     TCGBar bar;
1827 
1828     switch (a->types) {
1829     case 1: /* MBReqTypes_Reads */
1830         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1831         break;
1832     case 2: /* MBReqTypes_Writes */
1833         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1834         break;
1835     default: /* MBReqTypes_All */
1836         bar = TCG_BAR_SC | TCG_MO_ALL;
1837         break;
1838     }
1839     tcg_gen_mb(bar);
1840     return true;
1841 }
1842 
1843 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1844 {
1845     /*
1846      * We need to break the TB after this insn to execute
1847      * self-modifying code correctly and also to take
1848      * any pending interrupts immediately.
1849      */
1850     reset_btype(s);
1851     gen_goto_tb(s, 0, 4);
1852     return true;
1853 }
1854 
1855 static bool trans_SB(DisasContext *s, arg_SB *a)
1856 {
1857     if (!dc_isar_feature(aa64_sb, s)) {
1858         return false;
1859     }
1860     /*
1861      * TODO: There is no speculation barrier opcode for TCG;
1862      * MB and end the TB instead.
1863      */
1864     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1865     gen_goto_tb(s, 0, 4);
1866     return true;
1867 }
1868 
1869 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1870 {
1871     if (!dc_isar_feature(aa64_condm_4, s)) {
1872         return false;
1873     }
1874     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1875     return true;
1876 }
1877 
1878 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1879 {
1880     TCGv_i32 z;
1881 
1882     if (!dc_isar_feature(aa64_condm_5, s)) {
1883         return false;
1884     }
1885 
1886     z = tcg_temp_new_i32();
1887 
1888     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1889 
1890     /*
1891      * (!C & !Z) << 31
1892      * (!(C | Z)) << 31
1893      * ~((C | Z) << 31)
1894      * ~-(C | Z)
1895      * (C | Z) - 1
1896      */
1897     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1898     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1899 
1900     /* !(Z & C) */
1901     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1902     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1903 
1904     /* (!C & Z) << 31 -> -(Z & ~C) */
1905     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1906     tcg_gen_neg_i32(cpu_VF, cpu_VF);
1907 
1908     /* C | Z */
1909     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1910 
1911     return true;
1912 }
1913 
1914 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
1915 {
1916     if (!dc_isar_feature(aa64_condm_5, s)) {
1917         return false;
1918     }
1919 
1920     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
1921     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
1922 
1923     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1924     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1925 
1926     tcg_gen_movi_i32(cpu_NF, 0);
1927     tcg_gen_movi_i32(cpu_VF, 0);
1928 
1929     return true;
1930 }
1931 
1932 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
1933 {
1934     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1935         return false;
1936     }
1937     if (a->imm & 1) {
1938         set_pstate_bits(PSTATE_UAO);
1939     } else {
1940         clear_pstate_bits(PSTATE_UAO);
1941     }
1942     gen_rebuild_hflags(s);
1943     s->base.is_jmp = DISAS_TOO_MANY;
1944     return true;
1945 }
1946 
1947 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
1948 {
1949     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1950         return false;
1951     }
1952     if (a->imm & 1) {
1953         set_pstate_bits(PSTATE_PAN);
1954     } else {
1955         clear_pstate_bits(PSTATE_PAN);
1956     }
1957     gen_rebuild_hflags(s);
1958     s->base.is_jmp = DISAS_TOO_MANY;
1959     return true;
1960 }
1961 
1962 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
1963 {
1964     if (s->current_el == 0) {
1965         return false;
1966     }
1967     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
1968     s->base.is_jmp = DISAS_TOO_MANY;
1969     return true;
1970 }
1971 
1972 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
1973 {
1974     if (!dc_isar_feature(aa64_ssbs, s)) {
1975         return false;
1976     }
1977     if (a->imm & 1) {
1978         set_pstate_bits(PSTATE_SSBS);
1979     } else {
1980         clear_pstate_bits(PSTATE_SSBS);
1981     }
1982     /* Don't need to rebuild hflags since SSBS is a nop */
1983     s->base.is_jmp = DISAS_TOO_MANY;
1984     return true;
1985 }
1986 
1987 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
1988 {
1989     if (!dc_isar_feature(aa64_dit, s)) {
1990         return false;
1991     }
1992     if (a->imm & 1) {
1993         set_pstate_bits(PSTATE_DIT);
1994     } else {
1995         clear_pstate_bits(PSTATE_DIT);
1996     }
1997     /* There's no need to rebuild hflags because DIT is a nop */
1998     s->base.is_jmp = DISAS_TOO_MANY;
1999     return true;
2000 }
2001 
2002 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2003 {
2004     if (dc_isar_feature(aa64_mte, s)) {
2005         /* Full MTE is enabled -- set the TCO bit as directed. */
2006         if (a->imm & 1) {
2007             set_pstate_bits(PSTATE_TCO);
2008         } else {
2009             clear_pstate_bits(PSTATE_TCO);
2010         }
2011         gen_rebuild_hflags(s);
2012         /* Many factors, including TCO, go into MTE_ACTIVE. */
2013         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2014         return true;
2015     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2016         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2017         return true;
2018     } else {
2019         /* Insn not present */
2020         return false;
2021     }
2022 }
2023 
2024 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2025 {
2026     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2027     s->base.is_jmp = DISAS_TOO_MANY;
2028     return true;
2029 }
2030 
2031 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2032 {
2033     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2034     /* Exit the cpu loop to re-evaluate pending IRQs. */
2035     s->base.is_jmp = DISAS_UPDATE_EXIT;
2036     return true;
2037 }
2038 
2039 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2040 {
2041     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2042         return false;
2043     }
2044     if (sme_access_check(s)) {
2045         int old = s->pstate_sm | (s->pstate_za << 1);
2046         int new = a->imm * 3;
2047 
2048         if ((old ^ new) & a->mask) {
2049             /* At least one bit changes. */
2050             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2051                                 tcg_constant_i32(a->mask));
2052             s->base.is_jmp = DISAS_TOO_MANY;
2053         }
2054     }
2055     return true;
2056 }
2057 
2058 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2059 {
2060     TCGv_i32 tmp = tcg_temp_new_i32();
2061     TCGv_i32 nzcv = tcg_temp_new_i32();
2062 
2063     /* build bit 31, N */
2064     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2065     /* build bit 30, Z */
2066     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2067     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2068     /* build bit 29, C */
2069     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2070     /* build bit 28, V */
2071     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2072     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2073     /* generate result */
2074     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2075 }
2076 
2077 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2078 {
2079     TCGv_i32 nzcv = tcg_temp_new_i32();
2080 
2081     /* take NZCV from R[t] */
2082     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2083 
2084     /* bit 31, N */
2085     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2086     /* bit 30, Z */
2087     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2088     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2089     /* bit 29, C */
2090     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2091     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2092     /* bit 28, V */
2093     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2094     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2095 }
2096 
2097 static void gen_sysreg_undef(DisasContext *s, bool isread,
2098                              uint8_t op0, uint8_t op1, uint8_t op2,
2099                              uint8_t crn, uint8_t crm, uint8_t rt)
2100 {
2101     /*
2102      * Generate code to emit an UNDEF with correct syndrome
2103      * information for a failed system register access.
2104      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2105      * but if FEAT_IDST is implemented then read accesses to registers
2106      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2107      * syndrome.
2108      */
2109     uint32_t syndrome;
2110 
2111     if (isread && dc_isar_feature(aa64_ids, s) &&
2112         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2113         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2114     } else {
2115         syndrome = syn_uncategorized();
2116     }
2117     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2118 }
2119 
2120 /* MRS - move from system register
2121  * MSR (register) - move to system register
2122  * SYS
2123  * SYSL
2124  * These are all essentially the same insn in 'read' and 'write'
2125  * versions, with varying op0 fields.
2126  */
2127 static void handle_sys(DisasContext *s, bool isread,
2128                        unsigned int op0, unsigned int op1, unsigned int op2,
2129                        unsigned int crn, unsigned int crm, unsigned int rt)
2130 {
2131     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2132                                       crn, crm, op0, op1, op2);
2133     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2134     bool need_exit_tb = false;
2135     bool nv_trap_to_el2 = false;
2136     bool nv_redirect_reg = false;
2137     bool skip_fp_access_checks = false;
2138     bool nv2_mem_redirect = false;
2139     TCGv_ptr tcg_ri = NULL;
2140     TCGv_i64 tcg_rt;
2141     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2142 
2143     if (crn == 11 || crn == 15) {
2144         /*
2145          * Check for TIDCP trap, which must take precedence over
2146          * the UNDEF for "no such register" etc.
2147          */
2148         switch (s->current_el) {
2149         case 0:
2150             if (dc_isar_feature(aa64_tidcp1, s)) {
2151                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2152             }
2153             break;
2154         case 1:
2155             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2156             break;
2157         }
2158     }
2159 
2160     if (!ri) {
2161         /* Unknown register; this might be a guest error or a QEMU
2162          * unimplemented feature.
2163          */
2164         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2165                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2166                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2167         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2168         return;
2169     }
2170 
2171     if (s->nv2 && ri->nv2_redirect_offset) {
2172         /*
2173          * Some registers always redirect to memory; some only do so if
2174          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2175          * pairs which share an offset; see the table in R_CSRPQ).
2176          */
2177         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2178             nv2_mem_redirect = s->nv1;
2179         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2180             nv2_mem_redirect = !s->nv1;
2181         } else {
2182             nv2_mem_redirect = true;
2183         }
2184     }
2185 
2186     /* Check access permissions */
2187     if (!cp_access_ok(s->current_el, ri, isread)) {
2188         /*
2189          * FEAT_NV/NV2 handling does not do the usual FP access checks
2190          * for registers only accessible at EL2 (though it *does* do them
2191          * for registers accessible at EL1).
2192          */
2193         skip_fp_access_checks = true;
2194         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2195             /*
2196              * This is one of the few EL2 registers which should redirect
2197              * to the equivalent EL1 register. We do that after running
2198              * the EL2 register's accessfn.
2199              */
2200             nv_redirect_reg = true;
2201             assert(!nv2_mem_redirect);
2202         } else if (nv2_mem_redirect) {
2203             /*
2204              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2205              * UNDEF to EL1.
2206              */
2207         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2208             /*
2209              * This register / instruction exists and is an EL2 register, so
2210              * we must trap to EL2 if accessed in nested virtualization EL1
2211              * instead of UNDEFing. We'll do that after the usual access checks.
2212              * (This makes a difference only for a couple of registers like
2213              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2214              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2215              * an accessfn which does nothing when called from EL1, because
2216              * the trap-to-EL3 controls which would apply to that register
2217              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2218              */
2219             nv_trap_to_el2 = true;
2220         } else {
2221             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2222             return;
2223         }
2224     }
2225 
2226     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2227         /* Emit code to perform further access permissions checks at
2228          * runtime; this may result in an exception.
2229          */
2230         gen_a64_update_pc(s, 0);
2231         tcg_ri = tcg_temp_new_ptr();
2232         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2233                                        tcg_constant_i32(key),
2234                                        tcg_constant_i32(syndrome),
2235                                        tcg_constant_i32(isread));
2236     } else if (ri->type & ARM_CP_RAISES_EXC) {
2237         /*
2238          * The readfn or writefn might raise an exception;
2239          * synchronize the CPU state in case it does.
2240          */
2241         gen_a64_update_pc(s, 0);
2242     }
2243 
2244     if (!skip_fp_access_checks) {
2245         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2246             return;
2247         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2248             return;
2249         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2250             return;
2251         }
2252     }
2253 
2254     if (nv_trap_to_el2) {
2255         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2256         return;
2257     }
2258 
2259     if (nv_redirect_reg) {
2260         /*
2261          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2262          * Conveniently in all cases the encoding of the EL1 register is
2263          * identical to the EL2 register except that opc1 is 0.
2264          * Get the reginfo for the EL1 register to use for the actual access.
2265          * We don't use the EL1 register's access function, and
2266          * fine-grained-traps on EL1 also do not apply here.
2267          */
2268         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2269                                  crn, crm, op0, 0, op2);
2270         ri = get_arm_cp_reginfo(s->cp_regs, key);
2271         assert(ri);
2272         assert(cp_access_ok(s->current_el, ri, isread));
2273         /*
2274          * We might not have done an update_pc earlier, so check we don't
2275          * need it. We could support this in future if necessary.
2276          */
2277         assert(!(ri->type & ARM_CP_RAISES_EXC));
2278     }
2279 
2280     if (nv2_mem_redirect) {
2281         /*
2282          * This system register is being redirected into an EL2 memory access.
2283          * This means it is not an IO operation, doesn't change hflags,
2284          * and need not end the TB, because it has no side effects.
2285          *
2286          * The access is 64-bit single copy atomic, guaranteed aligned because
2287          * of the definition of VCNR_EL2. Its endianness depends on
2288          * SCTLR_EL2.EE, not on the data endianness of EL1.
2289          * It is done under either the EL2 translation regime or the EL2&0
2290          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2291          * PSTATE.PAN is 0.
2292          */
2293         TCGv_i64 ptr = tcg_temp_new_i64();
2294         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2295         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2296         int memidx = arm_to_core_mmu_idx(armmemidx);
2297         uint32_t syn;
2298 
2299         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2300 
2301         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2302         tcg_gen_addi_i64(ptr, ptr,
2303                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2304         tcg_rt = cpu_reg(s, rt);
2305 
2306         syn = syn_data_abort_vncr(0, !isread, 0);
2307         disas_set_insn_syndrome(s, syn);
2308         if (isread) {
2309             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2310         } else {
2311             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2312         }
2313         return;
2314     }
2315 
2316     /* Handle special cases first */
2317     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2318     case 0:
2319         break;
2320     case ARM_CP_NOP:
2321         return;
2322     case ARM_CP_NZCV:
2323         tcg_rt = cpu_reg(s, rt);
2324         if (isread) {
2325             gen_get_nzcv(tcg_rt);
2326         } else {
2327             gen_set_nzcv(tcg_rt);
2328         }
2329         return;
2330     case ARM_CP_CURRENTEL:
2331     {
2332         /*
2333          * Reads as current EL value from pstate, which is
2334          * guaranteed to be constant by the tb flags.
2335          * For nested virt we should report EL2.
2336          */
2337         int el = s->nv ? 2 : s->current_el;
2338         tcg_rt = cpu_reg(s, rt);
2339         tcg_gen_movi_i64(tcg_rt, el << 2);
2340         return;
2341     }
2342     case ARM_CP_DC_ZVA:
2343         /* Writes clear the aligned block of memory which rt points into. */
2344         if (s->mte_active[0]) {
2345             int desc = 0;
2346 
2347             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2348             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2349             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2350 
2351             tcg_rt = tcg_temp_new_i64();
2352             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2353                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2354         } else {
2355             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2356         }
2357         gen_helper_dc_zva(tcg_env, tcg_rt);
2358         return;
2359     case ARM_CP_DC_GVA:
2360         {
2361             TCGv_i64 clean_addr, tag;
2362 
2363             /*
2364              * DC_GVA, like DC_ZVA, requires that we supply the original
2365              * pointer for an invalid page.  Probe that address first.
2366              */
2367             tcg_rt = cpu_reg(s, rt);
2368             clean_addr = clean_data_tbi(s, tcg_rt);
2369             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2370 
2371             if (s->ata[0]) {
2372                 /* Extract the tag from the register to match STZGM.  */
2373                 tag = tcg_temp_new_i64();
2374                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2375                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2376             }
2377         }
2378         return;
2379     case ARM_CP_DC_GZVA:
2380         {
2381             TCGv_i64 clean_addr, tag;
2382 
2383             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2384             tcg_rt = cpu_reg(s, rt);
2385             clean_addr = clean_data_tbi(s, tcg_rt);
2386             gen_helper_dc_zva(tcg_env, clean_addr);
2387 
2388             if (s->ata[0]) {
2389                 /* Extract the tag from the register to match STZGM.  */
2390                 tag = tcg_temp_new_i64();
2391                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2392                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2393             }
2394         }
2395         return;
2396     default:
2397         g_assert_not_reached();
2398     }
2399 
2400     if (ri->type & ARM_CP_IO) {
2401         /* I/O operations must end the TB here (whether read or write) */
2402         need_exit_tb = translator_io_start(&s->base);
2403     }
2404 
2405     tcg_rt = cpu_reg(s, rt);
2406 
2407     if (isread) {
2408         if (ri->type & ARM_CP_CONST) {
2409             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2410         } else if (ri->readfn) {
2411             if (!tcg_ri) {
2412                 tcg_ri = gen_lookup_cp_reg(key);
2413             }
2414             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2415         } else {
2416             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2417         }
2418     } else {
2419         if (ri->type & ARM_CP_CONST) {
2420             /* If not forbidden by access permissions, treat as WI */
2421             return;
2422         } else if (ri->writefn) {
2423             if (!tcg_ri) {
2424                 tcg_ri = gen_lookup_cp_reg(key);
2425             }
2426             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2427         } else {
2428             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2429         }
2430     }
2431 
2432     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2433         /*
2434          * A write to any coprocessor register that ends a TB
2435          * must rebuild the hflags for the next TB.
2436          */
2437         gen_rebuild_hflags(s);
2438         /*
2439          * We default to ending the TB on a coprocessor register write,
2440          * but allow this to be suppressed by the register definition
2441          * (usually only necessary to work around guest bugs).
2442          */
2443         need_exit_tb = true;
2444     }
2445     if (need_exit_tb) {
2446         s->base.is_jmp = DISAS_UPDATE_EXIT;
2447     }
2448 }
2449 
2450 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2451 {
2452     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2453     return true;
2454 }
2455 
2456 static bool trans_SVC(DisasContext *s, arg_i *a)
2457 {
2458     /*
2459      * For SVC, HVC and SMC we advance the single-step state
2460      * machine before taking the exception. This is architecturally
2461      * mandated, to ensure that single-stepping a system call
2462      * instruction works properly.
2463      */
2464     uint32_t syndrome = syn_aa64_svc(a->imm);
2465     if (s->fgt_svc) {
2466         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2467         return true;
2468     }
2469     gen_ss_advance(s);
2470     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2471     return true;
2472 }
2473 
2474 static bool trans_HVC(DisasContext *s, arg_i *a)
2475 {
2476     int target_el = s->current_el == 3 ? 3 : 2;
2477 
2478     if (s->current_el == 0) {
2479         unallocated_encoding(s);
2480         return true;
2481     }
2482     /*
2483      * The pre HVC helper handles cases when HVC gets trapped
2484      * as an undefined insn by runtime configuration.
2485      */
2486     gen_a64_update_pc(s, 0);
2487     gen_helper_pre_hvc(tcg_env);
2488     /* Architecture requires ss advance before we do the actual work */
2489     gen_ss_advance(s);
2490     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2491     return true;
2492 }
2493 
2494 static bool trans_SMC(DisasContext *s, arg_i *a)
2495 {
2496     if (s->current_el == 0) {
2497         unallocated_encoding(s);
2498         return true;
2499     }
2500     gen_a64_update_pc(s, 0);
2501     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2502     /* Architecture requires ss advance before we do the actual work */
2503     gen_ss_advance(s);
2504     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2505     return true;
2506 }
2507 
2508 static bool trans_BRK(DisasContext *s, arg_i *a)
2509 {
2510     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2511     return true;
2512 }
2513 
2514 static bool trans_HLT(DisasContext *s, arg_i *a)
2515 {
2516     /*
2517      * HLT. This has two purposes.
2518      * Architecturally, it is an external halting debug instruction.
2519      * Since QEMU doesn't implement external debug, we treat this as
2520      * it is required for halting debug disabled: it will UNDEF.
2521      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2522      */
2523     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2524         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2525     } else {
2526         unallocated_encoding(s);
2527     }
2528     return true;
2529 }
2530 
2531 /*
2532  * Load/Store exclusive instructions are implemented by remembering
2533  * the value/address loaded, and seeing if these are the same
2534  * when the store is performed. This is not actually the architecturally
2535  * mandated semantics, but it works for typical guest code sequences
2536  * and avoids having to monitor regular stores.
2537  *
2538  * The store exclusive uses the atomic cmpxchg primitives to avoid
2539  * races in multi-threaded linux-user and when MTTCG softmmu is
2540  * enabled.
2541  */
2542 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2543                                int size, bool is_pair)
2544 {
2545     int idx = get_mem_index(s);
2546     TCGv_i64 dirty_addr, clean_addr;
2547     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2548 
2549     s->is_ldex = true;
2550     dirty_addr = cpu_reg_sp(s, rn);
2551     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2552 
2553     g_assert(size <= 3);
2554     if (is_pair) {
2555         g_assert(size >= 2);
2556         if (size == 2) {
2557             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2558             if (s->be_data == MO_LE) {
2559                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2560                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2561             } else {
2562                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2563                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2564             }
2565         } else {
2566             TCGv_i128 t16 = tcg_temp_new_i128();
2567 
2568             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2569 
2570             if (s->be_data == MO_LE) {
2571                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2572                                       cpu_exclusive_high, t16);
2573             } else {
2574                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2575                                       cpu_exclusive_val, t16);
2576             }
2577             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2578             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2579         }
2580     } else {
2581         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2582         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2583     }
2584     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2585 }
2586 
2587 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2588                                 int rn, int size, int is_pair)
2589 {
2590     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2591      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2592      *     [addr] = {Rt};
2593      *     if (is_pair) {
2594      *         [addr + datasize] = {Rt2};
2595      *     }
2596      *     {Rd} = 0;
2597      * } else {
2598      *     {Rd} = 1;
2599      * }
2600      * env->exclusive_addr = -1;
2601      */
2602     TCGLabel *fail_label = gen_new_label();
2603     TCGLabel *done_label = gen_new_label();
2604     TCGv_i64 tmp, clean_addr;
2605     MemOp memop;
2606 
2607     /*
2608      * FIXME: We are out of spec here.  We have recorded only the address
2609      * from load_exclusive, not the entire range, and we assume that the
2610      * size of the access on both sides match.  The architecture allows the
2611      * store to be smaller than the load, so long as the stored bytes are
2612      * within the range recorded by the load.
2613      */
2614 
2615     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2616     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2617     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2618 
2619     /*
2620      * The write, and any associated faults, only happen if the virtual
2621      * and physical addresses pass the exclusive monitor check.  These
2622      * faults are exceedingly unlikely, because normally the guest uses
2623      * the exact same address register for the load_exclusive, and we
2624      * would have recognized these faults there.
2625      *
2626      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2627      * unaligned 4-byte write within the range of an aligned 8-byte load.
2628      * With LSE2, the store would need to cross a 16-byte boundary when the
2629      * load did not, which would mean the store is outside the range
2630      * recorded for the monitor, which would have failed a corrected monitor
2631      * check above.  For now, we assume no size change and retain the
2632      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2633      *
2634      * It is possible to trigger an MTE fault, by performing the load with
2635      * a virtual address with a valid tag and performing the store with the
2636      * same virtual address and a different invalid tag.
2637      */
2638     memop = size + is_pair;
2639     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2640         memop |= MO_ALIGN;
2641     }
2642     memop = finalize_memop(s, memop);
2643     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2644 
2645     tmp = tcg_temp_new_i64();
2646     if (is_pair) {
2647         if (size == 2) {
2648             if (s->be_data == MO_LE) {
2649                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2650             } else {
2651                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2652             }
2653             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2654                                        cpu_exclusive_val, tmp,
2655                                        get_mem_index(s), memop);
2656             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2657         } else {
2658             TCGv_i128 t16 = tcg_temp_new_i128();
2659             TCGv_i128 c16 = tcg_temp_new_i128();
2660             TCGv_i64 a, b;
2661 
2662             if (s->be_data == MO_LE) {
2663                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2664                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2665                                         cpu_exclusive_high);
2666             } else {
2667                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2668                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2669                                         cpu_exclusive_val);
2670             }
2671 
2672             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2673                                         get_mem_index(s), memop);
2674 
2675             a = tcg_temp_new_i64();
2676             b = tcg_temp_new_i64();
2677             if (s->be_data == MO_LE) {
2678                 tcg_gen_extr_i128_i64(a, b, t16);
2679             } else {
2680                 tcg_gen_extr_i128_i64(b, a, t16);
2681             }
2682 
2683             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2684             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2685             tcg_gen_or_i64(tmp, a, b);
2686 
2687             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2688         }
2689     } else {
2690         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2691                                    cpu_reg(s, rt), get_mem_index(s), memop);
2692         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2693     }
2694     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2695     tcg_gen_br(done_label);
2696 
2697     gen_set_label(fail_label);
2698     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2699     gen_set_label(done_label);
2700     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2701 }
2702 
2703 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2704                                  int rn, int size)
2705 {
2706     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2707     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2708     int memidx = get_mem_index(s);
2709     TCGv_i64 clean_addr;
2710     MemOp memop;
2711 
2712     if (rn == 31) {
2713         gen_check_sp_alignment(s);
2714     }
2715     memop = check_atomic_align(s, rn, size);
2716     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2717     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2718                                memidx, memop);
2719 }
2720 
2721 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2722                                       int rn, int size)
2723 {
2724     TCGv_i64 s1 = cpu_reg(s, rs);
2725     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2726     TCGv_i64 t1 = cpu_reg(s, rt);
2727     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2728     TCGv_i64 clean_addr;
2729     int memidx = get_mem_index(s);
2730     MemOp memop;
2731 
2732     if (rn == 31) {
2733         gen_check_sp_alignment(s);
2734     }
2735 
2736     /* This is a single atomic access, despite the "pair". */
2737     memop = check_atomic_align(s, rn, size + 1);
2738     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2739 
2740     if (size == 2) {
2741         TCGv_i64 cmp = tcg_temp_new_i64();
2742         TCGv_i64 val = tcg_temp_new_i64();
2743 
2744         if (s->be_data == MO_LE) {
2745             tcg_gen_concat32_i64(val, t1, t2);
2746             tcg_gen_concat32_i64(cmp, s1, s2);
2747         } else {
2748             tcg_gen_concat32_i64(val, t2, t1);
2749             tcg_gen_concat32_i64(cmp, s2, s1);
2750         }
2751 
2752         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2753 
2754         if (s->be_data == MO_LE) {
2755             tcg_gen_extr32_i64(s1, s2, cmp);
2756         } else {
2757             tcg_gen_extr32_i64(s2, s1, cmp);
2758         }
2759     } else {
2760         TCGv_i128 cmp = tcg_temp_new_i128();
2761         TCGv_i128 val = tcg_temp_new_i128();
2762 
2763         if (s->be_data == MO_LE) {
2764             tcg_gen_concat_i64_i128(val, t1, t2);
2765             tcg_gen_concat_i64_i128(cmp, s1, s2);
2766         } else {
2767             tcg_gen_concat_i64_i128(val, t2, t1);
2768             tcg_gen_concat_i64_i128(cmp, s2, s1);
2769         }
2770 
2771         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2772 
2773         if (s->be_data == MO_LE) {
2774             tcg_gen_extr_i128_i64(s1, s2, cmp);
2775         } else {
2776             tcg_gen_extr_i128_i64(s2, s1, cmp);
2777         }
2778     }
2779 }
2780 
2781 /*
2782  * Compute the ISS.SF bit for syndrome information if an exception
2783  * is taken on a load or store. This indicates whether the instruction
2784  * is accessing a 32-bit or 64-bit register. This logic is derived
2785  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2786  */
2787 static bool ldst_iss_sf(int size, bool sign, bool ext)
2788 {
2789 
2790     if (sign) {
2791         /*
2792          * Signed loads are 64 bit results if we are not going to
2793          * do a zero-extend from 32 to 64 after the load.
2794          * (For a store, sign and ext are always false.)
2795          */
2796         return !ext;
2797     } else {
2798         /* Unsigned loads/stores work at the specified size */
2799         return size == MO_64;
2800     }
2801 }
2802 
2803 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2804 {
2805     if (a->rn == 31) {
2806         gen_check_sp_alignment(s);
2807     }
2808     if (a->lasr) {
2809         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2810     }
2811     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2812     return true;
2813 }
2814 
2815 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2816 {
2817     if (a->rn == 31) {
2818         gen_check_sp_alignment(s);
2819     }
2820     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2821     if (a->lasr) {
2822         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2823     }
2824     return true;
2825 }
2826 
2827 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2828 {
2829     TCGv_i64 clean_addr;
2830     MemOp memop;
2831     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2832 
2833     /*
2834      * StoreLORelease is the same as Store-Release for QEMU, but
2835      * needs the feature-test.
2836      */
2837     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2838         return false;
2839     }
2840     /* Generate ISS for non-exclusive accesses including LASR.  */
2841     if (a->rn == 31) {
2842         gen_check_sp_alignment(s);
2843     }
2844     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2845     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2846     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2847                                 true, a->rn != 31, memop);
2848     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2849               iss_sf, a->lasr);
2850     return true;
2851 }
2852 
2853 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2854 {
2855     TCGv_i64 clean_addr;
2856     MemOp memop;
2857     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2858 
2859     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2860     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2861         return false;
2862     }
2863     /* Generate ISS for non-exclusive accesses including LASR.  */
2864     if (a->rn == 31) {
2865         gen_check_sp_alignment(s);
2866     }
2867     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2868     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2869                                 false, a->rn != 31, memop);
2870     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2871               a->rt, iss_sf, a->lasr);
2872     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2873     return true;
2874 }
2875 
2876 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2877 {
2878     if (a->rn == 31) {
2879         gen_check_sp_alignment(s);
2880     }
2881     if (a->lasr) {
2882         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2883     }
2884     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
2885     return true;
2886 }
2887 
2888 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
2889 {
2890     if (a->rn == 31) {
2891         gen_check_sp_alignment(s);
2892     }
2893     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
2894     if (a->lasr) {
2895         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2896     }
2897     return true;
2898 }
2899 
2900 static bool trans_CASP(DisasContext *s, arg_CASP *a)
2901 {
2902     if (!dc_isar_feature(aa64_atomics, s)) {
2903         return false;
2904     }
2905     if (((a->rt | a->rs) & 1) != 0) {
2906         return false;
2907     }
2908 
2909     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
2910     return true;
2911 }
2912 
2913 static bool trans_CAS(DisasContext *s, arg_CAS *a)
2914 {
2915     if (!dc_isar_feature(aa64_atomics, s)) {
2916         return false;
2917     }
2918     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
2919     return true;
2920 }
2921 
2922 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
2923 {
2924     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
2925     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
2926     TCGv_i64 clean_addr = tcg_temp_new_i64();
2927     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
2928 
2929     gen_pc_plus_diff(s, clean_addr, a->imm);
2930     do_gpr_ld(s, tcg_rt, clean_addr, memop,
2931               false, true, a->rt, iss_sf, false);
2932     return true;
2933 }
2934 
2935 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
2936 {
2937     /* Load register (literal), vector version */
2938     TCGv_i64 clean_addr;
2939     MemOp memop;
2940 
2941     if (!fp_access_check(s)) {
2942         return true;
2943     }
2944     memop = finalize_memop_asimd(s, a->sz);
2945     clean_addr = tcg_temp_new_i64();
2946     gen_pc_plus_diff(s, clean_addr, a->imm);
2947     do_fp_ld(s, a->rt, clean_addr, memop);
2948     return true;
2949 }
2950 
2951 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
2952                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
2953                                  uint64_t offset, bool is_store, MemOp mop)
2954 {
2955     if (a->rn == 31) {
2956         gen_check_sp_alignment(s);
2957     }
2958 
2959     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
2960     if (!a->p) {
2961         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
2962     }
2963 
2964     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
2965                                  (a->w || a->rn != 31), 2 << a->sz, mop);
2966 }
2967 
2968 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
2969                                   TCGv_i64 dirty_addr, uint64_t offset)
2970 {
2971     if (a->w) {
2972         if (a->p) {
2973             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2974         }
2975         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
2976     }
2977 }
2978 
2979 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
2980 {
2981     uint64_t offset = a->imm << a->sz;
2982     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
2983     MemOp mop = finalize_memop(s, a->sz);
2984 
2985     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
2986     tcg_rt = cpu_reg(s, a->rt);
2987     tcg_rt2 = cpu_reg(s, a->rt2);
2988     /*
2989      * We built mop above for the single logical access -- rebuild it
2990      * now for the paired operation.
2991      *
2992      * With LSE2, non-sign-extending pairs are treated atomically if
2993      * aligned, and if unaligned one of the pair will be completely
2994      * within a 16-byte block and that element will be atomic.
2995      * Otherwise each element is separately atomic.
2996      * In all cases, issue one operation with the correct atomicity.
2997      */
2998     mop = a->sz + 1;
2999     if (s->align_mem) {
3000         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3001     }
3002     mop = finalize_memop_pair(s, mop);
3003     if (a->sz == 2) {
3004         TCGv_i64 tmp = tcg_temp_new_i64();
3005 
3006         if (s->be_data == MO_LE) {
3007             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3008         } else {
3009             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3010         }
3011         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3012     } else {
3013         TCGv_i128 tmp = tcg_temp_new_i128();
3014 
3015         if (s->be_data == MO_LE) {
3016             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3017         } else {
3018             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3019         }
3020         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3021     }
3022     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3023     return true;
3024 }
3025 
3026 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3027 {
3028     uint64_t offset = a->imm << a->sz;
3029     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3030     MemOp mop = finalize_memop(s, a->sz);
3031 
3032     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3033     tcg_rt = cpu_reg(s, a->rt);
3034     tcg_rt2 = cpu_reg(s, a->rt2);
3035 
3036     /*
3037      * We built mop above for the single logical access -- rebuild it
3038      * now for the paired operation.
3039      *
3040      * With LSE2, non-sign-extending pairs are treated atomically if
3041      * aligned, and if unaligned one of the pair will be completely
3042      * within a 16-byte block and that element will be atomic.
3043      * Otherwise each element is separately atomic.
3044      * In all cases, issue one operation with the correct atomicity.
3045      *
3046      * This treats sign-extending loads like zero-extending loads,
3047      * since that reuses the most code below.
3048      */
3049     mop = a->sz + 1;
3050     if (s->align_mem) {
3051         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3052     }
3053     mop = finalize_memop_pair(s, mop);
3054     if (a->sz == 2) {
3055         int o2 = s->be_data == MO_LE ? 32 : 0;
3056         int o1 = o2 ^ 32;
3057 
3058         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3059         if (a->sign) {
3060             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3061             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3062         } else {
3063             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3064             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3065         }
3066     } else {
3067         TCGv_i128 tmp = tcg_temp_new_i128();
3068 
3069         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3070         if (s->be_data == MO_LE) {
3071             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3072         } else {
3073             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3074         }
3075     }
3076     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3077     return true;
3078 }
3079 
3080 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3081 {
3082     uint64_t offset = a->imm << a->sz;
3083     TCGv_i64 clean_addr, dirty_addr;
3084     MemOp mop;
3085 
3086     if (!fp_access_check(s)) {
3087         return true;
3088     }
3089 
3090     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3091     mop = finalize_memop_asimd(s, a->sz);
3092     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3093     do_fp_st(s, a->rt, clean_addr, mop);
3094     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3095     do_fp_st(s, a->rt2, clean_addr, mop);
3096     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3097     return true;
3098 }
3099 
3100 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3101 {
3102     uint64_t offset = a->imm << a->sz;
3103     TCGv_i64 clean_addr, dirty_addr;
3104     MemOp mop;
3105 
3106     if (!fp_access_check(s)) {
3107         return true;
3108     }
3109 
3110     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3111     mop = finalize_memop_asimd(s, a->sz);
3112     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3113     do_fp_ld(s, a->rt, clean_addr, mop);
3114     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3115     do_fp_ld(s, a->rt2, clean_addr, mop);
3116     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3117     return true;
3118 }
3119 
3120 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3121 {
3122     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3123     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3124     MemOp mop;
3125     TCGv_i128 tmp;
3126 
3127     /* STGP only comes in one size. */
3128     tcg_debug_assert(a->sz == MO_64);
3129 
3130     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3131         return false;
3132     }
3133 
3134     if (a->rn == 31) {
3135         gen_check_sp_alignment(s);
3136     }
3137 
3138     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3139     if (!a->p) {
3140         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3141     }
3142 
3143     clean_addr = clean_data_tbi(s, dirty_addr);
3144     tcg_rt = cpu_reg(s, a->rt);
3145     tcg_rt2 = cpu_reg(s, a->rt2);
3146 
3147     /*
3148      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3149      * and one tag operation.  We implement it as one single aligned 16-byte
3150      * memory operation for convenience.  Note that the alignment ensures
3151      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3152      */
3153     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3154 
3155     tmp = tcg_temp_new_i128();
3156     if (s->be_data == MO_LE) {
3157         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3158     } else {
3159         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3160     }
3161     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3162 
3163     /* Perform the tag store, if tag access enabled. */
3164     if (s->ata[0]) {
3165         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3166             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3167         } else {
3168             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3169         }
3170     }
3171 
3172     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3173     return true;
3174 }
3175 
3176 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3177                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3178                                  uint64_t offset, bool is_store, MemOp mop)
3179 {
3180     int memidx;
3181 
3182     if (a->rn == 31) {
3183         gen_check_sp_alignment(s);
3184     }
3185 
3186     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3187     if (!a->p) {
3188         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3189     }
3190     memidx = get_a64_user_mem_index(s, a->unpriv);
3191     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3192                                         a->w || a->rn != 31,
3193                                         mop, a->unpriv, memidx);
3194 }
3195 
3196 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3197                                   TCGv_i64 dirty_addr, uint64_t offset)
3198 {
3199     if (a->w) {
3200         if (a->p) {
3201             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3202         }
3203         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3204     }
3205 }
3206 
3207 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3208 {
3209     bool iss_sf, iss_valid = !a->w;
3210     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3211     int memidx = get_a64_user_mem_index(s, a->unpriv);
3212     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3213 
3214     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3215 
3216     tcg_rt = cpu_reg(s, a->rt);
3217     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3218 
3219     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3220                      iss_valid, a->rt, iss_sf, false);
3221     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3222     return true;
3223 }
3224 
3225 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3226 {
3227     bool iss_sf, iss_valid = !a->w;
3228     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3229     int memidx = get_a64_user_mem_index(s, a->unpriv);
3230     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3231 
3232     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3233 
3234     tcg_rt = cpu_reg(s, a->rt);
3235     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3236 
3237     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3238                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3239     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3240     return true;
3241 }
3242 
3243 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3244 {
3245     TCGv_i64 clean_addr, dirty_addr;
3246     MemOp mop;
3247 
3248     if (!fp_access_check(s)) {
3249         return true;
3250     }
3251     mop = finalize_memop_asimd(s, a->sz);
3252     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3253     do_fp_st(s, a->rt, clean_addr, mop);
3254     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3255     return true;
3256 }
3257 
3258 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3259 {
3260     TCGv_i64 clean_addr, dirty_addr;
3261     MemOp mop;
3262 
3263     if (!fp_access_check(s)) {
3264         return true;
3265     }
3266     mop = finalize_memop_asimd(s, a->sz);
3267     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3268     do_fp_ld(s, a->rt, clean_addr, mop);
3269     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3270     return true;
3271 }
3272 
3273 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3274                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3275                              bool is_store, MemOp memop)
3276 {
3277     TCGv_i64 tcg_rm;
3278 
3279     if (a->rn == 31) {
3280         gen_check_sp_alignment(s);
3281     }
3282     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3283 
3284     tcg_rm = read_cpu_reg(s, a->rm, 1);
3285     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3286 
3287     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3288     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3289 }
3290 
3291 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3292 {
3293     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3294     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3295     MemOp memop;
3296 
3297     if (extract32(a->opt, 1, 1) == 0) {
3298         return false;
3299     }
3300 
3301     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3302     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3303     tcg_rt = cpu_reg(s, a->rt);
3304     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3305               a->ext, true, a->rt, iss_sf, false);
3306     return true;
3307 }
3308 
3309 static bool trans_STR(DisasContext *s, arg_ldst *a)
3310 {
3311     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3312     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3313     MemOp memop;
3314 
3315     if (extract32(a->opt, 1, 1) == 0) {
3316         return false;
3317     }
3318 
3319     memop = finalize_memop(s, a->sz);
3320     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3321     tcg_rt = cpu_reg(s, a->rt);
3322     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3323     return true;
3324 }
3325 
3326 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3327 {
3328     TCGv_i64 clean_addr, dirty_addr;
3329     MemOp memop;
3330 
3331     if (extract32(a->opt, 1, 1) == 0) {
3332         return false;
3333     }
3334 
3335     if (!fp_access_check(s)) {
3336         return true;
3337     }
3338 
3339     memop = finalize_memop_asimd(s, a->sz);
3340     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3341     do_fp_ld(s, a->rt, clean_addr, memop);
3342     return true;
3343 }
3344 
3345 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3346 {
3347     TCGv_i64 clean_addr, dirty_addr;
3348     MemOp memop;
3349 
3350     if (extract32(a->opt, 1, 1) == 0) {
3351         return false;
3352     }
3353 
3354     if (!fp_access_check(s)) {
3355         return true;
3356     }
3357 
3358     memop = finalize_memop_asimd(s, a->sz);
3359     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3360     do_fp_st(s, a->rt, clean_addr, memop);
3361     return true;
3362 }
3363 
3364 
3365 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3366                          int sign, bool invert)
3367 {
3368     MemOp mop = a->sz | sign;
3369     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3370 
3371     if (a->rn == 31) {
3372         gen_check_sp_alignment(s);
3373     }
3374     mop = check_atomic_align(s, a->rn, mop);
3375     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3376                                 a->rn != 31, mop);
3377     tcg_rs = read_cpu_reg(s, a->rs, true);
3378     tcg_rt = cpu_reg(s, a->rt);
3379     if (invert) {
3380         tcg_gen_not_i64(tcg_rs, tcg_rs);
3381     }
3382     /*
3383      * The tcg atomic primitives are all full barriers.  Therefore we
3384      * can ignore the Acquire and Release bits of this instruction.
3385      */
3386     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3387 
3388     if (mop & MO_SIGN) {
3389         switch (a->sz) {
3390         case MO_8:
3391             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3392             break;
3393         case MO_16:
3394             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3395             break;
3396         case MO_32:
3397             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3398             break;
3399         case MO_64:
3400             break;
3401         default:
3402             g_assert_not_reached();
3403         }
3404     }
3405     return true;
3406 }
3407 
3408 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3409 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3410 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3411 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3412 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3413 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3414 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3415 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3416 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3417 
3418 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3419 {
3420     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3421     TCGv_i64 clean_addr;
3422     MemOp mop;
3423 
3424     if (!dc_isar_feature(aa64_atomics, s) ||
3425         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3426         return false;
3427     }
3428     if (a->rn == 31) {
3429         gen_check_sp_alignment(s);
3430     }
3431     mop = check_atomic_align(s, a->rn, a->sz);
3432     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3433                                 a->rn != 31, mop);
3434     /*
3435      * LDAPR* are a special case because they are a simple load, not a
3436      * fetch-and-do-something op.
3437      * The architectural consistency requirements here are weaker than
3438      * full load-acquire (we only need "load-acquire processor consistent"),
3439      * but we choose to implement them as full LDAQ.
3440      */
3441     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3442               true, a->rt, iss_sf, true);
3443     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3444     return true;
3445 }
3446 
3447 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3448 {
3449     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3450     MemOp memop;
3451 
3452     /* Load with pointer authentication */
3453     if (!dc_isar_feature(aa64_pauth, s)) {
3454         return false;
3455     }
3456 
3457     if (a->rn == 31) {
3458         gen_check_sp_alignment(s);
3459     }
3460     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3461 
3462     if (s->pauth_active) {
3463         if (!a->m) {
3464             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3465                                       tcg_constant_i64(0));
3466         } else {
3467             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3468                                       tcg_constant_i64(0));
3469         }
3470     }
3471 
3472     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3473 
3474     memop = finalize_memop(s, MO_64);
3475 
3476     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3477     clean_addr = gen_mte_check1(s, dirty_addr, false,
3478                                 a->w || a->rn != 31, memop);
3479 
3480     tcg_rt = cpu_reg(s, a->rt);
3481     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3482               /* extend */ false, /* iss_valid */ !a->w,
3483               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3484 
3485     if (a->w) {
3486         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3487     }
3488     return true;
3489 }
3490 
3491 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3492 {
3493     TCGv_i64 clean_addr, dirty_addr;
3494     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3495     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3496 
3497     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3498         return false;
3499     }
3500 
3501     if (a->rn == 31) {
3502         gen_check_sp_alignment(s);
3503     }
3504 
3505     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3506     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3507     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3508     clean_addr = clean_data_tbi(s, dirty_addr);
3509 
3510     /*
3511      * Load-AcquirePC semantics; we implement as the slightly more
3512      * restrictive Load-Acquire.
