xref: /qemu/target/arm/tcg/translate-a64.c (revision 372b69f5)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "translate.h"
22 #include "translate-a64.h"
23 #include "qemu/log.h"
24 #include "disas/disas.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* Table based decoder typedefs - used when the relevant bits for decode
79  * are too awkwardly scattered across the instruction (eg SIMD).
80  */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82 
83 typedef struct AArch64DecodeTable {
84     uint32_t pattern;
85     uint32_t mask;
86     AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88 
89 /* initialize TCG globals.  */
90 void a64_translate_init(void)
91 {
92     int i;
93 
94     cpu_pc = tcg_global_mem_new_i64(tcg_env,
95                                     offsetof(CPUARMState, pc),
96                                     "pc");
97     for (i = 0; i < 32; i++) {
98         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99                                           offsetof(CPUARMState, xregs[i]),
100                                           regnames[i]);
101     }
102 
103     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104         offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106 
107 /*
108  * Return the core mmu_idx to use for A64 load/store insns which
109  * have a "unprivileged load/store" variant. Those insns access
110  * EL0 if executed from an EL which has control over EL0 (usually
111  * EL1) but behave like normal loads and stores if executed from
112  * elsewhere (eg EL3).
113  *
114  * @unpriv : true for the unprivileged encoding; false for the
115  *           normal encoding (in which case we will return the same
116  *           thing as get_mem_index().
117  */
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120     /*
121      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122      * which is the usual mmu_idx for this cpu state.
123      */
124     ARMMMUIdx useridx = s->mmu_idx;
125 
126     if (unpriv && s->unpriv) {
127         /*
128          * We have pre-computed the condition for AccType_UNPRIV.
129          * Therefore we should never get here with a mmu_idx for
130          * which we do not know the corresponding user mmu_idx.
131          */
132         switch (useridx) {
133         case ARMMMUIdx_E10_1:
134         case ARMMMUIdx_E10_1_PAN:
135             useridx = ARMMMUIdx_E10_0;
136             break;
137         case ARMMMUIdx_E20_2:
138         case ARMMMUIdx_E20_2_PAN:
139             useridx = ARMMMUIdx_E20_0;
140             break;
141         default:
142             g_assert_not_reached();
143         }
144     }
145     return arm_to_core_mmu_idx(useridx);
146 }
147 
148 static void set_btype_raw(int val)
149 {
150     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151                    offsetof(CPUARMState, btype));
152 }
153 
154 static void set_btype(DisasContext *s, int val)
155 {
156     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
157     tcg_debug_assert(val >= 1 && val <= 3);
158     set_btype_raw(val);
159     s->btype = -1;
160 }
161 
162 static void reset_btype(DisasContext *s)
163 {
164     if (s->btype != 0) {
165         set_btype_raw(0);
166         s->btype = 0;
167     }
168 }
169 
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172     assert(s->pc_save != -1);
173     if (tb_cflags(s->base.tb) & CF_PCREL) {
174         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175     } else {
176         tcg_gen_movi_i64(dest, s->pc_curr + diff);
177     }
178 }
179 
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182     gen_pc_plus_diff(s, cpu_pc, diff);
183     s->pc_save = s->pc_curr + diff;
184 }
185 
186 /*
187  * Handle Top Byte Ignore (TBI) bits.
188  *
189  * If address tagging is enabled via the TCR TBI bits:
190  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
191  *    then the address is zero-extended, clearing bits [63:56]
192  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193  *    and TBI1 controls addresses with bit 55 == 1.
194  *    If the appropriate TBI bit is set for the address then
195  *    the address is sign-extended from bit 55 into bits [63:56]
196  *
197  * Here We have concatenated TBI{1,0} into tbi.
198  */
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200                                 TCGv_i64 src, int tbi)
201 {
202     if (tbi == 0) {
203         /* Load unmodified address */
204         tcg_gen_mov_i64(dst, src);
205     } else if (!regime_has_2_ranges(s->mmu_idx)) {
206         /* Force tag byte to all zero */
207         tcg_gen_extract_i64(dst, src, 0, 56);
208     } else {
209         /* Sign-extend from bit 55.  */
210         tcg_gen_sextract_i64(dst, src, 0, 56);
211 
212         switch (tbi) {
213         case 1:
214             /* tbi0 but !tbi1: only use the extension if positive */
215             tcg_gen_and_i64(dst, dst, src);
216             break;
217         case 2:
218             /* !tbi0 but tbi1: only use the extension if negative */
219             tcg_gen_or_i64(dst, dst, src);
220             break;
221         case 3:
222             /* tbi0 and tbi1: always use the extension */
223             break;
224         default:
225             g_assert_not_reached();
226         }
227     }
228 }
229 
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232     /*
233      * If address tagging is enabled for instructions via the TCR TBI bits,
234      * then loading an address into the PC will clear out any tag.
235      */
236     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237     s->pc_save = -1;
238 }
239 
240 /*
241  * Handle MTE and/or TBI.
242  *
243  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
244  * for the tag to be present in the FAR_ELx register.  But for user-only
245  * mode we do not have a TLB with which to implement this, so we must
246  * remove the top byte now.
247  *
248  * Always return a fresh temporary that we can increment independently
249  * of the write-back address.
250  */
251 
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254     TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256     gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258     tcg_gen_mov_i64(clean, addr);
259 #endif
260     return clean;
261 }
262 
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268 
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270                              MMUAccessType acc, int log2_size)
271 {
272     gen_helper_probe_access(tcg_env, ptr,
273                             tcg_constant_i32(acc),
274                             tcg_constant_i32(get_mem_index(s)),
275                             tcg_constant_i32(1 << log2_size));
276 }
277 
278 /*
279  * For MTE, check a single logical or atomic access.  This probes a single
280  * address, the exact one specified.  The size and alignment of the access
281  * is not relevant to MTE, per se, but watchpoints do require the size,
282  * and we want to recognize those before making any other changes to state.
283  */
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285                                       bool is_write, bool tag_checked,
286                                       MemOp memop, bool is_unpriv,
287                                       int core_idx)
288 {
289     if (tag_checked && s->mte_active[is_unpriv]) {
290         TCGv_i64 ret;
291         int desc = 0;
292 
293         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309                         bool tag_checked, MemOp memop)
310 {
311     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312                                  false, get_mem_index(s));
313 }
314 
315 /*
316  * For MTE, check multiple logical sequential accesses.
317  */
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319                         bool tag_checked, int total_size, MemOp single_mop)
320 {
321     if (tag_checked && s->mte_active[0]) {
322         TCGv_i64 ret;
323         int desc = 0;
324 
325         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331 
332         ret = tcg_temp_new_i64();
333         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334 
335         return ret;
336     }
337     return clean_data_tbi(s, addr);
338 }
339 
340 /*
341  * Generate the special alignment check that applies to AccType_ATOMIC
342  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343  * naturally aligned, but it must not cross a 16-byte boundary.
344  * See AArch64.CheckAlignment().
345  */
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347                              bool is_write, MemOp mop)
348 {
349     TCGv_i32 tmp;
350     TCGv_i64 addr;
351     TCGLabel *over_label;
352     MMUAccessType type;
353     int mmu_idx;
354 
355     tmp = tcg_temp_new_i32();
356     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357     tcg_gen_addi_i32(tmp, tmp, imm & 15);
358     tcg_gen_andi_i32(tmp, tmp, 15);
359     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360 
361     over_label = gen_new_label();
362     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363 
364     addr = tcg_temp_new_i64();
365     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366 
367     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368     mmu_idx = get_mem_index(s);
369     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370                                 tcg_constant_i32(mmu_idx));
371 
372     gen_set_label(over_label);
373 
374 }
375 
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379     MemOp size = mop & MO_SIZE;
380 
381     if (size == MO_8) {
382         return mop;
383     }
384 
385     /*
386      * If size == MO_128, this is a LDXP, and the operation is single-copy
387      * atomic for each doubleword, not the entire quadword; it still must
388      * be quadword aligned.
389      */
390     if (size == MO_128) {
391         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392                                    MO_ATOM_IFALIGN_PAIR);
393     }
394     if (dc_isar_feature(aa64_lse2, s)) {
395         check_lse2_align(s, rn, 0, true, mop);
396     } else {
397         mop |= MO_ALIGN;
398     }
399     return finalize_memop(s, mop);
400 }
401 
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404                                  bool is_write, MemOp mop)
405 {
406     MemOp size = mop & MO_SIZE;
407 
408     if (size == MO_8) {
409         return mop;
410     }
411     if (size == MO_128) {
412         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413                                    MO_ATOM_IFALIGN_PAIR);
414     }
415     if (!dc_isar_feature(aa64_lse2, s)) {
416         mop |= MO_ALIGN;
417     } else if (!s->naa) {
418         check_lse2_align(s, rn, imm, is_write, mop);
419     }
420     return finalize_memop(s, mop);
421 }
422 
423 typedef struct DisasCompare64 {
424     TCGCond cond;
425     TCGv_i64 value;
426 } DisasCompare64;
427 
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430     DisasCompare c32;
431 
432     arm_test_cc(&c32, cc);
433 
434     /*
435      * Sign-extend the 32-bit value so that the GE/LT comparisons work
436      * properly.  The NE/EQ comparisons are also fine with this choice.
437       */
438     c64->cond = c32.cond;
439     c64->value = tcg_temp_new_i64();
440     tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442 
443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447 
448 static void gen_exception_internal(int excp)
449 {
450     assert(excp_is_internal(excp));
451     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453 
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456     gen_a64_update_pc(s, 0);
457     gen_exception_internal(excp);
458     s->base.is_jmp = DISAS_NORETURN;
459 }
460 
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463     gen_a64_update_pc(s, 0);
464     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465     s->base.is_jmp = DISAS_NORETURN;
466 }
467 
468 static void gen_step_complete_exception(DisasContext *s)
469 {
470     /* We just completed step of an insn. Move from Active-not-pending
471      * to Active-pending, and then also take the swstep exception.
472      * This corresponds to making the (IMPDEF) choice to prioritize
473      * swstep exceptions over asynchronous exceptions taken to an exception
474      * level where debug is disabled. This choice has the advantage that
475      * we do not need to maintain internal state corresponding to the
476      * ISV/EX syndrome bits between completion of the step and generation
477      * of the exception, and our syndrome information is always correct.
478      */
479     gen_ss_advance(s);
480     gen_swstep_exception(s, 1, s->is_ldex);
481     s->base.is_jmp = DISAS_NORETURN;
482 }
483 
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486     if (s->ss_active) {
487         return false;
488     }
489     return translator_use_goto_tb(&s->base, dest);
490 }
491 
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494     if (use_goto_tb(s, s->pc_curr + diff)) {
495         /*
496          * For pcrel, the pc must always be up-to-date on entry to
497          * the linked TB, so that it can use simple additions for all
498          * further adjustments.  For !pcrel, the linked TB is compiled
499          * to know its full virtual address, so we can delay the
500          * update to pc to the unlinked path.  A long chain of links
501          * can thus avoid many updates to the PC.
502          */
503         if (tb_cflags(s->base.tb) & CF_PCREL) {
504             gen_a64_update_pc(s, diff);
505             tcg_gen_goto_tb(n);
506         } else {
507             tcg_gen_goto_tb(n);
508             gen_a64_update_pc(s, diff);
509         }
510         tcg_gen_exit_tb(s->base.tb, n);
511         s->base.is_jmp = DISAS_NORETURN;
512     } else {
513         gen_a64_update_pc(s, diff);
514         if (s->ss_active) {
515             gen_step_complete_exception(s);
516         } else {
517             tcg_gen_lookup_and_goto_ptr();
518             s->base.is_jmp = DISAS_NORETURN;
519         }
520     }
521 }
522 
523 /*
524  * Register access functions
525  *
526  * These functions are used for directly accessing a register in where
527  * changes to the final register value are likely to be made. If you
528  * need to use a register for temporary calculation (e.g. index type
529  * operations) use the read_* form.
530  *
531  * B1.2.1 Register mappings
532  *
533  * In instruction register encoding 31 can refer to ZR (zero register) or
534  * the SP (stack pointer) depending on context. In QEMU's case we map SP
535  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536  * This is the point of the _sp forms.
537  */
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540     if (reg == 31) {
541         TCGv_i64 t = tcg_temp_new_i64();
542         tcg_gen_movi_i64(t, 0);
543         return t;
544     } else {
545         return cpu_X[reg];
546     }
547 }
548 
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552     return cpu_X[reg];
553 }
554 
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556  * representing the register contents. This TCGv is an auto-freed
557  * temporary so it need not be explicitly freed, and may be modified.
558  */
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561     TCGv_i64 v = tcg_temp_new_i64();
562     if (reg != 31) {
563         if (sf) {
564             tcg_gen_mov_i64(v, cpu_X[reg]);
565         } else {
566             tcg_gen_ext32u_i64(v, cpu_X[reg]);
567         }
568     } else {
569         tcg_gen_movi_i64(v, 0);
570     }
571     return v;
572 }
573 
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576     TCGv_i64 v = tcg_temp_new_i64();
577     if (sf) {
578         tcg_gen_mov_i64(v, cpu_X[reg]);
579     } else {
580         tcg_gen_ext32u_i64(v, cpu_X[reg]);
581     }
582     return v;
583 }
584 
585 /* Return the offset into CPUARMState of a slice (from
586  * the least significant end) of FP register Qn (ie
587  * Dn, Sn, Hn or Bn).
588  * (Note that this is not the same mapping as for A32; see cpu.h)
589  */
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592     return vec_reg_offset(s, regno, 0, size);
593 }
594 
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598     return vec_reg_offset(s, regno, 1, MO_64);
599 }
600 
601 /* Convenience accessors for reading and writing single and double
602  * FP registers. Writing clears the upper parts of the associated
603  * 128 bit vector register, as required by the architecture.
604  * Note that unlike the GP register accessors, the values returned
605  * by the read functions must be manually freed.
606  */
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609     TCGv_i64 v = tcg_temp_new_i64();
610 
611     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612     return v;
613 }
614 
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617     TCGv_i32 v = tcg_temp_new_i32();
618 
619     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620     return v;
621 }
622 
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625     TCGv_i32 v = tcg_temp_new_i32();
626 
627     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628     return v;
629 }
630 
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632  * If SVE is not enabled, then there are only 128 bits in the vector.
633  */
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636     unsigned ofs = fp_reg_offset(s, rd, MO_64);
637     unsigned vsz = vec_full_reg_size(s);
638 
639     /* Nop move, with side effect of clearing the tail. */
640     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642 
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645     unsigned ofs = fp_reg_offset(s, reg, MO_64);
646 
647     tcg_gen_st_i64(v, tcg_env, ofs);
648     clear_vec_high(s, false, reg);
649 }
650 
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653     TCGv_i64 tmp = tcg_temp_new_i64();
654 
655     tcg_gen_extu_i32_i64(tmp, v);
656     write_fp_dreg(s, reg, tmp);
657 }
658 
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661                          GVecGen2Fn *gvec_fn, int vece)
662 {
663     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664             is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666 
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668  * an expander function.
669  */
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674             imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676 
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679                          GVecGen3Fn *gvec_fn, int vece)
680 {
681     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684 
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687                          int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691             is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693 
694 /* Expand a 2-operand operation using an out-of-line helper.  */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696                              int rn, int data, gen_helper_gvec_2 *fn)
697 {
698     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699                        vec_full_reg_offset(s, rn),
700                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702 
703 /* Expand a 3-operand operation using an out-of-line helper.  */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708                        vec_full_reg_offset(s, rn),
709                        vec_full_reg_offset(s, rm),
710                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712 
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714  * an out-of-line helper.
715  */
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717                               int rm, bool is_fp16, int data,
718                               gen_helper_gvec_3_ptr *fn)
719 {
720     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722                        vec_full_reg_offset(s, rn),
723                        vec_full_reg_offset(s, rm), fpst,
724                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726 
727 /* Expand a 3-operand + qc + operation using an out-of-line helper.  */
728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
729                             int rm, gen_helper_gvec_3_ptr *fn)
730 {
731     TCGv_ptr qc_ptr = tcg_temp_new_ptr();
732 
733     tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc));
734     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
735                        vec_full_reg_offset(s, rn),
736                        vec_full_reg_offset(s, rm), qc_ptr,
737                        is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
738 }
739 
740 /* Expand a 4-operand operation using an out-of-line helper.  */
741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
742                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
743 {
744     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
745                        vec_full_reg_offset(s, rn),
746                        vec_full_reg_offset(s, rm),
747                        vec_full_reg_offset(s, ra),
748                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
749 }
750 
751 /*
752  * Expand a 4-operand + fpstatus pointer + simd data value operation using
753  * an out-of-line helper.
754  */
755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
756                               int rm, int ra, bool is_fp16, int data,
757                               gen_helper_gvec_4_ptr *fn)
758 {
759     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
760     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
761                        vec_full_reg_offset(s, rn),
762                        vec_full_reg_offset(s, rm),
763                        vec_full_reg_offset(s, ra), fpst,
764                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
765 }
766 
767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
768  * than the 32 bit equivalent.
769  */
770 static inline void gen_set_NZ64(TCGv_i64 result)
771 {
772     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
773     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
774 }
775 
776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
777 static inline void gen_logic_CC(int sf, TCGv_i64 result)
778 {
779     if (sf) {
780         gen_set_NZ64(result);
781     } else {
782         tcg_gen_extrl_i64_i32(cpu_ZF, result);
783         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
784     }
785     tcg_gen_movi_i32(cpu_CF, 0);
786     tcg_gen_movi_i32(cpu_VF, 0);
787 }
788 
789 /* dest = T0 + T1; compute C, N, V and Z flags */
790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
791 {
792     TCGv_i64 result, flag, tmp;
793     result = tcg_temp_new_i64();
794     flag = tcg_temp_new_i64();
795     tmp = tcg_temp_new_i64();
796 
797     tcg_gen_movi_i64(tmp, 0);
798     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
799 
800     tcg_gen_extrl_i64_i32(cpu_CF, flag);
801 
802     gen_set_NZ64(result);
803 
804     tcg_gen_xor_i64(flag, result, t0);
805     tcg_gen_xor_i64(tmp, t0, t1);
806     tcg_gen_andc_i64(flag, flag, tmp);
807     tcg_gen_extrh_i64_i32(cpu_VF, flag);
808 
809     tcg_gen_mov_i64(dest, result);
810 }
811 
812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
813 {
814     TCGv_i32 t0_32 = tcg_temp_new_i32();
815     TCGv_i32 t1_32 = tcg_temp_new_i32();
816     TCGv_i32 tmp = tcg_temp_new_i32();
817 
818     tcg_gen_movi_i32(tmp, 0);
819     tcg_gen_extrl_i64_i32(t0_32, t0);
820     tcg_gen_extrl_i64_i32(t1_32, t1);
821     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
822     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
823     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
824     tcg_gen_xor_i32(tmp, t0_32, t1_32);
825     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
826     tcg_gen_extu_i32_i64(dest, cpu_NF);
827 }
828 
829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
830 {
831     if (sf) {
832         gen_add64_CC(dest, t0, t1);
833     } else {
834         gen_add32_CC(dest, t0, t1);
835     }
836 }
837 
838 /* dest = T0 - T1; compute C, N, V and Z flags */
839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
840 {
841     /* 64 bit arithmetic */
842     TCGv_i64 result, flag, tmp;
843 
844     result = tcg_temp_new_i64();
845     flag = tcg_temp_new_i64();
846     tcg_gen_sub_i64(result, t0, t1);
847 
848     gen_set_NZ64(result);
849 
850     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
851     tcg_gen_extrl_i64_i32(cpu_CF, flag);
852 
853     tcg_gen_xor_i64(flag, result, t0);
854     tmp = tcg_temp_new_i64();
855     tcg_gen_xor_i64(tmp, t0, t1);
856     tcg_gen_and_i64(flag, flag, tmp);
857     tcg_gen_extrh_i64_i32(cpu_VF, flag);
858     tcg_gen_mov_i64(dest, result);
859 }
860 
861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
862 {
863     /* 32 bit arithmetic */
864     TCGv_i32 t0_32 = tcg_temp_new_i32();
865     TCGv_i32 t1_32 = tcg_temp_new_i32();
866     TCGv_i32 tmp;
867 
868     tcg_gen_extrl_i64_i32(t0_32, t0);
869     tcg_gen_extrl_i64_i32(t1_32, t1);
870     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
871     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
872     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
873     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
874     tmp = tcg_temp_new_i32();
875     tcg_gen_xor_i32(tmp, t0_32, t1_32);
876     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
877     tcg_gen_extu_i32_i64(dest, cpu_NF);
878 }
879 
880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
881 {
882     if (sf) {
883         gen_sub64_CC(dest, t0, t1);
884     } else {
885         gen_sub32_CC(dest, t0, t1);
886     }
887 }
888 
889 /* dest = T0 + T1 + CF; do not compute flags. */
890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
891 {
892     TCGv_i64 flag = tcg_temp_new_i64();
893     tcg_gen_extu_i32_i64(flag, cpu_CF);
894     tcg_gen_add_i64(dest, t0, t1);
895     tcg_gen_add_i64(dest, dest, flag);
896 
897     if (!sf) {
898         tcg_gen_ext32u_i64(dest, dest);
899     }
900 }
901 
902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
904 {
905     if (sf) {
906         TCGv_i64 result = tcg_temp_new_i64();
907         TCGv_i64 cf_64 = tcg_temp_new_i64();
908         TCGv_i64 vf_64 = tcg_temp_new_i64();
909         TCGv_i64 tmp = tcg_temp_new_i64();
910         TCGv_i64 zero = tcg_constant_i64(0);
911 
912         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
913         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
914         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
915         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
916         gen_set_NZ64(result);
917 
918         tcg_gen_xor_i64(vf_64, result, t0);
919         tcg_gen_xor_i64(tmp, t0, t1);
920         tcg_gen_andc_i64(vf_64, vf_64, tmp);
921         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
922 
923         tcg_gen_mov_i64(dest, result);
924     } else {
925         TCGv_i32 t0_32 = tcg_temp_new_i32();
926         TCGv_i32 t1_32 = tcg_temp_new_i32();
927         TCGv_i32 tmp = tcg_temp_new_i32();
928         TCGv_i32 zero = tcg_constant_i32(0);
929 
930         tcg_gen_extrl_i64_i32(t0_32, t0);
931         tcg_gen_extrl_i64_i32(t1_32, t1);
932         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
933         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
934 
935         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
936         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
937         tcg_gen_xor_i32(tmp, t0_32, t1_32);
938         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
939         tcg_gen_extu_i32_i64(dest, cpu_NF);
940     }
941 }
942 
943 /*
944  * Load/Store generators
945  */
946 
947 /*
948  * Store from GPR register to memory.
949  */
950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
951                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
952                              bool iss_valid,
953                              unsigned int iss_srt,
954                              bool iss_sf, bool iss_ar)
955 {
956     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
957 
958     if (iss_valid) {
959         uint32_t syn;
960 
961         syn = syn_data_abort_with_iss(0,
962                                       (memop & MO_SIZE),
963                                       false,
964                                       iss_srt,
965                                       iss_sf,
966                                       iss_ar,
967                                       0, 0, 0, 0, 0, false);
968         disas_set_insn_syndrome(s, syn);
969     }
970 }
971 
972 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
973                       TCGv_i64 tcg_addr, MemOp memop,
974                       bool iss_valid,
975                       unsigned int iss_srt,
976                       bool iss_sf, bool iss_ar)
977 {
978     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
979                      iss_valid, iss_srt, iss_sf, iss_ar);
980 }
981 
982 /*
983  * Load from memory to GPR register
984  */
985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
986                              MemOp memop, bool extend, int memidx,
987                              bool iss_valid, unsigned int iss_srt,
988                              bool iss_sf, bool iss_ar)
989 {
990     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
991 
992     if (extend && (memop & MO_SIGN)) {
993         g_assert((memop & MO_SIZE) <= MO_32);
994         tcg_gen_ext32u_i64(dest, dest);
995     }
996 
997     if (iss_valid) {
998         uint32_t syn;
999 
1000         syn = syn_data_abort_with_iss(0,
1001                                       (memop & MO_SIZE),
1002                                       (memop & MO_SIGN) != 0,
1003                                       iss_srt,
1004                                       iss_sf,
1005                                       iss_ar,
1006                                       0, 0, 0, 0, 0, false);
1007         disas_set_insn_syndrome(s, syn);
1008     }
1009 }
1010 
1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1012                       MemOp memop, bool extend,
1013                       bool iss_valid, unsigned int iss_srt,
1014                       bool iss_sf, bool iss_ar)
1015 {
1016     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1017                      iss_valid, iss_srt, iss_sf, iss_ar);
1018 }
1019 
1020 /*
1021  * Store from FP register to memory
1022  */
1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1024 {
1025     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1026     TCGv_i64 tmplo = tcg_temp_new_i64();
1027 
1028     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1029 
1030     if ((mop & MO_SIZE) < MO_128) {
1031         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1032     } else {
1033         TCGv_i64 tmphi = tcg_temp_new_i64();
1034         TCGv_i128 t16 = tcg_temp_new_i128();
1035 
1036         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1037         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1038 
1039         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1040     }
1041 }
1042 
1043 /*
1044  * Load from memory to FP register
1045  */
1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1047 {
1048     /* This always zero-extends and writes to a full 128 bit wide vector */
1049     TCGv_i64 tmplo = tcg_temp_new_i64();
1050     TCGv_i64 tmphi = NULL;
1051 
1052     if ((mop & MO_SIZE) < MO_128) {
1053         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1054     } else {
1055         TCGv_i128 t16 = tcg_temp_new_i128();
1056 
1057         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1058 
1059         tmphi = tcg_temp_new_i64();
1060         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1061     }
1062 
1063     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1064 
1065     if (tmphi) {
1066         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1067     }
1068     clear_vec_high(s, tmphi != NULL, destidx);
1069 }
1070 
1071 /*
1072  * Vector load/store helpers.
1073  *
1074  * The principal difference between this and a FP load is that we don't
1075  * zero extend as we are filling a partial chunk of the vector register.
1076  * These functions don't support 128 bit loads/stores, which would be
1077  * normal load/store operations.
1078  *
1079  * The _i32 versions are useful when operating on 32 bit quantities
1080  * (eg for floating point single or using Neon helper functions).
1081  */
1082 
1083 /* Get value of an element within a vector register */
1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1085                              int element, MemOp memop)
1086 {
1087     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1088     switch ((unsigned)memop) {
1089     case MO_8:
1090         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1091         break;
1092     case MO_16:
1093         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1094         break;
1095     case MO_32:
1096         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1097         break;
1098     case MO_8|MO_SIGN:
1099         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1100         break;
1101     case MO_16|MO_SIGN:
1102         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1103         break;
1104     case MO_32|MO_SIGN:
1105         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1106         break;
1107     case MO_64:
1108     case MO_64|MO_SIGN:
1109         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1110         break;
1111     default:
1112         g_assert_not_reached();
1113     }
1114 }
1115 
1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1117                                  int element, MemOp memop)
1118 {
1119     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1120     switch (memop) {
1121     case MO_8:
1122         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1123         break;
1124     case MO_16:
1125         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1126         break;
1127     case MO_8|MO_SIGN:
1128         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1129         break;
1130     case MO_16|MO_SIGN:
1131         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1132         break;
1133     case MO_32:
1134     case MO_32|MO_SIGN:
1135         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1136         break;
1137     default:
1138         g_assert_not_reached();
1139     }
1140 }
1141 
1142 /* Set value of an element within a vector register */
1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1144                               int element, MemOp memop)
1145 {
1146     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1147     switch (memop) {
1148     case MO_8:
1149         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1150         break;
1151     case MO_16:
1152         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1153         break;
1154     case MO_32:
1155         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1156         break;
1157     case MO_64:
1158         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1159         break;
1160     default:
1161         g_assert_not_reached();
1162     }
1163 }
1164 
1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1166                                   int destidx, int element, MemOp memop)
1167 {
1168     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1169     switch (memop) {
1170     case MO_8:
1171         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1172         break;
1173     case MO_16:
1174         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1175         break;
1176     case MO_32:
1177         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1178         break;
1179     default:
1180         g_assert_not_reached();
1181     }
1182 }
1183 
1184 /* Store from vector register to memory */
1185 static void do_vec_st(DisasContext *s, int srcidx, int element,
1186                       TCGv_i64 tcg_addr, MemOp mop)
1187 {
1188     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1189 
1190     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1191     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1192 }
1193 
1194 /* Load from memory to vector register */
1195 static void do_vec_ld(DisasContext *s, int destidx, int element,
1196                       TCGv_i64 tcg_addr, MemOp mop)
1197 {
1198     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1199 
1200     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1201     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1202 }
1203 
1204 /* Check that FP/Neon access is enabled. If it is, return
1205  * true. If not, emit code to generate an appropriate exception,
1206  * and return false; the caller should not emit any code for
1207  * the instruction. Note that this check must happen after all
1208  * unallocated-encoding checks (otherwise the syndrome information
1209  * for the resulting exception will be incorrect).
1210  */
1211 static bool fp_access_check_only(DisasContext *s)
1212 {
1213     if (s->fp_excp_el) {
1214         assert(!s->fp_access_checked);
1215         s->fp_access_checked = true;
1216 
1217         gen_exception_insn_el(s, 0, EXCP_UDEF,
1218                               syn_fp_access_trap(1, 0xe, false, 0),
1219                               s->fp_excp_el);
1220         return false;
1221     }
1222     s->fp_access_checked = true;
1223     return true;
1224 }
1225 
1226 static bool fp_access_check(DisasContext *s)
1227 {
1228     if (!fp_access_check_only(s)) {
1229         return false;
1230     }
1231     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1232         gen_exception_insn(s, 0, EXCP_UDEF,
1233                            syn_smetrap(SME_ET_Streaming, false));
1234         return false;
1235     }
1236     return true;
1237 }
1238 
1239 /*
1240  * Check that SVE access is enabled.  If it is, return true.
1241  * If not, emit code to generate an appropriate exception and return false.
1242  * This function corresponds to CheckSVEEnabled().
1243  */
1244 bool sve_access_check(DisasContext *s)
1245 {
1246     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1247         assert(dc_isar_feature(aa64_sme, s));
1248         if (!sme_sm_enabled_check(s)) {
1249             goto fail_exit;
1250         }
1251     } else if (s->sve_excp_el) {
1252         gen_exception_insn_el(s, 0, EXCP_UDEF,
1253                               syn_sve_access_trap(), s->sve_excp_el);
1254         goto fail_exit;
1255     }
1256     s->sve_access_checked = true;
1257     return fp_access_check(s);
1258 
1259  fail_exit:
1260     /* Assert that we only raise one exception per instruction. */
1261     assert(!s->sve_access_checked);
1262     s->sve_access_checked = true;
1263     return false;
1264 }
1265 
1266 /*
1267  * Check that SME access is enabled, raise an exception if not.
1268  * Note that this function corresponds to CheckSMEAccess and is
1269  * only used directly for cpregs.
1270  */
1271 static bool sme_access_check(DisasContext *s)
1272 {
1273     if (s->sme_excp_el) {
1274         gen_exception_insn_el(s, 0, EXCP_UDEF,
1275                               syn_smetrap(SME_ET_AccessTrap, false),
1276                               s->sme_excp_el);
1277         return false;
1278     }
1279     return true;
1280 }
1281 
1282 /* This function corresponds to CheckSMEEnabled. */
1283 bool sme_enabled_check(DisasContext *s)
1284 {
1285     /*
1286      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1287      * to be zero when fp_excp_el has priority.  This is because we need
1288      * sme_excp_el by itself for cpregs access checks.
1289      */
1290     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1291         s->fp_access_checked = true;
1292         return sme_access_check(s);
1293     }
1294     return fp_access_check_only(s);
1295 }
1296 
1297 /* Common subroutine for CheckSMEAnd*Enabled. */
1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1299 {
1300     if (!sme_enabled_check(s)) {
1301         return false;
1302     }
1303     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1304         gen_exception_insn(s, 0, EXCP_UDEF,
1305                            syn_smetrap(SME_ET_NotStreaming, false));
1306         return false;
1307     }
1308     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1309         gen_exception_insn(s, 0, EXCP_UDEF,
1310                            syn_smetrap(SME_ET_InactiveZA, false));
1311         return false;
1312     }
1313     return true;
1314 }
1315 
1316 /*
1317  * This utility function is for doing register extension with an
1318  * optional shift. You will likely want to pass a temporary for the
1319  * destination register. See DecodeRegExtend() in the ARM ARM.
1320  */
1321 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1322                               int option, unsigned int shift)
1323 {
1324     int extsize = extract32(option, 0, 2);
1325     bool is_signed = extract32(option, 2, 1);
1326 
1327     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1328     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1329 }
1330 
1331 static inline void gen_check_sp_alignment(DisasContext *s)
1332 {
1333     /* The AArch64 architecture mandates that (if enabled via PSTATE
1334      * or SCTLR bits) there is a check that SP is 16-aligned on every
1335      * SP-relative load or store (with an exception generated if it is not).
1336      * In line with general QEMU practice regarding misaligned accesses,
1337      * we omit these checks for the sake of guest program performance.
1338      * This function is provided as a hook so we can more easily add these
1339      * checks in future (possibly as a "favour catching guest program bugs
1340      * over speed" user selectable option).
1341      */
1342 }
1343 
1344 /*
1345  * This provides a simple table based table lookup decoder. It is
1346  * intended to be used when the relevant bits for decode are too
1347  * awkwardly placed and switch/if based logic would be confusing and
1348  * deeply nested. Since it's a linear search through the table, tables
1349  * should be kept small.
1350  *
1351  * It returns the first handler where insn & mask == pattern, or
1352  * NULL if there is no match.
1353  * The table is terminated by an empty mask (i.e. 0)
1354  */
1355 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1356                                                uint32_t insn)
1357 {
1358     const AArch64DecodeTable *tptr = table;
1359 
1360     while (tptr->mask) {
1361         if ((insn & tptr->mask) == tptr->pattern) {
1362             return tptr->disas_fn;
1363         }
1364         tptr++;
1365     }
1366     return NULL;
1367 }
1368 
1369 /*
1370  * The instruction disassembly implemented here matches
1371  * the instruction encoding classifications in chapter C4
1372  * of the ARM Architecture Reference Manual (DDI0487B_a);
1373  * classification names and decode diagrams here should generally
1374  * match up with those in the manual.
1375  */
1376 
1377 static bool trans_B(DisasContext *s, arg_i *a)
1378 {
1379     reset_btype(s);
1380     gen_goto_tb(s, 0, a->imm);
1381     return true;
1382 }
1383 
1384 static bool trans_BL(DisasContext *s, arg_i *a)
1385 {
1386     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1387     reset_btype(s);
1388     gen_goto_tb(s, 0, a->imm);
1389     return true;
1390 }
1391 
1392 
1393 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1394 {
1395     DisasLabel match;
1396     TCGv_i64 tcg_cmp;
1397 
1398     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1399     reset_btype(s);
1400 
1401     match = gen_disas_label(s);
1402     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1403                         tcg_cmp, 0, match.label);
1404     gen_goto_tb(s, 0, 4);
1405     set_disas_label(s, match);
1406     gen_goto_tb(s, 1, a->imm);
1407     return true;
1408 }
1409 
1410 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1411 {
1412     DisasLabel match;
1413     TCGv_i64 tcg_cmp;
1414 
1415     tcg_cmp = tcg_temp_new_i64();
1416     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1417 
1418     reset_btype(s);
1419 
1420     match = gen_disas_label(s);
1421     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1422                         tcg_cmp, 0, match.label);
1423     gen_goto_tb(s, 0, 4);
1424     set_disas_label(s, match);
1425     gen_goto_tb(s, 1, a->imm);
1426     return true;
1427 }
1428 
1429 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1430 {
1431     /* BC.cond is only present with FEAT_HBC */
1432     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1433         return false;
1434     }
1435     reset_btype(s);
1436     if (a->cond < 0x0e) {
1437         /* genuinely conditional branches */
1438         DisasLabel match = gen_disas_label(s);
1439         arm_gen_test_cc(a->cond, match.label);
1440         gen_goto_tb(s, 0, 4);
1441         set_disas_label(s, match);
1442         gen_goto_tb(s, 1, a->imm);
1443     } else {
1444         /* 0xe and 0xf are both "always" conditions */
1445         gen_goto_tb(s, 0, a->imm);
1446     }
1447     return true;
1448 }
1449 
1450 static void set_btype_for_br(DisasContext *s, int rn)
1451 {
1452     if (dc_isar_feature(aa64_bti, s)) {
1453         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1454         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1455     }
1456 }
1457 
1458 static void set_btype_for_blr(DisasContext *s)
1459 {
1460     if (dc_isar_feature(aa64_bti, s)) {
1461         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1462         set_btype(s, 2);
1463     }
1464 }
1465 
1466 static bool trans_BR(DisasContext *s, arg_r *a)
1467 {
1468     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1469     set_btype_for_br(s, a->rn);
1470     s->base.is_jmp = DISAS_JUMP;
1471     return true;
1472 }
1473 
1474 static bool trans_BLR(DisasContext *s, arg_r *a)
1475 {
1476     TCGv_i64 dst = cpu_reg(s, a->rn);
1477     TCGv_i64 lr = cpu_reg(s, 30);
1478     if (dst == lr) {
1479         TCGv_i64 tmp = tcg_temp_new_i64();
1480         tcg_gen_mov_i64(tmp, dst);
1481         dst = tmp;
1482     }
1483     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1484     gen_a64_set_pc(s, dst);
1485     set_btype_for_blr(s);
1486     s->base.is_jmp = DISAS_JUMP;
1487     return true;
1488 }
1489 
1490 static bool trans_RET(DisasContext *s, arg_r *a)
1491 {
1492     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1493     s->base.is_jmp = DISAS_JUMP;
1494     return true;
1495 }
1496 
1497 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1498                                    TCGv_i64 modifier, bool use_key_a)
1499 {
1500     TCGv_i64 truedst;
1501     /*
1502      * Return the branch target for a BRAA/RETA/etc, which is either
1503      * just the destination dst, or that value with the pauth check
1504      * done and the code removed from the high bits.