3513      */
3514     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3515               a->rt, iss_sf, true);
3516     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3517     return true;
3518 }
3519 
3520 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3521 {
3522     TCGv_i64 clean_addr, dirty_addr;
3523     MemOp mop = a->sz;
3524     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3525 
3526     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3527         return false;
3528     }
3529 
3530     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3531 
3532     if (a->rn == 31) {
3533         gen_check_sp_alignment(s);
3534     }
3535 
3536     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3537     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3538     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3539     clean_addr = clean_data_tbi(s, dirty_addr);
3540 
3541     /* Store-Release semantics */
3542     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3543     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3544     return true;
3545 }
3546 
3547 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3548 {
3549     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3550     MemOp endian, align, mop;
3551 
3552     int total;    /* total bytes */
3553     int elements; /* elements per vector */
3554     int r;
3555     int size = a->sz;
3556 
3557     if (!a->p && a->rm != 0) {
3558         /* For non-postindexed accesses the Rm field must be 0 */
3559         return false;
3560     }
3561     if (size == 3 && !a->q && a->selem != 1) {
3562         return false;
3563     }
3564     if (!fp_access_check(s)) {
3565         return true;
3566     }
3567 
3568     if (a->rn == 31) {
3569         gen_check_sp_alignment(s);
3570     }
3571 
3572     /* For our purposes, bytes are always little-endian.  */
3573     endian = s->be_data;
3574     if (size == 0) {
3575         endian = MO_LE;
3576     }
3577 
3578     total = a->rpt * a->selem * (a->q ? 16 : 8);
3579     tcg_rn = cpu_reg_sp(s, a->rn);
3580 
3581     /*
3582      * Issue the MTE check vs the logical repeat count, before we
3583      * promote consecutive little-endian elements below.
3584      */
3585     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3586                                 finalize_memop_asimd(s, size));
3587 
3588     /*
3589      * Consecutive little-endian elements from a single register
3590      * can be promoted to a larger little-endian operation.
3591      */
3592     align = MO_ALIGN;
3593     if (a->selem == 1 && endian == MO_LE) {
3594         align = pow2_align(size);
3595         size = 3;
3596     }
3597     if (!s->align_mem) {
3598         align = 0;
3599     }
3600     mop = endian | size | align;
3601 
3602     elements = (a->q ? 16 : 8) >> size;
3603     tcg_ebytes = tcg_constant_i64(1 << size);
3604     for (r = 0; r < a->rpt; r++) {
3605         int e;
3606         for (e = 0; e < elements; e++) {
3607             int xs;
3608             for (xs = 0; xs < a->selem; xs++) {
3609                 int tt = (a->rt + r + xs) % 32;
3610                 do_vec_ld(s, tt, e, clean_addr, mop);
3611                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3612             }
3613         }
3614     }
3615 
3616     /*
3617      * For non-quad operations, setting a slice of the low 64 bits of
3618      * the register clears the high 64 bits (in the ARM ARM pseudocode
3619      * this is implicit in the fact that 'rval' is a 64 bit wide
3620      * variable).  For quad operations, we might still need to zero
3621      * the high bits of SVE.
3622      */
3623     for (r = 0; r < a->rpt * a->selem; r++) {
3624         int tt = (a->rt + r) % 32;
3625         clear_vec_high(s, a->q, tt);
3626     }
3627 
3628     if (a->p) {
3629         if (a->rm == 31) {
3630             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3631         } else {
3632             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3633         }
3634     }
3635     return true;
3636 }
3637 
3638 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3639 {
3640     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3641     MemOp endian, align, mop;
3642 
3643     int total;    /* total bytes */
3644     int elements; /* elements per vector */
3645     int r;
3646     int size = a->sz;
3647 
3648     if (!a->p && a->rm != 0) {
3649         /* For non-postindexed accesses the Rm field must be 0 */
3650         return false;
3651     }
3652     if (size == 3 && !a->q && a->selem != 1) {
3653         return false;
3654     }
3655     if (!fp_access_check(s)) {
3656         return true;
3657     }
3658 
3659     if (a->rn == 31) {
3660         gen_check_sp_alignment(s);
3661     }
3662 
3663     /* For our purposes, bytes are always little-endian.  */
3664     endian = s->be_data;
3665     if (size == 0) {
3666         endian = MO_LE;
3667     }
3668 
3669     total = a->rpt * a->selem * (a->q ? 16 : 8);
3670     tcg_rn = cpu_reg_sp(s, a->rn);
3671 
3672     /*
3673      * Issue the MTE check vs the logical repeat count, before we
3674      * promote consecutive little-endian elements below.
3675      */
3676     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3677                                 finalize_memop_asimd(s, size));
3678 
3679     /*
3680      * Consecutive little-endian elements from a single register
3681      * can be promoted to a larger little-endian operation.
3682      */
3683     align = MO_ALIGN;
3684     if (a->selem == 1 && endian == MO_LE) {
3685         align = pow2_align(size);
3686         size = 3;
3687     }
3688     if (!s->align_mem) {
3689         align = 0;
3690     }
3691     mop = endian | size | align;
3692 
3693     elements = (a->q ? 16 : 8) >> size;
3694     tcg_ebytes = tcg_constant_i64(1 << size);
3695     for (r = 0; r < a->rpt; r++) {
3696         int e;
3697         for (e = 0; e < elements; e++) {
3698             int xs;
3699             for (xs = 0; xs < a->selem; xs++) {
3700                 int tt = (a->rt + r + xs) % 32;
3701                 do_vec_st(s, tt, e, clean_addr, mop);
3702                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3703             }
3704         }
3705     }
3706 
3707     if (a->p) {
3708         if (a->rm == 31) {
3709             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3710         } else {
3711             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3712         }
3713     }
3714     return true;
3715 }
3716 
3717 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3718 {
3719     int xs, total, rt;
3720     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3721     MemOp mop;
3722 
3723     if (!a->p && a->rm != 0) {
3724         return false;
3725     }
3726     if (!fp_access_check(s)) {
3727         return true;
3728     }
3729 
3730     if (a->rn == 31) {
3731         gen_check_sp_alignment(s);
3732     }
3733 
3734     total = a->selem << a->scale;
3735     tcg_rn = cpu_reg_sp(s, a->rn);
3736 
3737     mop = finalize_memop_asimd(s, a->scale);
3738     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3739                                 total, mop);
3740 
3741     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3742     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3743         do_vec_st(s, rt, a->index, clean_addr, mop);
3744         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3745     }
3746 
3747     if (a->p) {
3748         if (a->rm == 31) {
3749             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3750         } else {
3751             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3752         }
3753     }
3754     return true;
3755 }
3756 
3757 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3758 {
3759     int xs, total, rt;
3760     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3761     MemOp mop;
3762 
3763     if (!a->p && a->rm != 0) {
3764         return false;
3765     }
3766     if (!fp_access_check(s)) {
3767         return true;
3768     }
3769 
3770     if (a->rn == 31) {
3771         gen_check_sp_alignment(s);
3772     }
3773 
3774     total = a->selem << a->scale;
3775     tcg_rn = cpu_reg_sp(s, a->rn);
3776 
3777     mop = finalize_memop_asimd(s, a->scale);
3778     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3779                                 total, mop);
3780 
3781     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3782     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3783         do_vec_ld(s, rt, a->index, clean_addr, mop);
3784         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3785     }
3786 
3787     if (a->p) {
3788         if (a->rm == 31) {
3789             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3790         } else {
3791             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3792         }
3793     }
3794     return true;
3795 }
3796 
3797 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3798 {
3799     int xs, total, rt;
3800     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3801     MemOp mop;
3802 
3803     if (!a->p && a->rm != 0) {
3804         return false;
3805     }
3806     if (!fp_access_check(s)) {
3807         return true;
3808     }
3809 
3810     if (a->rn == 31) {
3811         gen_check_sp_alignment(s);
3812     }
3813 
3814     total = a->selem << a->scale;
3815     tcg_rn = cpu_reg_sp(s, a->rn);
3816 
3817     mop = finalize_memop_asimd(s, a->scale);
3818     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3819                                 total, mop);
3820 
3821     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3822     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3823         /* Load and replicate to all elements */
3824         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3825 
3826         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3827         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3828                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3829         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3830     }
3831 
3832     if (a->p) {
3833         if (a->rm == 31) {
3834             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3835         } else {
3836             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3837         }
3838     }
3839     return true;
3840 }
3841 
3842 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3843 {
3844     TCGv_i64 addr, clean_addr, tcg_rt;
3845     int size = 4 << s->dcz_blocksize;
3846 
3847     if (!dc_isar_feature(aa64_mte, s)) {
3848         return false;
3849     }
3850     if (s->current_el == 0) {
3851         return false;
3852     }
3853 
3854     if (a->rn == 31) {
3855         gen_check_sp_alignment(s);
3856     }
3857 
3858     addr = read_cpu_reg_sp(s, a->rn, true);
3859     tcg_gen_addi_i64(addr, addr, a->imm);
3860     tcg_rt = cpu_reg(s, a->rt);
3861 
3862     if (s->ata[0]) {
3863         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3864     }
3865     /*
3866      * The non-tags portion of STZGM is mostly like DC_ZVA,
3867      * except the alignment happens before the access.
3868      */
3869     clean_addr = clean_data_tbi(s, addr);
3870     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3871     gen_helper_dc_zva(tcg_env, clean_addr);
3872     return true;
3873 }
3874 
3875 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3876 {
3877     TCGv_i64 addr, clean_addr, tcg_rt;
3878 
3879     if (!dc_isar_feature(aa64_mte, s)) {
3880         return false;
3881     }
3882     if (s->current_el == 0) {
3883         return false;
3884     }
3885 
3886     if (a->rn == 31) {
3887         gen_check_sp_alignment(s);
3888     }
3889 
3890     addr = read_cpu_reg_sp(s, a->rn, true);
3891     tcg_gen_addi_i64(addr, addr, a->imm);
3892     tcg_rt = cpu_reg(s, a->rt);
3893 
3894     if (s->ata[0]) {
3895         gen_helper_stgm(tcg_env, addr, tcg_rt);
3896     } else {
3897         MMUAccessType acc = MMU_DATA_STORE;
3898         int size = 4 << s->gm_blocksize;
3899 
3900         clean_addr = clean_data_tbi(s, addr);
3901         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3902         gen_probe_access(s, clean_addr, acc, size);
3903     }
3904     return true;
3905 }
3906 
3907 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
3908 {
3909     TCGv_i64 addr, clean_addr, tcg_rt;
3910 
3911     if (!dc_isar_feature(aa64_mte, s)) {
3912         return false;
3913     }
3914     if (s->current_el == 0) {
3915         return false;
3916     }
3917 
3918     if (a->rn == 31) {
3919         gen_check_sp_alignment(s);
3920     }
3921 
3922     addr = read_cpu_reg_sp(s, a->rn, true);
3923     tcg_gen_addi_i64(addr, addr, a->imm);
3924     tcg_rt = cpu_reg(s, a->rt);
3925 
3926     if (s->ata[0]) {
3927         gen_helper_ldgm(tcg_rt, tcg_env, addr);
3928     } else {
3929         MMUAccessType acc = MMU_DATA_LOAD;
3930         int size = 4 << s->gm_blocksize;
3931 
3932         clean_addr = clean_data_tbi(s, addr);
3933         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3934         gen_probe_access(s, clean_addr, acc, size);
3935         /* The result tags are zeros.  */
3936         tcg_gen_movi_i64(tcg_rt, 0);
3937     }
3938     return true;
3939 }
3940 
3941 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
3942 {
3943     TCGv_i64 addr, clean_addr, tcg_rt;
3944 
3945     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3946         return false;
3947     }
3948 
3949     if (a->rn == 31) {
3950         gen_check_sp_alignment(s);
3951     }
3952 
3953     addr = read_cpu_reg_sp(s, a->rn, true);
3954     if (!a->p) {
3955         /* pre-index or signed offset */
3956         tcg_gen_addi_i64(addr, addr, a->imm);
3957     }
3958 
3959     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
3960     tcg_rt = cpu_reg(s, a->rt);
3961     if (s->ata[0]) {
3962         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
3963     } else {
3964         /*
3965          * Tag access disabled: we must check for aborts on the load
3966          * load from [rn+offset], and then insert a 0 tag into rt.
3967          */
3968         clean_addr = clean_data_tbi(s, addr);
3969         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
3970         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
3971     }
3972 
3973     if (a->w) {
3974         /* pre-index or post-index */
3975         if (a->p) {
3976             /* post-index */
3977             tcg_gen_addi_i64(addr, addr, a->imm);
3978         }
3979         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
3980     }
3981     return true;
3982 }
3983 
3984 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
3985 {
3986     TCGv_i64 addr, tcg_rt;
3987 
3988     if (a->rn == 31) {
3989         gen_check_sp_alignment(s);
3990     }
3991 
3992     addr = read_cpu_reg_sp(s, a->rn, true);
3993     if (!a->p) {
3994         /* pre-index or signed offset */
3995         tcg_gen_addi_i64(addr, addr, a->imm);
3996     }
3997     tcg_rt = cpu_reg_sp(s, a->rt);
3998     if (!s->ata[0]) {
3999         /*
4000          * For STG and ST2G, we need to check alignment and probe memory.
4001          * TODO: For STZG and STZ2G, we could rely on the stores below,
4002          * at least for system mode; user-only won't enforce alignment.
4003          */
4004         if (is_pair) {
4005             gen_helper_st2g_stub(tcg_env, addr);
4006         } else {
4007             gen_helper_stg_stub(tcg_env, addr);
4008         }
4009     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4010         if (is_pair) {
4011             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4012         } else {
4013             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4014         }
4015     } else {
4016         if (is_pair) {
4017             gen_helper_st2g(tcg_env, addr, tcg_rt);
4018         } else {
4019             gen_helper_stg(tcg_env, addr, tcg_rt);
4020         }
4021     }
4022 
4023     if (is_zero) {
4024         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4025         TCGv_i64 zero64 = tcg_constant_i64(0);
4026         TCGv_i128 zero128 = tcg_temp_new_i128();
4027         int mem_index = get_mem_index(s);
4028         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4029 
4030         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4031 
4032         /* This is 1 or 2 atomic 16-byte operations. */
4033         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4034         if (is_pair) {
4035             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4036             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4037         }
4038     }
4039 
4040     if (a->w) {
4041         /* pre-index or post-index */
4042         if (a->p) {
4043             /* post-index */
4044             tcg_gen_addi_i64(addr, addr, a->imm);
4045         }
4046         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4047     }
4048     return true;
4049 }
4050 
4051 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4052 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4053 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4054 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4055 
4056 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4057 
4058 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4059                    bool is_setg, SetFn fn)
4060 {
4061     int memidx;
4062     uint32_t syndrome, desc = 0;
4063 
4064     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4065         return false;
4066     }
4067 
4068     /*
4069      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4070      * us to pull this check before the CheckMOPSEnabled() test
4071      * (which we do in the helper function)
4072      */
4073     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4074         a->rd == 31 || a->rn == 31) {
4075         return false;
4076     }
4077 
4078     memidx = get_a64_user_mem_index(s, a->unpriv);
4079 
4080     /*
4081      * We pass option_a == true, matching our implementation;
4082      * we pass wrong_option == false: helper function may set that bit.
4083      */
4084     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4085                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4086 
4087     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4088         /* We may need to do MTE tag checking, so assemble the descriptor */
4089         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4090         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4091         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4092         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4093     }
4094     /* The helper function always needs the memidx even with MTE disabled */
4095     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4096 
4097     /*
4098      * The helper needs the register numbers, but since they're in
4099      * the syndrome anyway, we let it extract them from there rather
4100      * than passing in an extra three integer arguments.
4101      */
4102     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4103     return true;
4104 }
4105 
4106 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4107 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4108 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4109 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4110 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4111 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4112 
4113 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4114 
4115 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4116 {
4117     int rmemidx, wmemidx;
4118     uint32_t syndrome, rdesc = 0, wdesc = 0;
4119     bool wunpriv = extract32(a->options, 0, 1);
4120     bool runpriv = extract32(a->options, 1, 1);
4121 
4122     /*
4123      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4124      * us to pull this check before the CheckMOPSEnabled() test
4125      * (which we do in the helper function)
4126      */
4127     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4128         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4129         return false;
4130     }
4131 
4132     rmemidx = get_a64_user_mem_index(s, runpriv);
4133     wmemidx = get_a64_user_mem_index(s, wunpriv);
4134 
4135     /*
4136      * We pass option_a == true, matching our implementation;
4137      * we pass wrong_option == false: helper function may set that bit.
4138      */
4139     syndrome = syn_mop(false, false, a->options, is_epilogue,
4140                        false, true, a->rd, a->rs, a->rn);
4141 
4142     /* If we need to do MTE tag checking, assemble the descriptors */
4143     if (s->mte_active[runpriv]) {
4144         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4145         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4146     }
4147     if (s->mte_active[wunpriv]) {
4148         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4149         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4150         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4151     }
4152     /* The helper function needs these parts of the descriptor regardless */
4153     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4154     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4155 
4156     /*
4157      * The helper needs the register numbers, but since they're in
4158      * the syndrome anyway, we let it extract them from there rather
4159      * than passing in an extra three integer arguments.
4160      */
4161     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4162        tcg_constant_i32(rdesc));
4163     return true;
4164 }
4165 
4166 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4167 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4168 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4169 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4170 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4171 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4172 
4173 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4174 
4175 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4176                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4177 {
4178     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4179     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4180     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4181 
4182     fn(tcg_rd, tcg_rn, tcg_imm);
4183     if (!a->sf) {
4184         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4185     }
4186     return true;
4187 }
4188 
4189 /*
4190  * PC-rel. addressing
4191  */
4192 
4193 static bool trans_ADR(DisasContext *s, arg_ri *a)
4194 {
4195     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4196     return true;
4197 }
4198 
4199 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4200 {
4201     int64_t offset = (int64_t)a->imm << 12;
4202 
4203     /* The page offset is ok for CF_PCREL. */
4204     offset -= s->pc_curr & 0xfff;
4205     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4206     return true;
4207 }
4208 
4209 /*
4210  * Add/subtract (immediate)
4211  */
4212 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4213 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4214 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4215 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4216 
4217 /*
4218  * Add/subtract (immediate, with tags)
4219  */
4220 
4221 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4222                                       bool sub_op)
4223 {
4224     TCGv_i64 tcg_rn, tcg_rd;
4225     int imm;
4226 
4227     imm = a->uimm6 << LOG2_TAG_GRANULE;
4228     if (sub_op) {
4229         imm = -imm;
4230     }
4231 
4232     tcg_rn = cpu_reg_sp(s, a->rn);
4233     tcg_rd = cpu_reg_sp(s, a->rd);
4234 
4235     if (s->ata[0]) {
4236         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4237                            tcg_constant_i32(imm),
4238                            tcg_constant_i32(a->uimm4));
4239     } else {
4240         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4241         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4242     }
4243     return true;
4244 }
4245 
4246 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4247 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4248 
4249 /* The input should be a value in the bottom e bits (with higher
4250  * bits zero); returns that value replicated into every element
4251  * of size e in a 64 bit integer.
4252  */
4253 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4254 {
4255     assert(e != 0);
4256     while (e < 64) {
4257         mask |= mask << e;
4258         e *= 2;
4259     }
4260     return mask;
4261 }
4262 
4263 /*
4264  * Logical (immediate)
4265  */
4266 
4267 /*
4268  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4269  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4270  * value (ie should cause a guest UNDEF exception), and true if they are
4271  * valid, in which case the decoded bit pattern is written to result.
4272  */
4273 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4274                             unsigned int imms, unsigned int immr)
4275 {
4276     uint64_t mask;
4277     unsigned e, levels, s, r;
4278     int len;
4279 
4280     assert(immn < 2 && imms < 64 && immr < 64);
4281 
4282     /* The bit patterns we create here are 64 bit patterns which
4283      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4284      * 64 bits each. Each element contains the same value: a run
4285      * of between 1 and e-1 non-zero bits, rotated within the
4286      * element by between 0 and e-1 bits.
4287      *
4288      * The element size and run length are encoded into immn (1 bit)
4289      * and imms (6 bits) as follows:
4290      * 64 bit elements: immn = 1, imms = <length of run - 1>
4291      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4292      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4293      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4294      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4295      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4296      * Notice that immn = 0, imms = 11111x is the only combination
4297      * not covered by one of the above options; this is reserved.
4298      * Further, <length of run - 1> all-ones is a reserved pattern.
4299      *
4300      * In all cases the rotation is by immr % e (and immr is 6 bits).
4301      */
4302 
4303     /* First determine the element size */
4304     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4305     if (len < 1) {
4306         /* This is the immn == 0, imms == 0x11111x case */
4307         return false;
4308     }
4309     e = 1 << len;
4310 
4311     levels = e - 1;
4312     s = imms & levels;
4313     r = immr & levels;
4314 
4315     if (s == levels) {
4316         /* <length of run - 1> mustn't be all-ones. */
4317         return false;
4318     }
4319 
4320     /* Create the value of one element: s+1 set bits rotated
4321      * by r within the element (which is e bits wide)...
4322      */
4323     mask = MAKE_64BIT_MASK(0, s + 1);
4324     if (r) {
4325         mask = (mask >> r) | (mask << (e - r));
4326         mask &= MAKE_64BIT_MASK(0, e);
4327     }
4328     /* ...then replicate the element over the whole 64 bit value */
4329     mask = bitfield_replicate(mask, e);
4330     *result = mask;
4331     return true;
4332 }
4333 
4334 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4335                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4336 {
4337     TCGv_i64 tcg_rd, tcg_rn;
4338     uint64_t imm;
4339 
4340     /* Some immediate field values are reserved. */
4341     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4342                                 extract32(a->dbm, 0, 6),
4343                                 extract32(a->dbm, 6, 6))) {
4344         return false;
4345     }
4346     if (!a->sf) {
4347         imm &= 0xffffffffull;
4348     }
4349 
4350     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4351     tcg_rn = cpu_reg(s, a->rn);
4352 
4353     fn(tcg_rd, tcg_rn, imm);
4354     if (set_cc) {
4355         gen_logic_CC(a->sf, tcg_rd);
4356     }
4357     if (!a->sf) {
4358         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4359     }
4360     return true;
4361 }
4362 
4363 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4364 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4365 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4366 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4367 
4368 /*
4369  * Move wide (immediate)
4370  */
4371 
4372 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4373 {
4374     int pos = a->hw << 4;
4375     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4376     return true;
4377 }
4378 
4379 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4380 {
4381     int pos = a->hw << 4;
4382     uint64_t imm = a->imm;
4383 
4384     imm = ~(imm << pos);
4385     if (!a->sf) {
4386         imm = (uint32_t)imm;
4387     }
4388     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4389     return true;
4390 }
4391 
4392 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4393 {
4394     int pos = a->hw << 4;
4395     TCGv_i64 tcg_rd, tcg_im;
4396 
4397     tcg_rd = cpu_reg(s, a->rd);
4398     tcg_im = tcg_constant_i64(a->imm);
4399     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4400     if (!a->sf) {
4401         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4402     }
4403     return true;
4404 }
4405 
4406 /*
4407  * Bitfield
4408  */
4409 
4410 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4411 {
4412     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4413     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4414     unsigned int bitsize = a->sf ? 64 : 32;
4415     unsigned int ri = a->immr;
4416     unsigned int si = a->imms;
4417     unsigned int pos, len;
4418 
4419     if (si >= ri) {
4420         /* Wd<s-r:0> = Wn<s:r> */
4421         len = (si - ri) + 1;
4422         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4423         if (!a->sf) {
4424             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4425         }
4426     } else {
4427         /* Wd<32+s-r,32-r> = Wn<s:0> */
4428         len = si + 1;
4429         pos = (bitsize - ri) & (bitsize - 1);
4430 
4431         if (len < ri) {
4432             /*
4433              * Sign extend the destination field from len to fill the
4434              * balance of the word.  Let the deposit below insert all
4435              * of those sign bits.
4436              */
4437             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4438             len = ri;
4439         }
4440 
4441         /*
4442          * We start with zero, and we haven't modified any bits outside
4443          * bitsize, therefore no final zero-extension is unneeded for !sf.
4444          */
4445         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4446     }
4447     return true;
4448 }
4449 
4450 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4451 {
4452     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4453     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4454     unsigned int bitsize = a->sf ? 64 : 32;
4455     unsigned int ri = a->immr;
4456     unsigned int si = a->imms;
4457     unsigned int pos, len;
4458 
4459     tcg_rd = cpu_reg(s, a->rd);
4460     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4461 
4462     if (si >= ri) {
4463         /* Wd<s-r:0> = Wn<s:r> */
4464         len = (si - ri) + 1;
4465         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4466     } else {
4467         /* Wd<32+s-r,32-r> = Wn<s:0> */
4468         len = si + 1;
4469         pos = (bitsize - ri) & (bitsize - 1);
4470         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4471     }
4472     return true;
4473 }
4474 
4475 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4476 {
4477     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4478     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4479     unsigned int bitsize = a->sf ? 64 : 32;
4480     unsigned int ri = a->immr;
4481     unsigned int si = a->imms;
4482     unsigned int pos, len;
4483 
4484     tcg_rd = cpu_reg(s, a->rd);
4485     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4486 
4487     if (si >= ri) {
4488         /* Wd<s-r:0> = Wn<s:r> */
4489         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4490         len = (si - ri) + 1;
4491         pos = 0;
4492     } else {
4493         /* Wd<32+s-r,32-r> = Wn<s:0> */
4494         len = si + 1;
4495         pos = (bitsize - ri) & (bitsize - 1);
4496     }
4497 
4498     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4499     if (!a->sf) {
4500         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4501     }
4502     return true;
4503 }
4504 
4505 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4506 {
4507     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4508 
4509     tcg_rd = cpu_reg(s, a->rd);
4510 
4511     if (unlikely(a->imm == 0)) {
4512         /*
4513          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4514          * so an extract from bit 0 is a special case.
4515          */
4516         if (a->sf) {
4517             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4518         } else {
4519             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4520         }
4521     } else {
4522         tcg_rm = cpu_reg(s, a->rm);
4523         tcg_rn = cpu_reg(s, a->rn);
4524 
4525         if (a->sf) {
4526             /* Specialization to ROR happens in EXTRACT2.  */
4527             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4528         } else {
4529             TCGv_i32 t0 = tcg_temp_new_i32();
4530 
4531             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4532             if (a->rm == a->rn) {
4533                 tcg_gen_rotri_i32(t0, t0, a->imm);
4534             } else {
4535                 TCGv_i32 t1 = tcg_temp_new_i32();
4536                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4537                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4538             }
4539             tcg_gen_extu_i32_i64(tcg_rd, t0);
4540         }
4541     }
4542     return true;
4543 }
4544 
4545 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4546  * Note that it is the caller's responsibility to ensure that the
4547  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4548  * mandated semantics for out of range shifts.
4549  */
4550 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4551                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4552 {
4553     switch (shift_type) {
4554     case A64_SHIFT_TYPE_LSL:
4555         tcg_gen_shl_i64(dst, src, shift_amount);
4556         break;
4557     case A64_SHIFT_TYPE_LSR:
4558         tcg_gen_shr_i64(dst, src, shift_amount);
4559         break;
4560     case A64_SHIFT_TYPE_ASR:
4561         if (!sf) {
4562             tcg_gen_ext32s_i64(dst, src);
4563         }
4564         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4565         break;
4566     case A64_SHIFT_TYPE_ROR:
4567         if (sf) {
4568             tcg_gen_rotr_i64(dst, src, shift_amount);
4569         } else {
4570             TCGv_i32 t0, t1;
4571             t0 = tcg_temp_new_i32();
4572             t1 = tcg_temp_new_i32();
4573             tcg_gen_extrl_i64_i32(t0, src);
4574             tcg_gen_extrl_i64_i32(t1, shift_amount);
4575             tcg_gen_rotr_i32(t0, t0, t1);
4576             tcg_gen_extu_i32_i64(dst, t0);
4577         }
4578         break;
4579     default:
4580         assert(FALSE); /* all shift types should be handled */
4581         break;
4582     }
4583 
4584     if (!sf) { /* zero extend final result */
4585         tcg_gen_ext32u_i64(dst, dst);
4586     }
4587 }
4588 
4589 /* Shift a TCGv src by immediate, put result in dst.
4590  * The shift amount must be in range (this should always be true as the
4591  * relevant instructions will UNDEF on bad shift immediates).
4592  */
4593 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4594                           enum a64_shift_type shift_type, unsigned int shift_i)
4595 {
4596     assert(shift_i < (sf ? 64 : 32));
4597 
4598     if (shift_i == 0) {
4599         tcg_gen_mov_i64(dst, src);
4600     } else {
4601         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
4602     }
4603 }
4604 
4605 /* Logical (shifted register)
4606  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
4607  * +----+-----+-----------+-------+---+------+--------+------+------+
4608  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
4609  * +----+-----+-----------+-------+---+------+--------+------+------+
4610  */
4611 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4612 {
4613     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4614     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4615 
4616     sf = extract32(insn, 31, 1);
4617     opc = extract32(insn, 29, 2);
4618     shift_type = extract32(insn, 22, 2);
4619     invert = extract32(insn, 21, 1);
4620     rm = extract32(insn, 16, 5);
4621     shift_amount = extract32(insn, 10, 6);
4622     rn = extract32(insn, 5, 5);
4623     rd = extract32(insn, 0, 5);
4624 
4625     if (!sf && (shift_amount & (1 << 5))) {
4626         unallocated_encoding(s);
4627         return;
4628     }
4629 
4630     tcg_rd = cpu_reg(s, rd);
4631 
4632     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4633         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4634          * register-register MOV and MVN, so it is worth special casing.
4635          */
4636         tcg_rm = cpu_reg(s, rm);
4637         if (invert) {
4638             tcg_gen_not_i64(tcg_rd, tcg_rm);
4639             if (!sf) {
4640                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4641             }
4642         } else {
4643             if (sf) {
4644                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4645             } else {
4646                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4647             }
4648         }
4649         return;
4650     }
4651 
4652     tcg_rm = read_cpu_reg(s, rm, sf);
4653 
4654     if (shift_amount) {
4655         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4656     }
4657 
4658     tcg_rn = cpu_reg(s, rn);
4659 
4660     switch (opc | (invert << 2)) {
4661     case 0: /* AND */
4662     case 3: /* ANDS */
4663         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4664         break;
4665     case 1: /* ORR */
4666         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4667         break;
4668     case 2: /* EOR */
4669         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4670         break;
4671     case 4: /* BIC */
4672     case 7: /* BICS */
4673         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4674         break;
4675     case 5: /* ORN */
4676         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4677         break;
4678     case 6: /* EON */
4679         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4680         break;
4681     default:
4682         assert(FALSE);
4683         break;
4684     }
4685 
4686     if (!sf) {
4687         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4688     }
4689 
4690     if (opc == 3) {
4691         gen_logic_CC(sf, tcg_rd);
4692     }
4693 }
4694 
4695 /*
4696  * Add/subtract (extended register)
4697  *
4698  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
4699  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4700  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
4701  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4702  *
4703  *  sf: 0 -> 32bit, 1 -> 64bit
4704  *  op: 0 -> add  , 1 -> sub
4705  *   S: 1 -> set flags
4706  * opt: 00
4707  * option: extension type (see DecodeRegExtend)
4708  * imm3: optional shift to Rm
4709  *
4710  * Rd = Rn + LSL(extend(Rm), amount)
4711  */
4712 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4713 {
4714     int rd = extract32(insn, 0, 5);
4715     int rn = extract32(insn, 5, 5);
4716     int imm3 = extract32(insn, 10, 3);
4717     int option = extract32(insn, 13, 3);
4718     int rm = extract32(insn, 16, 5);
4719     int opt = extract32(insn, 22, 2);
4720     bool setflags = extract32(insn, 29, 1);
4721     bool sub_op = extract32(insn, 30, 1);
4722     bool sf = extract32(insn, 31, 1);
4723 
4724     TCGv_i64 tcg_rm, tcg_rn; /* temps */
4725     TCGv_i64 tcg_rd;
4726     TCGv_i64 tcg_result;
4727 
4728     if (imm3 > 4 || opt != 0) {
4729         unallocated_encoding(s);
4730         return;
4731     }
4732 
4733     /* non-flag setting ops may use SP */
4734     if (!setflags) {
4735         tcg_rd = cpu_reg_sp(s, rd);
4736     } else {
4737         tcg_rd = cpu_reg(s, rd);
4738     }
4739     tcg_rn = read_cpu_reg_sp(s, rn, sf);
4740 
4741     tcg_rm = read_cpu_reg(s, rm, sf);
4742     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4743 
4744     tcg_result = tcg_temp_new_i64();
4745 
4746     if (!setflags) {
4747         if (sub_op) {
4748             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4749         } else {
4750             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4751         }
4752     } else {
4753         if (sub_op) {
4754             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4755         } else {
4756             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4757         }
4758     }
4759 
4760     if (sf) {
4761         tcg_gen_mov_i64(tcg_rd, tcg_result);
4762     } else {
4763         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4764     }
4765 }
4766 
4767 /*
4768  * Add/subtract (shifted register)
4769  *
4770  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
4771  * +--+--+--+-----------+-----+--+-------+---------+------+------+
4772  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
4773  * +--+--+--+-----------+-----+--+-------+---------+------+------+
4774  *
4775  *    sf: 0 -> 32bit, 1 -> 64bit
4776  *    op: 0 -> add  , 1 -> sub
4777  *     S: 1 -> set flags
4778  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4779  *  imm6: Shift amount to apply to Rm before the add/sub
4780  */
4781 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4782 {
4783     int rd = extract32(insn, 0, 5);
4784     int rn = extract32(insn, 5, 5);
4785     int imm6 = extract32(insn, 10, 6);
4786     int rm = extract32(insn, 16, 5);
4787     int shift_type = extract32(insn, 22, 2);
4788     bool setflags = extract32(insn, 29, 1);
4789     bool sub_op = extract32(insn, 30, 1);
4790     bool sf = extract32(insn, 31, 1);
4791 
4792     TCGv_i64 tcg_rd = cpu_reg(s, rd);
4793     TCGv_i64 tcg_rn, tcg_rm;
4794     TCGv_i64 tcg_result;
4795 
4796     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4797         unallocated_encoding(s);
4798         return;
4799     }
4800 
4801     tcg_rn = read_cpu_reg(s, rn, sf);
4802     tcg_rm = read_cpu_reg(s, rm, sf);
4803 
4804     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4805 
4806     tcg_result = tcg_temp_new_i64();
4807 
4808     if (!setflags) {
4809         if (sub_op) {
4810             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4811         } else {
4812             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4813         }
4814     } else {
4815         if (sub_op) {
4816             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4817         } else {
4818             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4819         }
4820     }
4821 
4822     if (sf) {
4823         tcg_gen_mov_i64(tcg_rd, tcg_result);
4824     } else {
4825         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4826     }
4827 }
4828 
4829 /* Data-processing (3 source)
4830  *
4831  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
4832  *  +--+------+-----------+------+------+----+------+------+------+
4833  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
4834  *  +--+------+-----------+------+------+----+------+------+------+
4835  */
4836 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4837 {
4838     int rd = extract32(insn, 0, 5);
4839     int rn = extract32(insn, 5, 5);
4840     int ra = extract32(insn, 10, 5);
4841     int rm = extract32(insn, 16, 5);
4842     int op_id = (extract32(insn, 29, 3) << 4) |
4843         (extract32(insn, 21, 3) << 1) |
4844         extract32(insn, 15, 1);
4845     bool sf = extract32(insn, 31, 1);
4846     bool is_sub = extract32(op_id, 0, 1);
4847     bool is_high = extract32(op_id, 2, 1);
4848     bool is_signed = false;
4849     TCGv_i64 tcg_op1;
4850     TCGv_i64 tcg_op2;
4851     TCGv_i64 tcg_tmp;
4852 
4853     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4854     switch (op_id) {
4855     case 0x42: /* SMADDL */
4856     case 0x43: /* SMSUBL */
4857     case 0x44: /* SMULH */
4858         is_signed = true;
4859         break;
4860     case 0x0: /* MADD (32bit) */
4861     case 0x1: /* MSUB (32bit) */
4862     case 0x40: /* MADD (64bit) */
4863     case 0x41: /* MSUB (64bit) */
4864     case 0x4a: /* UMADDL */
4865     case 0x4b: /* UMSUBL */
4866     case 0x4c: /* UMULH */
4867         break;
4868     default:
4869         unallocated_encoding(s);
4870         return;
4871     }
4872 
4873     if (is_high) {
4874         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4875         TCGv_i64 tcg_rd = cpu_reg(s, rd);
4876         TCGv_i64 tcg_rn = cpu_reg(s, rn);
4877         TCGv_i64 tcg_rm = cpu_reg(s, rm);
4878 
4879         if (is_signed) {
4880             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4881         } else {
4882             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4883         }
4884         return;
4885     }
4886 
4887     tcg_op1 = tcg_temp_new_i64();
4888     tcg_op2 = tcg_temp_new_i64();
4889     tcg_tmp = tcg_temp_new_i64();
4890 
4891     if (op_id < 0x42) {
4892         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4893         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4894     } else {
4895         if (is_signed) {
4896             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4897             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4898         } else {
4899             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4900             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4901         }
4902     }
4903 
4904     if (ra == 31 && !is_sub) {
4905         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4906         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4907     } else {
4908         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4909         if (is_sub) {
4910             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4911         } else {
4912             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4913         }
4914     }
4915 
4916     if (!sf) {
4917         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4918     }
4919 }
4920 
4921 /* Add/subtract (with carry)
4922  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
4923  * +--+--+--+------------------------+------+-------------+------+-----+
4924  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
4925  * +--+--+--+------------------------+------+-------------+------+-----+
4926  */
4927 
4928 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4929 {
4930     unsigned int sf, op, setflags, rm, rn, rd;
4931     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4932 
4933     sf = extract32(insn, 31, 1);
4934     op = extract32(insn, 30, 1);
4935     setflags = extract32(insn, 29, 1);
4936     rm = extract32(insn, 16, 5);
4937     rn = extract32(insn, 5, 5);
4938     rd = extract32(insn, 0, 5);
4939 
4940     tcg_rd = cpu_reg(s, rd);
4941     tcg_rn = cpu_reg(s, rn);
4942 
4943     if (op) {
4944         tcg_y = tcg_temp_new_i64();
4945         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
4946     } else {
4947         tcg_y = cpu_reg(s, rm);
4948     }
4949 
4950     if (setflags) {
4951         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
4952     } else {
4953         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
4954     }
4955 }
4956 
4957 /*
4958  * Rotate right into flags
4959  *  31 30 29                21       15          10      5  4      0
4960  * +--+--+--+-----------------+--------+-----------+------+--+------+
4961  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
4962  * +--+--+--+-----------------+--------+-----------+------+--+------+
4963  */
4964 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
4965 {
4966     int mask = extract32(insn, 0, 4);
4967     int o2 = extract32(insn, 4, 1);
4968     int rn = extract32(insn, 5, 5);
4969     int imm6 = extract32(insn, 15, 6);
4970     int sf_op_s = extract32(insn, 29, 3);
4971     TCGv_i64 tcg_rn;
4972     TCGv_i32 nzcv;
4973 
4974     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
4975         unallocated_encoding(s);
4976         return;
4977     }
4978 
4979     tcg_rn = read_cpu_reg(s, rn, 1);
4980     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
4981 
4982     nzcv = tcg_temp_new_i32();
4983     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
4984 
4985     if (mask & 8) { /* N */
4986         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
4987     }
4988     if (mask & 4) { /* Z */
4989         tcg_gen_not_i32(cpu_ZF, nzcv);
4990         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
4991     }
4992     if (mask & 2) { /* C */
4993         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
4994     }
4995     if (mask & 1) { /* V */
4996         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
4997     }
4998 }
4999 
5000 /*
5001  * Evaluate into flags
5002  *  31 30 29                21        15   14        10      5  4      0
5003  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5004  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
5005  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5006  */
5007 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5008 {
5009     int o3_mask = extract32(insn, 0, 5);
5010     int rn = extract32(insn, 5, 5);
5011     int o2 = extract32(insn, 15, 6);
5012     int sz = extract32(insn, 14, 1);
5013     int sf_op_s = extract32(insn, 29, 3);
5014     TCGv_i32 tmp;
5015     int shift;
5016 
5017     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5018         !dc_isar_feature(aa64_condm_4, s)) {
5019         unallocated_encoding(s);
5020         return;
5021     }
5022     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
5023 
5024     tmp = tcg_temp_new_i32();
5025     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5026     tcg_gen_shli_i32(cpu_NF, tmp, shift);
5027     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5028     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5029     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5030 }
5031 
5032 /* Conditional compare (immediate / register)
5033  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
5034  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5035  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
5036  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5037  *        [1]                             y                [0]       [0]
5038  */
5039 static void disas_cc(DisasContext *s, uint32_t insn)
5040 {
5041     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5042     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5043     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5044     DisasCompare c;
5045 
5046     if (!extract32(insn, 29, 1)) {
5047         unallocated_encoding(s);
5048         return;
5049     }
5050     if (insn & (1 << 10 | 1 << 4)) {
5051         unallocated_encoding(s);
5052         return;
5053     }
5054     sf = extract32(insn, 31, 1);
5055     op = extract32(insn, 30, 1);
5056     is_imm = extract32(insn, 11, 1);
5057     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5058     cond = extract32(insn, 12, 4);
5059     rn = extract32(insn, 5, 5);
5060     nzcv = extract32(insn, 0, 4);
5061 
5062     /* Set T0 = !COND.  */
5063     tcg_t0 = tcg_temp_new_i32();
5064     arm_test_cc(&c, cond);
5065     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5066 
5067     /* Load the arguments for the new comparison.  */
5068     if (is_imm) {
5069         tcg_y = tcg_temp_new_i64();
5070         tcg_gen_movi_i64(tcg_y, y);
5071     } else {
5072         tcg_y = cpu_reg(s, y);
5073     }
5074     tcg_rn = cpu_reg(s, rn);
5075 
5076     /* Set the flags for the new comparison.  */
5077     tcg_tmp = tcg_temp_new_i64();
5078     if (op) {
5079         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5080     } else {
5081         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5082     }
5083 
5084     /* If COND was false, force the flags to #nzcv.  Compute two masks
5085      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5086      * For tcg hosts that support ANDC, we can make do with just T1.
5087      * In either case, allow the tcg optimizer to delete any unused mask.