1505      */
1506     if (!s->pauth_active) {
1507         return dst;
1508     }
1509 
1510     truedst = tcg_temp_new_i64();
1511     if (use_key_a) {
1512         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1513     } else {
1514         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1515     }
1516     return truedst;
1517 }
1518 
1519 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1520 {
1521     TCGv_i64 dst;
1522 
1523     if (!dc_isar_feature(aa64_pauth, s)) {
1524         return false;
1525     }
1526 
1527     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1528     gen_a64_set_pc(s, dst);
1529     set_btype_for_br(s, a->rn);
1530     s->base.is_jmp = DISAS_JUMP;
1531     return true;
1532 }
1533 
1534 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1535 {
1536     TCGv_i64 dst, lr;
1537 
1538     if (!dc_isar_feature(aa64_pauth, s)) {
1539         return false;
1540     }
1541 
1542     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1543     lr = cpu_reg(s, 30);
1544     if (dst == lr) {
1545         TCGv_i64 tmp = tcg_temp_new_i64();
1546         tcg_gen_mov_i64(tmp, dst);
1547         dst = tmp;
1548     }
1549     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1550     gen_a64_set_pc(s, dst);
1551     set_btype_for_blr(s);
1552     s->base.is_jmp = DISAS_JUMP;
1553     return true;
1554 }
1555 
1556 static bool trans_RETA(DisasContext *s, arg_reta *a)
1557 {
1558     TCGv_i64 dst;
1559 
1560     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1561     gen_a64_set_pc(s, dst);
1562     s->base.is_jmp = DISAS_JUMP;
1563     return true;
1564 }
1565 
1566 static bool trans_BRA(DisasContext *s, arg_bra *a)
1567 {
1568     TCGv_i64 dst;
1569 
1570     if (!dc_isar_feature(aa64_pauth, s)) {
1571         return false;
1572     }
1573     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1574     gen_a64_set_pc(s, dst);
1575     set_btype_for_br(s, a->rn);
1576     s->base.is_jmp = DISAS_JUMP;
1577     return true;
1578 }
1579 
1580 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1581 {
1582     TCGv_i64 dst, lr;
1583 
1584     if (!dc_isar_feature(aa64_pauth, s)) {
1585         return false;
1586     }
1587     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1588     lr = cpu_reg(s, 30);
1589     if (dst == lr) {
1590         TCGv_i64 tmp = tcg_temp_new_i64();
1591         tcg_gen_mov_i64(tmp, dst);
1592         dst = tmp;
1593     }
1594     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1595     gen_a64_set_pc(s, dst);
1596     set_btype_for_blr(s);
1597     s->base.is_jmp = DISAS_JUMP;
1598     return true;
1599 }
1600 
1601 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1602 {
1603     TCGv_i64 dst;
1604 
1605     if (s->current_el == 0) {
1606         return false;
1607     }
1608     if (s->fgt_eret) {
1609         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1610         return true;
1611     }
1612     dst = tcg_temp_new_i64();
1613     tcg_gen_ld_i64(dst, tcg_env,
1614                    offsetof(CPUARMState, elr_el[s->current_el]));
1615 
1616     translator_io_start(&s->base);
1617 
1618     gen_helper_exception_return(tcg_env, dst);
1619     /* Must exit loop to check un-masked IRQs */
1620     s->base.is_jmp = DISAS_EXIT;
1621     return true;
1622 }
1623 
1624 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1625 {
1626     TCGv_i64 dst;
1627 
1628     if (!dc_isar_feature(aa64_pauth, s)) {
1629         return false;
1630     }
1631     if (s->current_el == 0) {
1632         return false;
1633     }
1634     /* The FGT trap takes precedence over an auth trap. */
1635     if (s->fgt_eret) {
1636         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1637         return true;
1638     }
1639     dst = tcg_temp_new_i64();
1640     tcg_gen_ld_i64(dst, tcg_env,
1641                    offsetof(CPUARMState, elr_el[s->current_el]));
1642 
1643     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1644 
1645     translator_io_start(&s->base);
1646 
1647     gen_helper_exception_return(tcg_env, dst);
1648     /* Must exit loop to check un-masked IRQs */
1649     s->base.is_jmp = DISAS_EXIT;
1650     return true;
1651 }
1652 
1653 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1654 {
1655     return true;
1656 }
1657 
1658 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1659 {
1660     /*
1661      * When running in MTTCG we don't generate jumps to the yield and
1662      * WFE helpers as it won't affect the scheduling of other vCPUs.
1663      * If we wanted to more completely model WFE/SEV so we don't busy
1664      * spin unnecessarily we would need to do something more involved.
1665      */
1666     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1667         s->base.is_jmp = DISAS_YIELD;
1668     }
1669     return true;
1670 }
1671 
1672 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1673 {
1674     s->base.is_jmp = DISAS_WFI;
1675     return true;
1676 }
1677 
1678 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1679 {
1680     /*
1681      * When running in MTTCG we don't generate jumps to the yield and
1682      * WFE helpers as it won't affect the scheduling of other vCPUs.
1683      * If we wanted to more completely model WFE/SEV so we don't busy
1684      * spin unnecessarily we would need to do something more involved.
1685      */
1686     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1687         s->base.is_jmp = DISAS_WFE;
1688     }
1689     return true;
1690 }
1691 
1692 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1693 {
1694     if (s->pauth_active) {
1695         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1696     }
1697     return true;
1698 }
1699 
1700 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1701 {
1702     if (s->pauth_active) {
1703         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1704     }
1705     return true;
1706 }
1707 
1708 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1709 {
1710     if (s->pauth_active) {
1711         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1712     }
1713     return true;
1714 }
1715 
1716 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1717 {
1718     if (s->pauth_active) {
1719         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1720     }
1721     return true;
1722 }
1723 
1724 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1725 {
1726     if (s->pauth_active) {
1727         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1728     }
1729     return true;
1730 }
1731 
1732 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1733 {
1734     /* Without RAS, we must implement this as NOP. */
1735     if (dc_isar_feature(aa64_ras, s)) {
1736         /*
1737          * QEMU does not have a source of physical SErrors,
1738          * so we are only concerned with virtual SErrors.
1739          * The pseudocode in the ARM for this case is
1740          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1741          *      AArch64.vESBOperation();
1742          * Most of the condition can be evaluated at translation time.
1743          * Test for EL2 present, and defer test for SEL2 to runtime.
1744          */
1745         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1746             gen_helper_vesb(tcg_env);
1747         }
1748     }
1749     return true;
1750 }
1751 
1752 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1753 {
1754     if (s->pauth_active) {
1755         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1756     }
1757     return true;
1758 }
1759 
1760 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1761 {
1762     if (s->pauth_active) {
1763         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1764     }
1765     return true;
1766 }
1767 
1768 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1769 {
1770     if (s->pauth_active) {
1771         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1772     }
1773     return true;
1774 }
1775 
1776 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1777 {
1778     if (s->pauth_active) {
1779         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1780     }
1781     return true;
1782 }
1783 
1784 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1785 {
1786     if (s->pauth_active) {
1787         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1788     }
1789     return true;
1790 }
1791 
1792 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1793 {
1794     if (s->pauth_active) {
1795         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1796     }
1797     return true;
1798 }
1799 
1800 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1801 {
1802     if (s->pauth_active) {
1803         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1804     }
1805     return true;
1806 }
1807 
1808 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1809 {
1810     if (s->pauth_active) {
1811         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1812     }
1813     return true;
1814 }
1815 
1816 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1817 {
1818     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1819     return true;
1820 }
1821 
1822 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1823 {
1824     /* We handle DSB and DMB the same way */
1825     TCGBar bar;
1826 
1827     switch (a->types) {
1828     case 1: /* MBReqTypes_Reads */
1829         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1830         break;
1831     case 2: /* MBReqTypes_Writes */
1832         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1833         break;
1834     default: /* MBReqTypes_All */
1835         bar = TCG_BAR_SC | TCG_MO_ALL;
1836         break;
1837     }
1838     tcg_gen_mb(bar);
1839     return true;
1840 }
1841 
1842 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1843 {
1844     /*
1845      * We need to break the TB after this insn to execute
1846      * self-modifying code correctly and also to take
1847      * any pending interrupts immediately.
1848      */
1849     reset_btype(s);
1850     gen_goto_tb(s, 0, 4);
1851     return true;
1852 }
1853 
1854 static bool trans_SB(DisasContext *s, arg_SB *a)
1855 {
1856     if (!dc_isar_feature(aa64_sb, s)) {
1857         return false;
1858     }
1859     /*
1860      * TODO: There is no speculation barrier opcode for TCG;
1861      * MB and end the TB instead.
1862      */
1863     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1864     gen_goto_tb(s, 0, 4);
1865     return true;
1866 }
1867 
1868 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1869 {
1870     if (!dc_isar_feature(aa64_condm_4, s)) {
1871         return false;
1872     }
1873     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1874     return true;
1875 }
1876 
1877 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1878 {
1879     TCGv_i32 z;
1880 
1881     if (!dc_isar_feature(aa64_condm_5, s)) {
1882         return false;
1883     }
1884 
1885     z = tcg_temp_new_i32();
1886 
1887     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1888 
1889     /*
1890      * (!C & !Z) << 31
1891      * (!(C | Z)) << 31
1892      * ~((C | Z) << 31)
1893      * ~-(C | Z)
1894      * (C | Z) - 1
1895      */
1896     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1897     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1898 
1899     /* !(Z & C) */
1900     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1901     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1902 
1903     /* (!C & Z) << 31 -> -(Z & ~C) */
1904     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1905     tcg_gen_neg_i32(cpu_VF, cpu_VF);
1906 
1907     /* C | Z */
1908     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1909 
1910     return true;
1911 }
1912 
1913 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
1914 {
1915     if (!dc_isar_feature(aa64_condm_5, s)) {
1916         return false;
1917     }
1918 
1919     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
1920     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
1921 
1922     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1923     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1924 
1925     tcg_gen_movi_i32(cpu_NF, 0);
1926     tcg_gen_movi_i32(cpu_VF, 0);
1927 
1928     return true;
1929 }
1930 
1931 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
1932 {
1933     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1934         return false;
1935     }
1936     if (a->imm & 1) {
1937         set_pstate_bits(PSTATE_UAO);
1938     } else {
1939         clear_pstate_bits(PSTATE_UAO);
1940     }
1941     gen_rebuild_hflags(s);
1942     s->base.is_jmp = DISAS_TOO_MANY;
1943     return true;
1944 }
1945 
1946 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
1947 {
1948     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1949         return false;
1950     }
1951     if (a->imm & 1) {
1952         set_pstate_bits(PSTATE_PAN);
1953     } else {
1954         clear_pstate_bits(PSTATE_PAN);
1955     }
1956     gen_rebuild_hflags(s);
1957     s->base.is_jmp = DISAS_TOO_MANY;
1958     return true;
1959 }
1960 
1961 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
1962 {
1963     if (s->current_el == 0) {
1964         return false;
1965     }
1966     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
1967     s->base.is_jmp = DISAS_TOO_MANY;
1968     return true;
1969 }
1970 
1971 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
1972 {
1973     if (!dc_isar_feature(aa64_ssbs, s)) {
1974         return false;
1975     }
1976     if (a->imm & 1) {
1977         set_pstate_bits(PSTATE_SSBS);
1978     } else {
1979         clear_pstate_bits(PSTATE_SSBS);
1980     }
1981     /* Don't need to rebuild hflags since SSBS is a nop */
1982     s->base.is_jmp = DISAS_TOO_MANY;
1983     return true;
1984 }
1985 
1986 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
1987 {
1988     if (!dc_isar_feature(aa64_dit, s)) {
1989         return false;
1990     }
1991     if (a->imm & 1) {
1992         set_pstate_bits(PSTATE_DIT);
1993     } else {
1994         clear_pstate_bits(PSTATE_DIT);
1995     }
1996     /* There's no need to rebuild hflags because DIT is a nop */
1997     s->base.is_jmp = DISAS_TOO_MANY;
1998     return true;
1999 }
2000 
2001 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2002 {
2003     if (dc_isar_feature(aa64_mte, s)) {
2004         /* Full MTE is enabled -- set the TCO bit as directed. */
2005         if (a->imm & 1) {
2006             set_pstate_bits(PSTATE_TCO);
2007         } else {
2008             clear_pstate_bits(PSTATE_TCO);
2009         }
2010         gen_rebuild_hflags(s);
2011         /* Many factors, including TCO, go into MTE_ACTIVE. */
2012         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2013         return true;
2014     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2015         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2016         return true;
2017     } else {
2018         /* Insn not present */
2019         return false;
2020     }
2021 }
2022 
2023 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2024 {
2025     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2026     s->base.is_jmp = DISAS_TOO_MANY;
2027     return true;
2028 }
2029 
2030 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2031 {
2032     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2033     /* Exit the cpu loop to re-evaluate pending IRQs. */
2034     s->base.is_jmp = DISAS_UPDATE_EXIT;
2035     return true;
2036 }
2037 
2038 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2039 {
2040     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2041         return false;
2042     }
2043     if (sme_access_check(s)) {
2044         int old = s->pstate_sm | (s->pstate_za << 1);
2045         int new = a->imm * 3;
2046 
2047         if ((old ^ new) & a->mask) {
2048             /* At least one bit changes. */
2049             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2050                                 tcg_constant_i32(a->mask));
2051             s->base.is_jmp = DISAS_TOO_MANY;
2052         }
2053     }
2054     return true;
2055 }
2056 
2057 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2058 {
2059     TCGv_i32 tmp = tcg_temp_new_i32();
2060     TCGv_i32 nzcv = tcg_temp_new_i32();
2061 
2062     /* build bit 31, N */
2063     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2064     /* build bit 30, Z */
2065     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2066     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2067     /* build bit 29, C */
2068     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2069     /* build bit 28, V */
2070     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2071     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2072     /* generate result */
2073     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2074 }
2075 
2076 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2077 {
2078     TCGv_i32 nzcv = tcg_temp_new_i32();
2079 
2080     /* take NZCV from R[t] */
2081     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2082 
2083     /* bit 31, N */
2084     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2085     /* bit 30, Z */
2086     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2087     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2088     /* bit 29, C */
2089     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2090     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2091     /* bit 28, V */
2092     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2093     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2094 }
2095 
2096 static void gen_sysreg_undef(DisasContext *s, bool isread,
2097                              uint8_t op0, uint8_t op1, uint8_t op2,
2098                              uint8_t crn, uint8_t crm, uint8_t rt)
2099 {
2100     /*
2101      * Generate code to emit an UNDEF with correct syndrome
2102      * information for a failed system register access.
2103      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2104      * but if FEAT_IDST is implemented then read accesses to registers
2105      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2106      * syndrome.
2107      */
2108     uint32_t syndrome;
2109 
2110     if (isread && dc_isar_feature(aa64_ids, s) &&
2111         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2112         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2113     } else {
2114         syndrome = syn_uncategorized();
2115     }
2116     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2117 }
2118 
2119 /* MRS - move from system register
2120  * MSR (register) - move to system register
2121  * SYS
2122  * SYSL
2123  * These are all essentially the same insn in 'read' and 'write'
2124  * versions, with varying op0 fields.
2125  */
2126 static void handle_sys(DisasContext *s, bool isread,
2127                        unsigned int op0, unsigned int op1, unsigned int op2,
2128                        unsigned int crn, unsigned int crm, unsigned int rt)
2129 {
2130     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2131                                       crn, crm, op0, op1, op2);
2132     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2133     bool need_exit_tb = false;
2134     TCGv_ptr tcg_ri = NULL;
2135     TCGv_i64 tcg_rt;
2136     uint32_t syndrome;
2137 
2138     if (crn == 11 || crn == 15) {
2139         /*
2140          * Check for TIDCP trap, which must take precedence over
2141          * the UNDEF for "no such register" etc.
2142          */
2143         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2144         switch (s->current_el) {
2145         case 0:
2146             if (dc_isar_feature(aa64_tidcp1, s)) {
2147                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2148             }
2149             break;
2150         case 1:
2151             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2152             break;
2153         }
2154     }
2155 
2156     if (!ri) {
2157         /* Unknown register; this might be a guest error or a QEMU
2158          * unimplemented feature.
2159          */
2160         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2161                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2162                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2163         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2164         return;
2165     }
2166 
2167     /* Check access permissions */
2168     if (!cp_access_ok(s->current_el, ri, isread)) {
2169         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2170         return;
2171     }
2172 
2173     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2174         /* Emit code to perform further access permissions checks at
2175          * runtime; this may result in an exception.
2176          */
2177         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2178         gen_a64_update_pc(s, 0);
2179         tcg_ri = tcg_temp_new_ptr();
2180         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2181                                        tcg_constant_i32(key),
2182                                        tcg_constant_i32(syndrome),
2183                                        tcg_constant_i32(isread));
2184     } else if (ri->type & ARM_CP_RAISES_EXC) {
2185         /*
2186          * The readfn or writefn might raise an exception;
2187          * synchronize the CPU state in case it does.
2188          */
2189         gen_a64_update_pc(s, 0);
2190     }
2191 
2192     /* Handle special cases first */
2193     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2194     case 0:
2195         break;
2196     case ARM_CP_NOP:
2197         return;
2198     case ARM_CP_NZCV:
2199         tcg_rt = cpu_reg(s, rt);
2200         if (isread) {
2201             gen_get_nzcv(tcg_rt);
2202         } else {
2203             gen_set_nzcv(tcg_rt);
2204         }
2205         return;
2206     case ARM_CP_CURRENTEL:
2207         /* Reads as current EL value from pstate, which is
2208          * guaranteed to be constant by the tb flags.
2209          */
2210         tcg_rt = cpu_reg(s, rt);
2211         tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
2212         return;
2213     case ARM_CP_DC_ZVA:
2214         /* Writes clear the aligned block of memory which rt points into. */
2215         if (s->mte_active[0]) {
2216             int desc = 0;
2217 
2218             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2219             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2220             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2221 
2222             tcg_rt = tcg_temp_new_i64();
2223             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2224                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2225         } else {
2226             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2227         }
2228         gen_helper_dc_zva(tcg_env, tcg_rt);
2229         return;
2230     case ARM_CP_DC_GVA:
2231         {
2232             TCGv_i64 clean_addr, tag;
2233 
2234             /*
2235              * DC_GVA, like DC_ZVA, requires that we supply the original
2236              * pointer for an invalid page.  Probe that address first.