5088      */
5089     tcg_t1 = tcg_temp_new_i32();
5090     tcg_t2 = tcg_temp_new_i32();
5091     tcg_gen_neg_i32(tcg_t1, tcg_t0);
5092     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5093 
5094     if (nzcv & 8) { /* N */
5095         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5096     } else {
5097         if (TCG_TARGET_HAS_andc_i32) {
5098             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5099         } else {
5100             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5101         }
5102     }
5103     if (nzcv & 4) { /* Z */
5104         if (TCG_TARGET_HAS_andc_i32) {
5105             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5106         } else {
5107             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5108         }
5109     } else {
5110         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5111     }
5112     if (nzcv & 2) { /* C */
5113         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5114     } else {
5115         if (TCG_TARGET_HAS_andc_i32) {
5116             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5117         } else {
5118             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5119         }
5120     }
5121     if (nzcv & 1) { /* V */
5122         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5123     } else {
5124         if (TCG_TARGET_HAS_andc_i32) {
5125             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5126         } else {
5127             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5128         }
5129     }
5130 }
5131 
5132 /* Conditional select
5133  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
5134  * +----+----+---+-----------------+------+------+-----+------+------+
5135  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
5136  * +----+----+---+-----------------+------+------+-----+------+------+
5137  */
5138 static void disas_cond_select(DisasContext *s, uint32_t insn)
5139 {
5140     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5141     TCGv_i64 tcg_rd, zero;
5142     DisasCompare64 c;
5143 
5144     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5145         /* S == 1 or op2<1> == 1 */
5146         unallocated_encoding(s);
5147         return;
5148     }
5149     sf = extract32(insn, 31, 1);
5150     else_inv = extract32(insn, 30, 1);
5151     rm = extract32(insn, 16, 5);
5152     cond = extract32(insn, 12, 4);
5153     else_inc = extract32(insn, 10, 1);
5154     rn = extract32(insn, 5, 5);
5155     rd = extract32(insn, 0, 5);
5156 
5157     tcg_rd = cpu_reg(s, rd);
5158 
5159     a64_test_cc(&c, cond);
5160     zero = tcg_constant_i64(0);
5161 
5162     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5163         /* CSET & CSETM.  */
5164         if (else_inv) {
5165             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
5166                                    tcg_rd, c.value, zero);
5167         } else {
5168             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
5169                                 tcg_rd, c.value, zero);
5170         }
5171     } else {
5172         TCGv_i64 t_true = cpu_reg(s, rn);
5173         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5174         if (else_inv && else_inc) {
5175             tcg_gen_neg_i64(t_false, t_false);
5176         } else if (else_inv) {
5177             tcg_gen_not_i64(t_false, t_false);
5178         } else if (else_inc) {
5179             tcg_gen_addi_i64(t_false, t_false, 1);
5180         }
5181         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5182     }
5183 
5184     if (!sf) {
5185         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5186     }
5187 }
5188 
5189 static void handle_clz(DisasContext *s, unsigned int sf,
5190                        unsigned int rn, unsigned int rd)
5191 {
5192     TCGv_i64 tcg_rd, tcg_rn;
5193     tcg_rd = cpu_reg(s, rd);
5194     tcg_rn = cpu_reg(s, rn);
5195 
5196     if (sf) {
5197         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5198     } else {
5199         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5200         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5201         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5202         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5203     }
5204 }
5205 
5206 static void handle_cls(DisasContext *s, unsigned int sf,
5207                        unsigned int rn, unsigned int rd)
5208 {
5209     TCGv_i64 tcg_rd, tcg_rn;
5210     tcg_rd = cpu_reg(s, rd);
5211     tcg_rn = cpu_reg(s, rn);
5212 
5213     if (sf) {
5214         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5215     } else {
5216         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5217         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5218         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5219         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5220     }
5221 }
5222 
5223 static void handle_rbit(DisasContext *s, unsigned int sf,
5224                         unsigned int rn, unsigned int rd)
5225 {
5226     TCGv_i64 tcg_rd, tcg_rn;
5227     tcg_rd = cpu_reg(s, rd);
5228     tcg_rn = cpu_reg(s, rn);
5229 
5230     if (sf) {
5231         gen_helper_rbit64(tcg_rd, tcg_rn);
5232     } else {
5233         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5234         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5235         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5236         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5237     }
5238 }
5239 
5240 /* REV with sf==1, opcode==3 ("REV64") */
5241 static void handle_rev64(DisasContext *s, unsigned int sf,
5242                          unsigned int rn, unsigned int rd)
5243 {
5244     if (!sf) {
5245         unallocated_encoding(s);
5246         return;
5247     }
5248     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5249 }
5250 
5251 /* REV with sf==0, opcode==2
5252  * REV32 (sf==1, opcode==2)
5253  */
5254 static void handle_rev32(DisasContext *s, unsigned int sf,
5255                          unsigned int rn, unsigned int rd)
5256 {
5257     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5258     TCGv_i64 tcg_rn = cpu_reg(s, rn);
5259 
5260     if (sf) {
5261         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5262         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5263     } else {
5264         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5265     }
5266 }
5267 
5268 /* REV16 (opcode==1) */
5269 static void handle_rev16(DisasContext *s, unsigned int sf,
5270                          unsigned int rn, unsigned int rd)
5271 {
5272     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5273     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5274     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5275     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5276 
5277     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5278     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5279     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5280     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5281     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5282 }
5283 
5284 /* Data-processing (1 source)
5285  *   31  30  29  28             21 20     16 15    10 9    5 4    0
5286  * +----+---+---+-----------------+---------+--------+------+------+
5287  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
5288  * +----+---+---+-----------------+---------+--------+------+------+
5289  */
5290 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5291 {
5292     unsigned int sf, opcode, opcode2, rn, rd;
5293     TCGv_i64 tcg_rd;
5294 
5295     if (extract32(insn, 29, 1)) {
5296         unallocated_encoding(s);
5297         return;
5298     }
5299 
5300     sf = extract32(insn, 31, 1);
5301     opcode = extract32(insn, 10, 6);
5302     opcode2 = extract32(insn, 16, 5);
5303     rn = extract32(insn, 5, 5);
5304     rd = extract32(insn, 0, 5);
5305 
5306 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5307 
5308     switch (MAP(sf, opcode2, opcode)) {
5309     case MAP(0, 0x00, 0x00): /* RBIT */
5310     case MAP(1, 0x00, 0x00):
5311         handle_rbit(s, sf, rn, rd);
5312         break;
5313     case MAP(0, 0x00, 0x01): /* REV16 */
5314     case MAP(1, 0x00, 0x01):
5315         handle_rev16(s, sf, rn, rd);
5316         break;
5317     case MAP(0, 0x00, 0x02): /* REV/REV32 */
5318     case MAP(1, 0x00, 0x02):
5319         handle_rev32(s, sf, rn, rd);
5320         break;
5321     case MAP(1, 0x00, 0x03): /* REV64 */
5322         handle_rev64(s, sf, rn, rd);
5323         break;
5324     case MAP(0, 0x00, 0x04): /* CLZ */
5325     case MAP(1, 0x00, 0x04):
5326         handle_clz(s, sf, rn, rd);
5327         break;
5328     case MAP(0, 0x00, 0x05): /* CLS */
5329     case MAP(1, 0x00, 0x05):
5330         handle_cls(s, sf, rn, rd);
5331         break;
5332     case MAP(1, 0x01, 0x00): /* PACIA */
5333         if (s->pauth_active) {
5334             tcg_rd = cpu_reg(s, rd);
5335             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5336         } else if (!dc_isar_feature(aa64_pauth, s)) {
5337             goto do_unallocated;
5338         }
5339         break;
5340     case MAP(1, 0x01, 0x01): /* PACIB */
5341         if (s->pauth_active) {
5342             tcg_rd = cpu_reg(s, rd);
5343             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5344         } else if (!dc_isar_feature(aa64_pauth, s)) {
5345             goto do_unallocated;
5346         }
5347         break;
5348     case MAP(1, 0x01, 0x02): /* PACDA */
5349         if (s->pauth_active) {
5350             tcg_rd = cpu_reg(s, rd);
5351             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5352         } else if (!dc_isar_feature(aa64_pauth, s)) {
5353             goto do_unallocated;
5354         }
5355         break;
5356     case MAP(1, 0x01, 0x03): /* PACDB */
5357         if (s->pauth_active) {
5358             tcg_rd = cpu_reg(s, rd);
5359             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5360         } else if (!dc_isar_feature(aa64_pauth, s)) {
5361             goto do_unallocated;
5362         }
5363         break;
5364     case MAP(1, 0x01, 0x04): /* AUTIA */
5365         if (s->pauth_active) {
5366             tcg_rd = cpu_reg(s, rd);
5367             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5368         } else if (!dc_isar_feature(aa64_pauth, s)) {
5369             goto do_unallocated;
5370         }
5371         break;
5372     case MAP(1, 0x01, 0x05): /* AUTIB */
5373         if (s->pauth_active) {
5374             tcg_rd = cpu_reg(s, rd);
5375             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5376         } else if (!dc_isar_feature(aa64_pauth, s)) {
5377             goto do_unallocated;
5378         }
5379         break;
5380     case MAP(1, 0x01, 0x06): /* AUTDA */
5381         if (s->pauth_active) {
5382             tcg_rd = cpu_reg(s, rd);
5383             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5384         } else if (!dc_isar_feature(aa64_pauth, s)) {
5385             goto do_unallocated;
5386         }
5387         break;
5388     case MAP(1, 0x01, 0x07): /* AUTDB */
5389         if (s->pauth_active) {
5390             tcg_rd = cpu_reg(s, rd);
5391             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5392         } else if (!dc_isar_feature(aa64_pauth, s)) {
5393             goto do_unallocated;
5394         }
5395         break;
5396     case MAP(1, 0x01, 0x08): /* PACIZA */
5397         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5398             goto do_unallocated;
5399         } else if (s->pauth_active) {
5400             tcg_rd = cpu_reg(s, rd);
5401             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5402         }
5403         break;
5404     case MAP(1, 0x01, 0x09): /* PACIZB */
5405         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5406             goto do_unallocated;
5407         } else if (s->pauth_active) {
5408             tcg_rd = cpu_reg(s, rd);
5409             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5410         }
5411         break;
5412     case MAP(1, 0x01, 0x0a): /* PACDZA */
5413         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5414             goto do_unallocated;
5415         } else if (s->pauth_active) {
5416             tcg_rd = cpu_reg(s, rd);
5417             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5418         }
5419         break;
5420     case MAP(1, 0x01, 0x0b): /* PACDZB */
5421         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5422             goto do_unallocated;
5423         } else if (s->pauth_active) {
5424             tcg_rd = cpu_reg(s, rd);
5425             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5426         }
5427         break;
5428     case MAP(1, 0x01, 0x0c): /* AUTIZA */
5429         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5430             goto do_unallocated;
5431         } else if (s->pauth_active) {
5432             tcg_rd = cpu_reg(s, rd);
5433             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5434         }
5435         break;
5436     case MAP(1, 0x01, 0x0d): /* AUTIZB */
5437         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5438             goto do_unallocated;
5439         } else if (s->pauth_active) {
5440             tcg_rd = cpu_reg(s, rd);
5441             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5442         }
5443         break;
5444     case MAP(1, 0x01, 0x0e): /* AUTDZA */
5445         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5446             goto do_unallocated;
5447         } else if (s->pauth_active) {
5448             tcg_rd = cpu_reg(s, rd);
5449             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5450         }
5451         break;
5452     case MAP(1, 0x01, 0x0f): /* AUTDZB */
5453         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5454             goto do_unallocated;
5455         } else if (s->pauth_active) {
5456             tcg_rd = cpu_reg(s, rd);
5457             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5458         }
5459         break;
5460     case MAP(1, 0x01, 0x10): /* XPACI */
5461         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5462             goto do_unallocated;
5463         } else if (s->pauth_active) {
5464             tcg_rd = cpu_reg(s, rd);
5465             gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
5466         }
5467         break;
5468     case MAP(1, 0x01, 0x11): /* XPACD */
5469         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5470             goto do_unallocated;
5471         } else if (s->pauth_active) {
5472             tcg_rd = cpu_reg(s, rd);
5473             gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
5474         }
5475         break;
5476     default:
5477     do_unallocated:
5478         unallocated_encoding(s);
5479         break;
5480     }
5481 
5482 #undef MAP
5483 }
5484 
5485 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5486                        unsigned int rm, unsigned int rn, unsigned int rd)
5487 {
5488     TCGv_i64 tcg_n, tcg_m, tcg_rd;
5489     tcg_rd = cpu_reg(s, rd);
5490 
5491     if (!sf && is_signed) {
5492         tcg_n = tcg_temp_new_i64();
5493         tcg_m = tcg_temp_new_i64();
5494         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5495         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5496     } else {
5497         tcg_n = read_cpu_reg(s, rn, sf);
5498         tcg_m = read_cpu_reg(s, rm, sf);
5499     }
5500 
5501     if (is_signed) {
5502         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5503     } else {
5504         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5505     }
5506 
5507     if (!sf) { /* zero extend final result */
5508         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5509     }
5510 }
5511 
5512 /* LSLV, LSRV, ASRV, RORV */
5513 static void handle_shift_reg(DisasContext *s,
5514                              enum a64_shift_type shift_type, unsigned int sf,
5515                              unsigned int rm, unsigned int rn, unsigned int rd)
5516 {
5517     TCGv_i64 tcg_shift = tcg_temp_new_i64();
5518     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5519     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5520 
5521     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5522     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5523 }
5524 
5525 /* CRC32[BHWX], CRC32C[BHWX] */
5526 static void handle_crc32(DisasContext *s,
5527                          unsigned int sf, unsigned int sz, bool crc32c,
5528                          unsigned int rm, unsigned int rn, unsigned int rd)
5529 {
5530     TCGv_i64 tcg_acc, tcg_val;
5531     TCGv_i32 tcg_bytes;
5532 
5533     if (!dc_isar_feature(aa64_crc32, s)
5534         || (sf == 1 && sz != 3)
5535         || (sf == 0 && sz == 3)) {
5536         unallocated_encoding(s);
5537         return;
5538     }
5539 
5540     if (sz == 3) {
5541         tcg_val = cpu_reg(s, rm);
5542     } else {
5543         uint64_t mask;
5544         switch (sz) {
5545         case 0:
5546             mask = 0xFF;
5547             break;
5548         case 1:
5549             mask = 0xFFFF;
5550             break;
5551         case 2:
5552             mask = 0xFFFFFFFF;
5553             break;
5554         default:
5555             g_assert_not_reached();
5556         }
5557         tcg_val = tcg_temp_new_i64();
5558         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5559     }
5560 
5561     tcg_acc = cpu_reg(s, rn);
5562     tcg_bytes = tcg_constant_i32(1 << sz);
5563 
5564     if (crc32c) {
5565         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5566     } else {
5567         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5568     }
5569 }
5570 
5571 /* Data-processing (2 source)
5572  *   31   30  29 28             21 20  16 15    10 9    5 4    0
5573  * +----+---+---+-----------------+------+--------+------+------+
5574  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
5575  * +----+---+---+-----------------+------+--------+------+------+
5576  */
5577 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5578 {
5579     unsigned int sf, rm, opcode, rn, rd, setflag;
5580     sf = extract32(insn, 31, 1);
5581     setflag = extract32(insn, 29, 1);
5582     rm = extract32(insn, 16, 5);
5583     opcode = extract32(insn, 10, 6);
5584     rn = extract32(insn, 5, 5);
5585     rd = extract32(insn, 0, 5);
5586 
5587     if (setflag && opcode != 0) {
5588         unallocated_encoding(s);
5589         return;
5590     }
5591 
5592     switch (opcode) {
5593     case 0: /* SUBP(S) */
5594         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5595             goto do_unallocated;
5596         } else {
5597             TCGv_i64 tcg_n, tcg_m, tcg_d;
5598 
5599             tcg_n = read_cpu_reg_sp(s, rn, true);
5600             tcg_m = read_cpu_reg_sp(s, rm, true);
5601             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5602             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5603             tcg_d = cpu_reg(s, rd);
5604 
5605             if (setflag) {
5606                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5607             } else {
5608                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5609             }
5610         }
5611         break;
5612     case 2: /* UDIV */
5613         handle_div(s, false, sf, rm, rn, rd);
5614         break;
5615     case 3: /* SDIV */
5616         handle_div(s, true, sf, rm, rn, rd);
5617         break;
5618     case 4: /* IRG */
5619         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5620             goto do_unallocated;
5621         }
5622         if (s->ata[0]) {
5623             gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
5624                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
5625         } else {
5626             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5627                                              cpu_reg_sp(s, rn));
5628         }
5629         break;
5630     case 5: /* GMI */
5631         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5632             goto do_unallocated;
5633         } else {
5634             TCGv_i64 t = tcg_temp_new_i64();
5635 
5636             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
5637             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
5638             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
5639         }
5640         break;
5641     case 8: /* LSLV */
5642         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5643         break;
5644     case 9: /* LSRV */
5645         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5646         break;
5647     case 10: /* ASRV */
5648         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5649         break;
5650     case 11: /* RORV */
5651         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5652         break;
5653     case 12: /* PACGA */
5654         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5655             goto do_unallocated;
5656         }
5657         gen_helper_pacga(cpu_reg(s, rd), tcg_env,
5658                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
5659         break;
5660     case 16:
5661     case 17:
5662     case 18:
5663     case 19:
5664     case 20:
5665     case 21:
5666     case 22:
5667     case 23: /* CRC32 */
5668     {
5669         int sz = extract32(opcode, 0, 2);
5670         bool crc32c = extract32(opcode, 2, 1);
5671         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5672         break;
5673     }
5674     default:
5675     do_unallocated:
5676         unallocated_encoding(s);
5677         break;
5678     }
5679 }
5680 
5681 /*
5682  * Data processing - register
5683  *  31  30 29  28      25    21  20  16      10         0
5684  * +--+---+--+---+-------+-----+-------+-------+---------+
5685  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
5686  * +--+---+--+---+-------+-----+-------+-------+---------+
5687  */
5688 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5689 {
5690     int op0 = extract32(insn, 30, 1);
5691     int op1 = extract32(insn, 28, 1);
5692     int op2 = extract32(insn, 21, 4);
5693     int op3 = extract32(insn, 10, 6);
5694 
5695     if (!op1) {
5696         if (op2 & 8) {
5697             if (op2 & 1) {
5698                 /* Add/sub (extended register) */
5699                 disas_add_sub_ext_reg(s, insn);
5700             } else {
5701                 /* Add/sub (shifted register) */
5702                 disas_add_sub_reg(s, insn);
5703             }
5704         } else {
5705             /* Logical (shifted register) */
5706             disas_logic_reg(s, insn);
5707         }
5708         return;
5709     }
5710 
5711     switch (op2) {
5712     case 0x0:
5713         switch (op3) {
5714         case 0x00: /* Add/subtract (with carry) */
5715             disas_adc_sbc(s, insn);
5716             break;
5717 
5718         case 0x01: /* Rotate right into flags */
5719         case 0x21:
5720             disas_rotate_right_into_flags(s, insn);
5721             break;
5722 
5723         case 0x02: /* Evaluate into flags */
5724         case 0x12:
5725         case 0x22:
5726         case 0x32:
5727             disas_evaluate_into_flags(s, insn);
5728             break;
5729 
5730         default:
5731             goto do_unallocated;
5732         }
5733         break;
5734 
5735     case 0x2: /* Conditional compare */
5736         disas_cc(s, insn); /* both imm and reg forms */
5737         break;
5738 
5739     case 0x4: /* Conditional select */
5740         disas_cond_select(s, insn);
5741         break;
5742 
5743     case 0x6: /* Data-processing */
5744         if (op0) {    /* (1 source) */
5745             disas_data_proc_1src(s, insn);
5746         } else {      /* (2 source) */
5747             disas_data_proc_2src(s, insn);
5748         }
5749         break;
5750     case 0x8 ... 0xf: /* (3 source) */
5751         disas_data_proc_3src(s, insn);
5752         break;
5753 
5754     default:
5755     do_unallocated:
5756         unallocated_encoding(s);
5757         break;
5758     }
5759 }
5760 
5761 static void handle_fp_compare(DisasContext *s, int size,
5762                               unsigned int rn, unsigned int rm,
5763                               bool cmp_with_zero, bool signal_all_nans)
5764 {
5765     TCGv_i64 tcg_flags = tcg_temp_new_i64();
5766     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
5767 
5768     if (size == MO_64) {
5769         TCGv_i64 tcg_vn, tcg_vm;
5770 
5771         tcg_vn = read_fp_dreg(s, rn);
5772         if (cmp_with_zero) {
5773             tcg_vm = tcg_constant_i64(0);
5774         } else {
5775             tcg_vm = read_fp_dreg(s, rm);
5776         }
5777         if (signal_all_nans) {
5778             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5779         } else {
5780             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5781         }
5782     } else {
5783         TCGv_i32 tcg_vn = tcg_temp_new_i32();
5784         TCGv_i32 tcg_vm = tcg_temp_new_i32();
5785 
5786         read_vec_element_i32(s, tcg_vn, rn, 0, size);
5787         if (cmp_with_zero) {
5788             tcg_gen_movi_i32(tcg_vm, 0);
5789         } else {
5790             read_vec_element_i32(s, tcg_vm, rm, 0, size);
5791         }
5792 
5793         switch (size) {
5794         case MO_32:
5795             if (signal_all_nans) {
5796                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5797             } else {
5798                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5799             }
5800             break;
5801         case MO_16:
5802             if (signal_all_nans) {
5803                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5804             } else {
5805                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5806             }
5807             break;
5808         default:
5809             g_assert_not_reached();
5810         }
5811     }
5812 
5813     gen_set_nzcv(tcg_flags);
5814 }
5815 
5816 /* Floating point compare
5817  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
5818  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5819  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
5820  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5821  */
5822 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5823 {
5824     unsigned int mos, type, rm, op, rn, opc, op2r;
5825     int size;
5826 
5827     mos = extract32(insn, 29, 3);
5828     type = extract32(insn, 22, 2);
5829     rm = extract32(insn, 16, 5);
5830     op = extract32(insn, 14, 2);
5831     rn = extract32(insn, 5, 5);
5832     opc = extract32(insn, 3, 2);
5833     op2r = extract32(insn, 0, 3);
5834 
5835     if (mos || op || op2r) {
5836         unallocated_encoding(s);
5837         return;
5838     }
5839 
5840     switch (type) {
5841     case 0:
5842         size = MO_32;
5843         break;
5844     case 1:
5845         size = MO_64;
5846         break;
5847     case 3:
5848         size = MO_16;
5849         if (dc_isar_feature(aa64_fp16, s)) {
5850             break;
5851         }
5852         /* fallthru */
5853     default:
5854         unallocated_encoding(s);
5855         return;
5856     }
5857 
5858     if (!fp_access_check(s)) {
5859         return;
5860     }
5861 
5862     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5863 }
5864 
5865 /* Floating point conditional compare
5866  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
5867  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5868  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
5869  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5870  */
5871 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
5872 {
5873     unsigned int mos, type, rm, cond, rn, op, nzcv;
5874     TCGLabel *label_continue = NULL;
5875     int size;
5876 
5877     mos = extract32(insn, 29, 3);
5878     type = extract32(insn, 22, 2);
5879     rm = extract32(insn, 16, 5);
5880     cond = extract32(insn, 12, 4);
5881     rn = extract32(insn, 5, 5);
5882     op = extract32(insn, 4, 1);
5883     nzcv = extract32(insn, 0, 4);
5884 
5885     if (mos) {
5886         unallocated_encoding(s);
5887         return;
5888     }
5889 
5890     switch (type) {
5891     case 0:
5892         size = MO_32;
5893         break;
5894     case 1:
5895         size = MO_64;
5896         break;
5897     case 3:
5898         size = MO_16;
5899         if (dc_isar_feature(aa64_fp16, s)) {
5900             break;
5901         }
5902         /* fallthru */
5903     default:
5904         unallocated_encoding(s);
5905         return;
5906     }
5907 
5908     if (!fp_access_check(s)) {
5909         return;
5910     }
5911 
5912     if (cond < 0x0e) { /* not always */
5913         TCGLabel *label_match = gen_new_label();
5914         label_continue = gen_new_label();
5915         arm_gen_test_cc(cond, label_match);
5916         /* nomatch: */
5917         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
5918         tcg_gen_br(label_continue);
5919         gen_set_label(label_match);
5920     }
5921 
5922     handle_fp_compare(s, size, rn, rm, false, op);
5923 
5924     if (cond < 0x0e) {
5925         gen_set_label(label_continue);
5926     }
5927 }
5928 
5929 /* Floating point conditional select
5930  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5 4    0
5931  * +---+---+---+-----------+------+---+------+------+-----+------+------+
5932  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 1 1 |  Rn  |  Rd  |
5933  * +---+---+---+-----------+------+---+------+------+-----+------+------+
5934  */
5935 static void disas_fp_csel(DisasContext *s, uint32_t insn)
5936 {
5937     unsigned int mos, type, rm, cond, rn, rd;
5938     TCGv_i64 t_true, t_false;
5939     DisasCompare64 c;
5940     MemOp sz;
5941 
5942     mos = extract32(insn, 29, 3);
5943     type = extract32(insn, 22, 2);
5944     rm = extract32(insn, 16, 5);
5945     cond = extract32(insn, 12, 4);
5946     rn = extract32(insn, 5, 5);
5947     rd = extract32(insn, 0, 5);
5948 
5949     if (mos) {
5950         unallocated_encoding(s);
5951         return;
5952     }
5953 
5954     switch (type) {
5955     case 0:
5956         sz = MO_32;
5957         break;
5958     case 1:
5959         sz = MO_64;
5960         break;
5961     case 3:
5962         sz = MO_16;
5963         if (dc_isar_feature(aa64_fp16, s)) {
5964             break;
5965         }
5966         /* fallthru */
5967     default:
5968         unallocated_encoding(s);
5969         return;
5970     }
5971 
5972     if (!fp_access_check(s)) {
5973         return;
5974     }
5975 
5976     /* Zero extend sreg & hreg inputs to 64 bits now.  */
5977     t_true = tcg_temp_new_i64();
5978     t_false = tcg_temp_new_i64();
5979     read_vec_element(s, t_true, rn, 0, sz);
5980     read_vec_element(s, t_false, rm, 0, sz);
5981 
5982     a64_test_cc(&c, cond);
5983     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
5984                         t_true, t_false);
5985 
5986     /* Note that sregs & hregs write back zeros to the high bits,
5987        and we've already done the zero-extension.  */
5988     write_fp_dreg(s, rd, t_true);
5989 }
5990 
5991 /* Floating-point data-processing (1 source) - half precision */
5992 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
5993 {
5994     TCGv_ptr fpst = NULL;
5995     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
5996     TCGv_i32 tcg_res = tcg_temp_new_i32();
5997 
5998     switch (opcode) {
5999     case 0x0: /* FMOV */
6000         tcg_gen_mov_i32(tcg_res, tcg_op);
6001         break;
6002     case 0x1: /* FABS */
6003         tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
6004         break;
6005     case 0x2: /* FNEG */
6006         tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
6007         break;
6008     case 0x3: /* FSQRT */
6009         fpst = fpstatus_ptr(FPST_FPCR_F16);
6010         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6011         break;
6012     case 0x8: /* FRINTN */
6013     case 0x9: /* FRINTP */
6014     case 0xa: /* FRINTM */
6015     case 0xb: /* FRINTZ */
6016     case 0xc: /* FRINTA */
6017     {
6018         TCGv_i32 tcg_rmode;
6019 
6020         fpst = fpstatus_ptr(FPST_FPCR_F16);
6021         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
6022         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6023         gen_restore_rmode(tcg_rmode, fpst);
6024         break;
6025     }
6026     case 0xe: /* FRINTX */
6027         fpst = fpstatus_ptr(FPST_FPCR_F16);
6028         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6029         break;
6030     case 0xf: /* FRINTI */
6031         fpst = fpstatus_ptr(FPST_FPCR_F16);
6032         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6033         break;
6034     default:
6035         g_assert_not_reached();
6036     }
6037 
6038     write_fp_sreg(s, rd, tcg_res);
6039 }
6040 
6041 /* Floating-point data-processing (1 source) - single precision */
6042 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6043 {
6044     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6045     TCGv_i32 tcg_op, tcg_res;
6046     TCGv_ptr fpst;
6047     int rmode = -1;
6048 
6049     tcg_op = read_fp_sreg(s, rn);
6050     tcg_res = tcg_temp_new_i32();
6051 
6052     switch (opcode) {
6053     case 0x0: /* FMOV */
6054         tcg_gen_mov_i32(tcg_res, tcg_op);
6055         goto done;
6056     case 0x1: /* FABS */
6057         gen_helper_vfp_abss(tcg_res, tcg_op);
6058         goto done;
6059     case 0x2: /* FNEG */
6060         gen_helper_vfp_negs(tcg_res, tcg_op);
6061         goto done;
6062     case 0x3: /* FSQRT */
6063         gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
6064         goto done;
6065     case 0x6: /* BFCVT */
6066         gen_fpst = gen_helper_bfcvt;
6067         break;
6068     case 0x8: /* FRINTN */
6069     case 0x9: /* FRINTP */
6070     case 0xa: /* FRINTM */
6071     case 0xb: /* FRINTZ */
6072     case 0xc: /* FRINTA */
6073         rmode = opcode & 7;
6074         gen_fpst = gen_helper_rints;
6075         break;
6076     case 0xe: /* FRINTX */
6077         gen_fpst = gen_helper_rints_exact;
6078         break;
6079     case 0xf: /* FRINTI */
6080         gen_fpst = gen_helper_rints;
6081         break;
6082     case 0x10: /* FRINT32Z */
6083         rmode = FPROUNDING_ZERO;
6084         gen_fpst = gen_helper_frint32_s;
6085         break;
6086     case 0x11: /* FRINT32X */
6087         gen_fpst = gen_helper_frint32_s;
6088         break;
6089     case 0x12: /* FRINT64Z */
6090         rmode = FPROUNDING_ZERO;
6091         gen_fpst = gen_helper_frint64_s;
6092         break;
6093     case 0x13: /* FRINT64X */
6094         gen_fpst = gen_helper_frint64_s;
6095         break;
6096     default:
6097         g_assert_not_reached();
6098     }
6099 
6100     fpst = fpstatus_ptr(FPST_FPCR);
6101     if (rmode >= 0) {
6102         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6103         gen_fpst(tcg_res, tcg_op, fpst);
6104         gen_restore_rmode(tcg_rmode, fpst);
6105     } else {
6106         gen_fpst(tcg_res, tcg_op, fpst);
6107     }
6108 
6109  done:
6110     write_fp_sreg(s, rd, tcg_res);
6111 }
6112 
6113 /* Floating-point data-processing (1 source) - double precision */
6114 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6115 {
6116     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6117     TCGv_i64 tcg_op, tcg_res;
6118     TCGv_ptr fpst;
6119     int rmode = -1;
6120 
6121     switch (opcode) {
6122     case 0x0: /* FMOV */
6123         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6124         return;
6125     }
6126 
6127     tcg_op = read_fp_dreg(s, rn);
6128     tcg_res = tcg_temp_new_i64();
6129 
6130     switch (opcode) {
6131     case 0x1: /* FABS */
6132         gen_helper_vfp_absd(tcg_res, tcg_op);
6133         goto done;
6134     case 0x2: /* FNEG */
6135         gen_helper_vfp_negd(tcg_res, tcg_op);
6136         goto done;
6137     case 0x3: /* FSQRT */
6138         gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
6139         goto done;
6140     case 0x8: /* FRINTN */
6141     case 0x9: /* FRINTP */
6142     case 0xa: /* FRINTM */
6143     case 0xb: /* FRINTZ */
6144     case 0xc: /* FRINTA */
6145         rmode = opcode & 7;
6146         gen_fpst = gen_helper_rintd;
6147         break;
6148     case 0xe: /* FRINTX */
6149         gen_fpst = gen_helper_rintd_exact;
6150         break;
6151     case 0xf: /* FRINTI */
6152         gen_fpst = gen_helper_rintd;
6153         break;
6154     case 0x10: /* FRINT32Z */
6155         rmode = FPROUNDING_ZERO;
6156         gen_fpst = gen_helper_frint32_d;
6157         break;
6158     case 0x11: /* FRINT32X */
6159         gen_fpst = gen_helper_frint32_d;
6160         break;
6161     case 0x12: /* FRINT64Z */
6162         rmode = FPROUNDING_ZERO;
6163         gen_fpst = gen_helper_frint64_d;
6164         break;
6165     case 0x13: /* FRINT64X */
6166         gen_fpst = gen_helper_frint64_d;
6167         break;
6168     default:
6169         g_assert_not_reached();
6170     }
6171 
6172     fpst = fpstatus_ptr(FPST_FPCR);
6173     if (rmode >= 0) {
6174         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6175         gen_fpst(tcg_res, tcg_op, fpst);
6176         gen_restore_rmode(tcg_rmode, fpst);
6177     } else {
6178         gen_fpst(tcg_res, tcg_op, fpst);
6179     }
6180 
6181  done:
6182     write_fp_dreg(s, rd, tcg_res);
6183 }
6184 
6185 static void handle_fp_fcvt(DisasContext *s, int opcode,
6186                            int rd, int rn, int dtype, int ntype)
6187 {
6188     switch (ntype) {
6189     case 0x0:
6190     {
6191         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6192         if (dtype == 1) {
6193             /* Single to double */
6194             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6195             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
6196             write_fp_dreg(s, rd, tcg_rd);
6197         } else {
6198             /* Single to half */
6199             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6200             TCGv_i32 ahp = get_ahp_flag();
6201             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6202 
6203             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6204             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6205             write_fp_sreg(s, rd, tcg_rd);
6206         }
6207         break;
6208     }
6209     case 0x1:
6210     {
6211         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6212         TCGv_i32 tcg_rd = tcg_temp_new_i32();
6213         if (dtype == 0) {
6214             /* Double to single */
6215             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
6216         } else {
6217             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6218             TCGv_i32 ahp = get_ahp_flag();
6219             /* Double to half */
6220             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6221             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6222         }
6223         write_fp_sreg(s, rd, tcg_rd);
6224         break;
6225     }
6226     case 0x3:
6227     {
6228         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6229         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6230         TCGv_i32 tcg_ahp = get_ahp_flag();
6231         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6232         if (dtype == 0) {
6233             /* Half to single */
6234             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6235             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6236             write_fp_sreg(s, rd, tcg_rd);
6237         } else {
6238             /* Half to double */
6239             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6240             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6241             write_fp_dreg(s, rd, tcg_rd);
6242         }
6243         break;
6244     }
6245     default:
6246         g_assert_not_reached();
6247     }
6248 }
6249 
6250 /* Floating point data-processing (1 source)
6251  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
6252  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6253  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
6254  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6255  */
6256 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6257 {
6258     int mos = extract32(insn, 29, 3);
6259     int type = extract32(insn, 22, 2);
6260     int opcode = extract32(insn, 15, 6);
6261     int rn = extract32(insn, 5, 5);
6262     int rd = extract32(insn, 0, 5);
6263 
6264     if (mos) {
6265         goto do_unallocated;
6266     }
6267 
6268     switch (opcode) {
6269     case 0x4: case 0x5: case 0x7:
6270     {
6271         /* FCVT between half, single and double precision */
6272         int dtype = extract32(opcode, 0, 2);
6273         if (type == 2 || dtype == type) {
6274             goto do_unallocated;
6275         }
6276         if (!fp_access_check(s)) {
6277             return;
6278         }
6279 
6280         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6281         break;
6282     }
6283 
6284     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6285         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6286             goto do_unallocated;
6287         }
6288         /* fall through */
6289     case 0x0 ... 0x3:
6290     case 0x8 ... 0xc:
6291     case 0xe ... 0xf:
6292         /* 32-to-32 and 64-to-64 ops */
6293         switch (type) {
6294         case 0:
6295             if (!fp_access_check(s)) {
6296                 return;
6297             }
6298             handle_fp_1src_single(s, opcode, rd, rn);
6299             break;
6300         case 1:
6301             if (!fp_access_check(s)) {
6302                 return;
6303             }
6304             handle_fp_1src_double(s, opcode, rd, rn);
6305             break;
6306         case 3:
6307             if (!dc_isar_feature(aa64_fp16, s)) {
6308                 goto do_unallocated;
6309             }
6310 
6311             if (!fp_access_check(s)) {
6312                 return;
6313             }
6314             handle_fp_1src_half(s, opcode, rd, rn);
6315             break;
6316         default:
6317             goto do_unallocated;
6318         }
6319         break;
6320 
6321     case 0x6:
6322         switch (type) {
6323         case 1: /* BFCVT */
6324             if (!dc_isar_feature(aa64_bf16, s)) {
6325                 goto do_unallocated;
6326             }
6327             if (!fp_access_check(s)) {
6328                 return;
6329             }
6330             handle_fp_1src_single(s, opcode, rd, rn);
6331             break;
6332         default:
6333             goto do_unallocated;
6334         }
6335         break;
6336 
6337     default:
6338     do_unallocated:
6339         unallocated_encoding(s);
6340         break;
6341     }
6342 }
6343 
6344 /* Floating-point data-processing (2 source) - single precision */
6345 static void handle_fp_2src_single(DisasContext *s, int opcode,
6346                                   int rd, int rn, int rm)
6347 {
6348     TCGv_i32 tcg_op1;
6349     TCGv_i32 tcg_op2;
6350     TCGv_i32 tcg_res;
6351     TCGv_ptr fpst;
6352 
6353     tcg_res = tcg_temp_new_i32();
6354     fpst = fpstatus_ptr(FPST_FPCR);
6355     tcg_op1 = read_fp_sreg(s, rn);
6356     tcg_op2 = read_fp_sreg(s, rm);
6357 
6358     switch (opcode) {
6359     case 0x0: /* FMUL */
6360         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6361         break;
6362     case 0x1: /* FDIV */
6363         gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6364         break;
6365     case 0x2: /* FADD */
6366         gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6367         break;
6368     case 0x3: /* FSUB */
6369         gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6370         break;
6371     case 0x4: /* FMAX */
6372         gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6373         break;
6374     case 0x5: /* FMIN */
6375         gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6376         break;
6377     case 0x6: /* FMAXNM */
6378         gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6379         break;
6380     case 0x7: /* FMINNM */
6381         gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6382         break;
6383     case 0x8: /* FNMUL */
6384         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6385         gen_helper_vfp_negs(tcg_res, tcg_res);
6386         break;
6387     }
6388 
6389     write_fp_sreg(s, rd, tcg_res);
6390 }
6391 
6392 /* Floating-point data-processing (2 source) - double precision */
6393 static void handle_fp_2src_double(DisasContext *s, int opcode,
6394                                   int rd, int rn, int rm)
6395 {
6396     TCGv_i64 tcg_op1;
6397     TCGv_i64 tcg_op2;
6398     TCGv_i64 tcg_res;
6399     TCGv_ptr fpst;
6400 
6401     tcg_res = tcg_temp_new_i64();
6402     fpst = fpstatus_ptr(FPST_FPCR);
6403     tcg_op1 = read_fp_dreg(s, rn);
6404     tcg_op2 = read_fp_dreg(s, rm);
6405 
6406     switch (opcode) {
6407     case 0x0: /* FMUL */
6408         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6409         break;
6410     case 0x1: /* FDIV */
6411         gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6412         break;
6413     case 0x2: /* FADD */
6414         gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6415         break;
6416     case 0x3: /* FSUB */
6417         gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6418         break;
6419     case 0x4: /* FMAX */
6420         gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6421         break;
6422     case 0x5: /* FMIN */
6423         gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6424         break;
6425     case 0x6: /* FMAXNM */
6426         gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6427         break;
6428     case 0x7: /* FMINNM */
6429         gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6430         break;
6431     case 0x8: /* FNMUL */
6432         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6433         gen_helper_vfp_negd(tcg_res, tcg_res);
6434         break;
6435     }
6436 
6437     write_fp_dreg(s, rd, tcg_res);
6438 }
6439 
6440 /* Floating-point data-processing (2 source) - half precision */
6441 static void handle_fp_2src_half(DisasContext *s, int opcode,
6442                                 int rd, int rn, int rm)
6443 {
6444     TCGv_i32 tcg_op1;
6445     TCGv_i32 tcg_op2;
6446     TCGv_i32 tcg_res;
6447     TCGv_ptr fpst;
6448 
6449     tcg_res = tcg_temp_new_i32();
6450     fpst = fpstatus_ptr(FPST_FPCR_F16);
6451     tcg_op1 = read_fp_hreg(s, rn);
6452     tcg_op2 = read_fp_hreg(s, rm);
6453 
6454     switch (opcode) {
6455     case 0x0: /* FMUL */
6456         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6457         break;
6458     case 0x1: /* FDIV */
6459         gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6460         break;
6461     case 0x2: /* FADD */
6462         gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6463         break;
6464     case 0x3: /* FSUB */
6465         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6466         break;
6467     case 0x4: /* FMAX */
6468         gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6469         break;
6470     case 0x5: /* FMIN */
6471         gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6472         break;
6473     case 0x6: /* FMAXNM */
6474         gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6475         break;
6476     case 0x7: /* FMINNM */
6477         gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6478         break;
6479     case 0x8: /* FNMUL */
6480         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6481         tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6482         break;
6483     default:
6484         g_assert_not_reached();
6485     }
6486 
6487     write_fp_sreg(s, rd, tcg_res);
6488 }
6489 
6490 /* Floating point data-processing (2 source)
6491  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
6492  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6493  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | opcode | 1 0 |  Rn  |  Rd  |
6494  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6495  */
6496 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6497 {
6498     int mos = extract32(insn, 29, 3);
6499     int type = extract32(insn, 22, 2);
6500     int rd = extract32(insn, 0, 5);
6501     int rn = extract32(insn, 5, 5);
6502     int rm = extract32(insn, 16, 5);
6503     int opcode = extract32(insn, 12, 4);
6504 
6505     if (opcode > 8 || mos) {
6506         unallocated_encoding(s);
6507         return;
6508     }
6509 
6510     switch (type) {
6511     case 0:
6512         if (!fp_access_check(s)) {
6513             return;
6514         }
6515         handle_fp_2src_single(s, opcode, rd, rn, rm);
6516         break;
6517     case 1:
6518         if (!fp_access_check(s)) {
6519             return;
6520         }
6521         handle_fp_2src_double(s, opcode, rd, rn, rm);
6522         break;
6523     case 3:
6524         if (!dc_isar_feature(aa64_fp16, s)) {
6525             unallocated_encoding(s);
6526             return;
6527         }
6528         if (!fp_access_check(s)) {
6529             return;
6530         }
6531         handle_fp_2src_half(s, opcode, rd, rn, rm);
6532         break;
6533     default:
6534         unallocated_encoding(s);
6535     }
6536 }
6537 
6538 /* Floating-point data-processing (3 source) - single precision */
6539 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6540                                   int rd, int rn, int rm, int ra)
6541 {
6542     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6543     TCGv_i32 tcg_res = tcg_temp_new_i32();
6544     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6545 
6546     tcg_op1 = read_fp_sreg(s, rn);
6547     tcg_op2 = read_fp_sreg(s, rm);
6548     tcg_op3 = read_fp_sreg(s, ra);
6549 
6550     /* These are fused multiply-add, and must be done as one
6551      * floating point operation with no rounding between the
6552      * multiplication and addition steps.
6553      * NB that doing the negations here as separate steps is
6554      * correct : an input NaN should come out with its sign bit
6555      * flipped if it is a negated-input.
6556      */
6557     if (o1 == true) {
6558         gen_helper_vfp_negs(tcg_op3, tcg_op3);
6559     }
6560 
6561     if (o0 != o1) {
6562         gen_helper_vfp_negs(tcg_op1, tcg_op1);
6563     }
6564 
6565     gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6566 
6567     write_fp_sreg(s, rd, tcg_res);
6568 }
6569 
6570 /* Floating-point data-processing (3 source) - double precision */
6571 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6572                                   int rd, int rn, int rm, int ra)
6573 {
6574     TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6575     TCGv_i64 tcg_res = tcg_temp_new_i64();
6576     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6577 
6578     tcg_op1 = read_fp_dreg(s, rn);
6579     tcg_op2 = read_fp_dreg(s, rm);
6580     tcg_op3 = read_fp_dreg(s, ra);
6581 
6582     /* These are fused multiply-add, and must be done as one
6583      * floating point operation with no rounding between the
6584      * multiplication and addition steps.
6585      * NB that doing the negations here as separate steps is
6586      * correct : an input NaN should come out with its sign bit
6587      * flipped if it is a negated-input.
6588      */
6589     if (o1 == true) {
6590         gen_helper_vfp_negd(tcg_op3, tcg_op3);
6591     }
6592 
6593     if (o0 != o1) {
6594         gen_helper_vfp_negd(tcg_op1, tcg_op1);
6595     }
6596 
6597     gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6598 
6599     write_fp_dreg(s, rd, tcg_res);
6600 }
6601 
6602 /* Floating-point data-processing (3 source) - half precision */
6603 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6604                                 int rd, int rn, int rm, int ra)
6605 {
6606     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6607     TCGv_i32 tcg_res = tcg_temp_new_i32();
6608     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
6609 
6610     tcg_op1 = read_fp_hreg(s, rn);
6611     tcg_op2 = read_fp_hreg(s, rm);
6612     tcg_op3 = read_fp_hreg(s, ra);
6613 
6614     /* These are fused multiply-add, and must be done as one
6615      * floating point operation with no rounding between the
6616      * multiplication and addition steps.
6617      * NB that doing the negations here as separate steps is
6618      * correct : an input NaN should come out with its sign bit
6619      * flipped if it is a negated-input.
6620      */
6621     if (o1 == true) {
6622         tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6623     }
6624 
6625     if (o0 != o1) {
6626         tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6627     }
6628 
6629     gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6630 
6631     write_fp_sreg(s, rd, tcg_res);
6632 }
6633 
6634 /* Floating point data-processing (3 source)
6635  *   31  30  29 28       24 23  22  21  20  16  15  14  10 9    5 4    0
6636  * +---+---+---+-----------+------+----+------+----+------+------+------+
6637  * | M | 0 | S | 1 1 1 1 1 | type | o1 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
6638  * +---+---+---+-----------+------+----+------+----+------+------+------+
6639  */
6640 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6641 {
6642     int mos = extract32(insn, 29, 3);
6643     int type = extract32(insn, 22, 2);
6644     int rd = extract32(insn, 0, 5);
6645     int rn = extract32(insn, 5, 5);
6646     int ra = extract32(insn, 10, 5);
6647     int rm = extract32(insn, 16, 5);
6648     bool o0 = extract32(insn, 15, 1);
6649     bool o1 = extract32(insn, 21, 1);
6650 
6651     if (mos) {
6652         unallocated_encoding(s);
6653         return;
6654     }
6655 
6656     switch (type) {
6657     case 0:
6658         if (!fp_access_check(s)) {
6659             return;
6660         }
6661         handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6662         break;
6663     case 1:
6664         if (!fp_access_check(s)) {
6665             return;
6666         }
6667         handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6668         break;
6669     case 3:
6670         if (!dc_isar_feature(aa64_fp16, s)) {
6671             unallocated_encoding(s);
6672             return;
6673         }
6674         if (!fp_access_check(s)) {
6675             return;
6676         }
6677         handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6678         break;
6679     default:
6680         unallocated_encoding(s);
6681     }
6682 }
6683 
6684 /* Floating point immediate
6685  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
6686  * +---+---+---+-----------+------+---+------------+-------+------+------+
6687  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
6688  * +---+---+---+-----------+------+---+------------+-------+------+------+
6689  */
6690 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6691 {
6692     int rd = extract32(insn, 0, 5);
6693     int imm5 = extract32(insn, 5, 5);
6694     int imm8 = extract32(insn, 13, 8);
6695     int type = extract32(insn, 22, 2);
6696     int mos = extract32(insn, 29, 3);
6697     uint64_t imm;
6698     MemOp sz;
6699 
6700     if (mos || imm5) {
6701         unallocated_encoding(s);
6702         return;
6703     }
6704 
6705     switch (type) {
6706     case 0:
6707         sz = MO_32;
6708         break;
6709     case 1:
6710         sz = MO_64;
6711         break;
6712     case 3:
6713         sz = MO_16;
6714         if (dc_isar_feature(aa64_fp16, s)) {
6715             break;
6716         }
6717         /* fallthru */
6718     default:
6719         unallocated_encoding(s);
6720         return;
6721     }
6722 
6723     if (!fp_access_check(s)) {
6724         return;
6725     }
6726 
6727     imm = vfp_expand_imm(sz, imm8);
6728     write_fp_dreg(s, rd, tcg_constant_i64(imm));
6729 }
6730 
6731 /* Handle floating point <=> fixed point conversions. Note that we can
6732  * also deal with fp <=> integer conversions as a special case (scale == 64)
6733  * OPTME: consider handling that special case specially or at least skipping
6734  * the call to scalbn in the helpers for zero shifts.
6735  */
6736 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6737                            bool itof, int rmode, int scale, int sf, int type)
6738 {
6739     bool is_signed = !(opcode & 1);
6740     TCGv_ptr tcg_fpstatus;
6741     TCGv_i32 tcg_shift, tcg_single;
6742     TCGv_i64 tcg_double;
6743 
6744     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
6745 
6746     tcg_shift = tcg_constant_i32(64 - scale);
6747 
6748     if (itof) {
6749         TCGv_i64 tcg_int = cpu_reg(s, rn);
6750         if (!sf) {
6751             TCGv_i64 tcg_extend = tcg_temp_new_i64();
6752 
6753             if (is_signed) {
6754                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6755             } else {
6756                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6757             }
6758 
6759             tcg_int = tcg_extend;
6760         }
6761 
6762         switch (type) {
6763         case 1: /* float64 */
6764             tcg_double = tcg_temp_new_i64();
6765             if (is_signed) {
6766                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6767                                      tcg_shift, tcg_fpstatus);
6768             } else {
6769                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6770                                      tcg_shift, tcg_fpstatus);
6771             }
6772             write_fp_dreg(s, rd, tcg_double);
6773             break;
6774 
6775         case 0: /* float32 */
6776             tcg_single = tcg_temp_new_i32();
6777             if (is_signed) {
6778                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6779                                      tcg_shift, tcg_fpstatus);
6780             } else {
6781                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6782                                      tcg_shift, tcg_fpstatus);
6783             }
6784             write_fp_sreg(s, rd, tcg_single);
6785             break;
6786 
6787         case 3: /* float16 */
6788             tcg_single = tcg_temp_new_i32();
6789             if (is_signed) {
6790                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6791                                      tcg_shift, tcg_fpstatus);
6792             } else {
6793                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6794                                      tcg_shift, tcg_fpstatus);
6795             }
6796             write_fp_sreg(s, rd, tcg_single);
6797             break;
6798 
6799         default:
6800             g_assert_not_reached();
6801         }
6802     } else {
6803         TCGv_i64 tcg_int = cpu_reg(s, rd);
6804         TCGv_i32 tcg_rmode;
6805 
6806         if (extract32(opcode, 2, 1)) {
6807             /* There are too many rounding modes to all fit into rmode,
6808              * so FCVTA[US] is a special case.
6809              */
6810             rmode = FPROUNDING_TIEAWAY;
6811         }
6812 
6813         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
6814 
6815         switch (type) {
6816         case 1: /* float64 */
6817             tcg_double = read_fp_dreg(s, rn);
6818             if (is_signed) {
6819                 if (!sf) {
6820                     gen_helper_vfp_tosld(tcg_int, tcg_double,
6821                                          tcg_shift, tcg_fpstatus);
6822                 } else {
6823                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
6824                                          tcg_shift, tcg_fpstatus);
6825                 }
6826             } else {
6827                 if (!sf) {
6828                     gen_helper_vfp_tould(tcg_int, tcg_double,
6829                                          tcg_shift, tcg_fpstatus);
6830                 } else {
6831                     gen_helper_vfp_touqd(tcg_int, tcg_double,
6832                                          tcg_shift, tcg_fpstatus);
6833                 }
6834             }
6835             if (!sf) {
6836                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6837             }
6838             break;
6839 
6840         case 0: /* float32 */
6841             tcg_single = read_fp_sreg(s, rn);
6842             if (sf) {
6843                 if (is_signed) {
6844                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
6845                                          tcg_shift, tcg_fpstatus);
6846                 } else {
6847                     gen_helper_vfp_touqs(tcg_int, tcg_single,
6848                                          tcg_shift, tcg_fpstatus);
6849                 }
6850             } else {
6851                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6852                 if (is_signed) {
6853                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
6854                                          tcg_shift, tcg_fpstatus);
6855                 } else {
6856                     gen_helper_vfp_touls(tcg_dest, tcg_single,
6857                                          tcg_shift, tcg_fpstatus);
6858                 }
6859                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6860             }
6861             break;
6862 
6863         case 3: /* float16 */
6864             tcg_single = read_fp_sreg(s, rn);
6865             if (sf) {
6866                 if (is_signed) {
6867                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
6868                                          tcg_shift, tcg_fpstatus);
6869                 } else {
6870                     gen_helper_vfp_touqh(tcg_int, tcg_single,
6871                                          tcg_shift, tcg_fpstatus);
6872                 }
6873             } else {
6874                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6875                 if (is_signed) {
6876                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
6877                                          tcg_shift, tcg_fpstatus);
6878                 } else {
6879                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
6880                                          tcg_shift, tcg_fpstatus);
6881                 }
6882                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6883             }
6884             break;
6885 
6886         default:
6887             g_assert_not_reached();
6888         }
6889 
6890         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
6891     }
6892 }
6893 
6894 /* Floating point <-> fixed point conversions
6895  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
6896  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6897  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
6898  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6899  */
6900 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
6901 {
6902     int rd = extract32(insn, 0, 5);
6903     int rn = extract32(insn, 5, 5);
6904     int scale = extract32(insn, 10, 6);
6905     int opcode = extract32(insn, 16, 3);
6906     int rmode = extract32(insn, 19, 2);
6907     int type = extract32(insn, 22, 2);
6908     bool sbit = extract32(insn, 29, 1);
6909     bool sf = extract32(insn, 31, 1);
6910     bool itof;
6911 
6912     if (sbit || (!sf && scale < 32)) {
6913         unallocated_encoding(s);
6914         return;
6915     }
6916 
6917     switch (type) {
6918     case 0: /* float32 */
6919     case 1: /* float64 */
6920         break;
6921     case 3: /* float16 */
6922         if (dc_isar_feature(aa64_fp16, s)) {
6923             break;
6924         }
6925         /* fallthru */
6926     default:
6927         unallocated_encoding(s);
6928         return;
6929     }
6930 
6931     switch ((rmode << 3) | opcode) {
6932     case 0x2: /* SCVTF */
6933     case 0x3: /* UCVTF */
6934         itof = true;
6935         break;
6936     case 0x18: /* FCVTZS */
6937     case 0x19: /* FCVTZU */
6938         itof = false;
6939         break;
6940     default:
6941         unallocated_encoding(s);
6942         return;
6943     }
6944 
6945     if (!fp_access_check(s)) {
6946         return;
6947     }
6948 
6949     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
6950 }
6951 
6952 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
6953 {
6954     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
6955      * without conversion.
6956      */
6957 
6958     if (itof) {
6959         TCGv_i64 tcg_rn = cpu_reg(s, rn);
6960         TCGv_i64 tmp;
6961 
6962         switch (type) {
6963         case 0:
6964             /* 32 bit */
6965             tmp = tcg_temp_new_i64();
6966             tcg_gen_ext32u_i64(tmp, tcg_rn);
6967             write_fp_dreg(s, rd, tmp);
6968             break;
6969         case 1:
6970             /* 64 bit */
6971             write_fp_dreg(s, rd, tcg_rn);
6972             break;
6973         case 2:
6974             /* 64 bit to top half. */
6975             tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
6976             clear_vec_high(s, true, rd);
6977             break;
6978         case 3:
6979             /* 16 bit */
6980             tmp = tcg_temp_new_i64();
6981             tcg_gen_ext16u_i64(tmp, tcg_rn);
6982             write_fp_dreg(s, rd, tmp);
6983             break;
6984         default:
6985             g_assert_not_reached();
6986         }
6987     } else {
6988         TCGv_i64 tcg_rd = cpu_reg(s, rd);
6989 
6990         switch (type) {
6991         case 0:
6992             /* 32 bit */
6993             tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
6994             break;
6995         case 1:
6996             /* 64 bit */
6997             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
6998             break;
6999         case 2:
7000             /* 64 bits from top half */
7001             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
7002             break;
7003         case 3:
7004             /* 16 bit */
7005             tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
7006             break;
7007         default:
7008             g_assert_not_reached();
7009         }
7010     }
7011 }
7012 
7013 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7014 {
7015     TCGv_i64 t = read_fp_dreg(s, rn);
7016     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7017 
7018     gen_helper_fjcvtzs(t, t, fpstatus);
7019 
7020     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7021     tcg_gen_extrh_i64_i32(cpu_ZF, t);
7022     tcg_gen_movi_i32(cpu_CF, 0);
7023     tcg_gen_movi_i32(cpu_NF, 0);
7024     tcg_gen_movi_i32(cpu_VF, 0);
7025 }
7026 
7027 /* Floating point <-> integer conversions
7028  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
7029  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7030  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7031  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7032  */
7033 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7034 {
7035     int rd = extract32(insn, 0, 5);
7036     int rn = extract32(insn, 5, 5);
7037     int opcode = extract32(insn, 16, 3);
7038     int rmode = extract32(insn, 19, 2);
7039     int type = extract32(insn, 22, 2);
7040     bool sbit = extract32(insn, 29, 1);
7041     bool sf = extract32(insn, 31, 1);
7042     bool itof = false;
7043 
7044     if (sbit) {
7045         goto do_unallocated;
7046     }
7047 
7048     switch (opcode) {
7049     case 2: /* SCVTF */
7050     case 3: /* UCVTF */
7051         itof = true;
7052         /* fallthru */
7053     case 4: /* FCVTAS */
7054     case 5: /* FCVTAU */
7055         if (rmode != 0) {
7056             goto do_unallocated;
7057         }
7058         /* fallthru */
7059     case 0: /* FCVT[NPMZ]S */
7060     case 1: /* FCVT[NPMZ]U */
7061         switch (type) {
7062         case 0: /* float32 */
7063         case 1: /* float64 */
7064             break;
7065         case 3: /* float16 */
7066             if (!dc_isar_feature(aa64_fp16, s)) {
7067                 goto do_unallocated;
7068             }
7069             break;
7070         default:
7071             goto do_unallocated;
7072         }
7073         if (!fp_access_check(s)) {
7074             return;
7075         }
7076         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7077         break;
7078 
7079     default:
7080         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7081         case 0b01100110: /* FMOV half <-> 32-bit int */
7082         case 0b01100111:
7083         case 0b11100110: /* FMOV half <-> 64-bit int */
7084         case 0b11100111:
7085             if (!dc_isar_feature(aa64_fp16, s)) {
7086                 goto do_unallocated;
7087             }
7088             /* fallthru */
7089         case 0b00000110: /* FMOV 32-bit */
7090         case 0b00000111:
7091         case 0b10100110: /* FMOV 64-bit */
7092         case 0b10100111:
7093         case 0b11001110: /* FMOV top half of 128-bit */
7094         case 0b11001111:
7095             if (!fp_access_check(s)) {
7096                 return;
7097             }
7098             itof = opcode & 1;
7099             handle_fmov(s, rd, rn, type, itof);
7100             break;
7101 
7102         case 0b00111110: /* FJCVTZS */
7103             if (!dc_isar_feature(aa64_jscvt, s)) {
7104                 goto do_unallocated;
7105             } else if (fp_access_check(s)) {
7106                 handle_fjcvtzs(s, rd, rn);
7107             }
7108             break;
7109 
7110         default:
7111         do_unallocated:
7112             unallocated_encoding(s);
7113             return;
7114         }
7115         break;
7116     }
7117 }
7118 
7119 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7120  *   31  30  29 28     25 24                          0
7121  * +---+---+---+---------+-----------------------------+
7122  * |   | 0 |   | 1 1 1 1 |                             |
7123  * +---+---+---+---------+-----------------------------+
7124  */
7125 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7126 {
7127     if (extract32(insn, 24, 1)) {
7128         /* Floating point data-processing (3 source) */
7129         disas_fp_3src(s, insn);
7130     } else if (extract32(insn, 21, 1) == 0) {
7131         /* Floating point to fixed point conversions */
7132         disas_fp_fixed_conv(s, insn);
7133     } else {
7134         switch (extract32(insn, 10, 2)) {
7135         case 1:
7136             /* Floating point conditional compare */
7137             disas_fp_ccomp(s, insn);
7138             break;
7139         case 2:
7140             /* Floating point data-processing (2 source) */
7141             disas_fp_2src(s, insn);
7142             break;
7143         case 3:
7144             /* Floating point conditional select */
7145             disas_fp_csel(s, insn);
7146             break;
7147         case 0:
7148             switch (ctz32(extract32(insn, 12, 4))) {
7149             case 0: /* [15:12] == xxx1 */
7150                 /* Floating point immediate */
7151                 disas_fp_imm(s, insn);
7152                 break;
7153             case 1: /* [15:12] == xx10 */
7154                 /* Floating point compare */
7155                 disas_fp_compare(s, insn);
7156                 break;
7157             case 2: /* [15:12] == x100 */
7158                 /* Floating point data-processing (1 source) */
7159                 disas_fp_1src(s, insn);
7160                 break;
7161             case 3: /* [15:12] == 1000 */
7162                 unallocated_encoding(s);
7163                 break;
7164             default: /* [15:12] == 0000 */
7165                 /* Floating point <-> integer conversions */
7166                 disas_fp_int_conv(s, insn);
7167                 break;
7168             }
7169             break;
7170         }
7171     }
7172 }
7173 
7174 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7175                      int pos)
7176 {
7177     /* Extract 64 bits from the middle of two concatenated 64 bit
7178      * vector register slices left:right. The extracted bits start
7179      * at 'pos' bits into the right (least significant) side.
7180      * We return the result in tcg_right, and guarantee not to
7181      * trash tcg_left.
7182      */
7183     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7184     assert(pos > 0 && pos < 64);
7185 
7186     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7187     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7188     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7189 }
7190 
7191 /* EXT
7192  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
7193  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7194  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
7195  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7196  */
7197 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7198 {
7199     int is_q = extract32(insn, 30, 1);
7200     int op2 = extract32(insn, 22, 2);
7201     int imm4 = extract32(insn, 11, 4);
7202     int rm = extract32(insn, 16, 5);
7203     int rn = extract32(insn, 5, 5);
7204     int rd = extract32(insn, 0, 5);
7205     int pos = imm4 << 3;
7206     TCGv_i64 tcg_resl, tcg_resh;
7207 
7208     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7209         unallocated_encoding(s);
7210         return;
7211     }
7212 
7213     if (!fp_access_check(s)) {
7214         return;
7215     }
7216 
7217     tcg_resh = tcg_temp_new_i64();
7218     tcg_resl = tcg_temp_new_i64();
7219 
7220     /* Vd gets bits starting at pos bits into Vm:Vn. This is
7221      * either extracting 128 bits from a 128:128 concatenation, or
7222      * extracting 64 bits from a 64:64 concatenation.
7223      */
7224     if (!is_q) {
7225         read_vec_element(s, tcg_resl, rn, 0, MO_64);
7226         if (pos != 0) {
7227             read_vec_element(s, tcg_resh, rm, 0, MO_64);
7228             do_ext64(s, tcg_resh, tcg_resl, pos);
7229         }
7230     } else {
7231         TCGv_i64 tcg_hh;
7232         typedef struct {
7233             int reg;
7234             int elt;
7235         } EltPosns;
7236         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7237         EltPosns *elt = eltposns;
7238 
7239         if (pos >= 64) {
7240             elt++;
7241             pos -= 64;
7242         }
7243 
7244         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7245         elt++;
7246         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7247         elt++;
7248         if (pos != 0) {
7249             do_ext64(s, tcg_resh, tcg_resl, pos);
7250             tcg_hh = tcg_temp_new_i64();
7251             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7252             do_ext64(s, tcg_hh, tcg_resh, pos);
7253         }
7254     }
7255 
7256     write_vec_element(s, tcg_resl, rd, 0, MO_64);
7257     if (is_q) {
7258         write_vec_element(s, tcg_resh, rd, 1, MO_64);
7259     }
7260     clear_vec_high(s, is_q, rd);
7261 }
7262 
7263 /* TBL/TBX
7264  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
7265  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7266  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
7267  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7268  */
7269 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7270 {
7271     int op2 = extract32(insn, 22, 2);
7272     int is_q = extract32(insn, 30, 1);
7273     int rm = extract32(insn, 16, 5);
7274     int rn = extract32(insn, 5, 5);
7275     int rd = extract32(insn, 0, 5);
7276     int is_tbx = extract32(insn, 12, 1);
7277     int len = (extract32(insn, 13, 2) + 1) * 16;
7278 
7279     if (op2 != 0) {
7280         unallocated_encoding(s);
7281         return;
7282     }
7283 
7284     if (!fp_access_check(s)) {
7285         return;
7286     }
7287 
7288     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7289                        vec_full_reg_offset(s, rm), tcg_env,
7290                        is_q ? 16 : 8, vec_full_reg_size(s),
7291                        (len << 6) | (is_tbx << 5) | rn,
7292                        gen_helper_simd_tblx);
7293 }
7294 
7295 /* ZIP/UZP/TRN
7296  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
7297  * +---+---+-------------+------+---+------+---+------------------+------+
7298  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
7299  * +---+---+-------------+------+---+------+---+------------------+------+
7300  */
7301 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7302 {
7303     int rd = extract32(insn, 0, 5);
7304     int rn = extract32(insn, 5, 5);
7305     int rm = extract32(insn, 16, 5);
7306     int size = extract32(insn, 22, 2);
7307     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7308      * bit 2 indicates 1 vs 2 variant of the insn.
7309      */
7310     int opcode = extract32(insn, 12, 2);
7311     bool part = extract32(insn, 14, 1);
7312     bool is_q = extract32(insn, 30, 1);
7313     int esize = 8 << size;
7314     int i;
7315     int datasize = is_q ? 128 : 64;
7316     int elements = datasize / esize;
7317     TCGv_i64 tcg_res[2], tcg_ele;
7318 
7319     if (opcode == 0 || (size == 3 && !is_q)) {
7320         unallocated_encoding(s);
7321         return;
7322     }
7323 
7324     if (!fp_access_check(s)) {
7325         return;
7326     }
7327 
7328     tcg_res[0] = tcg_temp_new_i64();
7329     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
7330     tcg_ele = tcg_temp_new_i64();
7331 
7332     for (i = 0; i < elements; i++) {
7333         int o, w;
7334 
7335         switch (opcode) {
7336         case 1: /* UZP1/2 */
7337         {
7338             int midpoint = elements / 2;
7339             if (i < midpoint) {
7340                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
7341             } else {
7342                 read_vec_element(s, tcg_ele, rm,
7343                                  2 * (i - midpoint) + part, size);
7344             }
7345             break;
7346         }
7347         case 2: /* TRN1/2 */
7348             if (i & 1) {
7349                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
7350             } else {
7351                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
7352             }
7353             break;
7354         case 3: /* ZIP1/2 */
7355         {
7356             int base = part * elements / 2;
7357             if (i & 1) {
7358                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
7359             } else {
7360                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
7361             }
7362             break;
7363         }
7364         default:
7365             g_assert_not_reached();
7366         }
7367 
7368         w = (i * esize) / 64;
7369         o = (i * esize) % 64;
7370         if (o == 0) {
7371             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
7372         } else {
7373             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
7374             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
7375         }
7376     }
7377 
7378     for (i = 0; i <= is_q; ++i) {
7379         write_vec_element(s, tcg_res[i], rd, i, MO_64);
7380     }
7381     clear_vec_high(s, is_q, rd);
7382 }
7383 
7384 /*
7385  * do_reduction_op helper
7386  *
7387  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7388  * important for correct NaN propagation that we do these
7389  * operations in exactly the order specified by the pseudocode.
7390  *
7391  * This is a recursive function, TCG temps should be freed by the
7392  * calling function once it is done with the values.
7393  */
7394 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7395                                 int esize, int size, int vmap, TCGv_ptr fpst)
7396 {
7397     if (esize == size) {
7398         int element;
7399         MemOp msize = esize == 16 ? MO_16 : MO_32;
7400         TCGv_i32 tcg_elem;
7401 
7402         /* We should have one register left here */
7403         assert(ctpop8(vmap) == 1);
7404         element = ctz32(vmap);
7405         assert(element < 8);
7406 
7407         tcg_elem = tcg_temp_new_i32();
7408         read_vec_element_i32(s, tcg_elem, rn, element, msize);
7409         return tcg_elem;
7410     } else {
7411         int bits = size / 2;
7412         int shift = ctpop8(vmap) / 2;
7413         int vmap_lo = (vmap >> shift) & vmap;
7414         int vmap_hi = (vmap & ~vmap_lo);
7415         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7416 
7417         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7418         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7419         tcg_res = tcg_temp_new_i32();
7420 
7421         switch (fpopcode) {
7422         case 0x0c: /* fmaxnmv half-precision */
7423             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7424             break;
7425         case 0x0f: /* fmaxv half-precision */
7426             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7427             break;
7428         case 0x1c: /* fminnmv half-precision */
7429             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7430             break;
7431         case 0x1f: /* fminv half-precision */
7432             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7433             break;
7434         case 0x2c: /* fmaxnmv */
7435             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7436             break;
7437         case 0x2f: /* fmaxv */
7438             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7439             break;
7440         case 0x3c: /* fminnmv */
7441             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7442             break;
7443         case 0x3f: /* fminv */
7444             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7445             break;
7446         default:
7447             g_assert_not_reached();
7448         }
7449         return tcg_res;
7450     }
7451 }
7452 
7453 /* AdvSIMD across lanes
7454  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
7455  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7456  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
7457  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7458  */
7459 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7460 {
7461     int rd = extract32(insn, 0, 5);
7462     int rn = extract32(insn, 5, 5);
7463     int size = extract32(insn, 22, 2);
7464     int opcode = extract32(insn, 12, 5);
7465     bool is_q = extract32(insn, 30, 1);
7466     bool is_u = extract32(insn, 29, 1);
7467     bool is_fp = false;
7468     bool is_min = false;
7469     int esize;
7470     int elements;
7471     int i;
7472     TCGv_i64 tcg_res, tcg_elt;
7473 
7474     switch (opcode) {
7475     case 0x1b: /* ADDV */
7476         if (is_u) {
7477             unallocated_encoding(s);
7478             return;
7479         }
7480         /* fall through */
7481     case 0x3: /* SADDLV, UADDLV */
7482     case 0xa: /* SMAXV, UMAXV */
7483     case 0x1a: /* SMINV, UMINV */
7484         if (size == 3 || (size == 2 && !is_q)) {
7485             unallocated_encoding(s);
7486             return;
7487         }
7488         break;
7489     case 0xc: /* FMAXNMV, FMINNMV */
7490     case 0xf: /* FMAXV, FMINV */
7491         /* Bit 1 of size field encodes min vs max and the actual size
7492          * depends on the encoding of the U bit. If not set (and FP16
7493          * enabled) then we do half-precision float instead of single
7494          * precision.
7495          */
7496         is_min = extract32(size, 1, 1);
7497         is_fp = true;
7498         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7499             size = 1;
7500         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7501             unallocated_encoding(s);
7502             return;
7503         } else {
7504             size = 2;
7505         }
7506         break;
7507     default:
7508         unallocated_encoding(s);
7509         return;
7510     }
7511 
7512     if (!fp_access_check(s)) {
7513         return;
7514     }
7515 
7516     esize = 8 << size;
7517     elements = (is_q ? 128 : 64) / esize;
7518 
7519     tcg_res = tcg_temp_new_i64();
7520     tcg_elt = tcg_temp_new_i64();
7521 
7522     /* These instructions operate across all lanes of a vector
7523      * to produce a single result. We can guarantee that a 64
7524      * bit intermediate is sufficient:
7525      *  + for [US]ADDLV the maximum element size is 32 bits, and
7526      *    the result type is 64 bits
7527      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7528      *    same as the element size, which is 32 bits at most
7529      * For the integer operations we can choose to work at 64
7530      * or 32 bits and truncate at the end; for simplicity
7531      * we use 64 bits always. The floating point
7532      * ops do require 32 bit intermediates, though.
7533      */
7534     if (!is_fp) {
7535         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7536 
7537         for (i = 1; i < elements; i++) {
7538             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7539 
7540             switch (opcode) {
7541             case 0x03: /* SADDLV / UADDLV */
7542             case 0x1b: /* ADDV */
7543                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7544                 break;
7545             case 0x0a: /* SMAXV / UMAXV */
7546                 if (is_u) {
7547                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7548                 } else {
7549                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7550                 }
7551                 break;
7552             case 0x1a: /* SMINV / UMINV */
7553                 if (is_u) {
7554                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7555                 } else {
7556                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7557                 }
7558                 break;
7559             default:
7560                 g_assert_not_reached();
7561             }
7562 
7563         }
7564     } else {
7565         /* Floating point vector reduction ops which work across 32
7566          * bit (single) or 16 bit (half-precision) intermediates.
7567          * Note that correct NaN propagation requires that we do these
7568          * operations in exactly the order specified by the pseudocode.
7569          */
7570         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7571         int fpopcode = opcode | is_min << 4 | is_u << 5;
7572         int vmap = (1 << elements) - 1;
7573         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7574                                              (is_q ? 128 : 64), vmap, fpst);
7575         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7576     }
7577 
7578     /* Now truncate the result to the width required for the final output */
7579     if (opcode == 0x03) {
7580         /* SADDLV, UADDLV: result is 2*esize */
7581         size++;
7582     }
7583 
7584     switch (size) {
7585     case 0:
7586         tcg_gen_ext8u_i64(tcg_res, tcg_res);
7587         break;
7588     case 1:
7589         tcg_gen_ext16u_i64(tcg_res, tcg_res);
7590         break;
7591     case 2:
7592         tcg_gen_ext32u_i64(tcg_res, tcg_res);
7593         break;
7594     case 3:
7595         break;
7596     default:
7597         g_assert_not_reached();
7598     }
7599 
7600     write_fp_dreg(s, rd, tcg_res);
7601 }
7602 
7603 /* DUP (Element, Vector)
7604  *
7605  *  31  30   29              21 20    16 15        10  9    5 4    0
7606  * +---+---+-------------------+--------+-------------+------+------+
7607  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7608  * +---+---+-------------------+--------+-------------+------+------+
7609  *
7610  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7611  */
7612 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7613                              int imm5)
7614 {
7615     int size = ctz32(imm5);
7616     int index;
7617 
7618     if (size > 3 || (size == 3 && !is_q)) {
7619         unallocated_encoding(s);
7620         return;
7621     }
7622 
7623     if (!fp_access_check(s)) {
7624         return;
7625     }
7626 
7627     index = imm5 >> (size + 1);
7628     tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7629                          vec_reg_offset(s, rn, index, size),
7630                          is_q ? 16 : 8, vec_full_reg_size(s));
7631 }
7632 
7633 /* DUP (element, scalar)
7634  *  31                   21 20    16 15        10  9    5 4    0
7635  * +-----------------------+--------+-------------+------+------+
7636  * | 0 1 0 1 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7637  * +-----------------------+--------+-------------+------+------+
7638  */
7639 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7640                               int imm5)
7641 {
7642     int size = ctz32(imm5);
7643     int index;
7644     TCGv_i64 tmp;
7645 
7646     if (size > 3) {
7647         unallocated_encoding(s);
7648         return;
7649     }
7650 
7651     if (!fp_access_check(s)) {
7652         return;
7653     }
7654 
7655     index = imm5 >> (size + 1);
7656 
7657     /* This instruction just extracts the specified element and
7658      * zero-extends it into the bottom of the destination register.
7659      */
7660     tmp = tcg_temp_new_i64();
7661     read_vec_element(s, tmp, rn, index, size);
7662     write_fp_dreg(s, rd, tmp);
7663 }
7664 
7665 /* DUP (General)
7666  *
7667  *  31  30   29              21 20    16 15        10  9    5 4    0
7668  * +---+---+-------------------+--------+-------------+------+------+
7669  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 1 1 |  Rn  |  Rd  |
7670  * +---+---+-------------------+--------+-------------+------+------+
7671  *
7672  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7673  */
7674 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7675                              int imm5)
7676 {
7677     int size = ctz32(imm5);
7678     uint32_t dofs, oprsz, maxsz;
7679 
7680     if (size > 3 || ((size == 3) && !is_q)) {
7681         unallocated_encoding(s);
7682         return;
7683     }
7684 
7685     if (!fp_access_check(s)) {
7686         return;
7687     }
7688 
7689     dofs = vec_full_reg_offset(s, rd);
7690     oprsz = is_q ? 16 : 8;
7691     maxsz = vec_full_reg_size(s);
7692 
7693     tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7694 }
7695 
7696 /* INS (Element)
7697  *
7698  *  31                   21 20    16 15  14    11  10 9    5 4    0
7699  * +-----------------------+--------+------------+---+------+------+
7700  * | 0 1 1 0 1 1 1 0 0 0 0 |  imm5  | 0 |  imm4  | 1 |  Rn  |  Rd  |
7701  * +-----------------------+--------+------------+---+------+------+
7702  *
7703  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7704  * index: encoded in imm5<4:size+1>
7705  */
7706 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7707                              int imm4, int imm5)
7708 {
7709     int size = ctz32(imm5);
7710     int src_index, dst_index;
7711     TCGv_i64 tmp;
7712 
7713     if (size > 3) {
7714         unallocated_encoding(s);
7715         return;
7716     }
7717 
7718     if (!fp_access_check(s)) {
7719         return;
7720     }
7721 
7722     dst_index = extract32(imm5, 1+size, 5);
7723     src_index = extract32(imm4, size, 4);
7724 
7725     tmp = tcg_temp_new_i64();
7726 
7727     read_vec_element(s, tmp, rn, src_index, size);
7728     write_vec_element(s, tmp, rd, dst_index, size);
7729 
7730     /* INS is considered a 128-bit write for SVE. */
7731     clear_vec_high(s, true, rd);
7732 }
7733 
7734 
7735 /* INS (General)
7736  *
7737  *  31                   21 20    16 15        10  9    5 4    0
7738  * +-----------------------+--------+-------------+------+------+
7739  * | 0 1 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 1 1 1 |  Rn  |  Rd  |
7740  * +-----------------------+--------+-------------+------+------+
7741  *
7742  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7743  * index: encoded in imm5<4:size+1>
7744  */
7745 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7746 {
7747     int size = ctz32(imm5);
7748     int idx;
7749 
7750     if (size > 3) {
7751         unallocated_encoding(s);
7752         return;
7753     }
7754 
7755     if (!fp_access_check(s)) {
7756         return;
7757     }
7758 
7759     idx = extract32(imm5, 1 + size, 4 - size);
7760     write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7761 
7762     /* INS is considered a 128-bit write for SVE. */
7763     clear_vec_high(s, true, rd);
7764 }
7765 
7766 /*
7767  * UMOV (General)
7768  * SMOV (General)
7769  *
7770  *  31  30   29              21 20    16 15    12   10 9    5 4    0
7771  * +---+---+-------------------+--------+-------------+------+------+
7772  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 1 U 1 1 |  Rn  |  Rd  |
7773  * +---+---+-------------------+--------+-------------+------+------+
7774  *
7775  * U: unsigned when set
7776  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7777  */
7778 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7779                                   int rn, int rd, int imm5)
7780 {
7781     int size = ctz32(imm5);
7782     int element;
7783     TCGv_i64 tcg_rd;
7784 
7785     /* Check for UnallocatedEncodings */
7786     if (is_signed) {
7787         if (size > 2 || (size == 2 && !is_q)) {
7788             unallocated_encoding(s);
7789             return;
7790         }
7791     } else {
7792         if (size > 3
7793             || (size < 3 && is_q)
7794             || (size == 3 && !is_q)) {
7795             unallocated_encoding(s);
7796             return;
7797         }
7798     }
7799 
7800     if (!fp_access_check(s)) {
7801         return;
7802     }
7803 
7804     element = extract32(imm5, 1+size, 4);
7805 
7806     tcg_rd = cpu_reg(s, rd);
7807     read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7808     if (is_signed && !is_q) {
7809         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7810     }
7811 }
7812 
7813 /* AdvSIMD copy
7814  *   31  30  29  28             21 20  16 15  14  11 10  9    5 4    0
7815  * +---+---+----+-----------------+------+---+------+---+------+------+
7816  * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
7817  * +---+---+----+-----------------+------+---+------+---+------+------+
7818  */
7819 static void disas_simd_copy(DisasContext *s, uint32_t insn)
7820 {
7821     int rd = extract32(insn, 0, 5);
7822     int rn = extract32(insn, 5, 5);
7823     int imm4 = extract32(insn, 11, 4);
7824     int op = extract32(insn, 29, 1);
7825     int is_q = extract32(insn, 30, 1);
7826     int imm5 = extract32(insn, 16, 5);
7827 
7828     if (op) {
7829         if (is_q) {
7830             /* INS (element) */
7831             handle_simd_inse(s, rd, rn, imm4, imm5);
7832         } else {
7833             unallocated_encoding(s);
7834         }
7835     } else {
7836         switch (imm4) {
7837         case 0:
7838             /* DUP (element - vector) */
7839             handle_simd_dupe(s, is_q, rd, rn, imm5);
7840             break;
7841         case 1:
7842             /* DUP (general) */
7843             handle_simd_dupg(s, is_q, rd, rn, imm5);
7844             break;
7845         case 3:
7846             if (is_q) {
7847                 /* INS (general) */
7848                 handle_simd_insg(s, rd, rn, imm5);
7849             } else {
7850                 unallocated_encoding(s);
7851             }
7852             break;
7853         case 5:
7854         case 7:
7855             /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
7856             handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
7857             break;
7858         default:
7859             unallocated_encoding(s);
7860             break;
7861         }
7862     }
7863 }
7864 
7865 /* AdvSIMD modified immediate
7866  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
7867  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7868  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
7869  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7870  *
7871  * There are a number of operations that can be carried out here:
7872  *   MOVI - move (shifted) imm into register
7873  *   MVNI - move inverted (shifted) imm into register
7874  *   ORR  - bitwise OR of (shifted) imm with register
7875  *   BIC  - bitwise clear of (shifted) imm with register
7876  * With ARMv8.2 we also have:
7877  *   FMOV half-precision
7878  */
7879 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
7880 {
7881     int rd = extract32(insn, 0, 5);
7882     int cmode = extract32(insn, 12, 4);
7883     int o2 = extract32(insn, 11, 1);
7884     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
7885     bool is_neg = extract32(insn, 29, 1);
7886     bool is_q = extract32(insn, 30, 1);
7887     uint64_t imm = 0;
7888 
7889     if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
7890         /* Check for FMOV (vector, immediate) - half-precision */
7891         if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
7892             unallocated_encoding(s);
7893             return;
7894         }
7895     }
7896 
7897     if (!fp_access_check(s)) {
7898         return;
7899     }
7900 
7901     if (cmode == 15 && o2 && !is_neg) {
7902         /* FMOV (vector, immediate) - half-precision */
7903         imm = vfp_expand_imm(MO_16, abcdefgh);
7904         /* now duplicate across the lanes */
7905         imm = dup_const(MO_16, imm);
7906     } else {
7907         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
7908     }
7909 
7910     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
7911         /* MOVI or MVNI, with MVNI negation handled above.  */
7912         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
7913                              vec_full_reg_size(s), imm);
7914     } else {
7915         /* ORR or BIC, with BIC negation to AND handled above.  */
7916         if (is_neg) {
7917             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
7918         } else {
7919             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
7920         }
7921     }
7922 }
7923 
7924 /* AdvSIMD scalar copy
7925  *  31 30  29  28             21 20  16 15  14  11 10  9    5 4    0
7926  * +-----+----+-----------------+------+---+------+---+------+------+
7927  * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
7928  * +-----+----+-----------------+------+---+------+---+------+------+
7929  */
7930 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
7931 {
7932     int rd = extract32(insn, 0, 5);
7933     int rn = extract32(insn, 5, 5);
7934     int imm4 = extract32(insn, 11, 4);
7935     int imm5 = extract32(insn, 16, 5);
7936     int op = extract32(insn, 29, 1);
7937 
7938     if (op != 0 || imm4 != 0) {
7939         unallocated_encoding(s);
7940         return;
7941     }
7942 
7943     /* DUP (element, scalar) */
7944     handle_simd_dupes(s, rd, rn, imm5);
7945 }
7946 
7947 /* AdvSIMD scalar pairwise
7948  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
7949  * +-----+---+-----------+------+-----------+--------+-----+------+------+
7950  * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
7951  * +-----+---+-----------+------+-----------+--------+-----+------+------+
7952  */
7953 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
7954 {
7955     int u = extract32(insn, 29, 1);
7956     int size = extract32(insn, 22, 2);
7957     int opcode = extract32(insn, 12, 5);
7958     int rn = extract32(insn, 5, 5);
7959     int rd = extract32(insn, 0, 5);
7960     TCGv_ptr fpst;
7961 
7962     /* For some ops (the FP ones), size[1] is part of the encoding.
7963      * For ADDP strictly it is not but size[1] is always 1 for valid
7964      * encodings.
7965      */
7966     opcode |= (extract32(size, 1, 1) << 5);
7967 
7968     switch (opcode) {
7969     case 0x3b: /* ADDP */
7970         if (u || size != 3) {
7971             unallocated_encoding(s);
7972             return;
7973         }
7974         if (!fp_access_check(s)) {
7975             return;
7976         }
7977 
7978         fpst = NULL;
7979         break;
7980     case 0xc: /* FMAXNMP */
7981     case 0xd: /* FADDP */
7982     case 0xf: /* FMAXP */
7983     case 0x2c: /* FMINNMP */
7984     case 0x2f: /* FMINP */
7985         /* FP op, size[0] is 32 or 64 bit*/
7986         if (!u) {
7987             if (!dc_isar_feature(aa64_fp16, s)) {
7988                 unallocated_encoding(s);
7989                 return;
7990             } else {
7991                 size = MO_16;
7992             }
7993         } else {
7994             size = extract32(size, 0, 1) ? MO_64 : MO_32;
7995         }
7996 
7997         if (!fp_access_check(s)) {
7998             return;
7999         }
8000 
8001         fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8002         break;
8003     default:
8004         unallocated_encoding(s);
8005         return;
8006     }
8007 
8008     if (size == MO_64) {
8009         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8010         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8011         TCGv_i64 tcg_res = tcg_temp_new_i64();
8012 
8013         read_vec_element(s, tcg_op1, rn, 0, MO_64);
8014         read_vec_element(s, tcg_op2, rn, 1, MO_64);
8015 
8016         switch (opcode) {
8017         case 0x3b: /* ADDP */
8018             tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8019             break;
8020         case 0xc: /* FMAXNMP */
8021             gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8022             break;
8023         case 0xd: /* FADDP */
8024             gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8025             break;
8026         case 0xf: /* FMAXP */
8027             gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8028             break;
8029         case 0x2c: /* FMINNMP */
8030             gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8031             break;
8032         case 0x2f: /* FMINP */
8033             gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8034             break;
8035         default:
8036             g_assert_not_reached();
8037         }
8038 
8039         write_fp_dreg(s, rd, tcg_res);
8040     } else {
8041         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8042         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8043         TCGv_i32 tcg_res = tcg_temp_new_i32();
8044 
8045         read_vec_element_i32(s, tcg_op1, rn, 0, size);
8046         read_vec_element_i32(s, tcg_op2, rn, 1, size);
8047 
8048         if (size == MO_16) {
8049             switch (opcode) {
8050             case 0xc: /* FMAXNMP */
8051                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8052                 break;
8053             case 0xd: /* FADDP */
8054                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8055                 break;
8056             case 0xf: /* FMAXP */
8057                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8058                 break;
8059             case 0x2c: /* FMINNMP */
8060                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8061                 break;
8062             case 0x2f: /* FMINP */
8063                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8064                 break;
8065             default:
8066                 g_assert_not_reached();
8067             }
8068         } else {
8069             switch (opcode) {
8070             case 0xc: /* FMAXNMP */
8071                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8072                 break;
8073             case 0xd: /* FADDP */
8074                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8075                 break;
8076             case 0xf: /* FMAXP */
8077                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8078                 break;
8079             case 0x2c: /* FMINNMP */
8080                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8081                 break;
8082             case 0x2f: /* FMINP */
8083                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8084                 break;
8085             default:
8086                 g_assert_not_reached();
8087             }
8088         }
8089 
8090         write_fp_sreg(s, rd, tcg_res);
8091     }
8092 }
8093 
8094 /*
8095  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8096  *
8097  * This code is handles the common shifting code and is used by both
8098  * the vector and scalar code.
8099  */
8100 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8101                                     TCGv_i64 tcg_rnd, bool accumulate,
8102                                     bool is_u, int size, int shift)
8103 {
8104     bool extended_result = false;
8105     bool round = tcg_rnd != NULL;
8106     int ext_lshift = 0;
8107     TCGv_i64 tcg_src_hi;
8108 
8109     if (round && size == 3) {
8110         extended_result = true;
8111         ext_lshift = 64 - shift;
8112         tcg_src_hi = tcg_temp_new_i64();
8113     } else if (shift == 64) {
8114         if (!accumulate && is_u) {
8115             /* result is zero */
8116             tcg_gen_movi_i64(tcg_res, 0);
8117             return;
8118         }
8119     }
8120 
8121     /* Deal with the rounding step */
8122     if (round) {
8123         if (extended_result) {
8124             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8125             if (!is_u) {
8126                 /* take care of sign extending tcg_res */
8127                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8128                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8129                                  tcg_src, tcg_src_hi,
8130                                  tcg_rnd, tcg_zero);
8131             } else {
8132                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8133                                  tcg_src, tcg_zero,
8134                                  tcg_rnd, tcg_zero);
8135             }
8136         } else {
8137             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8138         }
8139     }
8140 
8141     /* Now do the shift right */
8142     if (round && extended_result) {
8143         /* extended case, >64 bit precision required */
8144         if (ext_lshift == 0) {
8145             /* special case, only high bits matter */
8146             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8147         } else {
8148             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8149             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8150             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8151         }
8152     } else {
8153         if (is_u) {
8154             if (shift == 64) {
8155                 /* essentially shifting in 64 zeros */
8156                 tcg_gen_movi_i64(tcg_src, 0);
8157             } else {
8158                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8159             }
8160         } else {
8161             if (shift == 64) {
8162                 /* effectively extending the sign-bit */
8163                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8164             } else {
8165                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8166             }
8167         }
8168     }
8169 
8170     if (accumulate) {
8171         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8172     } else {
8173         tcg_gen_mov_i64(tcg_res, tcg_src);
8174     }
8175 }
8176 
8177 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8178 static void handle_scalar_simd_shri(DisasContext *s,
8179                                     bool is_u, int immh, int immb,
8180                                     int opcode, int rn, int rd)
8181 {
8182     const int size = 3;
8183     int immhb = immh << 3 | immb;
8184     int shift = 2 * (8 << size) - immhb;
8185     bool accumulate = false;
8186     bool round = false;
8187     bool insert = false;
8188     TCGv_i64 tcg_rn;
8189     TCGv_i64 tcg_rd;
8190     TCGv_i64 tcg_round;
8191 
8192     if (!extract32(immh, 3, 1)) {
8193         unallocated_encoding(s);
8194         return;
8195     }
8196 
8197     if (!fp_access_check(s)) {
8198         return;
8199     }
8200 
8201     switch (opcode) {
8202     case 0x02: /* SSRA / USRA (accumulate) */
8203         accumulate = true;
8204         break;
8205     case 0x04: /* SRSHR / URSHR (rounding) */
8206         round = true;
8207         break;
8208     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8209         accumulate = round = true;
8210         break;
8211     case 0x08: /* SRI */
8212         insert = true;
8213         break;
8214     }
8215 
8216     if (round) {
8217         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8218     } else {
8219         tcg_round = NULL;
8220     }
8221 
8222     tcg_rn = read_fp_dreg(s, rn);
8223     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8224 
8225     if (insert) {
8226         /* shift count same as element size is valid but does nothing;
8227          * special case to avoid potential shift by 64.