2237              */
2238             tcg_rt = cpu_reg(s, rt);
2239             clean_addr = clean_data_tbi(s, tcg_rt);
2240             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2241 
2242             if (s->ata[0]) {
2243                 /* Extract the tag from the register to match STZGM.  */
2244                 tag = tcg_temp_new_i64();
2245                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2246                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2247             }
2248         }
2249         return;
2250     case ARM_CP_DC_GZVA:
2251         {
2252             TCGv_i64 clean_addr, tag;
2253 
2254             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2255             tcg_rt = cpu_reg(s, rt);
2256             clean_addr = clean_data_tbi(s, tcg_rt);
2257             gen_helper_dc_zva(tcg_env, clean_addr);
2258 
2259             if (s->ata[0]) {
2260                 /* Extract the tag from the register to match STZGM.  */
2261                 tag = tcg_temp_new_i64();
2262                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2263                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2264             }
2265         }
2266         return;
2267     default:
2268         g_assert_not_reached();
2269     }
2270     if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2271         return;
2272     } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2273         return;
2274     } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2275         return;
2276     }
2277 
2278     if (ri->type & ARM_CP_IO) {
2279         /* I/O operations must end the TB here (whether read or write) */
2280         need_exit_tb = translator_io_start(&s->base);
2281     }
2282 
2283     tcg_rt = cpu_reg(s, rt);
2284 
2285     if (isread) {
2286         if (ri->type & ARM_CP_CONST) {
2287             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2288         } else if (ri->readfn) {
2289             if (!tcg_ri) {
2290                 tcg_ri = gen_lookup_cp_reg(key);
2291             }
2292             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2293         } else {
2294             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2295         }
2296     } else {
2297         if (ri->type & ARM_CP_CONST) {
2298             /* If not forbidden by access permissions, treat as WI */
2299             return;
2300         } else if (ri->writefn) {
2301             if (!tcg_ri) {
2302                 tcg_ri = gen_lookup_cp_reg(key);
2303             }
2304             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2305         } else {
2306             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2307         }
2308     }
2309 
2310     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2311         /*
2312          * A write to any coprocessor register that ends a TB
2313          * must rebuild the hflags for the next TB.
2314          */
2315         gen_rebuild_hflags(s);
2316         /*
2317          * We default to ending the TB on a coprocessor register write,
2318          * but allow this to be suppressed by the register definition
2319          * (usually only necessary to work around guest bugs).
2320          */
2321         need_exit_tb = true;
2322     }
2323     if (need_exit_tb) {
2324         s->base.is_jmp = DISAS_UPDATE_EXIT;
2325     }
2326 }
2327 
2328 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2329 {
2330     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2331     return true;
2332 }
2333 
2334 static bool trans_SVC(DisasContext *s, arg_i *a)
2335 {
2336     /*
2337      * For SVC, HVC and SMC we advance the single-step state
2338      * machine before taking the exception. This is architecturally
2339      * mandated, to ensure that single-stepping a system call
2340      * instruction works properly.
2341      */
2342     uint32_t syndrome = syn_aa64_svc(a->imm);
2343     if (s->fgt_svc) {
2344         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2345         return true;
2346     }
2347     gen_ss_advance(s);
2348     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2349     return true;
2350 }
2351 
2352 static bool trans_HVC(DisasContext *s, arg_i *a)
2353 {
2354     if (s->current_el == 0) {
2355         unallocated_encoding(s);
2356         return true;
2357     }
2358     /*
2359      * The pre HVC helper handles cases when HVC gets trapped
2360      * as an undefined insn by runtime configuration.
2361      */
2362     gen_a64_update_pc(s, 0);
2363     gen_helper_pre_hvc(tcg_env);
2364     /* Architecture requires ss advance before we do the actual work */
2365     gen_ss_advance(s);
2366     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), 2);
2367     return true;
2368 }
2369 
2370 static bool trans_SMC(DisasContext *s, arg_i *a)
2371 {
2372     if (s->current_el == 0) {
2373         unallocated_encoding(s);
2374         return true;
2375     }
2376     gen_a64_update_pc(s, 0);
2377     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2378     /* Architecture requires ss advance before we do the actual work */
2379     gen_ss_advance(s);
2380     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2381     return true;
2382 }
2383 
2384 static bool trans_BRK(DisasContext *s, arg_i *a)
2385 {
2386     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2387     return true;
2388 }
2389 
2390 static bool trans_HLT(DisasContext *s, arg_i *a)
2391 {
2392     /*
2393      * HLT. This has two purposes.
2394      * Architecturally, it is an external halting debug instruction.
2395      * Since QEMU doesn't implement external debug, we treat this as
2396      * it is required for halting debug disabled: it will UNDEF.
2397      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2398      */
2399     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2400         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2401     } else {
2402         unallocated_encoding(s);
2403     }
2404     return true;
2405 }
2406 
2407 /*
2408  * Load/Store exclusive instructions are implemented by remembering
2409  * the value/address loaded, and seeing if these are the same
2410  * when the store is performed. This is not actually the architecturally
2411  * mandated semantics, but it works for typical guest code sequences
2412  * and avoids having to monitor regular stores.
2413  *
2414  * The store exclusive uses the atomic cmpxchg primitives to avoid
2415  * races in multi-threaded linux-user and when MTTCG softmmu is
2416  * enabled.
2417  */
2418 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2419                                int size, bool is_pair)
2420 {
2421     int idx = get_mem_index(s);
2422     TCGv_i64 dirty_addr, clean_addr;
2423     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2424 
2425     s->is_ldex = true;
2426     dirty_addr = cpu_reg_sp(s, rn);
2427     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2428 
2429     g_assert(size <= 3);
2430     if (is_pair) {
2431         g_assert(size >= 2);
2432         if (size == 2) {
2433             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2434             if (s->be_data == MO_LE) {
2435                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2436                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2437             } else {
2438                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2439                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2440             }
2441         } else {
2442             TCGv_i128 t16 = tcg_temp_new_i128();
2443 
2444             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2445 
2446             if (s->be_data == MO_LE) {
2447                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2448                                       cpu_exclusive_high, t16);
2449             } else {
2450                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2451                                       cpu_exclusive_val, t16);
2452             }
2453             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2454             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2455         }
2456     } else {
2457         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2458         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2459     }
2460     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2461 }
2462 
2463 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2464                                 int rn, int size, int is_pair)
2465 {
2466     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2467      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2468      *     [addr] = {Rt};
2469      *     if (is_pair) {
2470      *         [addr + datasize] = {Rt2};
2471      *     }
2472      *     {Rd} = 0;
2473      * } else {
2474      *     {Rd} = 1;
2475      * }
2476      * env->exclusive_addr = -1;
2477      */
2478     TCGLabel *fail_label = gen_new_label();
2479     TCGLabel *done_label = gen_new_label();
2480     TCGv_i64 tmp, clean_addr;
2481     MemOp memop;
2482 
2483     /*
2484      * FIXME: We are out of spec here.  We have recorded only the address
2485      * from load_exclusive, not the entire range, and we assume that the
2486      * size of the access on both sides match.  The architecture allows the
2487      * store to be smaller than the load, so long as the stored bytes are
2488      * within the range recorded by the load.
2489      */
2490 
2491     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2492     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2493     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2494 
2495     /*
2496      * The write, and any associated faults, only happen if the virtual
2497      * and physical addresses pass the exclusive monitor check.  These
2498      * faults are exceedingly unlikely, because normally the guest uses
2499      * the exact same address register for the load_exclusive, and we
2500      * would have recognized these faults there.
2501      *
2502      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2503      * unaligned 4-byte write within the range of an aligned 8-byte load.
2504      * With LSE2, the store would need to cross a 16-byte boundary when the
2505      * load did not, which would mean the store is outside the range
2506      * recorded for the monitor, which would have failed a corrected monitor
2507      * check above.  For now, we assume no size change and retain the
2508      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2509      *
2510      * It is possible to trigger an MTE fault, by performing the load with
2511      * a virtual address with a valid tag and performing the store with the
2512      * same virtual address and a different invalid tag.
2513      */
2514     memop = size + is_pair;
2515     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2516         memop |= MO_ALIGN;
2517     }
2518     memop = finalize_memop(s, memop);
2519     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2520 
2521     tmp = tcg_temp_new_i64();
2522     if (is_pair) {
2523         if (size == 2) {
2524             if (s->be_data == MO_LE) {
2525                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2526             } else {
2527                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2528             }
2529             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2530                                        cpu_exclusive_val, tmp,
2531                                        get_mem_index(s), memop);
2532             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2533         } else {
2534             TCGv_i128 t16 = tcg_temp_new_i128();
2535             TCGv_i128 c16 = tcg_temp_new_i128();
2536             TCGv_i64 a, b;
2537 
2538             if (s->be_data == MO_LE) {
2539                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2540                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2541                                         cpu_exclusive_high);
2542             } else {
2543                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2544                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2545                                         cpu_exclusive_val);
2546             }
2547 
2548             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2549                                         get_mem_index(s), memop);
2550 
2551             a = tcg_temp_new_i64();
2552             b = tcg_temp_new_i64();
2553             if (s->be_data == MO_LE) {
2554                 tcg_gen_extr_i128_i64(a, b, t16);
2555             } else {
2556                 tcg_gen_extr_i128_i64(b, a, t16);
2557             }
2558 
2559             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2560             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2561             tcg_gen_or_i64(tmp, a, b);
2562 
2563             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2564         }
2565     } else {
2566         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2567                                    cpu_reg(s, rt), get_mem_index(s), memop);
2568         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2569     }
2570     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2571     tcg_gen_br(done_label);
2572 
2573     gen_set_label(fail_label);
2574     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2575     gen_set_label(done_label);
2576     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2577 }
2578 
2579 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2580                                  int rn, int size)
2581 {
2582     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2583     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2584     int memidx = get_mem_index(s);
2585     TCGv_i64 clean_addr;
2586     MemOp memop;
2587 
2588     if (rn == 31) {
2589         gen_check_sp_alignment(s);
2590     }
2591     memop = check_atomic_align(s, rn, size);
2592     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2593     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2594                                memidx, memop);
2595 }
2596 
2597 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2598                                       int rn, int size)
2599 {
2600     TCGv_i64 s1 = cpu_reg(s, rs);
2601     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2602     TCGv_i64 t1 = cpu_reg(s, rt);
2603     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2604     TCGv_i64 clean_addr;
2605     int memidx = get_mem_index(s);
2606     MemOp memop;
2607 
2608     if (rn == 31) {
2609         gen_check_sp_alignment(s);
2610     }
2611 
2612     /* This is a single atomic access, despite the "pair". */
2613     memop = check_atomic_align(s, rn, size + 1);
2614     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2615 
2616     if (size == 2) {
2617         TCGv_i64 cmp = tcg_temp_new_i64();
2618         TCGv_i64 val = tcg_temp_new_i64();
2619 
2620         if (s->be_data == MO_LE) {
2621             tcg_gen_concat32_i64(val, t1, t2);
2622             tcg_gen_concat32_i64(cmp, s1, s2);
2623         } else {
2624             tcg_gen_concat32_i64(val, t2, t1);
2625             tcg_gen_concat32_i64(cmp, s2, s1);
2626         }
2627 
2628         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2629 
2630         if (s->be_data == MO_LE) {
2631             tcg_gen_extr32_i64(s1, s2, cmp);
2632         } else {
2633             tcg_gen_extr32_i64(s2, s1, cmp);
2634         }
2635     } else {
2636         TCGv_i128 cmp = tcg_temp_new_i128();
2637         TCGv_i128 val = tcg_temp_new_i128();
2638 
2639         if (s->be_data == MO_LE) {
2640             tcg_gen_concat_i64_i128(val, t1, t2);
2641             tcg_gen_concat_i64_i128(cmp, s1, s2);
2642         } else {
2643             tcg_gen_concat_i64_i128(val, t2, t1);
2644             tcg_gen_concat_i64_i128(cmp, s2, s1);
2645         }
2646 
2647         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2648 
2649         if (s->be_data == MO_LE) {
2650             tcg_gen_extr_i128_i64(s1, s2, cmp);
2651         } else {
2652             tcg_gen_extr_i128_i64(s2, s1, cmp);
2653         }
2654     }
2655 }
2656 
2657 /*
2658  * Compute the ISS.SF bit for syndrome information if an exception
2659  * is taken on a load or store. This indicates whether the instruction
2660  * is accessing a 32-bit or 64-bit register. This logic is derived
2661  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2662  */
2663 static bool ldst_iss_sf(int size, bool sign, bool ext)
2664 {
2665 
2666     if (sign) {
2667         /*
2668          * Signed loads are 64 bit results if we are not going to
2669          * do a zero-extend from 32 to 64 after the load.
2670          * (For a store, sign and ext are always false.)
2671          */
2672         return !ext;
2673     } else {
2674         /* Unsigned loads/stores work at the specified size */
2675         return size == MO_64;
2676     }
2677 }
2678 
2679 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2680 {
2681     if (a->rn == 31) {
2682         gen_check_sp_alignment(s);
2683     }
2684     if (a->lasr) {
2685         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2686     }
2687     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2688     return true;
2689 }
2690 
2691 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2692 {
2693     if (a->rn == 31) {
2694         gen_check_sp_alignment(s);
2695     }
2696     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2697     if (a->lasr) {
2698         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2699     }
2700     return true;
2701 }
2702 
2703 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2704 {
2705     TCGv_i64 clean_addr;
2706     MemOp memop;
2707     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2708 
2709     /*
2710      * StoreLORelease is the same as Store-Release for QEMU, but
2711      * needs the feature-test.
2712      */
2713     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2714         return false;
2715     }
2716     /* Generate ISS for non-exclusive accesses including LASR.  */
2717     if (a->rn == 31) {
2718         gen_check_sp_alignment(s);
2719     }
2720     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2721     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2722     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2723                                 true, a->rn != 31, memop);
2724     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2725               iss_sf, a->lasr);
2726     return true;
2727 }
2728 
2729 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2730 {
2731     TCGv_i64 clean_addr;
2732     MemOp memop;
2733     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2734 
2735     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2736     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2737         return false;
2738     }
2739     /* Generate ISS for non-exclusive accesses including LASR.  */
2740     if (a->rn == 31) {
2741         gen_check_sp_alignment(s);
2742     }
2743     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2744     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2745                                 false, a->rn != 31, memop);
2746     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2747               a->rt, iss_sf, a->lasr);
2748     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2749     return true;
2750 }
2751 
2752 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2753 {
2754     if (a->rn == 31) {
2755         gen_check_sp_alignment(s);
2756     }
2757     if (a->lasr) {
2758         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2759     }
2760     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
2761     return true;
2762 }
2763 
2764 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
2765 {
2766     if (a->rn == 31) {
2767         gen_check_sp_alignment(s);
2768     }
2769     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
2770     if (a->lasr) {
2771         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2772     }
2773     return true;
2774 }
2775 
2776 static bool trans_CASP(DisasContext *s, arg_CASP *a)
2777 {
2778     if (!dc_isar_feature(aa64_atomics, s)) {
2779         return false;
2780     }
2781     if (((a->rt | a->rs) & 1) != 0) {
2782         return false;
2783     }
2784 
2785     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
2786     return true;
2787 }
2788 
2789 static bool trans_CAS(DisasContext *s, arg_CAS *a)
2790 {
2791     if (!dc_isar_feature(aa64_atomics, s)) {
2792         return false;
2793     }
2794     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
2795     return true;
2796 }
2797 
2798 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
2799 {
2800     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
2801     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
2802     TCGv_i64 clean_addr = tcg_temp_new_i64();
2803     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
2804 
2805     gen_pc_plus_diff(s, clean_addr, a->imm);
2806     do_gpr_ld(s, tcg_rt, clean_addr, memop,
2807               false, true, a->rt, iss_sf, false);
2808     return true;
2809 }
2810 
2811 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
2812 {
2813     /* Load register (literal), vector version */
2814     TCGv_i64 clean_addr;
2815     MemOp memop;
2816 
2817     if (!fp_access_check(s)) {
2818         return true;
2819     }
2820     memop = finalize_memop_asimd(s, a->sz);
2821     clean_addr = tcg_temp_new_i64();
2822     gen_pc_plus_diff(s, clean_addr, a->imm);
2823     do_fp_ld(s, a->rt, clean_addr, memop);
2824     return true;
2825 }
2826 
2827 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
2828                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
2829                                  uint64_t offset, bool is_store, MemOp mop)
2830 {
2831     if (a->rn == 31) {
2832         gen_check_sp_alignment(s);
2833     }
2834 
2835     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
2836     if (!a->p) {
2837         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
2838     }
2839 
2840     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
2841                                  (a->w || a->rn != 31), 2 << a->sz, mop);
2842 }
2843 
2844 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
2845                                   TCGv_i64 dirty_addr, uint64_t offset)
2846 {
2847     if (a->w) {
2848         if (a->p) {
2849             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2850         }
2851         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
2852     }
2853 }
2854 
2855 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
2856 {
2857     uint64_t offset = a->imm << a->sz;
2858     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
2859     MemOp mop = finalize_memop(s, a->sz);
2860 
2861     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
2862     tcg_rt = cpu_reg(s, a->rt);
2863     tcg_rt2 = cpu_reg(s, a->rt2);
2864     /*
2865      * We built mop above for the single logical access -- rebuild it
2866      * now for the paired operation.
2867      *
2868      * With LSE2, non-sign-extending pairs are treated atomically if
2869      * aligned, and if unaligned one of the pair will be completely
2870      * within a 16-byte block and that element will be atomic.
2871      * Otherwise each element is separately atomic.
2872      * In all cases, issue one operation with the correct atomicity.
2873      */
2874     mop = a->sz + 1;
2875     if (s->align_mem) {
2876         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
2877     }
2878     mop = finalize_memop_pair(s, mop);
2879     if (a->sz == 2) {
2880         TCGv_i64 tmp = tcg_temp_new_i64();
2881 
2882         if (s->be_data == MO_LE) {
2883             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
2884         } else {
2885             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
2886         }
2887         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
2888     } else {
2889         TCGv_i128 tmp = tcg_temp_new_i128();
2890 
2891         if (s->be_data == MO_LE) {
2892             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
2893         } else {
2894             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
2895         }
2896         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
2897     }
2898     op_addr_ldstpair_post(s, a, dirty_addr, offset);
2899     return true;
2900 }
2901 
2902 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
2903 {
2904     uint64_t offset = a->imm << a->sz;
2905     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
2906     MemOp mop = finalize_memop(s, a->sz);
2907 
2908     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
2909     tcg_rt = cpu_reg(s, a->rt);
2910     tcg_rt2 = cpu_reg(s, a->rt2);
2911 
2912     /*
2913      * We built mop above for the single logical access -- rebuild it
2914      * now for the paired operation.
2915      *
2916      * With LSE2, non-sign-extending pairs are treated atomically if
2917      * aligned, and if unaligned one of the pair will be completely
2918      * within a 16-byte block and that element will be atomic.
2919      * Otherwise each element is separately atomic.
2920      * In all cases, issue one operation with the correct atomicity.
2921      *
2922      * This treats sign-extending loads like zero-extending loads,
2923      * since that reuses the most code below.
2924      */
2925     mop = a->sz + 1;
2926     if (s->align_mem) {
2927         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
2928     }
2929     mop = finalize_memop_pair(s, mop);
2930     if (a->sz == 2) {
2931         int o2 = s->be_data == MO_LE ? 32 : 0;
2932         int o1 = o2 ^ 32;
2933 
2934         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
2935         if (a->sign) {
2936             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
2937             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
2938         } else {
2939             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
2940             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
2941         }
2942     } else {
2943         TCGv_i128 tmp = tcg_temp_new_i128();
2944 
2945         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
2946         if (s->be_data == MO_LE) {
2947             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
2948         } else {
2949             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
2950         }
2951     }
2952     op_addr_ldstpair_post(s, a, dirty_addr, offset);
2953     return true;
2954 }
2955 
2956 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
2957 {
2958     uint64_t offset = a->imm << a->sz;
2959     TCGv_i64 clean_addr, dirty_addr;
2960     MemOp mop;
2961 
2962     if (!fp_access_check(s)) {
2963         return true;
2964     }
2965 
2966     /* LSE2 does not merge FP pairs; leave these as separate operations. */
2967     mop = finalize_memop_asimd(s, a->sz);
2968     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
2969     do_fp_st(s, a->rt, clean_addr, mop);
2970     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
2971     do_fp_st(s, a->rt2, clean_addr, mop);
2972     op_addr_ldstpair_post(s, a, dirty_addr, offset);
2973     return true;
2974 }
2975 
2976 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
2977 {
2978     uint64_t offset = a->imm << a->sz;
2979     TCGv_i64 clean_addr, dirty_addr;
2980     MemOp mop;
2981 
2982     if (!fp_access_check(s)) {
2983         return true;
2984     }
2985 
2986     /* LSE2 does not merge FP pairs; leave these as separate operations. */
2987     mop = finalize_memop_asimd(s, a->sz);
2988     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
2989     do_fp_ld(s, a->rt, clean_addr, mop);
2990     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
2991     do_fp_ld(s, a->rt2, clean_addr, mop);
2992     op_addr_ldstpair_post(s, a, dirty_addr, offset);
2993     return true;
2994 }
2995 
2996 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
2997 {
2998     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
2999     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3000     MemOp mop;
3001     TCGv_i128 tmp;
3002 
3003     /* STGP only comes in one size. */
3004     tcg_debug_assert(a->sz == MO_64);
3005 
3006     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3007         return false;
3008     }
3009 
3010     if (a->rn == 31) {
3011         gen_check_sp_alignment(s);
3012     }
3013 
3014     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3015     if (!a->p) {
3016         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3017     }
3018 
3019     clean_addr = clean_data_tbi(s, dirty_addr);
3020     tcg_rt = cpu_reg(s, a->rt);
3021     tcg_rt2 = cpu_reg(s, a->rt2);
3022 
3023     /*
3024      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3025      * and one tag operation.  We implement it as one single aligned 16-byte
3026      * memory operation for convenience.  Note that the alignment ensures
3027      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3028      */
3029     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3030 
3031     tmp = tcg_temp_new_i128();
3032     if (s->be_data == MO_LE) {
3033         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3034     } else {
3035         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3036     }
3037     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3038 
3039     /* Perform the tag store, if tag access enabled. */
3040     if (s->ata[0]) {
3041         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3042             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3043         } else {
3044             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3045         }
3046     }
3047 
3048     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3049     return true;
3050 }
3051 
3052 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3053                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3054                                  uint64_t offset, bool is_store, MemOp mop)
3055 {
3056     int memidx;
3057 
3058     if (a->rn == 31) {
3059         gen_check_sp_alignment(s);
3060     }
3061 
3062     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3063     if (!a->p) {
3064         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3065     }
3066     memidx = get_a64_user_mem_index(s, a->unpriv);
3067     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3068                                         a->w || a->rn != 31,
3069                                         mop, a->unpriv, memidx);
3070 }
3071 
3072 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3073                                   TCGv_i64 dirty_addr, uint64_t offset)
3074 {
3075     if (a->w) {
3076         if (a->p) {
3077             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3078         }
3079         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3080     }
3081 }
3082 
3083 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3084 {
3085     bool iss_sf, iss_valid = !a->w;
3086     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3087     int memidx = get_a64_user_mem_index(s, a->unpriv);
3088     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3089 
3090     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3091 
3092     tcg_rt = cpu_reg(s, a->rt);
3093     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3094 
3095     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3096                      iss_valid, a->rt, iss_sf, false);
3097     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3098     return true;
3099 }
3100 
3101 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3102 {
3103     bool iss_sf, iss_valid = !a->w;
3104     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3105     int memidx = get_a64_user_mem_index(s, a->unpriv);
3106     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3107 
3108     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3109 
3110     tcg_rt = cpu_reg(s, a->rt);
3111     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3112 
3113     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3114                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3115     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3116     return true;
3117 }
3118 
3119 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3120 {
3121     TCGv_i64 clean_addr, dirty_addr;
3122     MemOp mop;
3123 
3124     if (!fp_access_check(s)) {
3125         return true;
3126     }
3127     mop = finalize_memop_asimd(s, a->sz);
3128     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3129     do_fp_st(s, a->rt, clean_addr, mop);
3130     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3131     return true;
3132 }
3133 
3134 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3135 {
3136     TCGv_i64 clean_addr, dirty_addr;
3137     MemOp mop;
3138 
3139     if (!fp_access_check(s)) {
3140         return true;
3141     }
3142     mop = finalize_memop_asimd(s, a->sz);
3143     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3144     do_fp_ld(s, a->rt, clean_addr, mop);
3145     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3146     return true;
3147 }
3148 
3149 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3150                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3151                              bool is_store, MemOp memop)
3152 {
3153     TCGv_i64 tcg_rm;
3154 
3155     if (a->rn == 31) {
3156         gen_check_sp_alignment(s);
3157     }
3158     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3159 
3160     tcg_rm = read_cpu_reg(s, a->rm, 1);
3161     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3162 
3163     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3164     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3165 }
3166 
3167 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3168 {
3169     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3170     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3171     MemOp memop;
3172 
3173     if (extract32(a->opt, 1, 1) == 0) {
3174         return false;
3175     }
3176 
3177     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3178     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3179     tcg_rt = cpu_reg(s, a->rt);
3180     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3181               a->ext, true, a->rt, iss_sf, false);
3182     return true;
3183 }
3184 
3185 static bool trans_STR(DisasContext *s, arg_ldst *a)
3186 {
3187     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3188     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3189     MemOp memop;
3190 
3191     if (extract32(a->opt, 1, 1) == 0) {
3192         return false;
3193     }
3194 
3195     memop = finalize_memop(s, a->sz);
3196     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3197     tcg_rt = cpu_reg(s, a->rt);
3198     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3199     return true;
3200 }
3201 
3202 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3203 {
3204     TCGv_i64 clean_addr, dirty_addr;
3205     MemOp memop;
3206 
3207     if (extract32(a->opt, 1, 1) == 0) {
3208         return false;
3209     }
3210 
3211     if (!fp_access_check(s)) {
3212         return true;
3213     }
3214 
3215     memop = finalize_memop_asimd(s, a->sz);
3216     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3217     do_fp_ld(s, a->rt, clean_addr, memop);
3218     return true;
3219 }
3220 
3221 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3222 {
3223     TCGv_i64 clean_addr, dirty_addr;
3224     MemOp memop;
3225 
3226     if (extract32(a->opt, 1, 1) == 0) {
3227         return false;
3228     }
3229 
3230     if (!fp_access_check(s)) {
3231         return true;
3232     }
3233 
3234     memop = finalize_memop_asimd(s, a->sz);
3235     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3236     do_fp_st(s, a->rt, clean_addr, memop);
3237     return true;
3238 }
3239 
3240 
3241 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3242                          int sign, bool invert)
3243 {
3244     MemOp mop = a->sz | sign;
3245     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3246 
3247     if (a->rn == 31) {
3248         gen_check_sp_alignment(s);
3249     }
3250     mop = check_atomic_align(s, a->rn, mop);
3251     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3252                                 a->rn != 31, mop);
3253     tcg_rs = read_cpu_reg(s, a->rs, true);
3254     tcg_rt = cpu_reg(s, a->rt);
3255     if (invert) {
3256         tcg_gen_not_i64(tcg_rs, tcg_rs);
3257     }
3258     /*
3259      * The tcg atomic primitives are all full barriers.  Therefore we
3260      * can ignore the Acquire and Release bits of this instruction.
3261      */
3262     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3263 
3264     if (mop & MO_SIGN) {
3265         switch (a->sz) {
3266         case MO_8:
3267             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3268             break;
3269         case MO_16:
3270             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3271             break;
3272         case MO_32:
3273             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3274             break;
3275         case MO_64:
3276             break;
3277         default:
3278             g_assert_not_reached();
3279         }
3280     }
3281     return true;
3282 }
3283 
3284 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3285 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3286 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3287 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3288 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3289 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3290 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3291 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3292 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3293 
3294 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3295 {
3296     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3297     TCGv_i64 clean_addr;
3298     MemOp mop;
3299 
3300     if (!dc_isar_feature(aa64_atomics, s) ||
3301         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3302         return false;
3303     }
3304     if (a->rn == 31) {
3305         gen_check_sp_alignment(s);
3306     }
3307     mop = check_atomic_align(s, a->rn, a->sz);
3308     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3309                                 a->rn != 31, mop);
3310     /*
3311      * LDAPR* are a special case because they are a simple load, not a
3312      * fetch-and-do-something op.
3313      * The architectural consistency requirements here are weaker than
3314      * full load-acquire (we only need "load-acquire processor consistent"),
3315      * but we choose to implement them as full LDAQ.
3316      */
3317     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3318               true, a->rt, iss_sf, true);
3319     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3320     return true;
3321 }
3322 
3323 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3324 {
3325     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3326     MemOp memop;
3327 
3328     /* Load with pointer authentication */
3329     if (!dc_isar_feature(aa64_pauth, s)) {
3330         return false;
3331     }
3332 
3333     if (a->rn == 31) {
3334         gen_check_sp_alignment(s);
3335     }
3336     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3337 
3338     if (s->pauth_active) {
3339         if (!a->m) {
3340             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3341                                       tcg_constant_i64(0));
3342         } else {
3343             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3344                                       tcg_constant_i64(0));
3345         }
3346     }
3347 
3348     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3349 
3350     memop = finalize_memop(s, MO_64);
3351 
3352     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3353     clean_addr = gen_mte_check1(s, dirty_addr, false,
3354                                 a->w || a->rn != 31, memop);
3355 
3356     tcg_rt = cpu_reg(s, a->rt);
3357     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3358               /* extend */ false, /* iss_valid */ !a->w,
3359               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3360 
3361     if (a->w) {
3362         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3363     }
3364     return true;
3365 }
3366 
3367 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3368 {
3369     TCGv_i64 clean_addr, dirty_addr;
3370     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3371     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3372 
3373     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3374         return false;
3375     }
3376 
3377     if (a->rn == 31) {
3378         gen_check_sp_alignment(s);
3379     }
3380 
3381     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3382     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3383     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3384     clean_addr = clean_data_tbi(s, dirty_addr);
3385 
3386     /*
3387      * Load-AcquirePC semantics; we implement as the slightly more
3388      * restrictive Load-Acquire.
3389      */
3390     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3391               a->rt, iss_sf, true);
3392     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3393     return true;
3394 }
3395 
3396 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3397 {
3398     TCGv_i64 clean_addr, dirty_addr;
3399     MemOp mop = a->sz;
3400     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3401 
3402     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3403         return false;
3404     }
3405 
3406     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3407 
3408     if (a->rn == 31) {
3409         gen_check_sp_alignment(s);
3410     }
3411 
3412     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3413     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3414     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3415     clean_addr = clean_data_tbi(s, dirty_addr);
3416 
3417     /* Store-Release semantics */
3418     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3419     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3420     return true;
3421 }
3422 
3423 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3424 {
3425     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3426     MemOp endian, align, mop;
3427 
3428     int total;    /* total bytes */
3429     int elements; /* elements per vector */
3430     int r;
3431     int size = a->sz;
3432 
3433     if (!a->p && a->rm != 0) {
3434         /* For non-postindexed accesses the Rm field must be 0 */
3435         return false;
3436     }
3437     if (size == 3 && !a->q && a->selem != 1) {
3438         return false;
3439     }
3440     if (!fp_access_check(s)) {
3441         return true;
3442     }
3443 
3444     if (a->rn == 31) {
3445         gen_check_sp_alignment(s);
3446     }
3447 
3448     /* For our purposes, bytes are always little-endian.  */
3449     endian = s->be_data;
3450     if (size == 0) {
3451         endian = MO_LE;
3452     }
3453 
3454     total = a->rpt * a->selem * (a->q ? 16 : 8);
3455     tcg_rn = cpu_reg_sp(s, a->rn);
3456 
3457     /*
3458      * Issue the MTE check vs the logical repeat count, before we
3459      * promote consecutive little-endian elements below.
3460      */
3461     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3462                                 finalize_memop_asimd(s, size));
3463 
3464     /*
3465      * Consecutive little-endian elements from a single register
3466      * can be promoted to a larger little-endian operation.
3467      */
3468     align = MO_ALIGN;
3469     if (a->selem == 1 && endian == MO_LE) {
3470         align = pow2_align(size);
3471         size = 3;
3472     }
3473     if (!s->align_mem) {
3474         align = 0;
3475     }
3476     mop = endian | size | align;
3477 
3478     elements = (a->q ? 16 : 8) >> size;
3479     tcg_ebytes = tcg_constant_i64(1 << size);
3480     for (r = 0; r < a->rpt; r++) {
3481         int e;
3482         for (e = 0; e < elements; e++) {
3483             int xs;
3484             for (xs = 0; xs < a->selem; xs++) {
3485                 int tt = (a->rt + r + xs) % 32;
3486                 do_vec_ld(s, tt, e, clean_addr, mop);
3487                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3488             }
3489         }
3490     }
3491 
3492     /*
3493      * For non-quad operations, setting a slice of the low 64 bits of
3494      * the register clears the high 64 bits (in the ARM ARM pseudocode
3495      * this is implicit in the fact that 'rval' is a 64 bit wide
3496      * variable).  For quad operations, we might still need to zero
3497      * the high bits of SVE.
3498      */
3499     for (r = 0; r < a->rpt * a->selem; r++) {
3500         int tt = (a->rt + r) % 32;
3501         clear_vec_high(s, a->q, tt);
3502     }
3503 
3504     if (a->p) {
3505         if (a->rm == 31) {
3506             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3507         } else {
3508             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3509         }
3510     }
3511     return true;
3512 }
3513 
3514 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3515 {
3516     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3517     MemOp endian, align, mop;
3518 
3519     int total;    /* total bytes */
3520     int elements; /* elements per vector */
3521     int r;
3522     int size = a->sz;
3523 
3524     if (!a->p && a->rm != 0) {
3525         /* For non-postindexed accesses the Rm field must be 0 */
3526         return false;
3527     }
3528     if (size == 3 && !a->q && a->selem != 1) {
3529         return false;
3530     }
3531     if (!fp_access_check(s)) {
3532         return true;
3533     }
3534 
3535     if (a->rn == 31) {
3536         gen_check_sp_alignment(s);
3537     }
3538 
3539     /* For our purposes, bytes are always little-endian.  */
3540     endian = s->be_data;
3541     if (size == 0) {
3542         endian = MO_LE;
3543     }
3544 
3545     total = a->rpt * a->selem * (a->q ? 16 : 8);
3546     tcg_rn = cpu_reg_sp(s, a->rn);
3547 
3548     /*
3549      * Issue the MTE check vs the logical repeat count, before we
3550      * promote consecutive little-endian elements below.
3551      */
3552     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3553                                 finalize_memop_asimd(s, size));
3554 
3555     /*
3556      * Consecutive little-endian elements from a single register
3557      * can be promoted to a larger little-endian operation.
3558      */
3559     align = MO_ALIGN;
3560     if (a->selem == 1 && endian == MO_LE) {
3561         align = pow2_align(size);
3562         size = 3;
3563     }
3564     if (!s->align_mem) {
3565         align = 0;
3566     }
3567     mop = endian | size | align;
3568 
3569     elements = (a->q ? 16 : 8) >> size;
3570     tcg_ebytes = tcg_constant_i64(1 << size);
3571     for (r = 0; r < a->rpt; r++) {
3572         int e;
3573         for (e = 0; e < elements; e++) {
3574             int xs;
3575             for (xs = 0; xs < a->selem; xs++) {
3576                 int tt = (a->rt + r + xs) % 32;
3577                 do_vec_st(s, tt, e, clean_addr, mop);
3578                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3579             }
3580         }
3581     }
3582 
3583     if (a->p) {
3584         if (a->rm == 31) {
3585             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3586         } else {
3587             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3588         }
3589     }
3590     return true;
3591 }
3592 
3593 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3594 {
3595     int xs, total, rt;
3596     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3597     MemOp mop;
3598 
3599     if (!a->p && a->rm != 0) {
3600         return false;
3601     }
3602     if (!fp_access_check(s)) {
3603         return true;
3604     }
3605 
3606     if (a->rn == 31) {
3607         gen_check_sp_alignment(s);
3608     }
3609 
3610     total = a->selem << a->scale;
3611     tcg_rn = cpu_reg_sp(s, a->rn);
3612 
3613     mop = finalize_memop_asimd(s, a->scale);
3614     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3615                                 total, mop);
3616 
3617     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3618     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3619         do_vec_st(s, rt, a->index, clean_addr, mop);
3620         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3621     }
3622 
3623     if (a->p) {
3624         if (a->rm == 31) {
3625             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3626         } else {
3627             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3628         }
3629     }
3630     return true;
3631 }
3632 
3633 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3634 {
3635     int xs, total, rt;
3636     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3637     MemOp mop;
3638 
3639     if (!a->p && a->rm != 0) {
3640         return false;
3641     }
3642     if (!fp_access_check(s)) {
3643         return true;
3644     }
3645 
3646     if (a->rn == 31) {
3647         gen_check_sp_alignment(s);
3648     }
3649 
3650     total = a->selem << a->scale;
3651     tcg_rn = cpu_reg_sp(s, a->rn);
3652 
3653     mop = finalize_memop_asimd(s, a->scale);
3654     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3655                                 total, mop);
3656 
3657     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3658     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3659         do_vec_ld(s, rt, a->index, clean_addr, mop);
3660         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3661     }
3662 
3663     if (a->p) {
3664         if (a->rm == 31) {
3665             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3666         } else {
3667             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3668         }
3669     }
3670     return true;
3671 }
3672 
3673 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3674 {
3675     int xs, total, rt;
3676     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3677     MemOp mop;
3678 
3679     if (!a->p && a->rm != 0) {
3680         return false;
3681     }
3682     if (!fp_access_check(s)) {
3683         return true;
3684     }
3685 
3686     if (a->rn == 31) {
3687         gen_check_sp_alignment(s);
3688     }
3689 
3690     total = a->selem << a->scale;
3691     tcg_rn = cpu_reg_sp(s, a->rn);
3692 
3693     mop = finalize_memop_asimd(s, a->scale);
3694     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3695                                 total, mop);
3696 
3697     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3698     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3699         /* Load and replicate to all elements */
3700         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3701 
3702         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3703         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3704                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3705         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3706     }
3707 
3708     if (a->p) {
3709         if (a->rm == 31) {
3710             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3711         } else {
3712             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3713         }
3714     }
3715     return true;
3716 }
3717 
3718 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3719 {
3720     TCGv_i64 addr, clean_addr, tcg_rt;
3721     int size = 4 << s->dcz_blocksize;
3722 
3723     if (!dc_isar_feature(aa64_mte, s)) {
3724         return false;
3725     }
3726     if (s->current_el == 0) {
3727         return false;
3728     }
3729 
3730     if (a->rn == 31) {
3731         gen_check_sp_alignment(s);
3732     }
3733 
3734     addr = read_cpu_reg_sp(s, a->rn, true);
3735     tcg_gen_addi_i64(addr, addr, a->imm);
3736     tcg_rt = cpu_reg(s, a->rt);
3737 
3738     if (s->ata[0]) {
3739         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3740     }
3741     /*
3742      * The non-tags portion of STZGM is mostly like DC_ZVA,
3743      * except the alignment happens before the access.