8228          */
8229         int esize = 8 << size;
8230         if (shift != esize) {
8231             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8232             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8233         }
8234     } else {
8235         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8236                                 accumulate, is_u, size, shift);
8237     }
8238 
8239     write_fp_dreg(s, rd, tcg_rd);
8240 }
8241 
8242 /* SHL/SLI - Scalar shift left */
8243 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8244                                     int immh, int immb, int opcode,
8245                                     int rn, int rd)
8246 {
8247     int size = 32 - clz32(immh) - 1;
8248     int immhb = immh << 3 | immb;
8249     int shift = immhb - (8 << size);
8250     TCGv_i64 tcg_rn;
8251     TCGv_i64 tcg_rd;
8252 
8253     if (!extract32(immh, 3, 1)) {
8254         unallocated_encoding(s);
8255         return;
8256     }
8257 
8258     if (!fp_access_check(s)) {
8259         return;
8260     }
8261 
8262     tcg_rn = read_fp_dreg(s, rn);
8263     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8264 
8265     if (insert) {
8266         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8267     } else {
8268         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8269     }
8270 
8271     write_fp_dreg(s, rd, tcg_rd);
8272 }
8273 
8274 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8275  * (signed/unsigned) narrowing */
8276 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8277                                    bool is_u_shift, bool is_u_narrow,
8278                                    int immh, int immb, int opcode,
8279                                    int rn, int rd)
8280 {
8281     int immhb = immh << 3 | immb;
8282     int size = 32 - clz32(immh) - 1;
8283     int esize = 8 << size;
8284     int shift = (2 * esize) - immhb;
8285     int elements = is_scalar ? 1 : (64 / esize);
8286     bool round = extract32(opcode, 0, 1);
8287     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8288     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8289     TCGv_i32 tcg_rd_narrowed;
8290     TCGv_i64 tcg_final;
8291 
8292     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8293         { gen_helper_neon_narrow_sat_s8,
8294           gen_helper_neon_unarrow_sat8 },
8295         { gen_helper_neon_narrow_sat_s16,
8296           gen_helper_neon_unarrow_sat16 },
8297         { gen_helper_neon_narrow_sat_s32,
8298           gen_helper_neon_unarrow_sat32 },
8299         { NULL, NULL },
8300     };
8301     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8302         gen_helper_neon_narrow_sat_u8,
8303         gen_helper_neon_narrow_sat_u16,
8304         gen_helper_neon_narrow_sat_u32,
8305         NULL
8306     };
8307     NeonGenNarrowEnvFn *narrowfn;
8308 
8309     int i;
8310 
8311     assert(size < 4);
8312 
8313     if (extract32(immh, 3, 1)) {
8314         unallocated_encoding(s);
8315         return;
8316     }
8317 
8318     if (!fp_access_check(s)) {
8319         return;
8320     }
8321 
8322     if (is_u_shift) {
8323         narrowfn = unsigned_narrow_fns[size];
8324     } else {
8325         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8326     }
8327 
8328     tcg_rn = tcg_temp_new_i64();
8329     tcg_rd = tcg_temp_new_i64();
8330     tcg_rd_narrowed = tcg_temp_new_i32();
8331     tcg_final = tcg_temp_new_i64();
8332 
8333     if (round) {
8334         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8335     } else {
8336         tcg_round = NULL;
8337     }
8338 
8339     for (i = 0; i < elements; i++) {
8340         read_vec_element(s, tcg_rn, rn, i, ldop);
8341         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8342                                 false, is_u_shift, size+1, shift);
8343         narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
8344         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8345         if (i == 0) {
8346             tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
8347         } else {
8348             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8349         }
8350     }
8351 
8352     if (!is_q) {
8353         write_vec_element(s, tcg_final, rd, 0, MO_64);
8354     } else {
8355         write_vec_element(s, tcg_final, rd, 1, MO_64);
8356     }
8357     clear_vec_high(s, is_q, rd);
8358 }
8359 
8360 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8361 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8362                              bool src_unsigned, bool dst_unsigned,
8363                              int immh, int immb, int rn, int rd)
8364 {
8365     int immhb = immh << 3 | immb;
8366     int size = 32 - clz32(immh) - 1;
8367     int shift = immhb - (8 << size);
8368     int pass;
8369 
8370     assert(immh != 0);
8371     assert(!(scalar && is_q));
8372 
8373     if (!scalar) {
8374         if (!is_q && extract32(immh, 3, 1)) {
8375             unallocated_encoding(s);
8376             return;
8377         }
8378 
8379         /* Since we use the variable-shift helpers we must
8380          * replicate the shift count into each element of
8381          * the tcg_shift value.
8382          */
8383         switch (size) {
8384         case 0:
8385             shift |= shift << 8;
8386             /* fall through */
8387         case 1:
8388             shift |= shift << 16;
8389             break;
8390         case 2:
8391         case 3:
8392             break;
8393         default:
8394             g_assert_not_reached();
8395         }
8396     }
8397 
8398     if (!fp_access_check(s)) {
8399         return;
8400     }
8401 
8402     if (size == 3) {
8403         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8404         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8405             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8406             { NULL, gen_helper_neon_qshl_u64 },
8407         };
8408         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8409         int maxpass = is_q ? 2 : 1;
8410 
8411         for (pass = 0; pass < maxpass; pass++) {
8412             TCGv_i64 tcg_op = tcg_temp_new_i64();
8413 
8414             read_vec_element(s, tcg_op, rn, pass, MO_64);
8415             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8416             write_vec_element(s, tcg_op, rd, pass, MO_64);
8417         }
8418         clear_vec_high(s, is_q, rd);
8419     } else {
8420         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8421         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8422             {
8423                 { gen_helper_neon_qshl_s8,
8424                   gen_helper_neon_qshl_s16,
8425                   gen_helper_neon_qshl_s32 },
8426                 { gen_helper_neon_qshlu_s8,
8427                   gen_helper_neon_qshlu_s16,
8428                   gen_helper_neon_qshlu_s32 }
8429             }, {
8430                 { NULL, NULL, NULL },
8431                 { gen_helper_neon_qshl_u8,
8432                   gen_helper_neon_qshl_u16,
8433                   gen_helper_neon_qshl_u32 }
8434             }
8435         };
8436         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8437         MemOp memop = scalar ? size : MO_32;
8438         int maxpass = scalar ? 1 : is_q ? 4 : 2;
8439 
8440         for (pass = 0; pass < maxpass; pass++) {
8441             TCGv_i32 tcg_op = tcg_temp_new_i32();
8442 
8443             read_vec_element_i32(s, tcg_op, rn, pass, memop);
8444             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8445             if (scalar) {
8446                 switch (size) {
8447                 case 0:
8448                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
8449                     break;
8450                 case 1:
8451                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8452                     break;
8453                 case 2:
8454                     break;
8455                 default:
8456                     g_assert_not_reached();
8457                 }
8458                 write_fp_sreg(s, rd, tcg_op);
8459             } else {
8460                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8461             }
8462         }
8463 
8464         if (!scalar) {
8465             clear_vec_high(s, is_q, rd);
8466         }
8467     }
8468 }
8469 
8470 /* Common vector code for handling integer to FP conversion */
8471 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8472                                    int elements, int is_signed,
8473                                    int fracbits, int size)
8474 {
8475     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8476     TCGv_i32 tcg_shift = NULL;
8477 
8478     MemOp mop = size | (is_signed ? MO_SIGN : 0);
8479     int pass;
8480 
8481     if (fracbits || size == MO_64) {
8482         tcg_shift = tcg_constant_i32(fracbits);
8483     }
8484 
8485     if (size == MO_64) {
8486         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8487         TCGv_i64 tcg_double = tcg_temp_new_i64();
8488 
8489         for (pass = 0; pass < elements; pass++) {
8490             read_vec_element(s, tcg_int64, rn, pass, mop);
8491 
8492             if (is_signed) {
8493                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8494                                      tcg_shift, tcg_fpst);
8495             } else {
8496                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8497                                      tcg_shift, tcg_fpst);
8498             }
8499             if (elements == 1) {
8500                 write_fp_dreg(s, rd, tcg_double);
8501             } else {
8502                 write_vec_element(s, tcg_double, rd, pass, MO_64);
8503             }
8504         }
8505     } else {
8506         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8507         TCGv_i32 tcg_float = tcg_temp_new_i32();
8508 
8509         for (pass = 0; pass < elements; pass++) {
8510             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8511 
8512             switch (size) {
8513             case MO_32:
8514                 if (fracbits) {
8515                     if (is_signed) {
8516                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
8517                                              tcg_shift, tcg_fpst);
8518                     } else {
8519                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
8520                                              tcg_shift, tcg_fpst);
8521                     }
8522                 } else {
8523                     if (is_signed) {
8524                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8525                     } else {
8526                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8527                     }
8528                 }
8529                 break;
8530             case MO_16:
8531                 if (fracbits) {
8532                     if (is_signed) {
8533                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8534                                              tcg_shift, tcg_fpst);
8535                     } else {
8536                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8537                                              tcg_shift, tcg_fpst);
8538                     }
8539                 } else {
8540                     if (is_signed) {
8541                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8542                     } else {
8543                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8544                     }
8545                 }
8546                 break;
8547             default:
8548                 g_assert_not_reached();
8549             }
8550 
8551             if (elements == 1) {
8552                 write_fp_sreg(s, rd, tcg_float);
8553             } else {
8554                 write_vec_element_i32(s, tcg_float, rd, pass, size);
8555             }
8556         }
8557     }
8558 
8559     clear_vec_high(s, elements << size == 16, rd);
8560 }
8561 
8562 /* UCVTF/SCVTF - Integer to FP conversion */
8563 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8564                                          bool is_q, bool is_u,
8565                                          int immh, int immb, int opcode,
8566                                          int rn, int rd)
8567 {
8568     int size, elements, fracbits;
8569     int immhb = immh << 3 | immb;
8570 
8571     if (immh & 8) {
8572         size = MO_64;
8573         if (!is_scalar && !is_q) {
8574             unallocated_encoding(s);
8575             return;
8576         }
8577     } else if (immh & 4) {
8578         size = MO_32;
8579     } else if (immh & 2) {
8580         size = MO_16;
8581         if (!dc_isar_feature(aa64_fp16, s)) {
8582             unallocated_encoding(s);
8583             return;
8584         }
8585     } else {
8586         /* immh == 0 would be a failure of the decode logic */
8587         g_assert(immh == 1);
8588         unallocated_encoding(s);
8589         return;
8590     }
8591 
8592     if (is_scalar) {
8593         elements = 1;
8594     } else {
8595         elements = (8 << is_q) >> size;
8596     }
8597     fracbits = (16 << size) - immhb;
8598 
8599     if (!fp_access_check(s)) {
8600         return;
8601     }
8602 
8603     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8604 }
8605 
8606 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8607 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8608                                          bool is_q, bool is_u,
8609                                          int immh, int immb, int rn, int rd)
8610 {
8611     int immhb = immh << 3 | immb;
8612     int pass, size, fracbits;
8613     TCGv_ptr tcg_fpstatus;
8614     TCGv_i32 tcg_rmode, tcg_shift;
8615 
8616     if (immh & 0x8) {
8617         size = MO_64;
8618         if (!is_scalar && !is_q) {
8619             unallocated_encoding(s);
8620             return;
8621         }
8622     } else if (immh & 0x4) {
8623         size = MO_32;
8624     } else if (immh & 0x2) {
8625         size = MO_16;
8626         if (!dc_isar_feature(aa64_fp16, s)) {
8627             unallocated_encoding(s);
8628             return;
8629         }
8630     } else {
8631         /* Should have split out AdvSIMD modified immediate earlier.  */
8632         assert(immh == 1);
8633         unallocated_encoding(s);
8634         return;
8635     }
8636 
8637     if (!fp_access_check(s)) {
8638         return;
8639     }
8640 
8641     assert(!(is_scalar && is_q));
8642 
8643     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8644     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
8645     fracbits = (16 << size) - immhb;
8646     tcg_shift = tcg_constant_i32(fracbits);
8647 
8648     if (size == MO_64) {
8649         int maxpass = is_scalar ? 1 : 2;
8650 
8651         for (pass = 0; pass < maxpass; pass++) {
8652             TCGv_i64 tcg_op = tcg_temp_new_i64();
8653 
8654             read_vec_element(s, tcg_op, rn, pass, MO_64);
8655             if (is_u) {
8656                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8657             } else {
8658                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8659             }
8660             write_vec_element(s, tcg_op, rd, pass, MO_64);
8661         }
8662         clear_vec_high(s, is_q, rd);
8663     } else {
8664         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8665         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8666 
8667         switch (size) {
8668         case MO_16:
8669             if (is_u) {
8670                 fn = gen_helper_vfp_touhh;
8671             } else {
8672                 fn = gen_helper_vfp_toshh;
8673             }
8674             break;
8675         case MO_32:
8676             if (is_u) {
8677                 fn = gen_helper_vfp_touls;
8678             } else {
8679                 fn = gen_helper_vfp_tosls;
8680             }
8681             break;
8682         default:
8683             g_assert_not_reached();
8684         }
8685 
8686         for (pass = 0; pass < maxpass; pass++) {
8687             TCGv_i32 tcg_op = tcg_temp_new_i32();
8688 
8689             read_vec_element_i32(s, tcg_op, rn, pass, size);
8690             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8691             if (is_scalar) {
8692                 write_fp_sreg(s, rd, tcg_op);
8693             } else {
8694                 write_vec_element_i32(s, tcg_op, rd, pass, size);
8695             }
8696         }
8697         if (!is_scalar) {
8698             clear_vec_high(s, is_q, rd);
8699         }
8700     }
8701 
8702     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8703 }
8704 
8705 /* AdvSIMD scalar shift by immediate
8706  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
8707  * +-----+---+-------------+------+------+--------+---+------+------+
8708  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
8709  * +-----+---+-------------+------+------+--------+---+------+------+
8710  *
8711  * This is the scalar version so it works on a fixed sized registers
8712  */
8713 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8714 {
8715     int rd = extract32(insn, 0, 5);
8716     int rn = extract32(insn, 5, 5);
8717     int opcode = extract32(insn, 11, 5);
8718     int immb = extract32(insn, 16, 3);
8719     int immh = extract32(insn, 19, 4);
8720     bool is_u = extract32(insn, 29, 1);
8721 
8722     if (immh == 0) {
8723         unallocated_encoding(s);
8724         return;
8725     }
8726 
8727     switch (opcode) {
8728     case 0x08: /* SRI */
8729         if (!is_u) {
8730             unallocated_encoding(s);
8731             return;
8732         }
8733         /* fall through */
8734     case 0x00: /* SSHR / USHR */
8735     case 0x02: /* SSRA / USRA */
8736     case 0x04: /* SRSHR / URSHR */
8737     case 0x06: /* SRSRA / URSRA */
8738         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8739         break;
8740     case 0x0a: /* SHL / SLI */
8741         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8742         break;
8743     case 0x1c: /* SCVTF, UCVTF */
8744         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8745                                      opcode, rn, rd);
8746         break;
8747     case 0x10: /* SQSHRUN, SQSHRUN2 */
8748     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8749         if (!is_u) {
8750             unallocated_encoding(s);
8751             return;
8752         }
8753         handle_vec_simd_sqshrn(s, true, false, false, true,
8754                                immh, immb, opcode, rn, rd);
8755         break;
8756     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8757     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8758         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8759                                immh, immb, opcode, rn, rd);
8760         break;
8761     case 0xc: /* SQSHLU */
8762         if (!is_u) {
8763             unallocated_encoding(s);
8764             return;
8765         }
8766         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8767         break;
8768     case 0xe: /* SQSHL, UQSHL */
8769         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8770         break;
8771     case 0x1f: /* FCVTZS, FCVTZU */
8772         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8773         break;
8774     default:
8775         unallocated_encoding(s);
8776         break;
8777     }
8778 }
8779 
8780 /* AdvSIMD scalar three different
8781  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
8782  * +-----+---+-----------+------+---+------+--------+-----+------+------+
8783  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
8784  * +-----+---+-----------+------+---+------+--------+-----+------+------+
8785  */
8786 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8787 {
8788     bool is_u = extract32(insn, 29, 1);
8789     int size = extract32(insn, 22, 2);
8790     int opcode = extract32(insn, 12, 4);
8791     int rm = extract32(insn, 16, 5);
8792     int rn = extract32(insn, 5, 5);
8793     int rd = extract32(insn, 0, 5);
8794 
8795     if (is_u) {
8796         unallocated_encoding(s);
8797         return;
8798     }
8799 
8800     switch (opcode) {
8801     case 0x9: /* SQDMLAL, SQDMLAL2 */
8802     case 0xb: /* SQDMLSL, SQDMLSL2 */
8803     case 0xd: /* SQDMULL, SQDMULL2 */
8804         if (size == 0 || size == 3) {
8805             unallocated_encoding(s);
8806             return;
8807         }
8808         break;
8809     default:
8810         unallocated_encoding(s);
8811         return;
8812     }
8813 
8814     if (!fp_access_check(s)) {
8815         return;
8816     }
8817 
8818     if (size == 2) {
8819         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8820         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8821         TCGv_i64 tcg_res = tcg_temp_new_i64();
8822 
8823         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8824         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8825 
8826         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8827         gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
8828 
8829         switch (opcode) {
8830         case 0xd: /* SQDMULL, SQDMULL2 */
8831             break;
8832         case 0xb: /* SQDMLSL, SQDMLSL2 */
8833             tcg_gen_neg_i64(tcg_res, tcg_res);
8834             /* fall through */
8835         case 0x9: /* SQDMLAL, SQDMLAL2 */
8836             read_vec_element(s, tcg_op1, rd, 0, MO_64);
8837             gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
8838                                               tcg_res, tcg_op1);
8839             break;
8840         default:
8841             g_assert_not_reached();
8842         }
8843 
8844         write_fp_dreg(s, rd, tcg_res);
8845     } else {
8846         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8847         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8848         TCGv_i64 tcg_res = tcg_temp_new_i64();
8849 
8850         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8851         gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
8852 
8853         switch (opcode) {
8854         case 0xd: /* SQDMULL, SQDMULL2 */
8855             break;
8856         case 0xb: /* SQDMLSL, SQDMLSL2 */
8857             gen_helper_neon_negl_u32(tcg_res, tcg_res);
8858             /* fall through */
8859         case 0x9: /* SQDMLAL, SQDMLAL2 */
8860         {
8861             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8862             read_vec_element(s, tcg_op3, rd, 0, MO_32);
8863             gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
8864                                               tcg_res, tcg_op3);
8865             break;
8866         }
8867         default:
8868             g_assert_not_reached();
8869         }
8870 
8871         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8872         write_fp_dreg(s, rd, tcg_res);
8873     }
8874 }
8875 
8876 static void handle_3same_64(DisasContext *s, int opcode, bool u,
8877                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
8878 {
8879     /* Handle 64x64->64 opcodes which are shared between the scalar
8880      * and vector 3-same groups. We cover every opcode where size == 3
8881      * is valid in either the three-reg-same (integer, not pairwise)
8882      * or scalar-three-reg-same groups.
8883      */
8884     TCGCond cond;
8885 
8886     switch (opcode) {
8887     case 0x1: /* SQADD */
8888         if (u) {
8889             gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8890         } else {
8891             gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8892         }
8893         break;
8894     case 0x5: /* SQSUB */
8895         if (u) {
8896             gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8897         } else {
8898             gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8899         }
8900         break;
8901     case 0x6: /* CMGT, CMHI */
8902         cond = u ? TCG_COND_GTU : TCG_COND_GT;
8903     do_cmop:
8904         /* 64 bit integer comparison, result = test ? -1 : 0. */
8905         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8906         break;
8907     case 0x7: /* CMGE, CMHS */
8908         cond = u ? TCG_COND_GEU : TCG_COND_GE;
8909         goto do_cmop;
8910     case 0x11: /* CMTST, CMEQ */
8911         if (u) {
8912             cond = TCG_COND_EQ;
8913             goto do_cmop;
8914         }
8915         gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8916         break;
8917     case 0x8: /* SSHL, USHL */
8918         if (u) {
8919             gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
8920         } else {
8921             gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
8922         }
8923         break;
8924     case 0x9: /* SQSHL, UQSHL */
8925         if (u) {
8926             gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8927         } else {
8928             gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8929         }
8930         break;
8931     case 0xa: /* SRSHL, URSHL */
8932         if (u) {
8933             gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
8934         } else {
8935             gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
8936         }
8937         break;
8938     case 0xb: /* SQRSHL, UQRSHL */
8939         if (u) {
8940             gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8941         } else {
8942             gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8943         }
8944         break;
8945     case 0x10: /* ADD, SUB */
8946         if (u) {
8947             tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
8948         } else {
8949             tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
8950         }
8951         break;
8952     default:
8953         g_assert_not_reached();
8954     }
8955 }
8956 
8957 /* Handle the 3-same-operands float operations; shared by the scalar
8958  * and vector encodings. The caller must filter out any encodings
8959  * not allocated for the encoding it is dealing with.
8960  */
8961 static void handle_3same_float(DisasContext *s, int size, int elements,
8962                                int fpopcode, int rd, int rn, int rm)
8963 {
8964     int pass;
8965     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
8966 
8967     for (pass = 0; pass < elements; pass++) {
8968         if (size) {
8969             /* Double */
8970             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8971             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8972             TCGv_i64 tcg_res = tcg_temp_new_i64();
8973 
8974             read_vec_element(s, tcg_op1, rn, pass, MO_64);
8975             read_vec_element(s, tcg_op2, rm, pass, MO_64);
8976 
8977             switch (fpopcode) {
8978             case 0x39: /* FMLS */
8979                 /* As usual for ARM, separate negation for fused multiply-add */
8980                 gen_helper_vfp_negd(tcg_op1, tcg_op1);
8981                 /* fall through */
8982             case 0x19: /* FMLA */
8983                 read_vec_element(s, tcg_res, rd, pass, MO_64);
8984                 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
8985                                        tcg_res, fpst);
8986                 break;
8987             case 0x18: /* FMAXNM */
8988                 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8989                 break;
8990             case 0x1a: /* FADD */
8991                 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8992                 break;
8993             case 0x1b: /* FMULX */
8994                 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
8995                 break;
8996             case 0x1c: /* FCMEQ */
8997                 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8998                 break;
8999             case 0x1e: /* FMAX */
9000                 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
9001                 break;
9002             case 0x1f: /* FRECPS */
9003                 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9004                 break;
9005             case 0x38: /* FMINNM */
9006                 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9007                 break;
9008             case 0x3a: /* FSUB */
9009                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9010                 break;
9011             case 0x3e: /* FMIN */
9012                 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
9013                 break;
9014             case 0x3f: /* FRSQRTS */
9015                 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9016                 break;
9017             case 0x5b: /* FMUL */
9018                 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
9019                 break;
9020             case 0x5c: /* FCMGE */
9021                 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9022                 break;
9023             case 0x5d: /* FACGE */
9024                 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9025                 break;
9026             case 0x5f: /* FDIV */
9027                 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
9028                 break;
9029             case 0x7a: /* FABD */
9030                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9031                 gen_helper_vfp_absd(tcg_res, tcg_res);
9032                 break;
9033             case 0x7c: /* FCMGT */
9034                 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9035                 break;
9036             case 0x7d: /* FACGT */
9037                 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9038                 break;
9039             default:
9040                 g_assert_not_reached();
9041             }
9042 
9043             write_vec_element(s, tcg_res, rd, pass, MO_64);
9044         } else {
9045             /* Single */
9046             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9047             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9048             TCGv_i32 tcg_res = tcg_temp_new_i32();
9049 
9050             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9051             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9052 
9053             switch (fpopcode) {
9054             case 0x39: /* FMLS */
9055                 /* As usual for ARM, separate negation for fused multiply-add */
9056                 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9057                 /* fall through */
9058             case 0x19: /* FMLA */
9059                 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9060                 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9061                                        tcg_res, fpst);
9062                 break;
9063             case 0x1a: /* FADD */
9064                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
9065                 break;
9066             case 0x1b: /* FMULX */
9067                 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
9068                 break;
9069             case 0x1c: /* FCMEQ */
9070                 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9071                 break;
9072             case 0x1e: /* FMAX */
9073                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9074                 break;
9075             case 0x1f: /* FRECPS */
9076                 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9077                 break;
9078             case 0x18: /* FMAXNM */
9079                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9080                 break;
9081             case 0x38: /* FMINNM */
9082                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9083                 break;
9084             case 0x3a: /* FSUB */
9085                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9086                 break;
9087             case 0x3e: /* FMIN */
9088                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9089                 break;
9090             case 0x3f: /* FRSQRTS */
9091                 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9092                 break;
9093             case 0x5b: /* FMUL */
9094                 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9095                 break;
9096             case 0x5c: /* FCMGE */
9097                 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9098                 break;
9099             case 0x5d: /* FACGE */
9100                 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9101                 break;
9102             case 0x5f: /* FDIV */
9103                 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9104                 break;
9105             case 0x7a: /* FABD */
9106                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9107                 gen_helper_vfp_abss(tcg_res, tcg_res);
9108                 break;
9109             case 0x7c: /* FCMGT */
9110                 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9111                 break;
9112             case 0x7d: /* FACGT */
9113                 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9114                 break;
9115             default:
9116                 g_assert_not_reached();
9117             }
9118 
9119             if (elements == 1) {
9120                 /* scalar single so clear high part */
9121                 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9122 
9123                 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9124                 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9125             } else {
9126                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9127             }
9128         }
9129     }
9130 
9131     clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9132 }
9133 
9134 /* AdvSIMD scalar three same
9135  *  31 30  29 28       24 23  22  21 20  16 15    11  10 9    5 4    0
9136  * +-----+---+-----------+------+---+------+--------+---+------+------+
9137  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
9138  * +-----+---+-----------+------+---+------+--------+---+------+------+
9139  */
9140 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9141 {
9142     int rd = extract32(insn, 0, 5);
9143     int rn = extract32(insn, 5, 5);
9144     int opcode = extract32(insn, 11, 5);
9145     int rm = extract32(insn, 16, 5);
9146     int size = extract32(insn, 22, 2);
9147     bool u = extract32(insn, 29, 1);
9148     TCGv_i64 tcg_rd;
9149 
9150     if (opcode >= 0x18) {
9151         /* Floating point: U, size[1] and opcode indicate operation */
9152         int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9153         switch (fpopcode) {
9154         case 0x1b: /* FMULX */
9155         case 0x1f: /* FRECPS */
9156         case 0x3f: /* FRSQRTS */
9157         case 0x5d: /* FACGE */
9158         case 0x7d: /* FACGT */
9159         case 0x1c: /* FCMEQ */
9160         case 0x5c: /* FCMGE */
9161         case 0x7c: /* FCMGT */
9162         case 0x7a: /* FABD */
9163             break;
9164         default:
9165             unallocated_encoding(s);
9166             return;
9167         }
9168 
9169         if (!fp_access_check(s)) {
9170             return;
9171         }
9172 
9173         handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9174         return;
9175     }
9176 
9177     switch (opcode) {
9178     case 0x1: /* SQADD, UQADD */
9179     case 0x5: /* SQSUB, UQSUB */
9180     case 0x9: /* SQSHL, UQSHL */
9181     case 0xb: /* SQRSHL, UQRSHL */
9182         break;
9183     case 0x8: /* SSHL, USHL */
9184     case 0xa: /* SRSHL, URSHL */
9185     case 0x6: /* CMGT, CMHI */
9186     case 0x7: /* CMGE, CMHS */
9187     case 0x11: /* CMTST, CMEQ */
9188     case 0x10: /* ADD, SUB (vector) */
9189         if (size != 3) {
9190             unallocated_encoding(s);
9191             return;
9192         }
9193         break;
9194     case 0x16: /* SQDMULH, SQRDMULH (vector) */
9195         if (size != 1 && size != 2) {
9196             unallocated_encoding(s);
9197             return;
9198         }
9199         break;
9200     default:
9201         unallocated_encoding(s);
9202         return;
9203     }
9204 
9205     if (!fp_access_check(s)) {
9206         return;
9207     }
9208 
9209     tcg_rd = tcg_temp_new_i64();
9210 
9211     if (size == 3) {
9212         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9213         TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9214 
9215         handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9216     } else {
9217         /* Do a single operation on the lowest element in the vector.
9218          * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9219          * no side effects for all these operations.
9220          * OPTME: special-purpose helpers would avoid doing some
9221          * unnecessary work in the helper for the 8 and 16 bit cases.
9222          */
9223         NeonGenTwoOpEnvFn *genenvfn;
9224         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9225         TCGv_i32 tcg_rm = tcg_temp_new_i32();
9226         TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9227 
9228         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9229         read_vec_element_i32(s, tcg_rm, rm, 0, size);
9230 
9231         switch (opcode) {
9232         case 0x1: /* SQADD, UQADD */
9233         {
9234             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9235                 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9236                 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9237                 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9238             };
9239             genenvfn = fns[size][u];
9240             break;
9241         }
9242         case 0x5: /* SQSUB, UQSUB */
9243         {
9244             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9245                 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9246                 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9247                 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9248             };
9249             genenvfn = fns[size][u];
9250             break;
9251         }
9252         case 0x9: /* SQSHL, UQSHL */
9253         {
9254             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9255                 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9256                 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9257                 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9258             };
9259             genenvfn = fns[size][u];
9260             break;
9261         }
9262         case 0xb: /* SQRSHL, UQRSHL */
9263         {
9264             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9265                 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9266                 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9267                 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9268             };
9269             genenvfn = fns[size][u];
9270             break;
9271         }
9272         case 0x16: /* SQDMULH, SQRDMULH */
9273         {
9274             static NeonGenTwoOpEnvFn * const fns[2][2] = {
9275                 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9276                 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9277             };
9278             assert(size == 1 || size == 2);
9279             genenvfn = fns[size - 1][u];
9280             break;
9281         }
9282         default:
9283             g_assert_not_reached();
9284         }
9285 
9286         genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm);
9287         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9288     }
9289 
9290     write_fp_dreg(s, rd, tcg_rd);
9291 }
9292 
9293 /* AdvSIMD scalar three same FP16
9294  *  31 30  29 28       24 23  22 21 20  16 15 14 13    11 10  9  5 4  0
9295  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9296  * | 0 1 | U | 1 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 | Rn | Rd |
9297  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9298  * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9299  * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9300  */
9301 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9302                                                   uint32_t insn)
9303 {
9304     int rd = extract32(insn, 0, 5);
9305     int rn = extract32(insn, 5, 5);
9306     int opcode = extract32(insn, 11, 3);
9307     int rm = extract32(insn, 16, 5);
9308     bool u = extract32(insn, 29, 1);
9309     bool a = extract32(insn, 23, 1);
9310     int fpopcode = opcode | (a << 3) |  (u << 4);
9311     TCGv_ptr fpst;
9312     TCGv_i32 tcg_op1;
9313     TCGv_i32 tcg_op2;
9314     TCGv_i32 tcg_res;
9315 
9316     switch (fpopcode) {
9317     case 0x03: /* FMULX */
9318     case 0x04: /* FCMEQ (reg) */
9319     case 0x07: /* FRECPS */
9320     case 0x0f: /* FRSQRTS */
9321     case 0x14: /* FCMGE (reg) */
9322     case 0x15: /* FACGE */
9323     case 0x1a: /* FABD */
9324     case 0x1c: /* FCMGT (reg) */
9325     case 0x1d: /* FACGT */
9326         break;
9327     default:
9328         unallocated_encoding(s);
9329         return;
9330     }
9331 
9332     if (!dc_isar_feature(aa64_fp16, s)) {
9333         unallocated_encoding(s);
9334     }
9335 
9336     if (!fp_access_check(s)) {
9337         return;
9338     }
9339 
9340     fpst = fpstatus_ptr(FPST_FPCR_F16);
9341 
9342     tcg_op1 = read_fp_hreg(s, rn);
9343     tcg_op2 = read_fp_hreg(s, rm);
9344     tcg_res = tcg_temp_new_i32();
9345 
9346     switch (fpopcode) {
9347     case 0x03: /* FMULX */
9348         gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9349         break;
9350     case 0x04: /* FCMEQ (reg) */
9351         gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9352         break;
9353     case 0x07: /* FRECPS */
9354         gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9355         break;
9356     case 0x0f: /* FRSQRTS */
9357         gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9358         break;
9359     case 0x14: /* FCMGE (reg) */
9360         gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9361         break;
9362     case 0x15: /* FACGE */
9363         gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9364         break;
9365     case 0x1a: /* FABD */
9366         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9367         tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9368         break;
9369     case 0x1c: /* FCMGT (reg) */
9370         gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9371         break;
9372     case 0x1d: /* FACGT */
9373         gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9374         break;
9375     default:
9376         g_assert_not_reached();
9377     }
9378 
9379     write_fp_sreg(s, rd, tcg_res);
9380 }
9381 
9382 /* AdvSIMD scalar three same extra
9383  *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9384  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9385  * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9386  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9387  */
9388 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9389                                                    uint32_t insn)
9390 {
9391     int rd = extract32(insn, 0, 5);
9392     int rn = extract32(insn, 5, 5);
9393     int opcode = extract32(insn, 11, 4);
9394     int rm = extract32(insn, 16, 5);
9395     int size = extract32(insn, 22, 2);
9396     bool u = extract32(insn, 29, 1);
9397     TCGv_i32 ele1, ele2, ele3;
9398     TCGv_i64 res;
9399     bool feature;
9400 
9401     switch (u * 16 + opcode) {
9402     case 0x10: /* SQRDMLAH (vector) */
9403     case 0x11: /* SQRDMLSH (vector) */
9404         if (size != 1 && size != 2) {
9405             unallocated_encoding(s);
9406             return;
9407         }
9408         feature = dc_isar_feature(aa64_rdm, s);
9409         break;
9410     default:
9411         unallocated_encoding(s);
9412         return;
9413     }
9414     if (!feature) {
9415         unallocated_encoding(s);
9416         return;
9417     }
9418     if (!fp_access_check(s)) {
9419         return;
9420     }
9421 
9422     /* Do a single operation on the lowest element in the vector.
9423      * We use the standard Neon helpers and rely on 0 OP 0 == 0
9424      * with no side effects for all these operations.
9425      * OPTME: special-purpose helpers would avoid doing some
9426      * unnecessary work in the helper for the 16 bit cases.
9427      */
9428     ele1 = tcg_temp_new_i32();
9429     ele2 = tcg_temp_new_i32();
9430     ele3 = tcg_temp_new_i32();
9431 
9432     read_vec_element_i32(s, ele1, rn, 0, size);
9433     read_vec_element_i32(s, ele2, rm, 0, size);
9434     read_vec_element_i32(s, ele3, rd, 0, size);
9435 
9436     switch (opcode) {
9437     case 0x0: /* SQRDMLAH */
9438         if (size == 1) {
9439             gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3);
9440         } else {
9441             gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3);
9442         }
9443         break;
9444     case 0x1: /* SQRDMLSH */
9445         if (size == 1) {
9446             gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3);
9447         } else {
9448             gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3);
9449         }
9450         break;
9451     default:
9452         g_assert_not_reached();
9453     }
9454 
9455     res = tcg_temp_new_i64();
9456     tcg_gen_extu_i32_i64(res, ele3);
9457     write_fp_dreg(s, rd, res);
9458 }
9459 
9460 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9461                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9462                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9463 {
9464     /* Handle 64->64 opcodes which are shared between the scalar and
9465      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9466      * is valid in either group and also the double-precision fp ops.
9467      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9468      * requires them.
9469      */
9470     TCGCond cond;
9471 
9472     switch (opcode) {
9473     case 0x4: /* CLS, CLZ */
9474         if (u) {
9475             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9476         } else {
9477             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9478         }
9479         break;
9480     case 0x5: /* NOT */
9481         /* This opcode is shared with CNT and RBIT but we have earlier
9482          * enforced that size == 3 if and only if this is the NOT insn.
9483          */
9484         tcg_gen_not_i64(tcg_rd, tcg_rn);
9485         break;
9486     case 0x7: /* SQABS, SQNEG */
9487         if (u) {
9488             gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9489         } else {
9490             gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9491         }
9492         break;
9493     case 0xa: /* CMLT */
9494         cond = TCG_COND_LT;
9495     do_cmop:
9496         /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9497         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9498         break;
9499     case 0x8: /* CMGT, CMGE */
9500         cond = u ? TCG_COND_GE : TCG_COND_GT;
9501         goto do_cmop;
9502     case 0x9: /* CMEQ, CMLE */
9503         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9504         goto do_cmop;
9505     case 0xb: /* ABS, NEG */
9506         if (u) {
9507             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9508         } else {
9509             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9510         }
9511         break;
9512     case 0x2f: /* FABS */
9513         gen_helper_vfp_absd(tcg_rd, tcg_rn);
9514         break;
9515     case 0x6f: /* FNEG */
9516         gen_helper_vfp_negd(tcg_rd, tcg_rn);
9517         break;
9518     case 0x7f: /* FSQRT */
9519         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9520         break;
9521     case 0x1a: /* FCVTNS */
9522     case 0x1b: /* FCVTMS */
9523     case 0x1c: /* FCVTAS */
9524     case 0x3a: /* FCVTPS */
9525     case 0x3b: /* FCVTZS */
9526         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9527         break;
9528     case 0x5a: /* FCVTNU */
9529     case 0x5b: /* FCVTMU */
9530     case 0x5c: /* FCVTAU */
9531     case 0x7a: /* FCVTPU */
9532     case 0x7b: /* FCVTZU */
9533         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9534         break;
9535     case 0x18: /* FRINTN */
9536     case 0x19: /* FRINTM */
9537     case 0x38: /* FRINTP */
9538     case 0x39: /* FRINTZ */
9539     case 0x58: /* FRINTA */
9540     case 0x79: /* FRINTI */
9541         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9542         break;
9543     case 0x59: /* FRINTX */
9544         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9545         break;
9546     case 0x1e: /* FRINT32Z */
9547     case 0x5e: /* FRINT32X */
9548         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9549         break;
9550     case 0x1f: /* FRINT64Z */
9551     case 0x5f: /* FRINT64X */
9552         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9553         break;
9554     default:
9555         g_assert_not_reached();
9556     }
9557 }
9558 
9559 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9560                                    bool is_scalar, bool is_u, bool is_q,
9561                                    int size, int rn, int rd)
9562 {
9563     bool is_double = (size == MO_64);
9564     TCGv_ptr fpst;
9565 
9566     if (!fp_access_check(s)) {
9567         return;
9568     }
9569 
9570     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9571 
9572     if (is_double) {
9573         TCGv_i64 tcg_op = tcg_temp_new_i64();
9574         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9575         TCGv_i64 tcg_res = tcg_temp_new_i64();
9576         NeonGenTwoDoubleOpFn *genfn;
9577         bool swap = false;
9578         int pass;
9579 
9580         switch (opcode) {
9581         case 0x2e: /* FCMLT (zero) */
9582             swap = true;
9583             /* fallthrough */
9584         case 0x2c: /* FCMGT (zero) */
9585             genfn = gen_helper_neon_cgt_f64;
9586             break;
9587         case 0x2d: /* FCMEQ (zero) */
9588             genfn = gen_helper_neon_ceq_f64;
9589             break;
9590         case 0x6d: /* FCMLE (zero) */
9591             swap = true;
9592             /* fall through */
9593         case 0x6c: /* FCMGE (zero) */
9594             genfn = gen_helper_neon_cge_f64;
9595             break;
9596         default:
9597             g_assert_not_reached();
9598         }
9599 
9600         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9601             read_vec_element(s, tcg_op, rn, pass, MO_64);
9602             if (swap) {
9603                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9604             } else {
9605                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9606             }
9607             write_vec_element(s, tcg_res, rd, pass, MO_64);
9608         }
9609 
9610         clear_vec_high(s, !is_scalar, rd);
9611     } else {
9612         TCGv_i32 tcg_op = tcg_temp_new_i32();
9613         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9614         TCGv_i32 tcg_res = tcg_temp_new_i32();
9615         NeonGenTwoSingleOpFn *genfn;
9616         bool swap = false;
9617         int pass, maxpasses;
9618 
9619         if (size == MO_16) {
9620             switch (opcode) {
9621             case 0x2e: /* FCMLT (zero) */
9622                 swap = true;
9623                 /* fall through */
9624             case 0x2c: /* FCMGT (zero) */
9625                 genfn = gen_helper_advsimd_cgt_f16;
9626                 break;
9627             case 0x2d: /* FCMEQ (zero) */
9628                 genfn = gen_helper_advsimd_ceq_f16;
9629                 break;
9630             case 0x6d: /* FCMLE (zero) */
9631                 swap = true;
9632                 /* fall through */
9633             case 0x6c: /* FCMGE (zero) */
9634                 genfn = gen_helper_advsimd_cge_f16;
9635                 break;
9636             default:
9637                 g_assert_not_reached();
9638             }
9639         } else {
9640             switch (opcode) {
9641             case 0x2e: /* FCMLT (zero) */
9642                 swap = true;
9643                 /* fall through */
9644             case 0x2c: /* FCMGT (zero) */
9645                 genfn = gen_helper_neon_cgt_f32;
9646                 break;
9647             case 0x2d: /* FCMEQ (zero) */
9648                 genfn = gen_helper_neon_ceq_f32;
9649                 break;
9650             case 0x6d: /* FCMLE (zero) */
9651                 swap = true;
9652                 /* fall through */
9653             case 0x6c: /* FCMGE (zero) */
9654                 genfn = gen_helper_neon_cge_f32;
9655                 break;
9656             default:
9657                 g_assert_not_reached();
9658             }
9659         }
9660 
9661         if (is_scalar) {
9662             maxpasses = 1;
9663         } else {
9664             int vector_size = 8 << is_q;
9665             maxpasses = vector_size >> size;
9666         }
9667 
9668         for (pass = 0; pass < maxpasses; pass++) {
9669             read_vec_element_i32(s, tcg_op, rn, pass, size);
9670             if (swap) {
9671                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9672             } else {
9673                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9674             }
9675             if (is_scalar) {
9676                 write_fp_sreg(s, rd, tcg_res);
9677             } else {
9678                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9679             }
9680         }
9681 
9682         if (!is_scalar) {
9683             clear_vec_high(s, is_q, rd);
9684         }
9685     }
9686 }
9687 
9688 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9689                                     bool is_scalar, bool is_u, bool is_q,
9690                                     int size, int rn, int rd)
9691 {
9692     bool is_double = (size == 3);
9693     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9694 
9695     if (is_double) {
9696         TCGv_i64 tcg_op = tcg_temp_new_i64();
9697         TCGv_i64 tcg_res = tcg_temp_new_i64();
9698         int pass;
9699 
9700         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9701             read_vec_element(s, tcg_op, rn, pass, MO_64);
9702             switch (opcode) {
9703             case 0x3d: /* FRECPE */
9704                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9705                 break;
9706             case 0x3f: /* FRECPX */
9707                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9708                 break;
9709             case 0x7d: /* FRSQRTE */
9710                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9711                 break;
9712             default:
9713                 g_assert_not_reached();
9714             }
9715             write_vec_element(s, tcg_res, rd, pass, MO_64);
9716         }
9717         clear_vec_high(s, !is_scalar, rd);
9718     } else {
9719         TCGv_i32 tcg_op = tcg_temp_new_i32();
9720         TCGv_i32 tcg_res = tcg_temp_new_i32();
9721         int pass, maxpasses;
9722 
9723         if (is_scalar) {
9724             maxpasses = 1;
9725         } else {
9726             maxpasses = is_q ? 4 : 2;
9727         }
9728 
9729         for (pass = 0; pass < maxpasses; pass++) {
9730             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9731 
9732             switch (opcode) {
9733             case 0x3c: /* URECPE */
9734                 gen_helper_recpe_u32(tcg_res, tcg_op);
9735                 break;
9736             case 0x3d: /* FRECPE */
9737                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9738                 break;
9739             case 0x3f: /* FRECPX */
9740                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9741                 break;
9742             case 0x7d: /* FRSQRTE */
9743                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9744                 break;
9745             default:
9746                 g_assert_not_reached();
9747             }
9748 
9749             if (is_scalar) {
9750                 write_fp_sreg(s, rd, tcg_res);
9751             } else {
9752                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9753             }
9754         }
9755         if (!is_scalar) {
9756             clear_vec_high(s, is_q, rd);
9757         }
9758     }
9759 }
9760 
9761 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9762                                 int opcode, bool u, bool is_q,
9763                                 int size, int rn, int rd)
9764 {
9765     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9766      * in the source becomes a size element in the destination).