3744      */
3745     clean_addr = clean_data_tbi(s, addr);
3746     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3747     gen_helper_dc_zva(tcg_env, clean_addr);
3748     return true;
3749 }
3750 
3751 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3752 {
3753     TCGv_i64 addr, clean_addr, tcg_rt;
3754 
3755     if (!dc_isar_feature(aa64_mte, s)) {
3756         return false;
3757     }
3758     if (s->current_el == 0) {
3759         return false;
3760     }
3761 
3762     if (a->rn == 31) {
3763         gen_check_sp_alignment(s);
3764     }
3765 
3766     addr = read_cpu_reg_sp(s, a->rn, true);
3767     tcg_gen_addi_i64(addr, addr, a->imm);
3768     tcg_rt = cpu_reg(s, a->rt);
3769 
3770     if (s->ata[0]) {
3771         gen_helper_stgm(tcg_env, addr, tcg_rt);
3772     } else {
3773         MMUAccessType acc = MMU_DATA_STORE;
3774         int size = 4 << s->gm_blocksize;
3775 
3776         clean_addr = clean_data_tbi(s, addr);
3777         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3778         gen_probe_access(s, clean_addr, acc, size);
3779     }
3780     return true;
3781 }
3782 
3783 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
3784 {
3785     TCGv_i64 addr, clean_addr, tcg_rt;
3786 
3787     if (!dc_isar_feature(aa64_mte, s)) {
3788         return false;
3789     }
3790     if (s->current_el == 0) {
3791         return false;
3792     }
3793 
3794     if (a->rn == 31) {
3795         gen_check_sp_alignment(s);
3796     }
3797 
3798     addr = read_cpu_reg_sp(s, a->rn, true);
3799     tcg_gen_addi_i64(addr, addr, a->imm);
3800     tcg_rt = cpu_reg(s, a->rt);
3801 
3802     if (s->ata[0]) {
3803         gen_helper_ldgm(tcg_rt, tcg_env, addr);
3804     } else {
3805         MMUAccessType acc = MMU_DATA_LOAD;
3806         int size = 4 << s->gm_blocksize;
3807 
3808         clean_addr = clean_data_tbi(s, addr);
3809         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3810         gen_probe_access(s, clean_addr, acc, size);
3811         /* The result tags are zeros.  */
3812         tcg_gen_movi_i64(tcg_rt, 0);
3813     }
3814     return true;
3815 }
3816 
3817 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
3818 {
3819     TCGv_i64 addr, clean_addr, tcg_rt;
3820 
3821     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3822         return false;
3823     }
3824 
3825     if (a->rn == 31) {
3826         gen_check_sp_alignment(s);
3827     }
3828 
3829     addr = read_cpu_reg_sp(s, a->rn, true);
3830     if (!a->p) {
3831         /* pre-index or signed offset */
3832         tcg_gen_addi_i64(addr, addr, a->imm);
3833     }
3834 
3835     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
3836     tcg_rt = cpu_reg(s, a->rt);
3837     if (s->ata[0]) {
3838         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
3839     } else {
3840         /*
3841          * Tag access disabled: we must check for aborts on the load
3842          * load from [rn+offset], and then insert a 0 tag into rt.
3843          */
3844         clean_addr = clean_data_tbi(s, addr);
3845         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
3846         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
3847     }
3848 
3849     if (a->w) {
3850         /* pre-index or post-index */
3851         if (a->p) {
3852             /* post-index */
3853             tcg_gen_addi_i64(addr, addr, a->imm);
3854         }
3855         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
3856     }
3857     return true;
3858 }
3859 
3860 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
3861 {
3862     TCGv_i64 addr, tcg_rt;
3863 
3864     if (a->rn == 31) {
3865         gen_check_sp_alignment(s);
3866     }
3867 
3868     addr = read_cpu_reg_sp(s, a->rn, true);
3869     if (!a->p) {
3870         /* pre-index or signed offset */
3871         tcg_gen_addi_i64(addr, addr, a->imm);
3872     }
3873     tcg_rt = cpu_reg_sp(s, a->rt);
3874     if (!s->ata[0]) {
3875         /*
3876          * For STG and ST2G, we need to check alignment and probe memory.
3877          * TODO: For STZG and STZ2G, we could rely on the stores below,
3878          * at least for system mode; user-only won't enforce alignment.
3879          */
3880         if (is_pair) {
3881             gen_helper_st2g_stub(tcg_env, addr);
3882         } else {
3883             gen_helper_stg_stub(tcg_env, addr);
3884         }
3885     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3886         if (is_pair) {
3887             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
3888         } else {
3889             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
3890         }
3891     } else {
3892         if (is_pair) {
3893             gen_helper_st2g(tcg_env, addr, tcg_rt);
3894         } else {
3895             gen_helper_stg(tcg_env, addr, tcg_rt);
3896         }
3897     }
3898 
3899     if (is_zero) {
3900         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
3901         TCGv_i64 zero64 = tcg_constant_i64(0);
3902         TCGv_i128 zero128 = tcg_temp_new_i128();
3903         int mem_index = get_mem_index(s);
3904         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
3905 
3906         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
3907 
3908         /* This is 1 or 2 atomic 16-byte operations. */
3909         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
3910         if (is_pair) {
3911             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
3912             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
3913         }
3914     }
3915 
3916     if (a->w) {
3917         /* pre-index or post-index */
3918         if (a->p) {
3919             /* post-index */
3920             tcg_gen_addi_i64(addr, addr, a->imm);
3921         }
3922         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
3923     }
3924     return true;
3925 }
3926 
3927 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
3928 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
3929 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
3930 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
3931 
3932 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
3933 
3934 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
3935                    bool is_setg, SetFn fn)
3936 {
3937     int memidx;
3938     uint32_t syndrome, desc = 0;
3939 
3940     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
3941         return false;
3942     }
3943 
3944     /*
3945      * UNPREDICTABLE cases: we choose to UNDEF, which allows
3946      * us to pull this check before the CheckMOPSEnabled() test
3947      * (which we do in the helper function)
3948      */
3949     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
3950         a->rd == 31 || a->rn == 31) {
3951         return false;
3952     }
3953 
3954     memidx = get_a64_user_mem_index(s, a->unpriv);
3955 
3956     /*
3957      * We pass option_a == true, matching our implementation;
3958      * we pass wrong_option == false: helper function may set that bit.
3959      */
3960     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
3961                        is_epilogue, false, true, a->rd, a->rs, a->rn);
3962 
3963     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
3964         /* We may need to do MTE tag checking, so assemble the descriptor */
3965         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
3966         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
3967         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
3968         /* SIZEM1 and ALIGN we leave 0 (byte write) */
3969     }
3970     /* The helper function always needs the memidx even with MTE disabled */
3971     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
3972 
3973     /*
3974      * The helper needs the register numbers, but since they're in
3975      * the syndrome anyway, we let it extract them from there rather
3976      * than passing in an extra three integer arguments.
3977      */
3978     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
3979     return true;
3980 }
3981 
3982 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
3983 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
3984 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
3985 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
3986 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
3987 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
3988 
3989 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
3990 
3991 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
3992 {
3993     int rmemidx, wmemidx;
3994     uint32_t syndrome, rdesc = 0, wdesc = 0;
3995     bool wunpriv = extract32(a->options, 0, 1);
3996     bool runpriv = extract32(a->options, 1, 1);
3997 
3998     /*
3999      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4000      * us to pull this check before the CheckMOPSEnabled() test
4001      * (which we do in the helper function)
4002      */
4003     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4004         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4005         return false;
4006     }
4007 
4008     rmemidx = get_a64_user_mem_index(s, runpriv);
4009     wmemidx = get_a64_user_mem_index(s, wunpriv);
4010 
4011     /*
4012      * We pass option_a == true, matching our implementation;
4013      * we pass wrong_option == false: helper function may set that bit.
4014      */
4015     syndrome = syn_mop(false, false, a->options, is_epilogue,
4016                        false, true, a->rd, a->rs, a->rn);
4017 
4018     /* If we need to do MTE tag checking, assemble the descriptors */
4019     if (s->mte_active[runpriv]) {
4020         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4021         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4022     }
4023     if (s->mte_active[wunpriv]) {
4024         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4025         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4026         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4027     }
4028     /* The helper function needs these parts of the descriptor regardless */
4029     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4030     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4031 
4032     /*
4033      * The helper needs the register numbers, but since they're in
4034      * the syndrome anyway, we let it extract them from there rather
4035      * than passing in an extra three integer arguments.
4036      */
4037     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4038        tcg_constant_i32(rdesc));
4039     return true;
4040 }
4041 
4042 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4043 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4044 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4045 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4046 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4047 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4048 
4049 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4050 
4051 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4052                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4053 {
4054     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4055     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4056     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4057 
4058     fn(tcg_rd, tcg_rn, tcg_imm);
4059     if (!a->sf) {
4060         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4061     }
4062     return true;
4063 }
4064 
4065 /*
4066  * PC-rel. addressing
4067  */
4068 
4069 static bool trans_ADR(DisasContext *s, arg_ri *a)
4070 {
4071     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4072     return true;
4073 }
4074 
4075 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4076 {
4077     int64_t offset = (int64_t)a->imm << 12;
4078 
4079     /* The page offset is ok for CF_PCREL. */
4080     offset -= s->pc_curr & 0xfff;
4081     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4082     return true;
4083 }
4084 
4085 /*
4086  * Add/subtract (immediate)
4087  */
4088 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4089 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4090 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4091 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4092 
4093 /*
4094  * Add/subtract (immediate, with tags)
4095  */
4096 
4097 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4098                                       bool sub_op)
4099 {
4100     TCGv_i64 tcg_rn, tcg_rd;
4101     int imm;
4102 
4103     imm = a->uimm6 << LOG2_TAG_GRANULE;
4104     if (sub_op) {
4105         imm = -imm;
4106     }
4107 
4108     tcg_rn = cpu_reg_sp(s, a->rn);
4109     tcg_rd = cpu_reg_sp(s, a->rd);
4110 
4111     if (s->ata[0]) {
4112         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4113                            tcg_constant_i32(imm),
4114                            tcg_constant_i32(a->uimm4));
4115     } else {
4116         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4117         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4118     }
4119     return true;
4120 }
4121 
4122 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4123 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4124 
4125 /* The input should be a value in the bottom e bits (with higher
4126  * bits zero); returns that value replicated into every element
4127  * of size e in a 64 bit integer.
4128  */
4129 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4130 {
4131     assert(e != 0);
4132     while (e < 64) {
4133         mask |= mask << e;
4134         e *= 2;
4135     }
4136     return mask;
4137 }
4138 
4139 /*
4140  * Logical (immediate)
4141  */
4142 
4143 /*
4144  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4145  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4146  * value (ie should cause a guest UNDEF exception), and true if they are
4147  * valid, in which case the decoded bit pattern is written to result.
4148  */
4149 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4150                             unsigned int imms, unsigned int immr)
4151 {
4152     uint64_t mask;
4153     unsigned e, levels, s, r;
4154     int len;
4155 
4156     assert(immn < 2 && imms < 64 && immr < 64);
4157 
4158     /* The bit patterns we create here are 64 bit patterns which
4159      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4160      * 64 bits each. Each element contains the same value: a run
4161      * of between 1 and e-1 non-zero bits, rotated within the
4162      * element by between 0 and e-1 bits.
4163      *
4164      * The element size and run length are encoded into immn (1 bit)
4165      * and imms (6 bits) as follows:
4166      * 64 bit elements: immn = 1, imms = <length of run - 1>
4167      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4168      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4169      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4170      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4171      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4172      * Notice that immn = 0, imms = 11111x is the only combination
4173      * not covered by one of the above options; this is reserved.
4174      * Further, <length of run - 1> all-ones is a reserved pattern.
4175      *
4176      * In all cases the rotation is by immr % e (and immr is 6 bits).
4177      */
4178 
4179     /* First determine the element size */
4180     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4181     if (len < 1) {
4182         /* This is the immn == 0, imms == 0x11111x case */
4183         return false;
4184     }
4185     e = 1 << len;
4186 
4187     levels = e - 1;
4188     s = imms & levels;
4189     r = immr & levels;
4190 
4191     if (s == levels) {
4192         /* <length of run - 1> mustn't be all-ones. */
4193         return false;
4194     }
4195 
4196     /* Create the value of one element: s+1 set bits rotated
4197      * by r within the element (which is e bits wide)...
4198      */
4199     mask = MAKE_64BIT_MASK(0, s + 1);
4200     if (r) {
4201         mask = (mask >> r) | (mask << (e - r));
4202         mask &= MAKE_64BIT_MASK(0, e);
4203     }
4204     /* ...then replicate the element over the whole 64 bit value */
4205     mask = bitfield_replicate(mask, e);
4206     *result = mask;
4207     return true;
4208 }
4209 
4210 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4211                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4212 {
4213     TCGv_i64 tcg_rd, tcg_rn;
4214     uint64_t imm;
4215 
4216     /* Some immediate field values are reserved. */
4217     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4218                                 extract32(a->dbm, 0, 6),
4219                                 extract32(a->dbm, 6, 6))) {
4220         return false;
4221     }
4222     if (!a->sf) {
4223         imm &= 0xffffffffull;
4224     }
4225 
4226     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4227     tcg_rn = cpu_reg(s, a->rn);
4228 
4229     fn(tcg_rd, tcg_rn, imm);
4230     if (set_cc) {
4231         gen_logic_CC(a->sf, tcg_rd);
4232     }
4233     if (!a->sf) {
4234         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4235     }
4236     return true;
4237 }
4238 
4239 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4240 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4241 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4242 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4243 
4244 /*
4245  * Move wide (immediate)
4246  */
4247 
4248 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4249 {
4250     int pos = a->hw << 4;
4251     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4252     return true;
4253 }
4254 
4255 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4256 {
4257     int pos = a->hw << 4;
4258     uint64_t imm = a->imm;
4259 
4260     imm = ~(imm << pos);
4261     if (!a->sf) {
4262         imm = (uint32_t)imm;
4263     }
4264     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4265     return true;
4266 }
4267 
4268 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4269 {
4270     int pos = a->hw << 4;
4271     TCGv_i64 tcg_rd, tcg_im;
4272 
4273     tcg_rd = cpu_reg(s, a->rd);
4274     tcg_im = tcg_constant_i64(a->imm);
4275     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4276     if (!a->sf) {
4277         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4278     }
4279     return true;
4280 }
4281 
4282 /*
4283  * Bitfield
4284  */
4285 
4286 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4287 {
4288     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4289     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4290     unsigned int bitsize = a->sf ? 64 : 32;
4291     unsigned int ri = a->immr;
4292     unsigned int si = a->imms;
4293     unsigned int pos, len;
4294 
4295     if (si >= ri) {
4296         /* Wd<s-r:0> = Wn<s:r> */
4297         len = (si - ri) + 1;
4298         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4299         if (!a->sf) {
4300             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4301         }
4302     } else {
4303         /* Wd<32+s-r,32-r> = Wn<s:0> */
4304         len = si + 1;
4305         pos = (bitsize - ri) & (bitsize - 1);
4306 
4307         if (len < ri) {
4308             /*
4309              * Sign extend the destination field from len to fill the
4310              * balance of the word.  Let the deposit below insert all
4311              * of those sign bits.
4312              */
4313             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4314             len = ri;
4315         }
4316 
4317         /*
4318          * We start with zero, and we haven't modified any bits outside
4319          * bitsize, therefore no final zero-extension is unneeded for !sf.
4320          */
4321         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4322     }
4323     return true;
4324 }
4325 
4326 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4327 {
4328     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4329     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4330     unsigned int bitsize = a->sf ? 64 : 32;
4331     unsigned int ri = a->immr;
4332     unsigned int si = a->imms;
4333     unsigned int pos, len;
4334 
4335     tcg_rd = cpu_reg(s, a->rd);
4336     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4337 
4338     if (si >= ri) {
4339         /* Wd<s-r:0> = Wn<s:r> */
4340         len = (si - ri) + 1;
4341         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4342     } else {
4343         /* Wd<32+s-r,32-r> = Wn<s:0> */
4344         len = si + 1;
4345         pos = (bitsize - ri) & (bitsize - 1);
4346         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4347     }
4348     return true;
4349 }
4350 
4351 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4352 {
4353     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4354     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4355     unsigned int bitsize = a->sf ? 64 : 32;
4356     unsigned int ri = a->immr;
4357     unsigned int si = a->imms;
4358     unsigned int pos, len;
4359 
4360     tcg_rd = cpu_reg(s, a->rd);
4361     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4362 
4363     if (si >= ri) {
4364         /* Wd<s-r:0> = Wn<s:r> */
4365         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4366         len = (si - ri) + 1;
4367         pos = 0;
4368     } else {
4369         /* Wd<32+s-r,32-r> = Wn<s:0> */
4370         len = si + 1;
4371         pos = (bitsize - ri) & (bitsize - 1);
4372     }
4373 
4374     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4375     if (!a->sf) {
4376         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4377     }
4378     return true;
4379 }
4380 
4381 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4382 {
4383     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4384 
4385     tcg_rd = cpu_reg(s, a->rd);
4386 
4387     if (unlikely(a->imm == 0)) {
4388         /*
4389          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4390          * so an extract from bit 0 is a special case.
4391          */
4392         if (a->sf) {
4393             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4394         } else {
4395             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4396         }
4397     } else {
4398         tcg_rm = cpu_reg(s, a->rm);
4399         tcg_rn = cpu_reg(s, a->rn);
4400 
4401         if (a->sf) {
4402             /* Specialization to ROR happens in EXTRACT2.  */
4403             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4404         } else {
4405             TCGv_i32 t0 = tcg_temp_new_i32();
4406 
4407             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4408             if (a->rm == a->rn) {
4409                 tcg_gen_rotri_i32(t0, t0, a->imm);
4410             } else {
4411                 TCGv_i32 t1 = tcg_temp_new_i32();
4412                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4413                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4414             }
4415             tcg_gen_extu_i32_i64(tcg_rd, t0);
4416         }
4417     }
4418     return true;
4419 }
4420 
4421 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4422  * Note that it is the caller's responsibility to ensure that the
4423  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4424  * mandated semantics for out of range shifts.
4425  */
4426 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4427                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4428 {
4429     switch (shift_type) {
4430     case A64_SHIFT_TYPE_LSL:
4431         tcg_gen_shl_i64(dst, src, shift_amount);
4432         break;
4433     case A64_SHIFT_TYPE_LSR:
4434         tcg_gen_shr_i64(dst, src, shift_amount);
4435         break;
4436     case A64_SHIFT_TYPE_ASR:
4437         if (!sf) {
4438             tcg_gen_ext32s_i64(dst, src);
4439         }
4440         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4441         break;
4442     case A64_SHIFT_TYPE_ROR:
4443         if (sf) {
4444             tcg_gen_rotr_i64(dst, src, shift_amount);
4445         } else {
4446             TCGv_i32 t0, t1;
4447             t0 = tcg_temp_new_i32();
4448             t1 = tcg_temp_new_i32();
4449             tcg_gen_extrl_i64_i32(t0, src);
4450             tcg_gen_extrl_i64_i32(t1, shift_amount);
4451             tcg_gen_rotr_i32(t0, t0, t1);
4452             tcg_gen_extu_i32_i64(dst, t0);
4453         }
4454         break;
4455     default:
4456         assert(FALSE); /* all shift types should be handled */
4457         break;
4458     }
4459 
4460     if (!sf) { /* zero extend final result */
4461         tcg_gen_ext32u_i64(dst, dst);
4462     }
4463 }
4464 
4465 /* Shift a TCGv src by immediate, put result in dst.
4466  * The shift amount must be in range (this should always be true as the
4467  * relevant instructions will UNDEF on bad shift immediates).
4468  */
4469 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4470                           enum a64_shift_type shift_type, unsigned int shift_i)
4471 {
4472     assert(shift_i < (sf ? 64 : 32));
4473 
4474     if (shift_i == 0) {
4475         tcg_gen_mov_i64(dst, src);
4476     } else {
4477         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
4478     }
4479 }
4480 
4481 /* Logical (shifted register)
4482  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
4483  * +----+-----+-----------+-------+---+------+--------+------+------+
4484  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
4485  * +----+-----+-----------+-------+---+------+--------+------+------+
4486  */
4487 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4488 {
4489     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4490     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4491 
4492     sf = extract32(insn, 31, 1);
4493     opc = extract32(insn, 29, 2);
4494     shift_type = extract32(insn, 22, 2);
4495     invert = extract32(insn, 21, 1);
4496     rm = extract32(insn, 16, 5);
4497     shift_amount = extract32(insn, 10, 6);
4498     rn = extract32(insn, 5, 5);
4499     rd = extract32(insn, 0, 5);
4500 
4501     if (!sf && (shift_amount & (1 << 5))) {
4502         unallocated_encoding(s);
4503         return;
4504     }
4505 
4506     tcg_rd = cpu_reg(s, rd);
4507 
4508     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4509         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4510          * register-register MOV and MVN, so it is worth special casing.
4511          */
4512         tcg_rm = cpu_reg(s, rm);
4513         if (invert) {
4514             tcg_gen_not_i64(tcg_rd, tcg_rm);
4515             if (!sf) {
4516                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4517             }
4518         } else {
4519             if (sf) {
4520                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4521             } else {
4522                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4523             }
4524         }
4525         return;
4526     }
4527 
4528     tcg_rm = read_cpu_reg(s, rm, sf);
4529 
4530     if (shift_amount) {
4531         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4532     }
4533 
4534     tcg_rn = cpu_reg(s, rn);
4535 
4536     switch (opc | (invert << 2)) {
4537     case 0: /* AND */
4538     case 3: /* ANDS */
4539         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4540         break;
4541     case 1: /* ORR */
4542         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4543         break;
4544     case 2: /* EOR */
4545         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4546         break;
4547     case 4: /* BIC */
4548     case 7: /* BICS */
4549         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4550         break;
4551     case 5: /* ORN */
4552         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4553         break;
4554     case 6: /* EON */
4555         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4556         break;
4557     default:
4558         assert(FALSE);
4559         break;
4560     }
4561 
4562     if (!sf) {
4563         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4564     }
4565 
4566     if (opc == 3) {
4567         gen_logic_CC(sf, tcg_rd);
4568     }
4569 }
4570 
4571 /*
4572  * Add/subtract (extended register)
4573  *
4574  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
4575  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4576  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
4577  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4578  *
4579  *  sf: 0 -> 32bit, 1 -> 64bit
4580  *  op: 0 -> add  , 1 -> sub
4581  *   S: 1 -> set flags
4582  * opt: 00
4583  * option: extension type (see DecodeRegExtend)
4584  * imm3: optional shift to Rm
4585  *
4586  * Rd = Rn + LSL(extend(Rm), amount)
4587  */
4588 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4589 {
4590     int rd = extract32(insn, 0, 5);
4591     int rn = extract32(insn, 5, 5);
4592     int imm3 = extract32(insn, 10, 3);
4593     int option = extract32(insn, 13, 3);
4594     int rm = extract32(insn, 16, 5);
4595     int opt = extract32(insn, 22, 2);
4596     bool setflags = extract32(insn, 29, 1);
4597     bool sub_op = extract32(insn, 30, 1);
4598     bool sf = extract32(insn, 31, 1);
4599 
4600     TCGv_i64 tcg_rm, tcg_rn; /* temps */
4601     TCGv_i64 tcg_rd;
4602     TCGv_i64 tcg_result;
4603 
4604     if (imm3 > 4 || opt != 0) {
4605         unallocated_encoding(s);
4606         return;
4607     }
4608 
4609     /* non-flag setting ops may use SP */
4610     if (!setflags) {
4611         tcg_rd = cpu_reg_sp(s, rd);
4612     } else {
4613         tcg_rd = cpu_reg(s, rd);
4614     }
4615     tcg_rn = read_cpu_reg_sp(s, rn, sf);
4616 
4617     tcg_rm = read_cpu_reg(s, rm, sf);
4618     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4619 
4620     tcg_result = tcg_temp_new_i64();
4621 
4622     if (!setflags) {
4623         if (sub_op) {
4624             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4625         } else {
4626             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4627         }
4628     } else {
4629         if (sub_op) {
4630             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4631         } else {
4632             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4633         }
4634     }
4635 
4636     if (sf) {
4637         tcg_gen_mov_i64(tcg_rd, tcg_result);
4638     } else {
4639         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4640     }
4641 }
4642 
4643 /*
4644  * Add/subtract (shifted register)
4645  *
4646  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
4647  * +--+--+--+-----------+-----+--+-------+---------+------+------+
4648  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
4649  * +--+--+--+-----------+-----+--+-------+---------+------+------+
4650  *
4651  *    sf: 0 -> 32bit, 1 -> 64bit
4652  *    op: 0 -> add  , 1 -> sub
4653  *     S: 1 -> set flags
4654  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4655  *  imm6: Shift amount to apply to Rm before the add/sub
4656  */
4657 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4658 {
4659     int rd = extract32(insn, 0, 5);
4660     int rn = extract32(insn, 5, 5);
4661     int imm6 = extract32(insn, 10, 6);
4662     int rm = extract32(insn, 16, 5);
4663     int shift_type = extract32(insn, 22, 2);
4664     bool setflags = extract32(insn, 29, 1);
4665     bool sub_op = extract32(insn, 30, 1);
4666     bool sf = extract32(insn, 31, 1);
4667 
4668     TCGv_i64 tcg_rd = cpu_reg(s, rd);
4669     TCGv_i64 tcg_rn, tcg_rm;
4670     TCGv_i64 tcg_result;
4671 
4672     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4673         unallocated_encoding(s);
4674         return;
4675     }
4676 
4677     tcg_rn = read_cpu_reg(s, rn, sf);
4678     tcg_rm = read_cpu_reg(s, rm, sf);
4679 
4680     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4681 
4682     tcg_result = tcg_temp_new_i64();
4683 
4684     if (!setflags) {
4685         if (sub_op) {
4686             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4687         } else {
4688             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4689         }
4690     } else {
4691         if (sub_op) {
4692             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4693         } else {
4694             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4695         }
4696     }
4697 
4698     if (sf) {
4699         tcg_gen_mov_i64(tcg_rd, tcg_result);
4700     } else {
4701         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4702     }
4703 }
4704 
4705 /* Data-processing (3 source)
4706  *
4707  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
4708  *  +--+------+-----------+------+------+----+------+------+------+
4709  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
4710  *  +--+------+-----------+------+------+----+------+------+------+
4711  */
4712 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4713 {
4714     int rd = extract32(insn, 0, 5);
4715     int rn = extract32(insn, 5, 5);
4716     int ra = extract32(insn, 10, 5);
4717     int rm = extract32(insn, 16, 5);
4718     int op_id = (extract32(insn, 29, 3) << 4) |
4719         (extract32(insn, 21, 3) << 1) |
4720         extract32(insn, 15, 1);
4721     bool sf = extract32(insn, 31, 1);
4722     bool is_sub = extract32(op_id, 0, 1);
4723     bool is_high = extract32(op_id, 2, 1);
4724     bool is_signed = false;
4725     TCGv_i64 tcg_op1;
4726     TCGv_i64 tcg_op2;
4727     TCGv_i64 tcg_tmp;
4728 
4729     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4730     switch (op_id) {
4731     case 0x42: /* SMADDL */
4732     case 0x43: /* SMSUBL */
4733     case 0x44: /* SMULH */
4734         is_signed = true;
4735         break;
4736     case 0x0: /* MADD (32bit) */
4737     case 0x1: /* MSUB (32bit) */
4738     case 0x40: /* MADD (64bit) */
4739     case 0x41: /* MSUB (64bit) */
4740     case 0x4a: /* UMADDL */
4741     case 0x4b: /* UMSUBL */
4742     case 0x4c: /* UMULH */
4743         break;
4744     default:
4745         unallocated_encoding(s);
4746         return;
4747     }
4748 
4749     if (is_high) {
4750         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4751         TCGv_i64 tcg_rd = cpu_reg(s, rd);
4752         TCGv_i64 tcg_rn = cpu_reg(s, rn);
4753         TCGv_i64 tcg_rm = cpu_reg(s, rm);
4754 
4755         if (is_signed) {
4756             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4757         } else {
4758             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4759         }
4760         return;
4761     }
4762 
4763     tcg_op1 = tcg_temp_new_i64();
4764     tcg_op2 = tcg_temp_new_i64();
4765     tcg_tmp = tcg_temp_new_i64();
4766 
4767     if (op_id < 0x42) {
4768         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4769         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4770     } else {
4771         if (is_signed) {
4772             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4773             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4774         } else {
4775             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4776             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4777         }
4778     }
4779 
4780     if (ra == 31 && !is_sub) {
4781         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4782         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4783     } else {
4784         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4785         if (is_sub) {
4786             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4787         } else {
4788             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4789         }
4790     }
4791 
4792     if (!sf) {
4793         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4794     }
4795 }
4796 
4797 /* Add/subtract (with carry)
4798  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
4799  * +--+--+--+------------------------+------+-------------+------+-----+
4800  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
4801  * +--+--+--+------------------------+------+-------------+------+-----+
4802  */
4803 
4804 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4805 {
4806     unsigned int sf, op, setflags, rm, rn, rd;
4807     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4808 
4809     sf = extract32(insn, 31, 1);
4810     op = extract32(insn, 30, 1);
4811     setflags = extract32(insn, 29, 1);
4812     rm = extract32(insn, 16, 5);
4813     rn = extract32(insn, 5, 5);
4814     rd = extract32(insn, 0, 5);
4815 
4816     tcg_rd = cpu_reg(s, rd);
4817     tcg_rn = cpu_reg(s, rn);
4818 
4819     if (op) {
4820         tcg_y = tcg_temp_new_i64();
4821         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
4822     } else {
4823         tcg_y = cpu_reg(s, rm);
4824     }
4825 
4826     if (setflags) {
4827         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
4828     } else {
4829         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
4830     }
4831 }
4832 
4833 /*
4834  * Rotate right into flags
4835  *  31 30 29                21       15          10      5  4      0
4836  * +--+--+--+-----------------+--------+-----------+------+--+------+
4837  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
4838  * +--+--+--+-----------------+--------+-----------+------+--+------+
4839  */
4840 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
4841 {
4842     int mask = extract32(insn, 0, 4);
4843     int o2 = extract32(insn, 4, 1);
4844     int rn = extract32(insn, 5, 5);
4845     int imm6 = extract32(insn, 15, 6);
4846     int sf_op_s = extract32(insn, 29, 3);
4847     TCGv_i64 tcg_rn;
4848     TCGv_i32 nzcv;
4849 
4850     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
4851         unallocated_encoding(s);
4852         return;
4853     }
4854 
4855     tcg_rn = read_cpu_reg(s, rn, 1);
4856     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
4857 
4858     nzcv = tcg_temp_new_i32();
4859     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
4860 
4861     if (mask & 8) { /* N */
4862         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
4863     }
4864     if (mask & 4) { /* Z */
4865         tcg_gen_not_i32(cpu_ZF, nzcv);
4866         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
4867     }
4868     if (mask & 2) { /* C */
4869         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
4870     }
4871     if (mask & 1) { /* V */
4872         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
4873     }
4874 }
4875 
4876 /*
4877  * Evaluate into flags
4878  *  31 30 29                21        15   14        10      5  4      0
4879  * +--+--+--+-----------------+---------+----+---------+------+--+------+
4880  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
4881  * +--+--+--+-----------------+---------+----+---------+------+--+------+
4882  */
4883 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
4884 {
4885     int o3_mask = extract32(insn, 0, 5);
4886     int rn = extract32(insn, 5, 5);
4887     int o2 = extract32(insn, 15, 6);
4888     int sz = extract32(insn, 14, 1);
4889     int sf_op_s = extract32(insn, 29, 3);
4890     TCGv_i32 tmp;
4891     int shift;
4892 
4893     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
4894         !dc_isar_feature(aa64_condm_4, s)) {
4895         unallocated_encoding(s);
4896         return;
4897     }
4898     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
4899 
4900     tmp = tcg_temp_new_i32();
4901     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
4902     tcg_gen_shli_i32(cpu_NF, tmp, shift);
4903     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
4904     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
4905     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
4906 }
4907 
4908 /* Conditional compare (immediate / register)
4909  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
4910  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4911  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
4912  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4913  *        [1]                             y                [0]       [0]
4914  */
4915 static void disas_cc(DisasContext *s, uint32_t insn)
4916 {
4917     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
4918     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
4919     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
4920     DisasCompare c;
4921 
4922     if (!extract32(insn, 29, 1)) {
4923         unallocated_encoding(s);
4924         return;
4925     }
4926     if (insn & (1 << 10 | 1 << 4)) {
4927         unallocated_encoding(s);
4928         return;
4929     }
4930     sf = extract32(insn, 31, 1);
4931     op = extract32(insn, 30, 1);
4932     is_imm = extract32(insn, 11, 1);
4933     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
4934     cond = extract32(insn, 12, 4);
4935     rn = extract32(insn, 5, 5);
4936     nzcv = extract32(insn, 0, 4);
4937 
4938     /* Set T0 = !COND.  */
4939     tcg_t0 = tcg_temp_new_i32();
4940     arm_test_cc(&c, cond);
4941     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
4942 
4943     /* Load the arguments for the new comparison.  */
4944     if (is_imm) {
4945         tcg_y = tcg_temp_new_i64();
4946         tcg_gen_movi_i64(tcg_y, y);
4947     } else {
4948         tcg_y = cpu_reg(s, y);
4949     }
4950     tcg_rn = cpu_reg(s, rn);
4951 
4952     /* Set the flags for the new comparison.  */
4953     tcg_tmp = tcg_temp_new_i64();
4954     if (op) {
4955         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4956     } else {
4957         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4958     }
4959 
4960     /* If COND was false, force the flags to #nzcv.  Compute two masks
4961      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
4962      * For tcg hosts that support ANDC, we can make do with just T1.
4963      * In either case, allow the tcg optimizer to delete any unused mask.