9767      */
9768     int pass;
9769     TCGv_i32 tcg_res[2];
9770     int destelt = is_q ? 2 : 0;
9771     int passes = scalar ? 1 : 2;
9772 
9773     if (scalar) {
9774         tcg_res[1] = tcg_constant_i32(0);
9775     }
9776 
9777     for (pass = 0; pass < passes; pass++) {
9778         TCGv_i64 tcg_op = tcg_temp_new_i64();
9779         NeonGenNarrowFn *genfn = NULL;
9780         NeonGenNarrowEnvFn *genenvfn = NULL;
9781 
9782         if (scalar) {
9783             read_vec_element(s, tcg_op, rn, pass, size + 1);
9784         } else {
9785             read_vec_element(s, tcg_op, rn, pass, MO_64);
9786         }
9787         tcg_res[pass] = tcg_temp_new_i32();
9788 
9789         switch (opcode) {
9790         case 0x12: /* XTN, SQXTUN */
9791         {
9792             static NeonGenNarrowFn * const xtnfns[3] = {
9793                 gen_helper_neon_narrow_u8,
9794                 gen_helper_neon_narrow_u16,
9795                 tcg_gen_extrl_i64_i32,
9796             };
9797             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9798                 gen_helper_neon_unarrow_sat8,
9799                 gen_helper_neon_unarrow_sat16,
9800                 gen_helper_neon_unarrow_sat32,
9801             };
9802             if (u) {
9803                 genenvfn = sqxtunfns[size];
9804             } else {
9805                 genfn = xtnfns[size];
9806             }
9807             break;
9808         }
9809         case 0x14: /* SQXTN, UQXTN */
9810         {
9811             static NeonGenNarrowEnvFn * const fns[3][2] = {
9812                 { gen_helper_neon_narrow_sat_s8,
9813                   gen_helper_neon_narrow_sat_u8 },
9814                 { gen_helper_neon_narrow_sat_s16,
9815                   gen_helper_neon_narrow_sat_u16 },
9816                 { gen_helper_neon_narrow_sat_s32,
9817                   gen_helper_neon_narrow_sat_u32 },
9818             };
9819             genenvfn = fns[size][u];
9820             break;
9821         }
9822         case 0x16: /* FCVTN, FCVTN2 */
9823             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9824             if (size == 2) {
9825                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
9826             } else {
9827                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9828                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9829                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9830                 TCGv_i32 ahp = get_ahp_flag();
9831 
9832                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9833                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9834                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9835                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9836             }
9837             break;
9838         case 0x36: /* BFCVTN, BFCVTN2 */
9839             {
9840                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9841                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
9842             }
9843             break;
9844         case 0x56:  /* FCVTXN, FCVTXN2 */
9845             /* 64 bit to 32 bit float conversion
9846              * with von Neumann rounding (round to odd)
9847              */
9848             assert(size == 2);
9849             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
9850             break;
9851         default:
9852             g_assert_not_reached();
9853         }
9854 
9855         if (genfn) {
9856             genfn(tcg_res[pass], tcg_op);
9857         } else if (genenvfn) {
9858             genenvfn(tcg_res[pass], tcg_env, tcg_op);
9859         }
9860     }
9861 
9862     for (pass = 0; pass < 2; pass++) {
9863         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9864     }
9865     clear_vec_high(s, is_q, rd);
9866 }
9867 
9868 /* Remaining saturating accumulating ops */
9869 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9870                                 bool is_q, int size, int rn, int rd)
9871 {
9872     bool is_double = (size == 3);
9873 
9874     if (is_double) {
9875         TCGv_i64 tcg_rn = tcg_temp_new_i64();
9876         TCGv_i64 tcg_rd = tcg_temp_new_i64();
9877         int pass;
9878 
9879         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9880             read_vec_element(s, tcg_rn, rn, pass, MO_64);
9881             read_vec_element(s, tcg_rd, rd, pass, MO_64);
9882 
9883             if (is_u) { /* USQADD */
9884                 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9885             } else { /* SUQADD */
9886                 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9887             }
9888             write_vec_element(s, tcg_rd, rd, pass, MO_64);
9889         }
9890         clear_vec_high(s, !is_scalar, rd);
9891     } else {
9892         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9893         TCGv_i32 tcg_rd = tcg_temp_new_i32();
9894         int pass, maxpasses;
9895 
9896         if (is_scalar) {
9897             maxpasses = 1;
9898         } else {
9899             maxpasses = is_q ? 4 : 2;
9900         }
9901 
9902         for (pass = 0; pass < maxpasses; pass++) {
9903             if (is_scalar) {
9904                 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9905                 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9906             } else {
9907                 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9908                 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9909             }
9910 
9911             if (is_u) { /* USQADD */
9912                 switch (size) {
9913                 case 0:
9914                     gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9915                     break;
9916                 case 1:
9917                     gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9918                     break;
9919                 case 2:
9920                     gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9921                     break;
9922                 default:
9923                     g_assert_not_reached();
9924                 }
9925             } else { /* SUQADD */
9926                 switch (size) {
9927                 case 0:
9928                     gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9929                     break;
9930                 case 1:
9931                     gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9932                     break;
9933                 case 2:
9934                     gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9935                     break;
9936                 default:
9937                     g_assert_not_reached();
9938                 }
9939             }
9940 
9941             if (is_scalar) {
9942                 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
9943             }
9944             write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9945         }
9946         clear_vec_high(s, is_q, rd);
9947     }
9948 }
9949 
9950 /* AdvSIMD scalar two reg misc
9951  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
9952  * +-----+---+-----------+------+-----------+--------+-----+------+------+
9953  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
9954  * +-----+---+-----------+------+-----------+--------+-----+------+------+
9955  */
9956 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
9957 {
9958     int rd = extract32(insn, 0, 5);
9959     int rn = extract32(insn, 5, 5);
9960     int opcode = extract32(insn, 12, 5);
9961     int size = extract32(insn, 22, 2);
9962     bool u = extract32(insn, 29, 1);
9963     bool is_fcvt = false;
9964     int rmode;
9965     TCGv_i32 tcg_rmode;
9966     TCGv_ptr tcg_fpstatus;
9967 
9968     switch (opcode) {
9969     case 0x3: /* USQADD / SUQADD*/
9970         if (!fp_access_check(s)) {
9971             return;
9972         }
9973         handle_2misc_satacc(s, true, u, false, size, rn, rd);
9974         return;
9975     case 0x7: /* SQABS / SQNEG */
9976         break;
9977     case 0xa: /* CMLT */
9978         if (u) {
9979             unallocated_encoding(s);
9980             return;
9981         }
9982         /* fall through */
9983     case 0x8: /* CMGT, CMGE */
9984     case 0x9: /* CMEQ, CMLE */
9985     case 0xb: /* ABS, NEG */
9986         if (size != 3) {
9987             unallocated_encoding(s);
9988             return;
9989         }
9990         break;
9991     case 0x12: /* SQXTUN */
9992         if (!u) {
9993             unallocated_encoding(s);
9994             return;
9995         }
9996         /* fall through */
9997     case 0x14: /* SQXTN, UQXTN */
9998         if (size == 3) {
9999             unallocated_encoding(s);
10000             return;
10001         }
10002         if (!fp_access_check(s)) {
10003             return;
10004         }
10005         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10006         return;
10007     case 0xc ... 0xf:
10008     case 0x16 ... 0x1d:
10009     case 0x1f:
10010         /* Floating point: U, size[1] and opcode indicate operation;
10011          * size[0] indicates single or double precision.
10012          */
10013         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10014         size = extract32(size, 0, 1) ? 3 : 2;
10015         switch (opcode) {
10016         case 0x2c: /* FCMGT (zero) */
10017         case 0x2d: /* FCMEQ (zero) */
10018         case 0x2e: /* FCMLT (zero) */
10019         case 0x6c: /* FCMGE (zero) */
10020         case 0x6d: /* FCMLE (zero) */
10021             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10022             return;
10023         case 0x1d: /* SCVTF */
10024         case 0x5d: /* UCVTF */
10025         {
10026             bool is_signed = (opcode == 0x1d);
10027             if (!fp_access_check(s)) {
10028                 return;
10029             }
10030             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10031             return;
10032         }
10033         case 0x3d: /* FRECPE */
10034         case 0x3f: /* FRECPX */
10035         case 0x7d: /* FRSQRTE */
10036             if (!fp_access_check(s)) {
10037                 return;
10038             }
10039             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10040             return;
10041         case 0x1a: /* FCVTNS */
10042         case 0x1b: /* FCVTMS */
10043         case 0x3a: /* FCVTPS */
10044         case 0x3b: /* FCVTZS */
10045         case 0x5a: /* FCVTNU */
10046         case 0x5b: /* FCVTMU */
10047         case 0x7a: /* FCVTPU */
10048         case 0x7b: /* FCVTZU */
10049             is_fcvt = true;
10050             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10051             break;
10052         case 0x1c: /* FCVTAS */
10053         case 0x5c: /* FCVTAU */
10054             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10055             is_fcvt = true;
10056             rmode = FPROUNDING_TIEAWAY;
10057             break;
10058         case 0x56: /* FCVTXN, FCVTXN2 */
10059             if (size == 2) {
10060                 unallocated_encoding(s);
10061                 return;
10062             }
10063             if (!fp_access_check(s)) {
10064                 return;
10065             }
10066             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10067             return;
10068         default:
10069             unallocated_encoding(s);
10070             return;
10071         }
10072         break;
10073     default:
10074         unallocated_encoding(s);
10075         return;
10076     }
10077 
10078     if (!fp_access_check(s)) {
10079         return;
10080     }
10081 
10082     if (is_fcvt) {
10083         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10084         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10085     } else {
10086         tcg_fpstatus = NULL;
10087         tcg_rmode = NULL;
10088     }
10089 
10090     if (size == 3) {
10091         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10092         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10093 
10094         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10095         write_fp_dreg(s, rd, tcg_rd);
10096     } else {
10097         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10098         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10099 
10100         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10101 
10102         switch (opcode) {
10103         case 0x7: /* SQABS, SQNEG */
10104         {
10105             NeonGenOneOpEnvFn *genfn;
10106             static NeonGenOneOpEnvFn * const fns[3][2] = {
10107                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10108                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10109                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10110             };
10111             genfn = fns[size][u];
10112             genfn(tcg_rd, tcg_env, tcg_rn);
10113             break;
10114         }
10115         case 0x1a: /* FCVTNS */
10116         case 0x1b: /* FCVTMS */
10117         case 0x1c: /* FCVTAS */
10118         case 0x3a: /* FCVTPS */
10119         case 0x3b: /* FCVTZS */
10120             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10121                                  tcg_fpstatus);
10122             break;
10123         case 0x5a: /* FCVTNU */
10124         case 0x5b: /* FCVTMU */
10125         case 0x5c: /* FCVTAU */
10126         case 0x7a: /* FCVTPU */
10127         case 0x7b: /* FCVTZU */
10128             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10129                                  tcg_fpstatus);
10130             break;
10131         default:
10132             g_assert_not_reached();
10133         }
10134 
10135         write_fp_sreg(s, rd, tcg_rd);
10136     }
10137 
10138     if (is_fcvt) {
10139         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10140     }
10141 }
10142 
10143 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10144 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10145                                  int immh, int immb, int opcode, int rn, int rd)
10146 {
10147     int size = 32 - clz32(immh) - 1;
10148     int immhb = immh << 3 | immb;
10149     int shift = 2 * (8 << size) - immhb;
10150     GVecGen2iFn *gvec_fn;
10151 
10152     if (extract32(immh, 3, 1) && !is_q) {
10153         unallocated_encoding(s);
10154         return;
10155     }
10156     tcg_debug_assert(size <= 3);
10157 
10158     if (!fp_access_check(s)) {
10159         return;
10160     }
10161 
10162     switch (opcode) {
10163     case 0x02: /* SSRA / USRA (accumulate) */
10164         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10165         break;
10166 
10167     case 0x08: /* SRI */
10168         gvec_fn = gen_gvec_sri;
10169         break;
10170 
10171     case 0x00: /* SSHR / USHR */
10172         if (is_u) {
10173             if (shift == 8 << size) {
10174                 /* Shift count the same size as element size produces zero.  */
10175                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10176                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10177                 return;
10178             }
10179             gvec_fn = tcg_gen_gvec_shri;
10180         } else {
10181             /* Shift count the same size as element size produces all sign.  */
10182             if (shift == 8 << size) {
10183                 shift -= 1;
10184             }
10185             gvec_fn = tcg_gen_gvec_sari;
10186         }
10187         break;
10188 
10189     case 0x04: /* SRSHR / URSHR (rounding) */
10190         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10191         break;
10192 
10193     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10194         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10195         break;
10196 
10197     default:
10198         g_assert_not_reached();
10199     }
10200 
10201     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10202 }
10203 
10204 /* SHL/SLI - Vector shift left */
10205 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10206                                  int immh, int immb, int opcode, int rn, int rd)
10207 {
10208     int size = 32 - clz32(immh) - 1;
10209     int immhb = immh << 3 | immb;
10210     int shift = immhb - (8 << size);
10211 
10212     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10213     assert(size >= 0 && size <= 3);
10214 
10215     if (extract32(immh, 3, 1) && !is_q) {
10216         unallocated_encoding(s);
10217         return;
10218     }
10219 
10220     if (!fp_access_check(s)) {
10221         return;
10222     }
10223 
10224     if (insert) {
10225         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10226     } else {
10227         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10228     }
10229 }
10230 
10231 /* USHLL/SHLL - Vector shift left with widening */
10232 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10233                                  int immh, int immb, int opcode, int rn, int rd)
10234 {
10235     int size = 32 - clz32(immh) - 1;
10236     int immhb = immh << 3 | immb;
10237     int shift = immhb - (8 << size);
10238     int dsize = 64;
10239     int esize = 8 << size;
10240     int elements = dsize/esize;
10241     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10242     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10243     int i;
10244 
10245     if (size >= 3) {
10246         unallocated_encoding(s);
10247         return;
10248     }
10249 
10250     if (!fp_access_check(s)) {
10251         return;
10252     }
10253 
10254     /* For the LL variants the store is larger than the load,
10255      * so if rd == rn we would overwrite parts of our input.
10256      * So load everything right now and use shifts in the main loop.
10257      */
10258     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10259 
10260     for (i = 0; i < elements; i++) {
10261         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10262         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10263         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10264         write_vec_element(s, tcg_rd, rd, i, size + 1);
10265     }
10266 }
10267 
10268 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10269 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10270                                  int immh, int immb, int opcode, int rn, int rd)
10271 {
10272     int immhb = immh << 3 | immb;
10273     int size = 32 - clz32(immh) - 1;
10274     int dsize = 64;
10275     int esize = 8 << size;
10276     int elements = dsize/esize;
10277     int shift = (2 * esize) - immhb;
10278     bool round = extract32(opcode, 0, 1);
10279     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10280     TCGv_i64 tcg_round;
10281     int i;
10282 
10283     if (extract32(immh, 3, 1)) {
10284         unallocated_encoding(s);
10285         return;
10286     }
10287 
10288     if (!fp_access_check(s)) {
10289         return;
10290     }
10291 
10292     tcg_rn = tcg_temp_new_i64();
10293     tcg_rd = tcg_temp_new_i64();
10294     tcg_final = tcg_temp_new_i64();
10295     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10296 
10297     if (round) {
10298         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10299     } else {
10300         tcg_round = NULL;
10301     }
10302 
10303     for (i = 0; i < elements; i++) {
10304         read_vec_element(s, tcg_rn, rn, i, size+1);
10305         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10306                                 false, true, size+1, shift);
10307 
10308         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10309     }
10310 
10311     if (!is_q) {
10312         write_vec_element(s, tcg_final, rd, 0, MO_64);
10313     } else {
10314         write_vec_element(s, tcg_final, rd, 1, MO_64);
10315     }
10316 
10317     clear_vec_high(s, is_q, rd);
10318 }
10319 
10320 
10321 /* AdvSIMD shift by immediate
10322  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10323  * +---+---+---+-------------+------+------+--------+---+------+------+
10324  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10325  * +---+---+---+-------------+------+------+--------+---+------+------+
10326  */
10327 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10328 {
10329     int rd = extract32(insn, 0, 5);
10330     int rn = extract32(insn, 5, 5);
10331     int opcode = extract32(insn, 11, 5);
10332     int immb = extract32(insn, 16, 3);
10333     int immh = extract32(insn, 19, 4);
10334     bool is_u = extract32(insn, 29, 1);
10335     bool is_q = extract32(insn, 30, 1);
10336 
10337     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10338     assert(immh != 0);
10339 
10340     switch (opcode) {
10341     case 0x08: /* SRI */
10342         if (!is_u) {
10343             unallocated_encoding(s);
10344             return;
10345         }
10346         /* fall through */
10347     case 0x00: /* SSHR / USHR */
10348     case 0x02: /* SSRA / USRA (accumulate) */
10349     case 0x04: /* SRSHR / URSHR (rounding) */
10350     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10351         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10352         break;
10353     case 0x0a: /* SHL / SLI */
10354         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10355         break;
10356     case 0x10: /* SHRN */
10357     case 0x11: /* RSHRN / SQRSHRUN */
10358         if (is_u) {
10359             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10360                                    opcode, rn, rd);
10361         } else {
10362             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10363         }
10364         break;
10365     case 0x12: /* SQSHRN / UQSHRN */
10366     case 0x13: /* SQRSHRN / UQRSHRN */
10367         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10368                                opcode, rn, rd);
10369         break;
10370     case 0x14: /* SSHLL / USHLL */
10371         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10372         break;
10373     case 0x1c: /* SCVTF / UCVTF */
10374         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10375                                      opcode, rn, rd);
10376         break;
10377     case 0xc: /* SQSHLU */
10378         if (!is_u) {
10379             unallocated_encoding(s);
10380             return;
10381         }
10382         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10383         break;
10384     case 0xe: /* SQSHL, UQSHL */
10385         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10386         break;
10387     case 0x1f: /* FCVTZS/ FCVTZU */
10388         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10389         return;
10390     default:
10391         unallocated_encoding(s);
10392         return;
10393     }
10394 }
10395 
10396 /* Generate code to do a "long" addition or subtraction, ie one done in
10397  * TCGv_i64 on vector lanes twice the width specified by size.
10398  */
10399 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10400                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10401 {
10402     static NeonGenTwo64OpFn * const fns[3][2] = {
10403         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10404         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10405         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10406     };
10407     NeonGenTwo64OpFn *genfn;
10408     assert(size < 3);
10409 
10410     genfn = fns[size][is_sub];
10411     genfn(tcg_res, tcg_op1, tcg_op2);
10412 }
10413 
10414 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10415                                 int opcode, int rd, int rn, int rm)
10416 {
10417     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10418     TCGv_i64 tcg_res[2];
10419     int pass, accop;
10420 
10421     tcg_res[0] = tcg_temp_new_i64();
10422     tcg_res[1] = tcg_temp_new_i64();
10423 
10424     /* Does this op do an adding accumulate, a subtracting accumulate,
10425      * or no accumulate at all?
10426      */
10427     switch (opcode) {
10428     case 5:
10429     case 8:
10430     case 9:
10431         accop = 1;
10432         break;
10433     case 10:
10434     case 11:
10435         accop = -1;
10436         break;
10437     default:
10438         accop = 0;
10439         break;
10440     }
10441 
10442     if (accop != 0) {
10443         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10444         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10445     }
10446 
10447     /* size == 2 means two 32x32->64 operations; this is worth special
10448      * casing because we can generally handle it inline.
10449      */
10450     if (size == 2) {
10451         for (pass = 0; pass < 2; pass++) {
10452             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10453             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10454             TCGv_i64 tcg_passres;
10455             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10456 
10457             int elt = pass + is_q * 2;
10458 
10459             read_vec_element(s, tcg_op1, rn, elt, memop);
10460             read_vec_element(s, tcg_op2, rm, elt, memop);
10461 
10462             if (accop == 0) {
10463                 tcg_passres = tcg_res[pass];
10464             } else {
10465                 tcg_passres = tcg_temp_new_i64();
10466             }
10467 
10468             switch (opcode) {
10469             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10470                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10471                 break;
10472             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10473                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10474                 break;
10475             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10476             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10477             {
10478                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10479                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10480 
10481                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10482                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10483                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10484                                     tcg_passres,
10485                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10486                 break;
10487             }
10488             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10489             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10490             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10491                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10492                 break;
10493             case 9: /* SQDMLAL, SQDMLAL2 */
10494             case 11: /* SQDMLSL, SQDMLSL2 */
10495             case 13: /* SQDMULL, SQDMULL2 */
10496                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10497                 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10498                                                   tcg_passres, tcg_passres);
10499                 break;
10500             default:
10501                 g_assert_not_reached();
10502             }
10503 
10504             if (opcode == 9 || opcode == 11) {
10505                 /* saturating accumulate ops */
10506                 if (accop < 0) {
10507                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10508                 }
10509                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10510                                                   tcg_res[pass], tcg_passres);
10511             } else if (accop > 0) {
10512                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10513             } else if (accop < 0) {
10514                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10515             }
10516         }
10517     } else {
10518         /* size 0 or 1, generally helper functions */
10519         for (pass = 0; pass < 2; pass++) {
10520             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10521             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10522             TCGv_i64 tcg_passres;
10523             int elt = pass + is_q * 2;
10524 
10525             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10526             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10527 
10528             if (accop == 0) {
10529                 tcg_passres = tcg_res[pass];
10530             } else {
10531                 tcg_passres = tcg_temp_new_i64();
10532             }
10533 
10534             switch (opcode) {
10535             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10536             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10537             {
10538                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10539                 static NeonGenWidenFn * const widenfns[2][2] = {
10540                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10541                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10542                 };
10543                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10544 
10545                 widenfn(tcg_op2_64, tcg_op2);
10546                 widenfn(tcg_passres, tcg_op1);
10547                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10548                               tcg_passres, tcg_op2_64);
10549                 break;
10550             }
10551             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10552             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10553                 if (size == 0) {
10554                     if (is_u) {
10555                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10556                     } else {
10557                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10558                     }
10559                 } else {
10560                     if (is_u) {
10561                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10562                     } else {
10563                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10564                     }
10565                 }
10566                 break;
10567             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10568             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10569             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10570                 if (size == 0) {
10571                     if (is_u) {
10572                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10573                     } else {
10574                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10575                     }
10576                 } else {
10577                     if (is_u) {
10578                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10579                     } else {
10580                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10581                     }
10582                 }
10583                 break;
10584             case 9: /* SQDMLAL, SQDMLAL2 */
10585             case 11: /* SQDMLSL, SQDMLSL2 */
10586             case 13: /* SQDMULL, SQDMULL2 */
10587                 assert(size == 1);
10588                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10589                 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10590                                                   tcg_passres, tcg_passres);
10591                 break;
10592             default:
10593                 g_assert_not_reached();
10594             }
10595 
10596             if (accop != 0) {
10597                 if (opcode == 9 || opcode == 11) {
10598                     /* saturating accumulate ops */
10599                     if (accop < 0) {
10600                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10601                     }
10602                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10603                                                       tcg_res[pass],
10604                                                       tcg_passres);
10605                 } else {
10606                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10607                                   tcg_res[pass], tcg_passres);
10608                 }
10609             }
10610         }
10611     }
10612 
10613     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10614     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10615 }
10616 
10617 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10618                             int opcode, int rd, int rn, int rm)
10619 {
10620     TCGv_i64 tcg_res[2];
10621     int part = is_q ? 2 : 0;
10622     int pass;
10623 
10624     for (pass = 0; pass < 2; pass++) {
10625         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10626         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10627         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10628         static NeonGenWidenFn * const widenfns[3][2] = {
10629             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10630             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10631             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10632         };
10633         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10634 
10635         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10636         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10637         widenfn(tcg_op2_wide, tcg_op2);
10638         tcg_res[pass] = tcg_temp_new_i64();
10639         gen_neon_addl(size, (opcode == 3),
10640                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10641     }
10642 
10643     for (pass = 0; pass < 2; pass++) {
10644         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10645     }
10646 }
10647 
10648 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10649 {
10650     tcg_gen_addi_i64(in, in, 1U << 31);
10651     tcg_gen_extrh_i64_i32(res, in);
10652 }
10653 
10654 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10655                                  int opcode, int rd, int rn, int rm)
10656 {
10657     TCGv_i32 tcg_res[2];
10658     int part = is_q ? 2 : 0;
10659     int pass;
10660 
10661     for (pass = 0; pass < 2; pass++) {
10662         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10663         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10664         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10665         static NeonGenNarrowFn * const narrowfns[3][2] = {
10666             { gen_helper_neon_narrow_high_u8,
10667               gen_helper_neon_narrow_round_high_u8 },
10668             { gen_helper_neon_narrow_high_u16,
10669               gen_helper_neon_narrow_round_high_u16 },
10670             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10671         };
10672         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10673 
10674         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10675         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10676 
10677         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10678 
10679         tcg_res[pass] = tcg_temp_new_i32();
10680         gennarrow(tcg_res[pass], tcg_wideres);
10681     }
10682 
10683     for (pass = 0; pass < 2; pass++) {
10684         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10685     }
10686     clear_vec_high(s, is_q, rd);
10687 }
10688 
10689 /* AdvSIMD three different
10690  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10691  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10692  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10693  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10694  */
10695 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10696 {
10697     /* Instructions in this group fall into three basic classes
10698      * (in each case with the operation working on each element in
10699      * the input vectors):
10700      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10701      *     128 bit input)
10702      * (2) wide 64 x 128 -> 128
10703      * (3) narrowing 128 x 128 -> 64
10704      * Here we do initial decode, catch unallocated cases and
10705      * dispatch to separate functions for each class.
10706      */
10707     int is_q = extract32(insn, 30, 1);
10708     int is_u = extract32(insn, 29, 1);
10709     int size = extract32(insn, 22, 2);
10710     int opcode = extract32(insn, 12, 4);
10711     int rm = extract32(insn, 16, 5);
10712     int rn = extract32(insn, 5, 5);
10713     int rd = extract32(insn, 0, 5);
10714 
10715     switch (opcode) {
10716     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10717     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10718         /* 64 x 128 -> 128 */
10719         if (size == 3) {
10720             unallocated_encoding(s);
10721             return;
10722         }
10723         if (!fp_access_check(s)) {
10724             return;
10725         }
10726         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10727         break;
10728     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10729     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10730         /* 128 x 128 -> 64 */
10731         if (size == 3) {
10732             unallocated_encoding(s);
10733             return;
10734         }
10735         if (!fp_access_check(s)) {
10736             return;
10737         }
10738         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10739         break;
10740     case 14: /* PMULL, PMULL2 */
10741         if (is_u) {
10742             unallocated_encoding(s);
10743             return;
10744         }
10745         switch (size) {
10746         case 0: /* PMULL.P8 */
10747             if (!fp_access_check(s)) {
10748                 return;
10749             }
10750             /* The Q field specifies lo/hi half input for this insn.  */
10751             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10752                              gen_helper_neon_pmull_h);
10753             break;
10754 
10755         case 3: /* PMULL.P64 */
10756             if (!dc_isar_feature(aa64_pmull, s)) {
10757                 unallocated_encoding(s);
10758                 return;
10759             }
10760             if (!fp_access_check(s)) {
10761                 return;
10762             }
10763             /* The Q field specifies lo/hi half input for this insn.  */
10764             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10765                              gen_helper_gvec_pmull_q);
10766             break;
10767 
10768         default:
10769             unallocated_encoding(s);
10770             break;
10771         }
10772         return;
10773     case 9: /* SQDMLAL, SQDMLAL2 */
10774     case 11: /* SQDMLSL, SQDMLSL2 */
10775     case 13: /* SQDMULL, SQDMULL2 */
10776         if (is_u || size == 0) {
10777             unallocated_encoding(s);
10778             return;
10779         }
10780         /* fall through */
10781     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10782     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10783     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10784     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10785     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10786     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10787     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10788         /* 64 x 64 -> 128 */
10789         if (size == 3) {
10790             unallocated_encoding(s);
10791             return;
10792         }
10793         if (!fp_access_check(s)) {
10794             return;
10795         }
10796 
10797         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10798         break;
10799     default:
10800         /* opcode 15 not allocated */
10801         unallocated_encoding(s);
10802         break;
10803     }
10804 }
10805 
10806 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10807 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10808 {
10809     int rd = extract32(insn, 0, 5);
10810     int rn = extract32(insn, 5, 5);
10811     int rm = extract32(insn, 16, 5);
10812     int size = extract32(insn, 22, 2);
10813     bool is_u = extract32(insn, 29, 1);
10814     bool is_q = extract32(insn, 30, 1);
10815 
10816     if (!fp_access_check(s)) {
10817         return;
10818     }
10819 
10820     switch (size + 4 * is_u) {
10821     case 0: /* AND */
10822         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10823         return;
10824     case 1: /* BIC */
10825         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10826         return;
10827     case 2: /* ORR */
10828         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10829         return;
10830     case 3: /* ORN */
10831         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10832         return;
10833     case 4: /* EOR */
10834         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10835         return;
10836 
10837     case 5: /* BSL bitwise select */
10838         gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10839         return;
10840     case 6: /* BIT, bitwise insert if true */
10841         gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10842         return;
10843     case 7: /* BIF, bitwise insert if false */
10844         gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10845         return;
10846 
10847     default:
10848         g_assert_not_reached();
10849     }
10850 }
10851 
10852 /* Pairwise op subgroup of C3.6.16.
10853  *
10854  * This is called directly or via the handle_3same_float for float pairwise
10855  * operations where the opcode and size are calculated differently.
10856  */
10857 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10858                                    int size, int rn, int rm, int rd)
10859 {
10860     TCGv_ptr fpst;
10861     int pass;
10862 
10863     /* Floating point operations need fpst */
10864     if (opcode >= 0x58) {
10865         fpst = fpstatus_ptr(FPST_FPCR);
10866     } else {
10867         fpst = NULL;
10868     }
10869 
10870     if (!fp_access_check(s)) {
10871         return;
10872     }
10873 
10874     /* These operations work on the concatenated rm:rn, with each pair of
10875      * adjacent elements being operated on to produce an element in the result.
10876      */
10877     if (size == 3) {
10878         TCGv_i64 tcg_res[2];
10879 
10880         for (pass = 0; pass < 2; pass++) {
10881             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10882             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10883             int passreg = (pass == 0) ? rn : rm;
10884 
10885             read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10886             read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10887             tcg_res[pass] = tcg_temp_new_i64();
10888 
10889             switch (opcode) {
10890             case 0x17: /* ADDP */
10891                 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10892                 break;
10893             case 0x58: /* FMAXNMP */
10894                 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10895                 break;
10896             case 0x5a: /* FADDP */
10897                 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10898                 break;
10899             case 0x5e: /* FMAXP */
10900                 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10901                 break;
10902             case 0x78: /* FMINNMP */
10903                 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10904                 break;
10905             case 0x7e: /* FMINP */
10906                 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10907                 break;
10908             default:
10909                 g_assert_not_reached();
10910             }
10911         }
10912 
10913         for (pass = 0; pass < 2; pass++) {
10914             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10915         }
10916     } else {
10917         int maxpass = is_q ? 4 : 2;
10918         TCGv_i32 tcg_res[4];
10919 
10920         for (pass = 0; pass < maxpass; pass++) {
10921             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10922             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10923             NeonGenTwoOpFn *genfn = NULL;
10924             int passreg = pass < (maxpass / 2) ? rn : rm;
10925             int passelt = (is_q && (pass & 1)) ? 2 : 0;
10926 
10927             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10928             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10929             tcg_res[pass] = tcg_temp_new_i32();
10930 
10931             switch (opcode) {
10932             case 0x17: /* ADDP */
10933             {
10934                 static NeonGenTwoOpFn * const fns[3] = {
10935                     gen_helper_neon_padd_u8,
10936                     gen_helper_neon_padd_u16,
10937                     tcg_gen_add_i32,
10938                 };
10939                 genfn = fns[size];
10940                 break;
10941             }
10942             case 0x14: /* SMAXP, UMAXP */
10943             {
10944                 static NeonGenTwoOpFn * const fns[3][2] = {
10945                     { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
10946                     { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
10947                     { tcg_gen_smax_i32, tcg_gen_umax_i32 },
10948                 };
10949                 genfn = fns[size][u];
10950                 break;
10951             }
10952             case 0x15: /* SMINP, UMINP */
10953             {
10954                 static NeonGenTwoOpFn * const fns[3][2] = {
10955                     { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
10956                     { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
10957                     { tcg_gen_smin_i32, tcg_gen_umin_i32 },
10958                 };
10959                 genfn = fns[size][u];
10960                 break;
10961             }
10962             /* The FP operations are all on single floats (32 bit) */
10963             case 0x58: /* FMAXNMP */
10964                 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10965                 break;
10966             case 0x5a: /* FADDP */
10967                 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10968                 break;
10969             case 0x5e: /* FMAXP */
10970                 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10971                 break;
10972             case 0x78: /* FMINNMP */
10973                 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10974                 break;
10975             case 0x7e: /* FMINP */
10976                 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10977                 break;
10978             default:
10979                 g_assert_not_reached();
10980             }
10981 
10982             /* FP ops called directly, otherwise call now */
10983             if (genfn) {
10984                 genfn(tcg_res[pass], tcg_op1, tcg_op2);
10985             }
10986         }
10987 
10988         for (pass = 0; pass < maxpass; pass++) {
10989             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10990         }
10991         clear_vec_high(s, is_q, rd);
10992     }
10993 }
10994 
10995 /* Floating point op subgroup of C3.6.16. */
10996 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
10997 {
10998     /* For floating point ops, the U, size[1] and opcode bits
10999      * together indicate the operation. size[0] indicates single
11000      * or double.
11001      */
11002     int fpopcode = extract32(insn, 11, 5)
11003         | (extract32(insn, 23, 1) << 5)
11004         | (extract32(insn, 29, 1) << 6);
11005     int is_q = extract32(insn, 30, 1);
11006     int size = extract32(insn, 22, 1);
11007     int rm = extract32(insn, 16, 5);
11008     int rn = extract32(insn, 5, 5);
11009     int rd = extract32(insn, 0, 5);
11010 
11011     int datasize = is_q ? 128 : 64;
11012     int esize = 32 << size;
11013     int elements = datasize / esize;
11014 
11015     if (size == 1 && !is_q) {
11016         unallocated_encoding(s);
11017         return;
11018     }
11019 
11020     switch (fpopcode) {
11021     case 0x58: /* FMAXNMP */
11022     case 0x5a: /* FADDP */
11023     case 0x5e: /* FMAXP */
11024     case 0x78: /* FMINNMP */
11025     case 0x7e: /* FMINP */
11026         if (size && !is_q) {
11027             unallocated_encoding(s);
11028             return;
11029         }
11030         handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11031                                rn, rm, rd);
11032         return;
11033     case 0x1b: /* FMULX */
11034     case 0x1f: /* FRECPS */
11035     case 0x3f: /* FRSQRTS */
11036     case 0x5d: /* FACGE */
11037     case 0x7d: /* FACGT */
11038     case 0x19: /* FMLA */
11039     case 0x39: /* FMLS */
11040     case 0x18: /* FMAXNM */
11041     case 0x1a: /* FADD */
11042     case 0x1c: /* FCMEQ */
11043     case 0x1e: /* FMAX */
11044     case 0x38: /* FMINNM */
11045     case 0x3a: /* FSUB */
11046     case 0x3e: /* FMIN */
11047     case 0x5b: /* FMUL */
11048     case 0x5c: /* FCMGE */
11049     case 0x5f: /* FDIV */
11050     case 0x7a: /* FABD */
11051     case 0x7c: /* FCMGT */
11052         if (!fp_access_check(s)) {
11053             return;
11054         }
11055         handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11056         return;
11057 
11058     case 0x1d: /* FMLAL  */
11059     case 0x3d: /* FMLSL  */
11060     case 0x59: /* FMLAL2 */
11061     case 0x79: /* FMLSL2 */
11062         if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11063             unallocated_encoding(s);
11064             return;
11065         }
11066         if (fp_access_check(s)) {
11067             int is_s = extract32(insn, 23, 1);
11068             int is_2 = extract32(insn, 29, 1);
11069             int data = (is_2 << 1) | is_s;
11070             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11071                                vec_full_reg_offset(s, rn),
11072                                vec_full_reg_offset(s, rm), tcg_env,
11073                                is_q ? 16 : 8, vec_full_reg_size(s),
11074                                data, gen_helper_gvec_fmlal_a64);
11075         }
11076         return;
11077 
11078     default:
11079         unallocated_encoding(s);
11080         return;
11081     }
11082 }
11083 
11084 /* Integer op subgroup of C3.6.16. */
11085 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11086 {
11087     int is_q = extract32(insn, 30, 1);
11088     int u = extract32(insn, 29, 1);
11089     int size = extract32(insn, 22, 2);
11090     int opcode = extract32(insn, 11, 5);
11091     int rm = extract32(insn, 16, 5);
11092     int rn = extract32(insn, 5, 5);
11093     int rd = extract32(insn, 0, 5);
11094     int pass;
11095     TCGCond cond;
11096 
11097     switch (opcode) {
11098     case 0x13: /* MUL, PMUL */
11099         if (u && size != 0) {
11100             unallocated_encoding(s);
11101             return;
11102         }
11103         /* fall through */
11104     case 0x0: /* SHADD, UHADD */
11105     case 0x2: /* SRHADD, URHADD */
11106     case 0x4: /* SHSUB, UHSUB */
11107     case 0xc: /* SMAX, UMAX */
11108     case 0xd: /* SMIN, UMIN */
11109     case 0xe: /* SABD, UABD */
11110     case 0xf: /* SABA, UABA */
11111     case 0x12: /* MLA, MLS */
11112         if (size == 3) {
11113             unallocated_encoding(s);
11114             return;
11115         }
11116         break;
11117     case 0x16: /* SQDMULH, SQRDMULH */
11118         if (size == 0 || size == 3) {
11119             unallocated_encoding(s);
11120             return;
11121         }
11122         break;
11123     default:
11124         if (size == 3 && !is_q) {
11125             unallocated_encoding(s);
11126             return;
11127         }
11128         break;
11129     }
11130 
11131     if (!fp_access_check(s)) {
11132         return;
11133     }
11134 
11135     switch (opcode) {
11136     case 0x01: /* SQADD, UQADD */
11137         if (u) {
11138             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11139         } else {
11140             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11141         }
11142         return;
11143     case 0x05: /* SQSUB, UQSUB */
11144         if (u) {
11145             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11146         } else {
11147             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11148         }
11149         return;
11150     case 0x08: /* SSHL, USHL */
11151         if (u) {
11152             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11153         } else {
11154             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11155         }
11156         return;
11157     case 0x0c: /* SMAX, UMAX */
11158         if (u) {
11159             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11160         } else {
11161             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11162         }
11163         return;
11164     case 0x0d: /* SMIN, UMIN */
11165         if (u) {
11166             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11167         } else {
11168             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11169         }
11170         return;
11171     case 0xe: /* SABD, UABD */
11172         if (u) {
11173             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11174         } else {
11175             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11176         }
11177         return;
11178     case 0xf: /* SABA, UABA */
11179         if (u) {
11180             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11181         } else {
11182             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11183         }
11184         return;
11185     case 0x10: /* ADD, SUB */
11186         if (u) {
11187             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11188         } else {
11189             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11190         }
11191         return;
11192     case 0x13: /* MUL, PMUL */
11193         if (!u) { /* MUL */
11194             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11195         } else {  /* PMUL */
11196             gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11197         }
11198         return;
11199     case 0x12: /* MLA, MLS */
11200         if (u) {
11201             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11202         } else {
11203             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11204         }
11205         return;
11206     case 0x16: /* SQDMULH, SQRDMULH */
11207         {
11208             static gen_helper_gvec_3_ptr * const fns[2][2] = {
11209                 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11210                 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11211             };
11212             gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11213         }
11214         return;
11215     case 0x11:
11216         if (!u) { /* CMTST */
11217             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11218             return;
11219         }
11220         /* else CMEQ */
11221         cond = TCG_COND_EQ;
11222         goto do_gvec_cmp;
11223     case 0x06: /* CMGT, CMHI */
11224         cond = u ? TCG_COND_GTU : TCG_COND_GT;
11225         goto do_gvec_cmp;
11226     case 0x07: /* CMGE, CMHS */
11227         cond = u ? TCG_COND_GEU : TCG_COND_GE;
11228     do_gvec_cmp:
11229         tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11230                          vec_full_reg_offset(s, rn),
11231                          vec_full_reg_offset(s, rm),
11232                          is_q ? 16 : 8, vec_full_reg_size(s));
11233         return;
11234     }
11235 
11236     if (size == 3) {
11237         assert(is_q);
11238         for (pass = 0; pass < 2; pass++) {
11239             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11240             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11241             TCGv_i64 tcg_res = tcg_temp_new_i64();
11242 
11243             read_vec_element(s, tcg_op1, rn, pass, MO_64);
11244             read_vec_element(s, tcg_op2, rm, pass, MO_64);
11245 
11246             handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11247 
11248             write_vec_element(s, tcg_res, rd, pass, MO_64);
11249         }
11250     } else {
11251         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11252             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11253             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11254             TCGv_i32 tcg_res = tcg_temp_new_i32();
11255             NeonGenTwoOpFn *genfn = NULL;
11256             NeonGenTwoOpEnvFn *genenvfn = NULL;
11257 
11258             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11259             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11260 
11261             switch (opcode) {
11262             case 0x0: /* SHADD, UHADD */
11263             {
11264                 static NeonGenTwoOpFn * const fns[3][2] = {
11265                     { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11266                     { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11267                     { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11268                 };
11269                 genfn = fns[size][u];
11270                 break;
11271             }
11272             case 0x2: /* SRHADD, URHADD */
11273             {
11274                 static NeonGenTwoOpFn * const fns[3][2] = {
11275                     { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11276                     { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11277                     { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11278                 };
11279                 genfn = fns[size][u];
11280                 break;
11281             }
11282             case 0x4: /* SHSUB, UHSUB */
11283             {
11284                 static NeonGenTwoOpFn * const fns[3][2] = {
11285                     { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11286                     { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11287                     { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11288                 };
11289                 genfn = fns[size][u];
11290                 break;
11291             }
11292             case 0x9: /* SQSHL, UQSHL */
11293             {
11294                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11295                     { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11296                     { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11297                     { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11298                 };
11299                 genenvfn = fns[size][u];
11300                 break;
11301             }
11302             case 0xa: /* SRSHL, URSHL */
11303             {
11304                 static NeonGenTwoOpFn * const fns[3][2] = {
11305                     { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11306                     { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11307                     { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11308                 };
11309                 genfn = fns[size][u];
11310                 break;
11311             }
11312             case 0xb: /* SQRSHL, UQRSHL */
11313             {
11314                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11315                     { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11316                     { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11317                     { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11318                 };
11319                 genenvfn = fns[size][u];
11320                 break;
11321             }
11322             default:
11323                 g_assert_not_reached();
11324             }
11325 
11326             if (genenvfn) {
11327                 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2);
11328             } else {
11329                 genfn(tcg_res, tcg_op1, tcg_op2);
11330             }
11331 
11332             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11333         }
11334     }
11335     clear_vec_high(s, is_q, rd);
11336 }
11337 
11338 /* AdvSIMD three same
11339  *  31  30  29  28       24 23  22  21 20  16 15    11  10 9    5 4    0
11340  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11341  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
11342  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11343  */
11344 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11345 {
11346     int opcode = extract32(insn, 11, 5);
11347 
11348     switch (opcode) {
11349     case 0x3: /* logic ops */
11350         disas_simd_3same_logic(s, insn);
11351         break;
11352     case 0x17: /* ADDP */
11353     case 0x14: /* SMAXP, UMAXP */
11354     case 0x15: /* SMINP, UMINP */
11355     {
11356         /* Pairwise operations */
11357         int is_q = extract32(insn, 30, 1);
11358         int u = extract32(insn, 29, 1);
11359         int size = extract32(insn, 22, 2);
11360         int rm = extract32(insn, 16, 5);
11361         int rn = extract32(insn, 5, 5);
11362         int rd = extract32(insn, 0, 5);
11363         if (opcode == 0x17) {
11364             if (u || (size == 3 && !is_q)) {
11365                 unallocated_encoding(s);
11366                 return;
11367             }
11368         } else {
11369             if (size == 3) {
11370                 unallocated_encoding(s);
11371                 return;
11372             }
11373         }
11374         handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11375         break;
11376     }
11377     case 0x18 ... 0x31:
11378         /* floating point ops, sz[1] and U are part of opcode */
11379         disas_simd_3same_float(s, insn);
11380         break;
11381     default:
11382         disas_simd_3same_int(s, insn);
11383         break;
11384     }
11385 }
11386 
11387 /*
11388  * Advanced SIMD three same (ARMv8.2 FP16 variants)
11389  *
11390  *  31  30  29  28       24 23  22 21 20  16 15 14 13    11 10  9    5 4    0
11391  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11392  * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 |  Rn  |  Rd  |
11393  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11394  *
11395  * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11396  * (register), FACGE, FABD, FCMGT (register) and FACGT.
11397  *
11398  */
11399 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11400 {
11401     int opcode = extract32(insn, 11, 3);
11402     int u = extract32(insn, 29, 1);
11403     int a = extract32(insn, 23, 1);
11404     int is_q = extract32(insn, 30, 1);
11405     int rm = extract32(insn, 16, 5);
11406     int rn = extract32(insn, 5, 5);
11407     int rd = extract32(insn, 0, 5);
11408     /*
11409      * For these floating point ops, the U, a and opcode bits
11410      * together indicate the operation.
11411      */
11412     int fpopcode = opcode | (a << 3) | (u << 4);
11413     int datasize = is_q ? 128 : 64;
11414     int elements = datasize / 16;
11415     bool pairwise;
11416     TCGv_ptr fpst;
11417     int pass;
11418 
11419     switch (fpopcode) {
11420     case 0x0: /* FMAXNM */
11421     case 0x1: /* FMLA */
11422     case 0x2: /* FADD */
11423     case 0x3: /* FMULX */
11424     case 0x4: /* FCMEQ */
11425     case 0x6: /* FMAX */
11426     case 0x7: /* FRECPS */
11427     case 0x8: /* FMINNM */
11428     case 0x9: /* FMLS */
11429     case 0xa: /* FSUB */
11430     case 0xe: /* FMIN */
11431     case 0xf: /* FRSQRTS */
11432     case 0x13: /* FMUL */
11433     case 0x14: /* FCMGE */
11434     case 0x15: /* FACGE */
11435     case 0x17: /* FDIV */
11436     case 0x1a: /* FABD */
11437     case 0x1c: /* FCMGT */
11438     case 0x1d: /* FACGT */
11439         pairwise = false;
11440         break;
11441     case 0x10: /* FMAXNMP */
11442     case 0x12: /* FADDP */
11443     case 0x16: /* FMAXP */
11444     case 0x18: /* FMINNMP */
11445     case 0x1e: /* FMINP */
11446         pairwise = true;
11447         break;
11448     default:
11449         unallocated_encoding(s);
11450         return;
11451     }
11452 
11453     if (!dc_isar_feature(aa64_fp16, s)) {
11454         unallocated_encoding(s);
11455         return;
11456     }
11457 
11458     if (!fp_access_check(s)) {
11459         return;
11460     }
11461 
11462     fpst = fpstatus_ptr(FPST_FPCR_F16);
11463 
11464     if (pairwise) {
11465         int maxpass = is_q ? 8 : 4;
11466         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11467         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11468         TCGv_i32 tcg_res[8];
11469 
11470         for (pass = 0; pass < maxpass; pass++) {
11471             int passreg = pass < (maxpass / 2) ? rn : rm;
11472             int passelt = (pass << 1) & (maxpass - 1);
11473 
11474             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11475             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11476             tcg_res[pass] = tcg_temp_new_i32();
11477 
11478             switch (fpopcode) {
11479             case 0x10: /* FMAXNMP */
11480                 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11481                                            fpst);
11482                 break;
11483             case 0x12: /* FADDP */
11484                 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11485                 break;
11486             case 0x16: /* FMAXP */
11487                 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11488                 break;
11489             case 0x18: /* FMINNMP */
11490                 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11491                                            fpst);
11492                 break;
11493             case 0x1e: /* FMINP */
11494                 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11495                 break;
11496             default:
11497                 g_assert_not_reached();
11498             }
11499         }
11500 
11501         for (pass = 0; pass < maxpass; pass++) {
11502             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11503         }
11504     } else {
11505         for (pass = 0; pass < elements; pass++) {
11506             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11507             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11508             TCGv_i32 tcg_res = tcg_temp_new_i32();
11509 
11510             read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11511             read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11512 
11513             switch (fpopcode) {
11514             case 0x0: /* FMAXNM */
11515                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11516                 break;
11517             case 0x1: /* FMLA */
11518                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11519                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11520                                            fpst);
11521                 break;
11522             case 0x2: /* FADD */
11523                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11524                 break;
11525             case 0x3: /* FMULX */
11526                 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11527                 break;
11528             case 0x4: /* FCMEQ */
11529                 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11530                 break;
11531             case 0x6: /* FMAX */
11532                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11533                 break;
11534             case 0x7: /* FRECPS */
11535                 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11536                 break;
11537             case 0x8: /* FMINNM */
11538                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11539                 break;
11540             case 0x9: /* FMLS */
11541                 /* As usual for ARM, separate negation for fused multiply-add */
11542                 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11543                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11544                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11545                                            fpst);
11546                 break;
11547             case 0xa: /* FSUB */
11548                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11549                 break;
11550             case 0xe: /* FMIN */
11551                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11552                 break;
11553             case 0xf: /* FRSQRTS */
11554                 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11555                 break;
11556             case 0x13: /* FMUL */
11557                 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11558                 break;
11559             case 0x14: /* FCMGE */
11560                 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11561                 break;
11562             case 0x15: /* FACGE */
11563                 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11564                 break;
11565             case 0x17: /* FDIV */
11566                 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11567                 break;
11568             case 0x1a: /* FABD */
11569                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11570                 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11571                 break;
11572             case 0x1c: /* FCMGT */
11573                 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11574                 break;
11575             case 0x1d: /* FACGT */
11576                 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11577                 break;
11578             default:
11579                 g_assert_not_reached();
11580             }
11581 
11582             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11583         }
11584     }
11585 
11586     clear_vec_high(s, is_q, rd);
11587 }
11588 
11589 /* AdvSIMD three same extra
11590  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
11591  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11592  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
11593  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11594  */
11595 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11596 {
11597     int rd = extract32(insn, 0, 5);
11598     int rn = extract32(insn, 5, 5);
11599     int opcode = extract32(insn, 11, 4);
11600     int rm = extract32(insn, 16, 5);
11601     int size = extract32(insn, 22, 2);
11602     bool u = extract32(insn, 29, 1);
11603     bool is_q = extract32(insn, 30, 1);
11604     bool feature;
11605     int rot;
11606 
11607     switch (u * 16 + opcode) {
11608     case 0x10: /* SQRDMLAH (vector) */
11609     case 0x11: /* SQRDMLSH (vector) */
11610         if (size != 1 && size != 2) {
11611             unallocated_encoding(s);
11612             return;
11613         }
11614         feature = dc_isar_feature(aa64_rdm, s);
11615         break;
11616     case 0x02: /* SDOT (vector) */
11617     case 0x12: /* UDOT (vector) */
11618         if (size != MO_32) {
11619             unallocated_encoding(s);
11620             return;
11621         }
11622         feature = dc_isar_feature(aa64_dp, s);
11623         break;
11624     case 0x03: /* USDOT */
11625         if (size != MO_32) {
11626             unallocated_encoding(s);
11627             return;
11628         }
11629         feature = dc_isar_feature(aa64_i8mm, s);
11630         break;
11631     case 0x04: /* SMMLA */
11632     case 0x14: /* UMMLA */
11633     case 0x05: /* USMMLA */
11634         if (!is_q || size != MO_32) {
11635             unallocated_encoding(s);
11636             return;
11637         }
11638         feature = dc_isar_feature(aa64_i8mm, s);
11639         break;
11640     case 0x18: /* FCMLA, #0 */
11641     case 0x19: /* FCMLA, #90 */
11642     case 0x1a: /* FCMLA, #180 */
11643     case 0x1b: /* FCMLA, #270 */
11644     case 0x1c: /* FCADD, #90 */
11645     case 0x1e: /* FCADD, #270 */
11646         if (size == 0
11647             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11648             || (size == 3 && !is_q)) {
11649             unallocated_encoding(s);
11650             return;
11651         }
11652         feature = dc_isar_feature(aa64_fcma, s);
11653         break;
11654     case 0x1d: /* BFMMLA */
11655         if (size != MO_16 || !is_q) {
11656             unallocated_encoding(s);
11657             return;
11658         }
11659         feature = dc_isar_feature(aa64_bf16, s);
11660         break;
11661     case 0x1f:
11662         switch (size) {
11663         case 1: /* BFDOT */
11664         case 3: /* BFMLAL{B,T} */
11665             feature = dc_isar_feature(aa64_bf16, s);
11666             break;
11667         default:
11668             unallocated_encoding(s);
11669             return;
11670         }
11671         break;
11672     default:
11673         unallocated_encoding(s);
11674         return;
11675     }
11676     if (!feature) {
11677         unallocated_encoding(s);
11678         return;
11679     }
11680     if (!fp_access_check(s)) {
11681         return;
11682     }
11683 
11684     switch (opcode) {
11685     case 0x0: /* SQRDMLAH (vector) */
11686         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11687         return;
11688 
11689     case 0x1: /* SQRDMLSH (vector) */
11690         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11691         return;
11692 
11693     case 0x2: /* SDOT / UDOT */
11694         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11695                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11696         return;
11697 
11698     case 0x3: /* USDOT */
11699         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11700         return;
11701 
11702     case 0x04: /* SMMLA, UMMLA */
11703         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11704                          u ? gen_helper_gvec_ummla_b
11705                          : gen_helper_gvec_smmla_b);
11706         return;
11707     case 0x05: /* USMMLA */
11708         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11709         return;
11710 
11711     case 0x8: /* FCMLA, #0 */
11712     case 0x9: /* FCMLA, #90 */
11713     case 0xa: /* FCMLA, #180 */
11714     case 0xb: /* FCMLA, #270 */
11715         rot = extract32(opcode, 0, 2);
11716         switch (size) {
11717         case 1:
11718             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11719                               gen_helper_gvec_fcmlah);
11720             break;
11721         case 2:
11722             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11723                               gen_helper_gvec_fcmlas);
11724             break;
11725         case 3:
11726             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11727                               gen_helper_gvec_fcmlad);
11728             break;
11729         default:
11730             g_assert_not_reached();
11731         }
11732         return;
11733 
11734     case 0xc: /* FCADD, #90 */
11735     case 0xe: /* FCADD, #270 */
11736         rot = extract32(opcode, 1, 1);
11737         switch (size) {
11738         case 1:
11739             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11740                               gen_helper_gvec_fcaddh);
11741             break;
11742         case 2:
11743             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11744                               gen_helper_gvec_fcadds);
11745             break;
11746         case 3:
11747             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11748                               gen_helper_gvec_fcaddd);
11749             break;
11750         default:
11751             g_assert_not_reached();
11752         }
11753         return;
11754 
11755     case 0xd: /* BFMMLA */
11756         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11757         return;
11758     case 0xf:
11759         switch (size) {
11760         case 1: /* BFDOT */
11761             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11762             break;
11763         case 3: /* BFMLAL{B,T} */
11764             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11765                               gen_helper_gvec_bfmlal);
11766             break;
11767         default:
11768             g_assert_not_reached();
11769         }
11770         return;
11771 
11772     default:
11773         g_assert_not_reached();
11774     }
11775 }
11776 
11777 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11778                                   int size, int rn, int rd)
11779 {
11780     /* Handle 2-reg-misc ops which are widening (so each size element
11781      * in the source becomes a 2*size element in the destination.
11782      * The only instruction like this is FCVTL.
11783      */
11784     int pass;
11785 
11786     if (size == 3) {
11787         /* 32 -> 64 bit fp conversion */
11788         TCGv_i64 tcg_res[2];
11789         int srcelt = is_q ? 2 : 0;
11790 
11791         for (pass = 0; pass < 2; pass++) {
11792             TCGv_i32 tcg_op = tcg_temp_new_i32();
11793             tcg_res[pass] = tcg_temp_new_i64();
11794 
11795             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11796             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
11797         }
11798         for (pass = 0; pass < 2; pass++) {
11799             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11800         }
11801     } else {
11802         /* 16 -> 32 bit fp conversion */
11803         int srcelt = is_q ? 4 : 0;
11804         TCGv_i32 tcg_res[4];
11805         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11806         TCGv_i32 ahp = get_ahp_flag();
11807 
11808         for (pass = 0; pass < 4; pass++) {
11809             tcg_res[pass] = tcg_temp_new_i32();
11810 
11811             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11812             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11813                                            fpst, ahp);
11814         }
11815         for (pass = 0; pass < 4; pass++) {
11816             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11817         }
11818     }
11819 }
11820 
11821 static void handle_rev(DisasContext *s, int opcode, bool u,
11822                        bool is_q, int size, int rn, int rd)
11823 {
11824     int op = (opcode << 1) | u;
11825     int opsz = op + size;
11826     int grp_size = 3 - opsz;
11827     int dsize = is_q ? 128 : 64;
11828     int i;
11829 
11830     if (opsz >= 3) {
11831         unallocated_encoding(s);
11832         return;
11833     }
11834 
11835     if (!fp_access_check(s)) {
11836         return;
11837     }
11838 
11839     if (size == 0) {
11840         /* Special case bytes, use bswap op on each group of elements */
11841         int groups = dsize / (8 << grp_size);
11842 
11843         for (i = 0; i < groups; i++) {
11844             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11845 
11846             read_vec_element(s, tcg_tmp, rn, i, grp_size);
11847             switch (grp_size) {
11848             case MO_16:
11849                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11850                 break;
11851             case MO_32:
11852                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11853                 break;
11854             case MO_64:
11855                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11856                 break;
11857             default:
11858                 g_assert_not_reached();
11859             }
11860             write_vec_element(s, tcg_tmp, rd, i, grp_size);
11861         }
11862         clear_vec_high(s, is_q, rd);
11863     } else {
11864         int revmask = (1 << grp_size) - 1;
11865         int esize = 8 << size;
11866         int elements = dsize / esize;
11867         TCGv_i64 tcg_rn = tcg_temp_new_i64();
11868         TCGv_i64 tcg_rd[2];
11869 
11870         for (i = 0; i < 2; i++) {
11871             tcg_rd[i] = tcg_temp_new_i64();
11872             tcg_gen_movi_i64(tcg_rd[i], 0);
11873         }
11874 
11875         for (i = 0; i < elements; i++) {
11876             int e_rev = (i & 0xf) ^ revmask;
11877             int w = (e_rev * esize) / 64;
11878             int o = (e_rev * esize) % 64;
11879 
11880             read_vec_element(s, tcg_rn, rn, i, size);
11881             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11882         }
11883 
11884         for (i = 0; i < 2; i++) {
11885             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11886         }
11887         clear_vec_high(s, true, rd);
11888     }
11889 }
11890 
11891 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11892                                   bool is_q, int size, int rn, int rd)
11893 {
11894     /* Implement the pairwise operations from 2-misc:
11895      * SADDLP, UADDLP, SADALP, UADALP.
11896      * These all add pairs of elements in the input to produce a
11897      * double-width result element in the output (possibly accumulating).
11898      */
11899     bool accum = (opcode == 0x6);
11900     int maxpass = is_q ? 2 : 1;
11901     int pass;
11902     TCGv_i64 tcg_res[2];
11903 
11904     if (size == 2) {
11905         /* 32 + 32 -> 64 op */
11906         MemOp memop = size + (u ? 0 : MO_SIGN);
11907 
11908         for (pass = 0; pass < maxpass; pass++) {
11909             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11910             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11911 
11912             tcg_res[pass] = tcg_temp_new_i64();
11913 
11914             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11915             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11916             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11917             if (accum) {
11918                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11919                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11920             }
11921         }
11922     } else {
11923         for (pass = 0; pass < maxpass; pass++) {
11924             TCGv_i64 tcg_op = tcg_temp_new_i64();
11925             NeonGenOne64OpFn *genfn;
11926             static NeonGenOne64OpFn * const fns[2][2] = {
11927                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
11928                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
11929             };
11930 
11931             genfn = fns[size][u];
11932 
11933             tcg_res[pass] = tcg_temp_new_i64();
11934 
11935             read_vec_element(s, tcg_op, rn, pass, MO_64);
11936             genfn(tcg_res[pass], tcg_op);
11937 
11938             if (accum) {
11939                 read_vec_element(s, tcg_op, rd, pass, MO_64);
11940                 if (size == 0) {
11941                     gen_helper_neon_addl_u16(tcg_res[pass],
11942                                              tcg_res[pass], tcg_op);
11943                 } else {
11944                     gen_helper_neon_addl_u32(tcg_res[pass],
11945                                              tcg_res[pass], tcg_op);
11946                 }
11947             }
11948         }
11949     }
11950     if (!is_q) {
11951         tcg_res[1] = tcg_constant_i64(0);
11952     }
11953     for (pass = 0; pass < 2; pass++) {
11954         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11955     }
11956 }
11957 
11958 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11959 {
11960     /* Implement SHLL and SHLL2 */
11961     int pass;
11962     int part = is_q ? 2 : 0;
11963     TCGv_i64 tcg_res[2];
11964 
11965     for (pass = 0; pass < 2; pass++) {
11966         static NeonGenWidenFn * const widenfns[3] = {
11967             gen_helper_neon_widen_u8,
11968             gen_helper_neon_widen_u16,
11969             tcg_gen_extu_i32_i64,
11970         };
11971         NeonGenWidenFn *widenfn = widenfns[size];
11972         TCGv_i32 tcg_op = tcg_temp_new_i32();
11973 
11974         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11975         tcg_res[pass] = tcg_temp_new_i64();
11976         widenfn(tcg_res[pass], tcg_op);
11977         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11978     }
11979 
11980     for (pass = 0; pass < 2; pass++) {
11981         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11982     }
11983 }
11984 
11985 /* AdvSIMD two reg misc
11986  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
11987  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11988  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11989  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11990  */
11991 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11992 {
11993     int size = extract32(insn, 22, 2);
11994     int opcode = extract32(insn, 12, 5);
11995     bool u = extract32(insn, 29, 1);
11996     bool is_q = extract32(insn, 30, 1);
11997     int rn = extract32(insn, 5, 5);
11998     int rd = extract32(insn, 0, 5);
11999     bool need_fpstatus = false;
12000     int rmode = -1;
12001     TCGv_i32 tcg_rmode;
12002     TCGv_ptr tcg_fpstatus;
12003 
12004     switch (opcode) {
12005     case 0x0: /* REV64, REV32 */
12006     case 0x1: /* REV16 */
12007         handle_rev(s, opcode, u, is_q, size, rn, rd);
12008         return;
12009     case 0x5: /* CNT, NOT, RBIT */
12010         if (u && size == 0) {
12011             /* NOT */
12012             break;
12013         } else if (u && size == 1) {
12014             /* RBIT */
12015             break;
12016         } else if (!u && size == 0) {
12017             /* CNT */
12018             break;
12019         }
12020         unallocated_encoding(s);
12021         return;
12022     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12023     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12024         if (size == 3) {
12025             unallocated_encoding(s);
12026             return;
12027         }
12028         if (!fp_access_check(s)) {
12029             return;
12030         }
12031 
12032         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12033         return;
12034     case 0x4: /* CLS, CLZ */
12035         if (size == 3) {
12036             unallocated_encoding(s);
12037             return;
12038         }
12039         break;
12040     case 0x2: /* SADDLP, UADDLP */
12041     case 0x6: /* SADALP, UADALP */
12042         if (size == 3) {
12043             unallocated_encoding(s);
12044             return;
12045         }
12046         if (!fp_access_check(s)) {
12047             return;
12048         }
12049         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12050         return;
12051     case 0x13: /* SHLL, SHLL2 */
12052         if (u == 0 || size == 3) {
12053             unallocated_encoding(s);
12054             return;
12055         }
12056         if (!fp_access_check(s)) {
12057             return;
12058         }
12059         handle_shll(s, is_q, size, rn, rd);
12060         return;
12061     case 0xa: /* CMLT */
12062         if (u == 1) {
12063             unallocated_encoding(s);
12064             return;
12065         }
12066         /* fall through */
12067     case 0x8: /* CMGT, CMGE */
12068     case 0x9: /* CMEQ, CMLE */
12069     case 0xb: /* ABS, NEG */
12070         if (size == 3 && !is_q) {
12071             unallocated_encoding(s);
12072             return;
12073         }
12074         break;
12075     case 0x3: /* SUQADD, USQADD */
12076         if (size == 3 && !is_q) {
12077             unallocated_encoding(s);
12078             return;
12079         }
12080         if (!fp_access_check(s)) {
12081             return;
12082         }
12083         handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12084         return;
12085     case 0x7: /* SQABS, SQNEG */
12086         if (size == 3 && !is_q) {
12087             unallocated_encoding(s);
12088             return;
12089         }
12090         break;
12091     case 0xc ... 0xf:
12092     case 0x16 ... 0x1f:
12093     {
12094         /* Floating point: U, size[1] and opcode indicate operation;
12095          * size[0] indicates single or double precision.
12096          */
12097         int is_double = extract32(size, 0, 1);
12098         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12099         size = is_double ? 3 : 2;
12100         switch (opcode) {
12101         case 0x2f: /* FABS */
12102         case 0x6f: /* FNEG */
12103             if (size == 3 && !is_q) {
12104                 unallocated_encoding(s);
12105                 return;
12106             }
12107             break;
12108         case 0x1d: /* SCVTF */
12109         case 0x5d: /* UCVTF */
12110         {
12111             bool is_signed = (opcode == 0x1d) ? true : false;
12112             int elements = is_double ? 2 : is_q ? 4 : 2;
12113             if (is_double && !is_q) {
12114                 unallocated_encoding(s);
12115                 return;
12116             }
12117             if (!fp_access_check(s)) {
12118                 return;
12119             }
12120             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12121             return;
12122         }
12123         case 0x2c: /* FCMGT (zero) */
12124         case 0x2d: /* FCMEQ (zero) */
12125         case 0x2e: /* FCMLT (zero) */
12126         case 0x6c: /* FCMGE (zero) */
12127         case 0x6d: /* FCMLE (zero) */
12128             if (size == 3 && !is_q) {
12129                 unallocated_encoding(s);
12130                 return;
12131             }
12132             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12133             return;
12134         case 0x7f: /* FSQRT */
12135             if (size == 3 && !is_q) {
12136                 unallocated_encoding(s);
12137                 return;
12138             }
12139             break;
12140         case 0x1a: /* FCVTNS */
12141         case 0x1b: /* FCVTMS */
12142         case 0x3a: /* FCVTPS */
12143         case 0x3b: /* FCVTZS */
12144         case 0x5a: /* FCVTNU */
12145         case 0x5b: /* FCVTMU */
12146         case 0x7a: /* FCVTPU */
12147         case 0x7b: /* FCVTZU */
12148             need_fpstatus = true;
12149             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12150             if (size == 3 && !is_q) {
12151                 unallocated_encoding(s);
12152                 return;
12153             }
12154             break;
12155         case 0x5c: /* FCVTAU */
12156         case 0x1c: /* FCVTAS */
12157             need_fpstatus = true;
12158             rmode = FPROUNDING_TIEAWAY;
12159             if (size == 3 && !is_q) {
12160                 unallocated_encoding(s);
12161                 return;
12162             }
12163             break;
12164         case 0x3c: /* URECPE */
12165             if (size == 3) {
12166                 unallocated_encoding(s);
12167                 return;
12168             }
12169             /* fall through */
12170         case 0x3d: /* FRECPE */
12171         case 0x7d: /* FRSQRTE */
12172             if (size == 3 && !is_q) {
12173                 unallocated_encoding(s);
12174                 return;
12175             }
12176             if (!fp_access_check(s)) {
12177                 return;
12178             }
12179             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12180             return;
12181         case 0x56: /* FCVTXN, FCVTXN2 */
12182             if (size == 2) {
12183                 unallocated_encoding(s);
12184                 return;
12185             }
12186             /* fall through */
12187         case 0x16: /* FCVTN, FCVTN2 */
12188             /* handle_2misc_narrow does a 2*size -> size operation, but these
12189              * instructions encode the source size rather than dest size.
12190              */
12191             if (!fp_access_check(s)) {
12192                 return;
12193             }
12194             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12195             return;
12196         case 0x36: /* BFCVTN, BFCVTN2 */
12197             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12198                 unallocated_encoding(s);
12199                 return;
12200             }
12201             if (!fp_access_check(s)) {
12202                 return;
12203             }
12204             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12205             return;
12206         case 0x17: /* FCVTL, FCVTL2 */
12207             if (!fp_access_check(s)) {
12208                 return;
12209             }
12210             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12211             return;
12212         case 0x18: /* FRINTN */
12213         case 0x19: /* FRINTM */
12214         case 0x38: /* FRINTP */
12215         case 0x39: /* FRINTZ */
12216             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12217             /* fall through */
12218         case 0x59: /* FRINTX */
12219         case 0x79: /* FRINTI */
12220             need_fpstatus = true;
12221             if (size == 3 && !is_q) {
12222                 unallocated_encoding(s);
12223                 return;
12224             }
12225             break;
12226         case 0x58: /* FRINTA */
12227             rmode = FPROUNDING_TIEAWAY;
12228             need_fpstatus = true;
12229             if (size == 3 && !is_q) {
12230                 unallocated_encoding(s);
12231                 return;
12232             }
12233             break;
12234         case 0x7c: /* URSQRTE */
12235             if (size == 3) {
12236                 unallocated_encoding(s);
12237                 return;
12238             }
12239             break;
12240         case 0x1e: /* FRINT32Z */
12241         case 0x1f: /* FRINT64Z */
12242             rmode = FPROUNDING_ZERO;
12243             /* fall through */
12244         case 0x5e: /* FRINT32X */
12245         case 0x5f: /* FRINT64X */
12246             need_fpstatus = true;
12247             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12248                 unallocated_encoding(s);
12249                 return;
12250             }
12251             break;
12252         default:
12253             unallocated_encoding(s);
12254             return;
12255         }
12256         break;
12257     }
12258     default:
12259         unallocated_encoding(s);
12260         return;
12261     }
12262 
12263     if (!fp_access_check(s)) {
12264         return;
12265     }
12266 
12267     if (need_fpstatus || rmode >= 0) {
12268         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12269     } else {
12270         tcg_fpstatus = NULL;
12271     }
12272     if (rmode >= 0) {
12273         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12274     } else {
12275         tcg_rmode = NULL;
12276     }
12277 
12278     switch (opcode) {
12279     case 0x5:
12280         if (u && size == 0) { /* NOT */
12281             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12282             return;
12283         }
12284         break;
12285     case 0x8: /* CMGT, CMGE */
12286         if (u) {
12287             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12288         } else {
12289             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12290         }
12291         return;
12292     case 0x9: /* CMEQ, CMLE */
12293         if (u) {
12294             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12295         } else {
12296             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12297         }
12298         return;
12299     case 0xa: /* CMLT */
12300         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12301         return;
12302     case 0xb:
12303         if (u) { /* ABS, NEG */
12304             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12305         } else {
12306             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12307         }
12308         return;
12309     }
12310 
12311     if (size == 3) {
12312         /* All 64-bit element operations can be shared with scalar 2misc */
12313         int pass;
12314 
12315         /* Coverity claims (size == 3 && !is_q) has been eliminated
12316          * from all paths leading to here.
12317          */
12318         tcg_debug_assert(is_q);
12319         for (pass = 0; pass < 2; pass++) {
12320             TCGv_i64 tcg_op = tcg_temp_new_i64();
12321             TCGv_i64 tcg_res = tcg_temp_new_i64();
12322 
12323             read_vec_element(s, tcg_op, rn, pass, MO_64);
12324 
12325             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12326                             tcg_rmode, tcg_fpstatus);
12327 
12328             write_vec_element(s, tcg_res, rd, pass, MO_64);
12329         }
12330     } else {
12331         int pass;
12332 
12333         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12334             TCGv_i32 tcg_op = tcg_temp_new_i32();
12335             TCGv_i32 tcg_res = tcg_temp_new_i32();
12336 
12337             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12338 
12339             if (size == 2) {
12340                 /* Special cases for 32 bit elements */
12341                 switch (opcode) {
12342                 case 0x4: /* CLS */
12343                     if (u) {
12344                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12345                     } else {
12346                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
12347                     }
12348                     break;
12349                 case 0x7: /* SQABS, SQNEG */
12350                     if (u) {
12351                         gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
12352                     } else {
12353                         gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
12354                     }
12355                     break;
12356                 case 0x2f: /* FABS */
12357                     gen_helper_vfp_abss(tcg_res, tcg_op);
12358                     break;
12359                 case 0x6f: /* FNEG */
12360                     gen_helper_vfp_negs(tcg_res, tcg_op);
12361                     break;
12362                 case 0x7f: /* FSQRT */
12363                     gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
12364                     break;
12365                 case 0x1a: /* FCVTNS */
12366                 case 0x1b: /* FCVTMS */
12367                 case 0x1c: /* FCVTAS */
12368                 case 0x3a: /* FCVTPS */
12369                 case 0x3b: /* FCVTZS */
12370                     gen_helper_vfp_tosls(tcg_res, tcg_op,
12371                                          tcg_constant_i32(0), tcg_fpstatus);
12372                     break;
12373                 case 0x5a: /* FCVTNU */
12374                 case 0x5b: /* FCVTMU */
12375                 case 0x5c: /* FCVTAU */
12376                 case 0x7a: /* FCVTPU */
12377                 case 0x7b: /* FCVTZU */
12378                     gen_helper_vfp_touls(tcg_res, tcg_op,
12379                                          tcg_constant_i32(0), tcg_fpstatus);
12380                     break;
12381                 case 0x18: /* FRINTN */
12382                 case 0x19: /* FRINTM */
12383                 case 0x38: /* FRINTP */
12384                 case 0x39: /* FRINTZ */
12385                 case 0x58: /* FRINTA */
12386                 case 0x79: /* FRINTI */
12387                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12388                     break;
12389                 case 0x59: /* FRINTX */
12390                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12391                     break;
12392                 case 0x7c: /* URSQRTE */
12393                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
12394                     break;
12395                 case 0x1e: /* FRINT32Z */
12396                 case 0x5e: /* FRINT32X */
12397                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12398                     break;
12399                 case 0x1f: /* FRINT64Z */
12400                 case 0x5f: /* FRINT64X */
12401                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12402                     break;
12403                 default:
12404                     g_assert_not_reached();
12405                 }
12406             } else {
12407                 /* Use helpers for 8 and 16 bit elements */
12408                 switch (opcode) {
12409                 case 0x5: /* CNT, RBIT */
12410                     /* For these two insns size is part of the opcode specifier
12411                      * (handled earlier); they always operate on byte elements.
12412                      */
12413                     if (u) {
12414                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12415                     } else {
12416                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12417                     }
12418                     break;
12419                 case 0x7: /* SQABS, SQNEG */
12420                 {
12421                     NeonGenOneOpEnvFn *genfn;
12422                     static NeonGenOneOpEnvFn * const fns[2][2] = {
12423                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12424                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12425                     };
12426                     genfn = fns[size][u];
12427                     genfn(tcg_res, tcg_env, tcg_op);
12428                     break;
12429                 }
12430                 case 0x4: /* CLS, CLZ */
12431                     if (u) {
12432                         if (size == 0) {
12433                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
12434                         } else {
12435                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
12436                         }
12437                     } else {
12438                         if (size == 0) {
12439                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
12440                         } else {
12441                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
12442                         }
12443                     }
12444                     break;
12445                 default:
12446                     g_assert_not_reached();
12447                 }
12448             }
12449 
12450             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12451         }
12452     }
12453     clear_vec_high(s, is_q, rd);
12454 
12455     if (tcg_rmode) {
12456         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12457     }
12458 }
12459 
12460 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12461  *
12462  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
12463  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12464  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12465  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12466  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12467  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12468  *
12469  * This actually covers two groups where scalar access is governed by
12470  * bit 28. A bunch of the instructions (float to integral) only exist
12471  * in the vector form and are un-allocated for the scalar decode. Also
12472  * in the scalar decode Q is always 1.
12473  */
12474 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12475 {
12476     int fpop, opcode, a, u;
12477     int rn, rd;
12478     bool is_q;
12479     bool is_scalar;
12480     bool only_in_vector = false;
12481 
12482     int pass;
12483     TCGv_i32 tcg_rmode = NULL;
12484     TCGv_ptr tcg_fpstatus = NULL;
12485     bool need_fpst = true;
12486     int rmode = -1;
12487 
12488     if (!dc_isar_feature(aa64_fp16, s)) {
12489         unallocated_encoding(s);
12490         return;
12491     }
12492 
12493     rd = extract32(insn, 0, 5);
12494     rn = extract32(insn, 5, 5);
12495 
12496     a = extract32(insn, 23, 1);
12497     u = extract32(insn, 29, 1);
12498     is_scalar = extract32(insn, 28, 1);
12499     is_q = extract32(insn, 30, 1);
12500 
12501     opcode = extract32(insn, 12, 5);
12502     fpop = deposit32(opcode, 5, 1, a);
12503     fpop = deposit32(fpop, 6, 1, u);
12504 
12505     switch (fpop) {
12506     case 0x1d: /* SCVTF */
12507     case 0x5d: /* UCVTF */
12508     {
12509         int elements;
12510 
12511         if (is_scalar) {
12512             elements = 1;
12513         } else {
12514             elements = (is_q ? 8 : 4);
12515         }
12516 
12517         if (!fp_access_check(s)) {
12518             return;
12519         }
12520         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12521         return;
12522     }
12523     break;
12524     case 0x2c: /* FCMGT (zero) */
12525     case 0x2d: /* FCMEQ (zero) */
12526     case 0x2e: /* FCMLT (zero) */
12527     case 0x6c: /* FCMGE (zero) */
12528     case 0x6d: /* FCMLE (zero) */
12529         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12530         return;
12531     case 0x3d: /* FRECPE */
12532     case 0x3f: /* FRECPX */
12533         break;
12534     case 0x18: /* FRINTN */
12535         only_in_vector = true;
12536         rmode = FPROUNDING_TIEEVEN;
12537         break;
12538     case 0x19: /* FRINTM */
12539         only_in_vector = true;
12540         rmode = FPROUNDING_NEGINF;
12541         break;
12542     case 0x38: /* FRINTP */
12543         only_in_vector = true;
12544         rmode = FPROUNDING_POSINF;
12545         break;
12546     case 0x39: /* FRINTZ */
12547         only_in_vector = true;
12548         rmode = FPROUNDING_ZERO;
12549         break;
12550     case 0x58: /* FRINTA */
12551         only_in_vector = true;
12552         rmode = FPROUNDING_TIEAWAY;
12553         break;
12554     case 0x59: /* FRINTX */
12555     case 0x79: /* FRINTI */
12556         only_in_vector = true;
12557         /* current rounding mode */
12558         break;
12559     case 0x1a: /* FCVTNS */
12560         rmode = FPROUNDING_TIEEVEN;
12561         break;
12562     case 0x1b: /* FCVTMS */
12563         rmode = FPROUNDING_NEGINF;
12564         break;
12565     case 0x1c: /* FCVTAS */
12566         rmode = FPROUNDING_TIEAWAY;
12567         break;
12568     case 0x3a: /* FCVTPS */
12569         rmode = FPROUNDING_POSINF;
12570         break;
12571     case 0x3b: /* FCVTZS */
12572         rmode = FPROUNDING_ZERO;
12573         break;
12574     case 0x5a: /* FCVTNU */
12575         rmode = FPROUNDING_TIEEVEN;
12576         break;
12577     case 0x5b: /* FCVTMU */
12578         rmode = FPROUNDING_NEGINF;
12579         break;
12580     case 0x5c: /* FCVTAU */
12581         rmode = FPROUNDING_TIEAWAY;
12582         break;
12583     case 0x7a: /* FCVTPU */
12584         rmode = FPROUNDING_POSINF;
12585         break;
12586     case 0x7b: /* FCVTZU */
12587         rmode = FPROUNDING_ZERO;
12588         break;
12589     case 0x2f: /* FABS */
12590     case 0x6f: /* FNEG */
12591         need_fpst = false;
12592         break;
12593     case 0x7d: /* FRSQRTE */
12594     case 0x7f: /* FSQRT (vector) */
12595         break;
12596     default:
12597         unallocated_encoding(s);
12598         return;
12599     }
12600 
12601 
12602     /* Check additional constraints for the scalar encoding */
12603     if (is_scalar) {
12604         if (!is_q) {
12605             unallocated_encoding(s);
12606             return;
12607         }
12608         /* FRINTxx is only in the vector form */
12609         if (only_in_vector) {
12610             unallocated_encoding(s);
12611             return;
12612         }
12613     }
12614 
12615     if (!fp_access_check(s)) {
12616         return;
12617     }
12618 
12619     if (rmode >= 0 || need_fpst) {
12620         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12621     }
12622 
12623     if (rmode >= 0) {
12624         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12625     }
12626 
12627     if (is_scalar) {
12628         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12629         TCGv_i32 tcg_res = tcg_temp_new_i32();
12630 
12631         switch (fpop) {
12632         case 0x1a: /* FCVTNS */
12633         case 0x1b: /* FCVTMS */
12634         case 0x1c: /* FCVTAS */
12635         case 0x3a: /* FCVTPS */
12636         case 0x3b: /* FCVTZS */
12637             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12638             break;
12639         case 0x3d: /* FRECPE */
12640             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12641             break;
12642         case 0x3f: /* FRECPX */
12643             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12644             break;
12645         case 0x5a: /* FCVTNU */
12646         case 0x5b: /* FCVTMU */
12647         case 0x5c: /* FCVTAU */
12648         case 0x7a: /* FCVTPU */
12649         case 0x7b: /* FCVTZU */
12650             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12651             break;
12652         case 0x6f: /* FNEG */
12653             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12654             break;
12655         case 0x7d: /* FRSQRTE */
12656             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12657             break;
12658         default:
12659             g_assert_not_reached();
12660         }
12661 
12662         /* limit any sign extension going on */
12663         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12664         write_fp_sreg(s, rd, tcg_res);
12665     } else {
12666         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12667             TCGv_i32 tcg_op = tcg_temp_new_i32();
12668             TCGv_i32 tcg_res = tcg_temp_new_i32();
12669 
12670             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12671 
12672             switch (fpop) {
12673             case 0x1a: /* FCVTNS */
12674             case 0x1b: /* FCVTMS */
12675             case 0x1c: /* FCVTAS */
12676             case 0x3a: /* FCVTPS */
12677             case 0x3b: /* FCVTZS */
12678                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12679                 break;
12680             case 0x3d: /* FRECPE */
12681                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12682                 break;
12683             case 0x5a: /* FCVTNU */
12684             case 0x5b: /* FCVTMU */
12685             case 0x5c: /* FCVTAU */
12686             case 0x7a: /* FCVTPU */
12687             case 0x7b: /* FCVTZU */
12688                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12689                 break;
12690             case 0x18: /* FRINTN */
12691             case 0x19: /* FRINTM */
12692             case 0x38: /* FRINTP */
12693             case 0x39: /* FRINTZ */
12694             case 0x58: /* FRINTA */
12695             case 0x79: /* FRINTI */
12696                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12697                 break;
12698             case 0x59: /* FRINTX */
12699                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12700                 break;
12701             case 0x2f: /* FABS */
12702                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12703                 break;
12704             case 0x6f: /* FNEG */
12705                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12706                 break;
12707             case 0x7d: /* FRSQRTE */
12708                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12709                 break;
12710             case 0x7f: /* FSQRT */
12711                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12712                 break;
12713             default:
12714                 g_assert_not_reached();
12715             }
12716 
12717             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12718         }
12719 
12720         clear_vec_high(s, is_q, rd);
12721     }
12722 
12723     if (tcg_rmode) {
12724         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12725     }
12726 }
12727 
12728 /* AdvSIMD scalar x indexed element
12729  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12730  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12731  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12732  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12733  * AdvSIMD vector x indexed element
12734  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12735  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12736  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12737  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12738  */
12739 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12740 {
12741     /* This encoding has two kinds of instruction:
12742      *  normal, where we perform elt x idxelt => elt for each
12743      *     element in the vector
12744      *  long, where we perform elt x idxelt and generate a result of
12745      *     double the width of the input element
12746      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12747      */
12748     bool is_scalar = extract32(insn, 28, 1);
12749     bool is_q = extract32(insn, 30, 1);
12750     bool u = extract32(insn, 29, 1);
12751     int size = extract32(insn, 22, 2);
12752     int l = extract32(insn, 21, 1);
12753     int m = extract32(insn, 20, 1);
12754     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12755     int rm = extract32(insn, 16, 4);
12756     int opcode = extract32(insn, 12, 4);
12757     int h = extract32(insn, 11, 1);
12758     int rn = extract32(insn, 5, 5);
12759     int rd = extract32(insn, 0, 5);
12760     bool is_long = false;
12761     int is_fp = 0;
12762     bool is_fp16 = false;
12763     int index;
12764     TCGv_ptr fpst;
12765 
12766     switch (16 * u + opcode) {
12767     case 0x08: /* MUL */
12768     case 0x10: /* MLA */
12769     case 0x14: /* MLS */
12770         if (is_scalar) {
12771             unallocated_encoding(s);
12772             return;
12773         }
12774         break;
12775     case 0x02: /* SMLAL, SMLAL2 */
12776     case 0x12: /* UMLAL, UMLAL2 */
12777     case 0x06: /* SMLSL, SMLSL2 */
12778     case 0x16: /* UMLSL, UMLSL2 */
12779     case 0x0a: /* SMULL, SMULL2 */
12780     case 0x1a: /* UMULL, UMULL2 */
12781         if (is_scalar) {
12782             unallocated_encoding(s);
12783             return;
12784         }
12785         is_long = true;
12786         break;
12787     case 0x03: /* SQDMLAL, SQDMLAL2 */
12788     case 0x07: /* SQDMLSL, SQDMLSL2 */
12789     case 0x0b: /* SQDMULL, SQDMULL2 */
12790         is_long = true;
12791         break;
12792     case 0x0c: /* SQDMULH */
12793     case 0x0d: /* SQRDMULH */
12794         break;
12795     case 0x01: /* FMLA */
12796     case 0x05: /* FMLS */
12797     case 0x09: /* FMUL */
12798     case 0x19: /* FMULX */
12799         is_fp = 1;
12800         break;
12801     case 0x1d: /* SQRDMLAH */
12802     case 0x1f: /* SQRDMLSH */
12803         if (!dc_isar_feature(aa64_rdm, s)) {
12804             unallocated_encoding(s);
12805             return;
12806         }
12807         break;
12808     case 0x0e: /* SDOT */
12809     case 0x1e: /* UDOT */
12810         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12811             unallocated_encoding(s);
12812             return;
12813         }
12814         break;
12815     case 0x0f:
12816         switch (size) {
12817         case 0: /* SUDOT */
12818         case 2: /* USDOT */
12819             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12820                 unallocated_encoding(s);
12821                 return;
12822             }
12823             size = MO_32;
12824             break;
12825         case 1: /* BFDOT */
12826             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12827                 unallocated_encoding(s);
12828                 return;
12829             }
12830             size = MO_32;
12831             break;
12832         case 3: /* BFMLAL{B,T} */
12833             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12834                 unallocated_encoding(s);
12835                 return;
12836             }
12837             /* can't set is_fp without other incorrect size checks */
12838             size = MO_16;
12839             break;
12840         default:
12841             unallocated_encoding(s);
12842             return;
12843         }
12844         break;
12845     case 0x11: /* FCMLA #0 */
12846     case 0x13: /* FCMLA #90 */
12847     case 0x15: /* FCMLA #180 */
12848     case 0x17: /* FCMLA #270 */
12849         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12850             unallocated_encoding(s);
12851             return;
12852         }
12853         is_fp = 2;
12854         break;
12855     case 0x00: /* FMLAL */
12856     case 0x04: /* FMLSL */
12857     case 0x18: /* FMLAL2 */
12858     case 0x1c: /* FMLSL2 */
12859         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12860             unallocated_encoding(s);
12861             return;
12862         }
12863         size = MO_16;
12864         /* is_fp, but we pass tcg_env not fp_status.  */
12865         break;
12866     default:
12867         unallocated_encoding(s);
12868         return;
12869     }
12870 
12871     switch (is_fp) {
12872     case 1: /* normal fp */
12873         /* convert insn encoded size to MemOp size */
12874         switch (size) {
12875         case 0: /* half-precision */
12876             size = MO_16;
12877             is_fp16 = true;
12878             break;
12879         case MO_32: /* single precision */
12880         case MO_64: /* double precision */
12881             break;
12882         default:
12883             unallocated_encoding(s);
12884             return;
12885         }
12886         break;
12887 
12888     case 2: /* complex fp */
12889         /* Each indexable element is a complex pair.  */
12890         size += 1;
12891         switch (size) {
12892         case MO_32:
12893             if (h && !is_q) {
12894                 unallocated_encoding(s);
12895                 return;
12896             }
12897             is_fp16 = true;
12898             break;
12899         case MO_64:
12900             break;
12901         default:
12902             unallocated_encoding(s);
12903             return;
12904         }
12905         break;
12906 
12907     default: /* integer */
12908         switch (size) {
12909         case MO_8:
12910         case MO_64:
12911             unallocated_encoding(s);
12912             return;
12913         }
12914         break;
12915     }
12916     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12917         unallocated_encoding(s);
12918         return;
12919     }
12920 
12921     /* Given MemOp size, adjust register and indexing.  */
12922     switch (size) {
12923     case MO_16:
12924         index = h << 2 | l << 1 | m;
12925         break;
12926     case MO_32:
12927         index = h << 1 | l;
12928         rm |= m << 4;
12929         break;
12930     case MO_64:
12931         if (l || !is_q) {
12932             unallocated_encoding(s);
12933             return;
12934         }
12935         index = h;
12936         rm |= m << 4;
12937         break;
12938     default:
12939         g_assert_not_reached();
12940     }
12941 
12942     if (!fp_access_check(s)) {
12943         return;
12944     }
12945 
12946     if (is_fp) {
12947         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12948     } else {
12949         fpst = NULL;
12950     }
12951 
12952     switch (16 * u + opcode) {
12953     case 0x0e: /* SDOT */
12954     case 0x1e: /* UDOT */
12955         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12956                          u ? gen_helper_gvec_udot_idx_b
12957                          : gen_helper_gvec_sdot_idx_b);
12958         return;
12959     case 0x0f:
12960         switch (extract32(insn, 22, 2)) {
12961         case 0: /* SUDOT */
12962             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12963                              gen_helper_gvec_sudot_idx_b);
12964             return;
12965         case 1: /* BFDOT */
12966             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12967                              gen_helper_gvec_bfdot_idx);
12968             return;
12969         case 2: /* USDOT */
12970             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12971                              gen_helper_gvec_usdot_idx_b);
12972             return;
12973         case 3: /* BFMLAL{B,T} */
12974             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
12975                               gen_helper_gvec_bfmlal_idx);
12976             return;
12977         }
12978         g_assert_not_reached();
12979     case 0x11: /* FCMLA #0 */
12980     case 0x13: /* FCMLA #90 */
12981     case 0x15: /* FCMLA #180 */
12982     case 0x17: /* FCMLA #270 */
12983         {
12984             int rot = extract32(insn, 13, 2);
12985             int data = (index << 2) | rot;
12986             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12987                                vec_full_reg_offset(s, rn),
12988                                vec_full_reg_offset(s, rm),
12989                                vec_full_reg_offset(s, rd), fpst,
12990                                is_q ? 16 : 8, vec_full_reg_size(s), data,
12991                                size == MO_64
12992                                ? gen_helper_gvec_fcmlas_idx
12993                                : gen_helper_gvec_fcmlah_idx);
12994         }
12995         return;
12996 
12997     case 0x00: /* FMLAL */
12998     case 0x04: /* FMLSL */
12999     case 0x18: /* FMLAL2 */
13000     case 0x1c: /* FMLSL2 */
13001         {
13002             int is_s = extract32(opcode, 2, 1);
13003             int is_2 = u;
13004             int data = (index << 2) | (is_2 << 1) | is_s;
13005             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13006                                vec_full_reg_offset(s, rn),
13007                                vec_full_reg_offset(s, rm), tcg_env,
13008                                is_q ? 16 : 8, vec_full_reg_size(s),
13009                                data, gen_helper_gvec_fmlal_idx_a64);
13010         }
13011         return;
13012 
13013     case 0x08: /* MUL */
13014         if (!is_long && !is_scalar) {
13015             static gen_helper_gvec_3 * const fns[3] = {
13016                 gen_helper_gvec_mul_idx_h,
13017                 gen_helper_gvec_mul_idx_s,
13018                 gen_helper_gvec_mul_idx_d,
13019             };
13020             tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
13021                                vec_full_reg_offset(s, rn),
13022                                vec_full_reg_offset(s, rm),
13023                                is_q ? 16 : 8, vec_full_reg_size(s),
13024                                index, fns[size - 1]);
13025             return;
13026         }
13027         break;
13028 
13029     case 0x10: /* MLA */
13030         if (!is_long && !is_scalar) {
13031             static gen_helper_gvec_4 * const fns[3] = {
13032                 gen_helper_gvec_mla_idx_h,
13033                 gen_helper_gvec_mla_idx_s,
13034                 gen_helper_gvec_mla_idx_d,
13035             };
13036             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13037                                vec_full_reg_offset(s, rn),
13038                                vec_full_reg_offset(s, rm),
13039                                vec_full_reg_offset(s, rd),
13040                                is_q ? 16 : 8, vec_full_reg_size(s),
13041                                index, fns[size - 1]);
13042             return;
13043         }
13044         break;
13045 
13046     case 0x14: /* MLS */
13047         if (!is_long && !is_scalar) {
13048             static gen_helper_gvec_4 * const fns[3] = {
13049                 gen_helper_gvec_mls_idx_h,
13050                 gen_helper_gvec_mls_idx_s,
13051                 gen_helper_gvec_mls_idx_d,
13052             };
13053             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13054                                vec_full_reg_offset(s, rn),
13055                                vec_full_reg_offset(s, rm),
13056                                vec_full_reg_offset(s, rd),
13057                                is_q ? 16 : 8, vec_full_reg_size(s),
13058                                index, fns[size - 1]);
13059             return;
13060         }
13061         break;
13062     }
13063 
13064     if (size == 3) {
13065         TCGv_i64 tcg_idx = tcg_temp_new_i64();
13066         int pass;
13067 
13068         assert(is_fp && is_q && !is_long);
13069 
13070         read_vec_element(s, tcg_idx, rm, index, MO_64);
13071 
13072         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13073             TCGv_i64 tcg_op = tcg_temp_new_i64();
13074             TCGv_i64 tcg_res = tcg_temp_new_i64();
13075 
13076             read_vec_element(s, tcg_op, rn, pass, MO_64);
13077 
13078             switch (16 * u + opcode) {
13079             case 0x05: /* FMLS */
13080                 /* As usual for ARM, separate negation for fused multiply-add */
13081                 gen_helper_vfp_negd(tcg_op, tcg_op);
13082                 /* fall through */
13083             case 0x01: /* FMLA */
13084                 read_vec_element(s, tcg_res, rd, pass, MO_64);
13085                 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13086                 break;
13087             case 0x09: /* FMUL */
13088                 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
13089                 break;
13090             case 0x19: /* FMULX */
13091                 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13092                 break;
13093             default:
13094                 g_assert_not_reached();
13095             }
13096 
13097             write_vec_element(s, tcg_res, rd, pass, MO_64);
13098         }
13099 
13100         clear_vec_high(s, !is_scalar, rd);
13101     } else if (!is_long) {
13102         /* 32 bit floating point, or 16 or 32 bit integer.
13103          * For the 16 bit scalar case we use the usual Neon helpers and
13104          * rely on the fact that 0 op 0 == 0 with no side effects.
13105          */
13106         TCGv_i32 tcg_idx = tcg_temp_new_i32();
13107         int pass, maxpasses;
13108 
13109         if (is_scalar) {
13110             maxpasses = 1;
13111         } else {
13112             maxpasses = is_q ? 4 : 2;
13113         }
13114 
13115         read_vec_element_i32(s, tcg_idx, rm, index, size);
13116 
13117         if (size == 1 && !is_scalar) {
13118             /* The simplest way to handle the 16x16 indexed ops is to duplicate
13119              * the index into both halves of the 32 bit tcg_idx and then use
13120              * the usual Neon helpers.
13121              */
13122             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13123         }
13124 
13125         for (pass = 0; pass < maxpasses; pass++) {
13126             TCGv_i32 tcg_op = tcg_temp_new_i32();
13127             TCGv_i32 tcg_res = tcg_temp_new_i32();
13128 
13129             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13130 
13131             switch (16 * u + opcode) {
13132             case 0x08: /* MUL */
13133             case 0x10: /* MLA */
13134             case 0x14: /* MLS */
13135             {
13136                 static NeonGenTwoOpFn * const fns[2][2] = {
13137                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13138                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
13139                 };
13140                 NeonGenTwoOpFn *genfn;
13141                 bool is_sub = opcode == 0x4;
13142 
13143                 if (size == 1) {
13144                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13145                 } else {
13146                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13147                 }
13148                 if (opcode == 0x8) {
13149                     break;
13150                 }
13151                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13152                 genfn = fns[size - 1][is_sub];
13153                 genfn(tcg_res, tcg_op, tcg_res);
13154                 break;
13155             }
13156             case 0x05: /* FMLS */
13157             case 0x01: /* FMLA */
13158                 read_vec_element_i32(s, tcg_res, rd, pass,
13159                                      is_scalar ? size : MO_32);
13160                 switch (size) {
13161                 case 1:
13162                     if (opcode == 0x5) {
13163                         /* As usual for ARM, separate negation for fused
13164                          * multiply-add */
13165                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13166                     }
13167                     if (is_scalar) {
13168                         gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13169                                                    tcg_res, fpst);
13170                     } else {
13171                         gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13172                                                     tcg_res, fpst);
13173                     }
13174                     break;
13175                 case 2:
13176                     if (opcode == 0x5) {
13177                         /* As usual for ARM, separate negation for
13178                          * fused multiply-add */
13179                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13180                     }
13181                     gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13182                                            tcg_res, fpst);
13183                     break;
13184                 default:
13185                     g_assert_not_reached();
13186                 }
13187                 break;
13188             case 0x09: /* FMUL */
13189                 switch (size) {
13190                 case 1:
13191                     if (is_scalar) {
13192                         gen_helper_advsimd_mulh(tcg_res, tcg_op,
13193                                                 tcg_idx, fpst);
13194                     } else {
13195                         gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13196                                                  tcg_idx, fpst);
13197                     }
13198                     break;
13199                 case 2:
13200                     gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13201                     break;
13202                 default:
13203                     g_assert_not_reached();
13204                 }
13205                 break;
13206             case 0x19: /* FMULX */
13207                 switch (size) {
13208                 case 1:
13209                     if (is_scalar) {
13210                         gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13211                                                  tcg_idx, fpst);
13212                     } else {
13213                         gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13214                                                   tcg_idx, fpst);
13215                     }
13216                     break;
13217                 case 2:
13218                     gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13219                     break;
13220                 default:
13221                     g_assert_not_reached();
13222                 }
13223                 break;
13224             case 0x0c: /* SQDMULH */
13225                 if (size == 1) {
13226                     gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
13227                                                tcg_op, tcg_idx);
13228                 } else {
13229                     gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
13230                                                tcg_op, tcg_idx);
13231                 }
13232                 break;
13233             case 0x0d: /* SQRDMULH */
13234                 if (size == 1) {
13235                     gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
13236                                                 tcg_op, tcg_idx);
13237                 } else {
13238                     gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
13239                                                 tcg_op, tcg_idx);
13240                 }
13241                 break;
13242             case 0x1d: /* SQRDMLAH */
13243                 read_vec_element_i32(s, tcg_res, rd, pass,
13244                                      is_scalar ? size : MO_32);
13245                 if (size == 1) {
13246                     gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env,
13247                                                 tcg_op, tcg_idx, tcg_res);
13248                 } else {
13249                     gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env,
13250                                                 tcg_op, tcg_idx, tcg_res);
13251                 }
13252                 break;
13253             case 0x1f: /* SQRDMLSH */
13254                 read_vec_element_i32(s, tcg_res, rd, pass,
13255                                      is_scalar ? size : MO_32);
13256                 if (size == 1) {
13257                     gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env,
13258                                                 tcg_op, tcg_idx, tcg_res);
13259                 } else {
13260                     gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env,
13261                                                 tcg_op, tcg_idx, tcg_res);
13262                 }
13263                 break;
13264             default:
13265                 g_assert_not_reached();
13266             }
13267 
13268             if (is_scalar) {
13269                 write_fp_sreg(s, rd, tcg_res);
13270             } else {
13271                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13272             }
13273         }
13274 
13275         clear_vec_high(s, is_q, rd);
13276     } else {
13277         /* long ops: 16x16->32 or 32x32->64 */
13278         TCGv_i64 tcg_res[2];
13279         int pass;
13280         bool satop = extract32(opcode, 0, 1);
13281         MemOp memop = MO_32;
13282 
13283         if (satop || !u) {
13284             memop |= MO_SIGN;
13285         }
13286 
13287         if (size == 2) {
13288             TCGv_i64 tcg_idx = tcg_temp_new_i64();
13289 
13290             read_vec_element(s, tcg_idx, rm, index, memop);
13291 
13292             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13293                 TCGv_i64 tcg_op = tcg_temp_new_i64();
13294                 TCGv_i64 tcg_passres;
13295                 int passelt;
13296 
13297                 if (is_scalar) {
13298                     passelt = 0;
13299                 } else {
13300                     passelt = pass + (is_q * 2);
13301                 }
13302 
13303                 read_vec_element(s, tcg_op, rn, passelt, memop);
13304 
13305                 tcg_res[pass] = tcg_temp_new_i64();
13306 
13307                 if (opcode == 0xa || opcode == 0xb) {
13308                     /* Non-accumulating ops */
13309                     tcg_passres = tcg_res[pass];
13310                 } else {
13311                     tcg_passres = tcg_temp_new_i64();
13312                 }
13313 
13314                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13315 
13316                 if (satop) {
13317                     /* saturating, doubling */
13318                     gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
13319                                                       tcg_passres, tcg_passres);
13320                 }
13321 
13322                 if (opcode == 0xa || opcode == 0xb) {
13323                     continue;
13324                 }
13325 
13326                 /* Accumulating op: handle accumulate step */
13327                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13328 
13329                 switch (opcode) {
13330                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13331                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13332                     break;
13333                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13334                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13335                     break;
13336                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13337                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
13338                     /* fall through */
13339                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13340                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
13341                                                       tcg_res[pass],
13342                                                       tcg_passres);
13343                     break;
13344                 default:
13345                     g_assert_not_reached();
13346                 }
13347             }
13348 
13349             clear_vec_high(s, !is_scalar, rd);
13350         } else {
13351             TCGv_i32 tcg_idx = tcg_temp_new_i32();
13352 
13353             assert(size == 1);
13354             read_vec_element_i32(s, tcg_idx, rm, index, size);
13355 
13356             if (!is_scalar) {
13357                 /* The simplest way to handle the 16x16 indexed ops is to
13358                  * duplicate the index into both halves of the 32 bit tcg_idx
13359                  * and then use the usual Neon helpers.
13360                  */
13361                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13362             }
13363 
13364             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13365                 TCGv_i32 tcg_op = tcg_temp_new_i32();
13366                 TCGv_i64 tcg_passres;
13367 
13368                 if (is_scalar) {
13369                     read_vec_element_i32(s, tcg_op, rn, pass, size);
13370                 } else {
13371                     read_vec_element_i32(s, tcg_op, rn,
13372                                          pass + (is_q * 2), MO_32);
13373                 }
13374 
13375                 tcg_res[pass] = tcg_temp_new_i64();
13376 
13377                 if (opcode == 0xa || opcode == 0xb) {
13378                     /* Non-accumulating ops */
13379                     tcg_passres = tcg_res[pass];
13380                 } else {
13381                     tcg_passres = tcg_temp_new_i64();
13382                 }
13383 
13384                 if (memop & MO_SIGN) {
13385                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13386                 } else {
13387                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13388                 }
13389                 if (satop) {
13390                     gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
13391                                                       tcg_passres, tcg_passres);
13392                 }
13393 
13394                 if (opcode == 0xa || opcode == 0xb) {
13395                     continue;
13396                 }
13397 
13398                 /* Accumulating op: handle accumulate step */
13399                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13400 
13401                 switch (opcode) {
13402                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13403                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13404                                              tcg_passres);
13405                     break;
13406                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13407                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13408                                              tcg_passres);
13409                     break;
13410                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13411                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13412                     /* fall through */
13413                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13414                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
13415                                                       tcg_res[pass],
13416                                                       tcg_passres);
13417                     break;
13418                 default:
13419                     g_assert_not_reached();
13420                 }
13421             }
13422 
13423             if (is_scalar) {
13424                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13425             }
13426         }
13427 
13428         if (is_scalar) {
13429             tcg_res[1] = tcg_constant_i64(0);
13430         }
13431 
13432         for (pass = 0; pass < 2; pass++) {
13433             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13434         }
13435     }
13436 }
13437 
13438 /* Crypto AES
13439  *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
13440  * +-----------------+------+-----------+--------+-----+------+------+
13441  * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
13442  * +-----------------+------+-----------+--------+-----+------+------+
13443  */
13444 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13445 {
13446     int size = extract32(insn, 22, 2);
13447     int opcode = extract32(insn, 12, 5);
13448     int rn = extract32(insn, 5, 5);
13449     int rd = extract32(insn, 0, 5);
13450     gen_helper_gvec_2 *genfn2 = NULL;
13451     gen_helper_gvec_3 *genfn3 = NULL;
13452 
13453     if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13454         unallocated_encoding(s);
13455         return;
13456     }
13457 
13458     switch (opcode) {
13459     case 0x4: /* AESE */
13460         genfn3 = gen_helper_crypto_aese;
13461         break;
13462     case 0x6: /* AESMC */
13463         genfn2 = gen_helper_crypto_aesmc;
13464         break;
13465     case 0x5: /* AESD */
13466         genfn3 = gen_helper_crypto_aesd;
13467         break;
13468     case 0x7: /* AESIMC */
13469         genfn2 = gen_helper_crypto_aesimc;
13470         break;
13471     default:
13472         unallocated_encoding(s);
13473         return;
13474     }
13475 
13476     if (!fp_access_check(s)) {
13477         return;
13478     }
13479     if (genfn2) {
13480         gen_gvec_op2_ool(s, true, rd, rn, 0, genfn2);
13481     } else {
13482         gen_gvec_op3_ool(s, true, rd, rd, rn, 0, genfn3);
13483     }
13484 }
13485 
13486 /* Crypto three-reg SHA
13487  *  31             24 23  22  21 20  16  15 14    12 11 10 9    5 4    0
13488  * +-----------------+------+---+------+---+--------+-----+------+------+
13489  * | 0 1 0 1 1 1 1 0 | size | 0 |  Rm  | 0 | opcode | 0 0 |  Rn  |  Rd  |
13490  * +-----------------+------+---+------+---+--------+-----+------+------+
13491  */
13492 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13493 {
13494     int size = extract32(insn, 22, 2);
13495     int opcode = extract32(insn, 12, 3);
13496     int rm = extract32(insn, 16, 5);
13497     int rn = extract32(insn, 5, 5);
13498     int rd = extract32(insn, 0, 5);
13499     gen_helper_gvec_3 *genfn;
13500     bool feature;
13501 
13502     if (size != 0) {
13503         unallocated_encoding(s);
13504         return;
13505     }
13506 
13507     switch (opcode) {
13508     case 0: /* SHA1C */
13509         genfn = gen_helper_crypto_sha1c;
13510         feature = dc_isar_feature(aa64_sha1, s);
13511         break;
13512     case 1: /* SHA1P */
13513         genfn = gen_helper_crypto_sha1p;
13514         feature = dc_isar_feature(aa64_sha1, s);
13515         break;
13516     case 2: /* SHA1M */
13517         genfn = gen_helper_crypto_sha1m;
13518         feature = dc_isar_feature(aa64_sha1, s);
13519         break;
13520     case 3: /* SHA1SU0 */
13521         genfn = gen_helper_crypto_sha1su0;
13522         feature = dc_isar_feature(aa64_sha1, s);
13523         break;
13524     case 4: /* SHA256H */
13525         genfn = gen_helper_crypto_sha256h;
13526         feature = dc_isar_feature(aa64_sha256, s);
13527         break;
13528     case 5: /* SHA256H2 */
13529         genfn = gen_helper_crypto_sha256h2;
13530         feature = dc_isar_feature(aa64_sha256, s);
13531         break;
13532     case 6: /* SHA256SU1 */
13533         genfn = gen_helper_crypto_sha256su1;
13534         feature = dc_isar_feature(aa64_sha256, s);
13535         break;
13536     default:
13537         unallocated_encoding(s);
13538         return;
13539     }
13540 
13541     if (!feature) {
13542         unallocated_encoding(s);
13543         return;
13544     }
13545 
13546     if (!fp_access_check(s)) {
13547         return;
13548     }
13549     gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
13550 }
13551 
13552 /* Crypto two-reg SHA
13553  *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
13554  * +-----------------+------+-----------+--------+-----+------+------+
13555  * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
13556  * +-----------------+------+-----------+--------+-----+------+------+
13557  */
13558 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13559 {
13560     int size = extract32(insn, 22, 2);
13561     int opcode = extract32(insn, 12, 5);
13562     int rn = extract32(insn, 5, 5);
13563     int rd = extract32(insn, 0, 5);
13564     gen_helper_gvec_2 *genfn;
13565     bool feature;
13566 
13567     if (size != 0) {
13568         unallocated_encoding(s);
13569         return;
13570     }
13571 
13572     switch (opcode) {
13573     case 0: /* SHA1H */
13574         feature = dc_isar_feature(aa64_sha1, s);
13575         genfn = gen_helper_crypto_sha1h;
13576         break;
13577     case 1: /* SHA1SU1 */
13578         feature = dc_isar_feature(aa64_sha1, s);
13579         genfn = gen_helper_crypto_sha1su1;
13580         break;
13581     case 2: /* SHA256SU0 */
13582         feature = dc_isar_feature(aa64_sha256, s);
13583         genfn = gen_helper_crypto_sha256su0;
13584         break;
13585     default:
13586         unallocated_encoding(s);
13587         return;
13588     }
13589 
13590     if (!feature) {
13591         unallocated_encoding(s);
13592         return;
13593     }
13594 
13595     if (!fp_access_check(s)) {
13596         return;
13597     }
13598     gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
13599 }
13600 
13601 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
13602 {
13603     tcg_gen_rotli_i64(d, m, 1);
13604     tcg_gen_xor_i64(d, d, n);
13605 }
13606 
13607 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
13608 {
13609     tcg_gen_rotli_vec(vece, d, m, 1);
13610     tcg_gen_xor_vec(vece, d, d, n);
13611 }
13612 
13613 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
13614                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
13615 {
13616     static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
13617     static const GVecGen3 op = {
13618         .fni8 = gen_rax1_i64,
13619         .fniv = gen_rax1_vec,
13620         .opt_opc = vecop_list,
13621         .fno = gen_helper_crypto_rax1,
13622         .vece = MO_64,
13623     };
13624     tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
13625 }
13626 
13627 /* Crypto three-reg SHA512
13628  *  31                   21 20  16 15  14  13 12  11  10  9    5 4    0
13629  * +-----------------------+------+---+---+-----+--------+------+------+
13630  * | 1 1 0 0 1 1 1 0 0 1 1 |  Rm  | 1 | O | 0 0 | opcode |  Rn  |  Rd  |
13631  * +-----------------------+------+---+---+-----+--------+------+------+
13632  */
13633 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13634 {
13635     int opcode = extract32(insn, 10, 2);
13636     int o =  extract32(insn, 14, 1);
13637     int rm = extract32(insn, 16, 5);
13638     int rn = extract32(insn, 5, 5);
13639     int rd = extract32(insn, 0, 5);
13640     bool feature;
13641     gen_helper_gvec_3 *oolfn = NULL;
13642     GVecGen3Fn *gvecfn = NULL;
13643 
13644     if (o == 0) {
13645         switch (opcode) {
13646         case 0: /* SHA512H */
13647             feature = dc_isar_feature(aa64_sha512, s);
13648             oolfn = gen_helper_crypto_sha512h;
13649             break;
13650         case 1: /* SHA512H2 */
13651             feature = dc_isar_feature(aa64_sha512, s);
13652             oolfn = gen_helper_crypto_sha512h2;
13653             break;
13654         case 2: /* SHA512SU1 */
13655             feature = dc_isar_feature(aa64_sha512, s);
13656             oolfn = gen_helper_crypto_sha512su1;
13657             break;
13658         case 3: /* RAX1 */
13659             feature = dc_isar_feature(aa64_sha3, s);
13660             gvecfn = gen_gvec_rax1;
13661             break;
13662         default:
13663             g_assert_not_reached();
13664         }
13665     } else {
13666         switch (opcode) {
13667         case 0: /* SM3PARTW1 */
13668             feature = dc_isar_feature(aa64_sm3, s);
13669             oolfn = gen_helper_crypto_sm3partw1;
13670             break;
13671         case 1: /* SM3PARTW2 */
13672             feature = dc_isar_feature(aa64_sm3, s);
13673             oolfn = gen_helper_crypto_sm3partw2;
13674             break;
13675         case 2: /* SM4EKEY */
13676             feature = dc_isar_feature(aa64_sm4, s);
13677             oolfn = gen_helper_crypto_sm4ekey;
13678             break;
13679         default:
13680             unallocated_encoding(s);
13681             return;
13682         }
13683     }
13684 
13685     if (!feature) {
13686         unallocated_encoding(s);
13687         return;
13688     }
13689 
13690     if (!fp_access_check(s)) {
13691         return;
13692     }
13693 
13694     if (oolfn) {
13695         gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
13696     } else {
13697         gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
13698     }
13699 }
13700 
13701 /* Crypto two-reg SHA512
13702  *  31                                     12  11  10  9    5 4    0
13703  * +-----------------------------------------+--------+------+------+
13704  * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode |  Rn  |  Rd  |
13705  * +-----------------------------------------+--------+------+------+
13706  */
13707 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13708 {
13709     int opcode = extract32(insn, 10, 2);
13710     int rn = extract32(insn, 5, 5);
13711     int rd = extract32(insn, 0, 5);
13712     bool feature;
13713 
13714     switch (opcode) {
13715     case 0: /* SHA512SU0 */
13716         feature = dc_isar_feature(aa64_sha512, s);
13717         break;
13718     case 1: /* SM4E */
13719         feature = dc_isar_feature(aa64_sm4, s);
13720         break;
13721     default:
13722         unallocated_encoding(s);
13723         return;
13724     }
13725 
13726     if (!feature) {
13727         unallocated_encoding(s);
13728         return;
13729     }
13730 
13731     if (!fp_access_check(s)) {
13732         return;
13733     }
13734 
13735     switch (opcode) {
13736     case 0: /* SHA512SU0 */
13737         gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
13738         break;
13739     case 1: /* SM4E */
13740         gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
13741         break;
13742     default:
13743         g_assert_not_reached();
13744     }
13745 }
13746 
13747 /* Crypto four-register
13748  *  31               23 22 21 20  16 15  14  10 9    5 4    0
13749  * +-------------------+-----+------+---+------+------+------+
13750  * | 1 1 0 0 1 1 1 0 0 | Op0 |  Rm  | 0 |  Ra  |  Rn  |  Rd  |
13751  * +-------------------+-----+------+---+------+------+------+
13752  */
13753 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13754 {
13755     int op0 = extract32(insn, 21, 2);
13756     int rm = extract32(insn, 16, 5);
13757     int ra = extract32(insn, 10, 5);
13758     int rn = extract32(insn, 5, 5);
13759     int rd = extract32(insn, 0, 5);
13760     bool feature;
13761 
13762     switch (op0) {
13763     case 0: /* EOR3 */
13764     case 1: /* BCAX */
13765         feature = dc_isar_feature(aa64_sha3, s);
13766         break;
13767     case 2: /* SM3SS1 */
13768         feature = dc_isar_feature(aa64_sm3, s);
13769         break;
13770     default:
13771         unallocated_encoding(s);
13772         return;
13773     }
13774 
13775     if (!feature) {
13776         unallocated_encoding(s);
13777         return;
13778     }
13779 
13780     if (!fp_access_check(s)) {
13781         return;
13782     }
13783 
13784     if (op0 < 2) {
13785         TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13786         int pass;
13787 
13788         tcg_op1 = tcg_temp_new_i64();
13789         tcg_op2 = tcg_temp_new_i64();
13790         tcg_op3 = tcg_temp_new_i64();
13791         tcg_res[0] = tcg_temp_new_i64();
13792         tcg_res[1] = tcg_temp_new_i64();
13793 
13794         for (pass = 0; pass < 2; pass++) {
13795             read_vec_element(s, tcg_op1, rn, pass, MO_64);
13796             read_vec_element(s, tcg_op2, rm, pass, MO_64);
13797             read_vec_element(s, tcg_op3, ra, pass, MO_64);
13798 
13799             if (op0 == 0) {
13800                 /* EOR3 */
13801                 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13802             } else {
13803                 /* BCAX */
13804                 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13805             }
13806             tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13807         }
13808         write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13809         write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13810     } else {
13811         TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13812 
13813         tcg_op1 = tcg_temp_new_i32();
13814         tcg_op2 = tcg_temp_new_i32();
13815         tcg_op3 = tcg_temp_new_i32();
13816         tcg_res = tcg_temp_new_i32();
13817         tcg_zero = tcg_constant_i32(0);
13818 
13819         read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13820         read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13821         read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13822 
13823         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13824         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13825         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13826         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13827 
13828         write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13829         write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13830         write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13831         write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13832     }
13833 }
13834 
13835 /* Crypto XAR
13836  *  31                   21 20  16 15    10 9    5 4    0
13837  * +-----------------------+------+--------+------+------+
13838  * | 1 1 0 0 1 1 1 0 1 0 0 |  Rm  |  imm6  |  Rn  |  Rd  |
13839  * +-----------------------+------+--------+------+------+
13840  */
13841 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13842 {
13843     int rm = extract32(insn, 16, 5);
13844     int imm6 = extract32(insn, 10, 6);
13845     int rn = extract32(insn, 5, 5);
13846     int rd = extract32(insn, 0, 5);
13847 
13848     if (!dc_isar_feature(aa64_sha3, s)) {
13849         unallocated_encoding(s);
13850         return;
13851     }
13852 
13853     if (!fp_access_check(s)) {
13854         return;
13855     }
13856 
13857     gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd),
13858                  vec_full_reg_offset(s, rn),
13859                  vec_full_reg_offset(s, rm), imm6, 16,
13860                  vec_full_reg_size(s));
13861 }
13862 
13863 /* Crypto three-reg imm2
13864  *  31                   21 20  16 15  14 13 12  11  10  9    5 4    0
13865  * +-----------------------+------+-----+------+--------+------+------+
13866  * | 1 1 0 0 1 1 1 0 0 1 0 |  Rm  | 1 0 | imm2 | opcode |  Rn  |  Rd  |
13867  * +-----------------------+------+-----+------+--------+------+------+
13868  */
13869 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13870 {
13871     static gen_helper_gvec_3 * const fns[4] = {
13872         gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
13873         gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
13874     };
13875     int opcode = extract32(insn, 10, 2);
13876     int imm2 = extract32(insn, 12, 2);
13877     int rm = extract32(insn, 16, 5);
13878     int rn = extract32(insn, 5, 5);
13879     int rd = extract32(insn, 0, 5);
13880 
13881     if (!dc_isar_feature(aa64_sm3, s)) {
13882         unallocated_encoding(s);
13883         return;
13884     }
13885 
13886     if (!fp_access_check(s)) {
13887         return;
13888     }
13889 
13890     gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
13891 }
13892 
13893 /* C3.6 Data processing - SIMD, inc Crypto
13894  *
13895  * As the decode gets a little complex we are using a table based
13896  * approach for this part of the decode.
13897  */
13898 static const AArch64DecodeTable data_proc_simd[] = {
13899     /* pattern  ,  mask     ,  fn                        */
13900     { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13901     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13902     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13903     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13904     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13905     { 0x0e000400, 0x9fe08400, disas_simd_copy },
13906     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13907     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13908     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13909     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13910     { 0x0e000000, 0xbf208c00, disas_simd_tb },
13911     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13912     { 0x2e000000, 0xbf208400, disas_simd_ext },
13913     { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13914     { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13915     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13916     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13917     { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13918     { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
13919     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13920     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13921     { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
13922     { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
13923     { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
13924     { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
13925     { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
13926     { 0xce000000, 0xff808000, disas_crypto_four_reg },
13927     { 0xce800000, 0xffe00000, disas_crypto_xar },
13928     { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
13929     { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13930     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13931     { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13932     { 0x00000000, 0x00000000, NULL }
13933 };
13934 
13935 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13936 {
13937     /* Note that this is called with all non-FP cases from
13938      * table C3-6 so it must UNDEF for entries not specifically
13939      * allocated to instructions in that table.
13940      */
13941     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13942     if (fn) {
13943         fn(s, insn);
13944     } else {
13945         unallocated_encoding(s);
13946     }
13947 }
13948 
13949 /* C3.6 Data processing - SIMD and floating point */
13950 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13951 {
13952     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13953         disas_data_proc_fp(s, insn);
13954     } else {
13955         /* SIMD, including crypto */
13956         disas_data_proc_simd(s, insn);
13957     }
13958 }
13959 
13960 static bool trans_OK(DisasContext *s, arg_OK *a)
13961 {
13962     return true;
13963 }
13964 
13965 static bool trans_FAIL(DisasContext *s, arg_OK *a)
13966 {
13967     s->is_nonstreaming = true;
13968     return true;
13969 }
13970 
13971 /**
13972  * is_guarded_page:
13973  * @env: The cpu environment
13974  * @s: The DisasContext
13975  *
13976  * Return true if the page is guarded.
13977  */
13978 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13979 {
13980     uint64_t addr = s->base.pc_first;
13981 #ifdef CONFIG_USER_ONLY
13982     return page_get_flags(addr) & PAGE_BTI;
13983 #else
13984     CPUTLBEntryFull *full;
13985     void *host;
13986     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13987     int flags;
13988 
13989     /*
13990      * We test this immediately after reading an insn, which means
13991      * that the TLB entry must be present and valid, and thus this
13992      * access will never raise an exception.
13993      */
13994     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
13995                               false, &host, &full, 0);
13996     assert(!(flags & TLB_INVALID_MASK));
13997 
13998     return full->extra.arm.guarded;
13999 #endif
14000 }
14001 
14002 /**
14003  * btype_destination_ok:
14004  * @insn: The instruction at the branch destination
14005  * @bt: SCTLR_ELx.BT
14006  * @btype: PSTATE.BTYPE, and is non-zero
14007  *
14008  * On a guarded page, there are a limited number of insns
14009  * that may be present at the branch target:
14010  *   - branch target identifiers,
14011  *   - paciasp, pacibsp,
14012  *   - BRK insn
14013  *   - HLT insn
14014  * Anything else causes a Branch Target Exception.
14015  *
14016  * Return true if the branch is compatible, false to raise BTITRAP.
14017  */
14018 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
14019 {
14020     if ((insn & 0xfffff01fu) == 0xd503201fu) {
14021         /* HINT space */
14022         switch (extract32(insn, 5, 7)) {
14023         case 0b011001: /* PACIASP */
14024         case 0b011011: /* PACIBSP */
14025             /*
14026              * If SCTLR_ELx.BT, then PACI*SP are not compatible
14027              * with btype == 3.  Otherwise all btype are ok.
14028              */
14029             return !bt || btype != 3;
14030         case 0b100000: /* BTI */
14031             /* Not compatible with any btype.  */
14032             return false;
14033         case 0b100010: /* BTI c */
14034             /* Not compatible with btype == 3 */
14035             return btype != 3;
14036         case 0b100100: /* BTI j */
14037             /* Not compatible with btype == 2 */
14038             return btype != 2;
14039         case 0b100110: /* BTI jc */
14040             /* Compatible with any btype.  */
14041             return true;
14042         }
14043     } else {
14044         switch (insn & 0xffe0001fu) {
14045         case 0xd4200000u: /* BRK */
14046         case 0xd4400000u: /* HLT */
14047             /* Give priority to the breakpoint exception.  */
14048             return true;
14049         }
14050     }
14051     return false;
14052 }
14053 
14054 /* C3.1 A64 instruction index by encoding */
14055 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
14056 {
14057     switch (extract32(insn, 25, 4)) {
14058     case 0x5:
14059     case 0xd:      /* Data processing - register */
14060         disas_data_proc_reg(s, insn);
14061         break;
14062     case 0x7:
14063     case 0xf:      /* Data processing - SIMD and floating point */
14064         disas_data_proc_simd_fp(s, insn);
14065         break;
14066     default:
14067         unallocated_encoding(s);
14068         break;
14069     }
14070 }
14071 
14072 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14073                                           CPUState *cpu)
14074 {
14075     DisasContext *dc = container_of(dcbase, DisasContext, base);
14076     CPUARMState *env = cpu_env(cpu);
14077     ARMCPU *arm_cpu = env_archcpu(env);
14078     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
14079     int bound, core_mmu_idx;
14080 
14081     dc->isar = &arm_cpu->isar;
14082     dc->condjmp = 0;
14083     dc->pc_save = dc->base.pc_first;
14084     dc->aarch64 = true;
14085     dc->thumb = false;
14086     dc->sctlr_b = 0;
14087     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
14088     dc->condexec_mask = 0;
14089     dc->condexec_cond = 0;
14090     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
14091     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
14092     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
14093     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
14094     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
14095     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14096 #if !defined(CONFIG_USER_ONLY)
14097     dc->user = (dc->current_el == 0);
14098 #endif
14099     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
14100     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
14101     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
14102     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
14103     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
14104     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
14105     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
14106     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
14107     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
14108     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
14109     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
14110     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
14111     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
14112     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
14113     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
14114     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
14115     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
14116     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
14117     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
14118     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
14119     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
14120     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
14121     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
14122     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
14123     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
14124     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
14125     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
14126     dc->vec_len = 0;
14127     dc->vec_stride = 0;
14128     dc->cp_regs = arm_cpu->cp_regs;
14129     dc->features = env->features;
14130     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
14131     dc->gm_blocksize = arm_cpu->gm_blocksize;
14132 
14133 #ifdef CONFIG_USER_ONLY
14134     /* In sve_probe_page, we assume TBI is enabled. */
14135     tcg_debug_assert(dc->tbid & 1);
14136 #endif
14137 
14138     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
14139 
14140     /* Single step state. The code-generation logic here is:
14141      *  SS_ACTIVE == 0:
14142      *   generate code with no special handling for single-stepping (except
14143      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14144      *   this happens anyway because those changes are all system register or
14145      *   PSTATE writes).
14146      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14147      *   emit code for one insn
14148      *   emit code to clear PSTATE.SS
14149      *   emit code to generate software step exception for completed step
14150      *   end TB (as usual for having generated an exception)
14151      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14152      *   emit code to generate a software step exception
14153      *   end the TB
14154      */
14155     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
14156     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
14157     dc->is_ldex = false;
14158 
14159     /* Bound the number of insns to execute to those left on the page.  */
14160     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14161 
14162     /* If architectural single step active, limit to 1.  */
14163     if (dc->ss_active) {
14164         bound = 1;
14165     }
14166     dc->base.max_insns = MIN(dc->base.max_insns, bound);
14167 }
14168 
14169 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14170 {
14171 }
14172 
14173 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14174 {
14175     DisasContext *dc = container_of(dcbase, DisasContext, base);
14176     target_ulong pc_arg = dc->base.pc_next;
14177 
14178     if (tb_cflags(dcbase->tb) & CF_PCREL) {
14179         pc_arg &= ~TARGET_PAGE_MASK;
14180     }
14181     tcg_gen_insn_start(pc_arg, 0, 0);
14182     dc->insn_start_updated = false;
14183 }
14184 
14185 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14186 {
14187     DisasContext *s = container_of(dcbase, DisasContext, base);
14188     CPUARMState *env = cpu_env(cpu);
14189     uint64_t pc = s->base.pc_next;
14190     uint32_t insn;
14191 
14192     /* Singlestep exceptions have the highest priority. */
14193     if (s->ss_active && !s->pstate_ss) {
14194         /* Singlestep state is Active-pending.
14195          * If we're in this state at the start of a TB then either
14196          *  a) we just took an exception to an EL which is being debugged
14197          *     and this is the first insn in the exception handler
14198          *  b) debug exceptions were masked and we just unmasked them
14199          *     without changing EL (eg by clearing PSTATE.D)
14200          * In either case we're going to take a swstep exception in the
14201          * "did not step an insn" case, and so the syndrome ISV and EX
14202          * bits should be zero.
14203          */
14204         assert(s->base.num_insns == 1);
14205         gen_swstep_exception(s, 0, 0);
14206         s->base.is_jmp = DISAS_NORETURN;
14207         s->base.pc_next = pc + 4;
14208         return;
14209     }
14210 
14211     if (pc & 3) {
14212         /*
14213          * PC alignment fault.  This has priority over the instruction abort
14214          * that we would receive from a translation fault via arm_ldl_code.
14215          * This should only be possible after an indirect branch, at the
14216          * start of the TB.
14217          */
14218         assert(s->base.num_insns == 1);
14219         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
14220         s->base.is_jmp = DISAS_NORETURN;
14221         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
14222         return;
14223     }
14224 
14225     s->pc_curr = pc;
14226     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
14227     s->insn = insn;
14228     s->base.pc_next = pc + 4;
14229 
14230     s->fp_access_checked = false;
14231     s->sve_access_checked = false;
14232 
14233     if (s->pstate_il) {
14234         /*
14235          * Illegal execution state. This has priority over BTI
14236          * exceptions, but comes after instruction abort exceptions.
14237          */
14238         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
14239         return;
14240     }
14241 
14242     if (dc_isar_feature(aa64_bti, s)) {
14243         if (s->base.num_insns == 1) {
14244             /*
14245              * At the first insn of the TB, compute s->guarded_page.
14246              * We delayed computing this until successfully reading
14247              * the first insn of the TB, above.  This (mostly) ensures
14248              * that the softmmu tlb entry has been populated, and the
14249              * page table GP bit is available.
14250              *
14251              * Note that we need to compute this even if btype == 0,
14252              * because this value is used for BR instructions later
14253              * where ENV is not available.
14254              */
14255             s->guarded_page = is_guarded_page(env, s);
14256 
14257             /* First insn can have btype set to non-zero.  */
14258             tcg_debug_assert(s->btype >= 0);
14259 
14260             /*
14261              * Note that the Branch Target Exception has fairly high
14262              * priority -- below debugging exceptions but above most
14263              * everything else.  This allows us to handle this now
14264              * instead of waiting until the insn is otherwise decoded.
14265              */
14266             if (s->btype != 0
14267                 && s->guarded_page
14268                 && !btype_destination_ok(insn, s->bt, s->btype)) {
14269                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
14270                 return;
14271             }
14272         } else {
14273             /* Not the first insn: btype must be 0.  */
14274             tcg_debug_assert(s->btype == 0);
14275         }
14276     }
14277 
14278     s->is_nonstreaming = false;
14279     if (s->sme_trap_nonstreaming) {
14280         disas_sme_fa64(s, insn);
14281     }
14282 
14283     if (!disas_a64(s, insn) &&
14284         !disas_sme(s, insn) &&
14285         !disas_sve(s, insn)) {
14286         disas_a64_legacy(s, insn);
14287     }
14288 
14289     /*
14290      * After execution of most insns, btype is reset to 0.
14291      * Note that we set btype == -1 when the insn sets btype.
14292      */
14293     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14294         reset_btype(s);
14295     }
14296 }
14297 
14298 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14299 {
14300     DisasContext *dc = container_of(dcbase, DisasContext, base);
14301 
14302     if (unlikely(dc->ss_active)) {
14303         /* Note that this means single stepping WFI doesn't halt the CPU.
14304          * For conditional branch insns this is harmless unreachable code as
14305          * gen_goto_tb() has already handled emitting the debug exception
14306          * (and thus a tb-jump is not possible when singlestepping).
14307          */
14308         switch (dc->base.is_jmp) {
14309         default:
14310             gen_a64_update_pc(dc, 4);
14311             /* fall through */
14312         case DISAS_EXIT:
14313         case DISAS_JUMP:
14314             gen_step_complete_exception(dc);
14315             break;
14316         case DISAS_NORETURN:
14317             break;
14318         }
14319     } else {
14320         switch (dc->base.is_jmp) {
14321         case DISAS_NEXT:
14322         case DISAS_TOO_MANY:
14323             gen_goto_tb(dc, 1, 4);
14324             break;
14325         default:
14326         case DISAS_UPDATE_EXIT:
14327             gen_a64_update_pc(dc, 4);
14328             /* fall through */
14329         case DISAS_EXIT:
14330             tcg_gen_exit_tb(NULL, 0);
14331             break;
14332         case DISAS_UPDATE_NOCHAIN:
14333             gen_a64_update_pc(dc, 4);
14334             /* fall through */
14335         case DISAS_JUMP:
14336             tcg_gen_lookup_and_goto_ptr();
14337             break;
14338         case DISAS_NORETURN:
14339         case DISAS_SWI:
14340             break;
14341         case DISAS_WFE:
14342             gen_a64_update_pc(dc, 4);
14343             gen_helper_wfe(tcg_env);
14344             break;
14345         case DISAS_YIELD:
14346             gen_a64_update_pc(dc, 4);
14347             gen_helper_yield(tcg_env);
14348             break;
14349         case DISAS_WFI:
14350             /*
14351              * This is a special case because we don't want to just halt
14352              * the CPU if trying to debug across a WFI.
14353              */
14354             gen_a64_update_pc(dc, 4);
14355             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
14356             /*
14357              * The helper doesn't necessarily throw an exception, but we
14358              * must go back to the main loop to check for interrupts anyway.
14359              */
14360             tcg_gen_exit_tb(NULL, 0);
14361             break;
14362         }
14363     }
14364 }
14365 
14366 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14367                                  CPUState *cpu, FILE *logfile)
14368 {
14369     DisasContext *dc = container_of(dcbase, DisasContext, base);
14370 
14371     fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first));
14372     target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size);
14373 }
14374 
14375 const TranslatorOps aarch64_translator_ops = {
14376     .init_disas_context = aarch64_tr_init_disas_context,
14377     .tb_start           = aarch64_tr_tb_start,
14378     .insn_start         = aarch64_tr_insn_start,
14379     .translate_insn     = aarch64_tr_translate_insn,
14380     .tb_stop            = aarch64_tr_tb_stop,
14381     .disas_log          = aarch64_tr_disas_log,
14382 };
14383