4964      */
4965     tcg_t1 = tcg_temp_new_i32();
4966     tcg_t2 = tcg_temp_new_i32();
4967     tcg_gen_neg_i32(tcg_t1, tcg_t0);
4968     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
4969 
4970     if (nzcv & 8) { /* N */
4971         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
4972     } else {
4973         if (TCG_TARGET_HAS_andc_i32) {
4974             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
4975         } else {
4976             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
4977         }
4978     }
4979     if (nzcv & 4) { /* Z */
4980         if (TCG_TARGET_HAS_andc_i32) {
4981             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
4982         } else {
4983             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
4984         }
4985     } else {
4986         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
4987     }
4988     if (nzcv & 2) { /* C */
4989         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
4990     } else {
4991         if (TCG_TARGET_HAS_andc_i32) {
4992             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
4993         } else {
4994             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
4995         }
4996     }
4997     if (nzcv & 1) { /* V */
4998         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
4999     } else {
5000         if (TCG_TARGET_HAS_andc_i32) {
5001             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5002         } else {
5003             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5004         }
5005     }
5006 }
5007 
5008 /* Conditional select
5009  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
5010  * +----+----+---+-----------------+------+------+-----+------+------+
5011  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
5012  * +----+----+---+-----------------+------+------+-----+------+------+
5013  */
5014 static void disas_cond_select(DisasContext *s, uint32_t insn)
5015 {
5016     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5017     TCGv_i64 tcg_rd, zero;
5018     DisasCompare64 c;
5019 
5020     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5021         /* S == 1 or op2<1> == 1 */
5022         unallocated_encoding(s);
5023         return;
5024     }
5025     sf = extract32(insn, 31, 1);
5026     else_inv = extract32(insn, 30, 1);
5027     rm = extract32(insn, 16, 5);
5028     cond = extract32(insn, 12, 4);
5029     else_inc = extract32(insn, 10, 1);
5030     rn = extract32(insn, 5, 5);
5031     rd = extract32(insn, 0, 5);
5032 
5033     tcg_rd = cpu_reg(s, rd);
5034 
5035     a64_test_cc(&c, cond);
5036     zero = tcg_constant_i64(0);
5037 
5038     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5039         /* CSET & CSETM.  */
5040         if (else_inv) {
5041             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
5042                                    tcg_rd, c.value, zero);
5043         } else {
5044             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
5045                                 tcg_rd, c.value, zero);
5046         }
5047     } else {
5048         TCGv_i64 t_true = cpu_reg(s, rn);
5049         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5050         if (else_inv && else_inc) {
5051             tcg_gen_neg_i64(t_false, t_false);
5052         } else if (else_inv) {
5053             tcg_gen_not_i64(t_false, t_false);
5054         } else if (else_inc) {
5055             tcg_gen_addi_i64(t_false, t_false, 1);
5056         }
5057         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5058     }
5059 
5060     if (!sf) {
5061         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5062     }
5063 }
5064 
5065 static void handle_clz(DisasContext *s, unsigned int sf,
5066                        unsigned int rn, unsigned int rd)
5067 {
5068     TCGv_i64 tcg_rd, tcg_rn;
5069     tcg_rd = cpu_reg(s, rd);
5070     tcg_rn = cpu_reg(s, rn);
5071 
5072     if (sf) {
5073         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5074     } else {
5075         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5076         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5077         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5078         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5079     }
5080 }
5081 
5082 static void handle_cls(DisasContext *s, unsigned int sf,
5083                        unsigned int rn, unsigned int rd)
5084 {
5085     TCGv_i64 tcg_rd, tcg_rn;
5086     tcg_rd = cpu_reg(s, rd);
5087     tcg_rn = cpu_reg(s, rn);
5088 
5089     if (sf) {
5090         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5091     } else {
5092         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5093         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5094         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5095         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5096     }
5097 }
5098 
5099 static void handle_rbit(DisasContext *s, unsigned int sf,
5100                         unsigned int rn, unsigned int rd)
5101 {
5102     TCGv_i64 tcg_rd, tcg_rn;
5103     tcg_rd = cpu_reg(s, rd);
5104     tcg_rn = cpu_reg(s, rn);
5105 
5106     if (sf) {
5107         gen_helper_rbit64(tcg_rd, tcg_rn);
5108     } else {
5109         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5110         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5111         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5112         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5113     }
5114 }
5115 
5116 /* REV with sf==1, opcode==3 ("REV64") */
5117 static void handle_rev64(DisasContext *s, unsigned int sf,
5118                          unsigned int rn, unsigned int rd)
5119 {
5120     if (!sf) {
5121         unallocated_encoding(s);
5122         return;
5123     }
5124     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5125 }
5126 
5127 /* REV with sf==0, opcode==2
5128  * REV32 (sf==1, opcode==2)
5129  */
5130 static void handle_rev32(DisasContext *s, unsigned int sf,
5131                          unsigned int rn, unsigned int rd)
5132 {
5133     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5134     TCGv_i64 tcg_rn = cpu_reg(s, rn);
5135 
5136     if (sf) {
5137         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5138         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5139     } else {
5140         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5141     }
5142 }
5143 
5144 /* REV16 (opcode==1) */
5145 static void handle_rev16(DisasContext *s, unsigned int sf,
5146                          unsigned int rn, unsigned int rd)
5147 {
5148     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5149     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5150     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5151     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5152 
5153     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5154     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5155     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5156     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5157     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5158 }
5159 
5160 /* Data-processing (1 source)
5161  *   31  30  29  28             21 20     16 15    10 9    5 4    0
5162  * +----+---+---+-----------------+---------+--------+------+------+
5163  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
5164  * +----+---+---+-----------------+---------+--------+------+------+
5165  */
5166 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5167 {
5168     unsigned int sf, opcode, opcode2, rn, rd;
5169     TCGv_i64 tcg_rd;
5170 
5171     if (extract32(insn, 29, 1)) {
5172         unallocated_encoding(s);
5173         return;
5174     }
5175 
5176     sf = extract32(insn, 31, 1);
5177     opcode = extract32(insn, 10, 6);
5178     opcode2 = extract32(insn, 16, 5);
5179     rn = extract32(insn, 5, 5);
5180     rd = extract32(insn, 0, 5);
5181 
5182 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5183 
5184     switch (MAP(sf, opcode2, opcode)) {
5185     case MAP(0, 0x00, 0x00): /* RBIT */
5186     case MAP(1, 0x00, 0x00):
5187         handle_rbit(s, sf, rn, rd);
5188         break;
5189     case MAP(0, 0x00, 0x01): /* REV16 */
5190     case MAP(1, 0x00, 0x01):
5191         handle_rev16(s, sf, rn, rd);
5192         break;
5193     case MAP(0, 0x00, 0x02): /* REV/REV32 */
5194     case MAP(1, 0x00, 0x02):
5195         handle_rev32(s, sf, rn, rd);
5196         break;
5197     case MAP(1, 0x00, 0x03): /* REV64 */
5198         handle_rev64(s, sf, rn, rd);
5199         break;
5200     case MAP(0, 0x00, 0x04): /* CLZ */
5201     case MAP(1, 0x00, 0x04):
5202         handle_clz(s, sf, rn, rd);
5203         break;
5204     case MAP(0, 0x00, 0x05): /* CLS */
5205     case MAP(1, 0x00, 0x05):
5206         handle_cls(s, sf, rn, rd);
5207         break;
5208     case MAP(1, 0x01, 0x00): /* PACIA */
5209         if (s->pauth_active) {
5210             tcg_rd = cpu_reg(s, rd);
5211             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5212         } else if (!dc_isar_feature(aa64_pauth, s)) {
5213             goto do_unallocated;
5214         }
5215         break;
5216     case MAP(1, 0x01, 0x01): /* PACIB */
5217         if (s->pauth_active) {
5218             tcg_rd = cpu_reg(s, rd);
5219             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5220         } else if (!dc_isar_feature(aa64_pauth, s)) {
5221             goto do_unallocated;
5222         }
5223         break;
5224     case MAP(1, 0x01, 0x02): /* PACDA */
5225         if (s->pauth_active) {
5226             tcg_rd = cpu_reg(s, rd);
5227             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5228         } else if (!dc_isar_feature(aa64_pauth, s)) {
5229             goto do_unallocated;
5230         }
5231         break;
5232     case MAP(1, 0x01, 0x03): /* PACDB */
5233         if (s->pauth_active) {
5234             tcg_rd = cpu_reg(s, rd);
5235             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5236         } else if (!dc_isar_feature(aa64_pauth, s)) {
5237             goto do_unallocated;
5238         }
5239         break;
5240     case MAP(1, 0x01, 0x04): /* AUTIA */
5241         if (s->pauth_active) {
5242             tcg_rd = cpu_reg(s, rd);
5243             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5244         } else if (!dc_isar_feature(aa64_pauth, s)) {
5245             goto do_unallocated;
5246         }
5247         break;
5248     case MAP(1, 0x01, 0x05): /* AUTIB */
5249         if (s->pauth_active) {
5250             tcg_rd = cpu_reg(s, rd);
5251             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5252         } else if (!dc_isar_feature(aa64_pauth, s)) {
5253             goto do_unallocated;
5254         }
5255         break;
5256     case MAP(1, 0x01, 0x06): /* AUTDA */
5257         if (s->pauth_active) {
5258             tcg_rd = cpu_reg(s, rd);
5259             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5260         } else if (!dc_isar_feature(aa64_pauth, s)) {
5261             goto do_unallocated;
5262         }
5263         break;
5264     case MAP(1, 0x01, 0x07): /* AUTDB */
5265         if (s->pauth_active) {
5266             tcg_rd = cpu_reg(s, rd);
5267             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5268         } else if (!dc_isar_feature(aa64_pauth, s)) {
5269             goto do_unallocated;
5270         }
5271         break;
5272     case MAP(1, 0x01, 0x08): /* PACIZA */
5273         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5274             goto do_unallocated;
5275         } else if (s->pauth_active) {
5276             tcg_rd = cpu_reg(s, rd);
5277             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5278         }
5279         break;
5280     case MAP(1, 0x01, 0x09): /* PACIZB */
5281         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5282             goto do_unallocated;
5283         } else if (s->pauth_active) {
5284             tcg_rd = cpu_reg(s, rd);
5285             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5286         }
5287         break;
5288     case MAP(1, 0x01, 0x0a): /* PACDZA */
5289         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5290             goto do_unallocated;
5291         } else if (s->pauth_active) {
5292             tcg_rd = cpu_reg(s, rd);
5293             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5294         }
5295         break;
5296     case MAP(1, 0x01, 0x0b): /* PACDZB */
5297         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5298             goto do_unallocated;
5299         } else if (s->pauth_active) {
5300             tcg_rd = cpu_reg(s, rd);
5301             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5302         }
5303         break;
5304     case MAP(1, 0x01, 0x0c): /* AUTIZA */
5305         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5306             goto do_unallocated;
5307         } else if (s->pauth_active) {
5308             tcg_rd = cpu_reg(s, rd);
5309             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5310         }
5311         break;
5312     case MAP(1, 0x01, 0x0d): /* AUTIZB */
5313         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5314             goto do_unallocated;
5315         } else if (s->pauth_active) {
5316             tcg_rd = cpu_reg(s, rd);
5317             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5318         }
5319         break;
5320     case MAP(1, 0x01, 0x0e): /* AUTDZA */
5321         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5322             goto do_unallocated;
5323         } else if (s->pauth_active) {
5324             tcg_rd = cpu_reg(s, rd);
5325             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5326         }
5327         break;
5328     case MAP(1, 0x01, 0x0f): /* AUTDZB */
5329         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5330             goto do_unallocated;
5331         } else if (s->pauth_active) {
5332             tcg_rd = cpu_reg(s, rd);
5333             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5334         }
5335         break;
5336     case MAP(1, 0x01, 0x10): /* XPACI */
5337         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5338             goto do_unallocated;
5339         } else if (s->pauth_active) {
5340             tcg_rd = cpu_reg(s, rd);
5341             gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
5342         }
5343         break;
5344     case MAP(1, 0x01, 0x11): /* XPACD */
5345         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5346             goto do_unallocated;
5347         } else if (s->pauth_active) {
5348             tcg_rd = cpu_reg(s, rd);
5349             gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
5350         }
5351         break;
5352     default:
5353     do_unallocated:
5354         unallocated_encoding(s);
5355         break;
5356     }
5357 
5358 #undef MAP
5359 }
5360 
5361 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5362                        unsigned int rm, unsigned int rn, unsigned int rd)
5363 {
5364     TCGv_i64 tcg_n, tcg_m, tcg_rd;
5365     tcg_rd = cpu_reg(s, rd);
5366 
5367     if (!sf && is_signed) {
5368         tcg_n = tcg_temp_new_i64();
5369         tcg_m = tcg_temp_new_i64();
5370         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5371         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5372     } else {
5373         tcg_n = read_cpu_reg(s, rn, sf);
5374         tcg_m = read_cpu_reg(s, rm, sf);
5375     }
5376 
5377     if (is_signed) {
5378         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5379     } else {
5380         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5381     }
5382 
5383     if (!sf) { /* zero extend final result */
5384         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5385     }
5386 }
5387 
5388 /* LSLV, LSRV, ASRV, RORV */
5389 static void handle_shift_reg(DisasContext *s,
5390                              enum a64_shift_type shift_type, unsigned int sf,
5391                              unsigned int rm, unsigned int rn, unsigned int rd)
5392 {
5393     TCGv_i64 tcg_shift = tcg_temp_new_i64();
5394     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5395     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5396 
5397     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5398     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5399 }
5400 
5401 /* CRC32[BHWX], CRC32C[BHWX] */
5402 static void handle_crc32(DisasContext *s,
5403                          unsigned int sf, unsigned int sz, bool crc32c,
5404                          unsigned int rm, unsigned int rn, unsigned int rd)
5405 {
5406     TCGv_i64 tcg_acc, tcg_val;
5407     TCGv_i32 tcg_bytes;
5408 
5409     if (!dc_isar_feature(aa64_crc32, s)
5410         || (sf == 1 && sz != 3)
5411         || (sf == 0 && sz == 3)) {
5412         unallocated_encoding(s);
5413         return;
5414     }
5415 
5416     if (sz == 3) {
5417         tcg_val = cpu_reg(s, rm);
5418     } else {
5419         uint64_t mask;
5420         switch (sz) {
5421         case 0:
5422             mask = 0xFF;
5423             break;
5424         case 1:
5425             mask = 0xFFFF;
5426             break;
5427         case 2:
5428             mask = 0xFFFFFFFF;
5429             break;
5430         default:
5431             g_assert_not_reached();
5432         }
5433         tcg_val = tcg_temp_new_i64();
5434         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5435     }
5436 
5437     tcg_acc = cpu_reg(s, rn);
5438     tcg_bytes = tcg_constant_i32(1 << sz);
5439 
5440     if (crc32c) {
5441         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5442     } else {
5443         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5444     }
5445 }
5446 
5447 /* Data-processing (2 source)
5448  *   31   30  29 28             21 20  16 15    10 9    5 4    0
5449  * +----+---+---+-----------------+------+--------+------+------+
5450  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
5451  * +----+---+---+-----------------+------+--------+------+------+
5452  */
5453 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5454 {
5455     unsigned int sf, rm, opcode, rn, rd, setflag;
5456     sf = extract32(insn, 31, 1);
5457     setflag = extract32(insn, 29, 1);
5458     rm = extract32(insn, 16, 5);
5459     opcode = extract32(insn, 10, 6);
5460     rn = extract32(insn, 5, 5);
5461     rd = extract32(insn, 0, 5);
5462 
5463     if (setflag && opcode != 0) {
5464         unallocated_encoding(s);
5465         return;
5466     }
5467 
5468     switch (opcode) {
5469     case 0: /* SUBP(S) */
5470         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5471             goto do_unallocated;
5472         } else {
5473             TCGv_i64 tcg_n, tcg_m, tcg_d;
5474 
5475             tcg_n = read_cpu_reg_sp(s, rn, true);
5476             tcg_m = read_cpu_reg_sp(s, rm, true);
5477             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5478             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5479             tcg_d = cpu_reg(s, rd);
5480 
5481             if (setflag) {
5482                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5483             } else {
5484                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5485             }
5486         }
5487         break;
5488     case 2: /* UDIV */
5489         handle_div(s, false, sf, rm, rn, rd);
5490         break;
5491     case 3: /* SDIV */
5492         handle_div(s, true, sf, rm, rn, rd);
5493         break;
5494     case 4: /* IRG */
5495         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5496             goto do_unallocated;
5497         }
5498         if (s->ata[0]) {
5499             gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
5500                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
5501         } else {
5502             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5503                                              cpu_reg_sp(s, rn));
5504         }
5505         break;
5506     case 5: /* GMI */
5507         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5508             goto do_unallocated;
5509         } else {
5510             TCGv_i64 t = tcg_temp_new_i64();
5511 
5512             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
5513             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
5514             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
5515         }
5516         break;
5517     case 8: /* LSLV */
5518         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5519         break;
5520     case 9: /* LSRV */
5521         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5522         break;
5523     case 10: /* ASRV */
5524         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5525         break;
5526     case 11: /* RORV */
5527         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5528         break;
5529     case 12: /* PACGA */
5530         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5531             goto do_unallocated;
5532         }
5533         gen_helper_pacga(cpu_reg(s, rd), tcg_env,
5534                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
5535         break;
5536     case 16:
5537     case 17:
5538     case 18:
5539     case 19:
5540     case 20:
5541     case 21:
5542     case 22:
5543     case 23: /* CRC32 */
5544     {
5545         int sz = extract32(opcode, 0, 2);
5546         bool crc32c = extract32(opcode, 2, 1);
5547         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5548         break;
5549     }
5550     default:
5551     do_unallocated:
5552         unallocated_encoding(s);
5553         break;
5554     }
5555 }
5556 
5557 /*
5558  * Data processing - register
5559  *  31  30 29  28      25    21  20  16      10         0
5560  * +--+---+--+---+-------+-----+-------+-------+---------+
5561  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
5562  * +--+---+--+---+-------+-----+-------+-------+---------+
5563  */
5564 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5565 {
5566     int op0 = extract32(insn, 30, 1);
5567     int op1 = extract32(insn, 28, 1);
5568     int op2 = extract32(insn, 21, 4);
5569     int op3 = extract32(insn, 10, 6);
5570 
5571     if (!op1) {
5572         if (op2 & 8) {
5573             if (op2 & 1) {
5574                 /* Add/sub (extended register) */
5575                 disas_add_sub_ext_reg(s, insn);
5576             } else {
5577                 /* Add/sub (shifted register) */
5578                 disas_add_sub_reg(s, insn);
5579             }
5580         } else {
5581             /* Logical (shifted register) */
5582             disas_logic_reg(s, insn);
5583         }
5584         return;
5585     }
5586 
5587     switch (op2) {
5588     case 0x0:
5589         switch (op3) {
5590         case 0x00: /* Add/subtract (with carry) */
5591             disas_adc_sbc(s, insn);
5592             break;
5593 
5594         case 0x01: /* Rotate right into flags */
5595         case 0x21:
5596             disas_rotate_right_into_flags(s, insn);
5597             break;
5598 
5599         case 0x02: /* Evaluate into flags */
5600         case 0x12:
5601         case 0x22:
5602         case 0x32:
5603             disas_evaluate_into_flags(s, insn);
5604             break;
5605 
5606         default:
5607             goto do_unallocated;
5608         }
5609         break;
5610 
5611     case 0x2: /* Conditional compare */
5612         disas_cc(s, insn); /* both imm and reg forms */
5613         break;
5614 
5615     case 0x4: /* Conditional select */
5616         disas_cond_select(s, insn);
5617         break;
5618 
5619     case 0x6: /* Data-processing */
5620         if (op0) {    /* (1 source) */
5621             disas_data_proc_1src(s, insn);
5622         } else {      /* (2 source) */
5623             disas_data_proc_2src(s, insn);
5624         }
5625         break;
5626     case 0x8 ... 0xf: /* (3 source) */
5627         disas_data_proc_3src(s, insn);
5628         break;
5629 
5630     default:
5631     do_unallocated:
5632         unallocated_encoding(s);
5633         break;
5634     }
5635 }
5636 
5637 static void handle_fp_compare(DisasContext *s, int size,
5638                               unsigned int rn, unsigned int rm,
5639                               bool cmp_with_zero, bool signal_all_nans)
5640 {
5641     TCGv_i64 tcg_flags = tcg_temp_new_i64();
5642     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
5643 
5644     if (size == MO_64) {
5645         TCGv_i64 tcg_vn, tcg_vm;
5646 
5647         tcg_vn = read_fp_dreg(s, rn);
5648         if (cmp_with_zero) {
5649             tcg_vm = tcg_constant_i64(0);
5650         } else {
5651             tcg_vm = read_fp_dreg(s, rm);
5652         }
5653         if (signal_all_nans) {
5654             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5655         } else {
5656             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5657         }
5658     } else {
5659         TCGv_i32 tcg_vn = tcg_temp_new_i32();
5660         TCGv_i32 tcg_vm = tcg_temp_new_i32();
5661 
5662         read_vec_element_i32(s, tcg_vn, rn, 0, size);
5663         if (cmp_with_zero) {
5664             tcg_gen_movi_i32(tcg_vm, 0);
5665         } else {
5666             read_vec_element_i32(s, tcg_vm, rm, 0, size);
5667         }
5668 
5669         switch (size) {
5670         case MO_32:
5671             if (signal_all_nans) {
5672                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5673             } else {
5674                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5675             }
5676             break;
5677         case MO_16:
5678             if (signal_all_nans) {
5679                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5680             } else {
5681                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5682             }
5683             break;
5684         default:
5685             g_assert_not_reached();
5686         }
5687     }
5688 
5689     gen_set_nzcv(tcg_flags);
5690 }
5691 
5692 /* Floating point compare
5693  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
5694  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5695  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
5696  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5697  */
5698 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5699 {
5700     unsigned int mos, type, rm, op, rn, opc, op2r;
5701     int size;
5702 
5703     mos = extract32(insn, 29, 3);
5704     type = extract32(insn, 22, 2);
5705     rm = extract32(insn, 16, 5);
5706     op = extract32(insn, 14, 2);
5707     rn = extract32(insn, 5, 5);
5708     opc = extract32(insn, 3, 2);
5709     op2r = extract32(insn, 0, 3);
5710 
5711     if (mos || op || op2r) {
5712         unallocated_encoding(s);
5713         return;
5714     }
5715 
5716     switch (type) {
5717     case 0:
5718         size = MO_32;
5719         break;
5720     case 1:
5721         size = MO_64;
5722         break;
5723     case 3:
5724         size = MO_16;
5725         if (dc_isar_feature(aa64_fp16, s)) {
5726             break;
5727         }
5728         /* fallthru */
5729     default:
5730         unallocated_encoding(s);
5731         return;
5732     }
5733 
5734     if (!fp_access_check(s)) {
5735         return;
5736     }
5737 
5738     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5739 }
5740 
5741 /* Floating point conditional compare
5742  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
5743  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5744  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
5745  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5746  */
5747 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
5748 {
5749     unsigned int mos, type, rm, cond, rn, op, nzcv;
5750     TCGLabel *label_continue = NULL;
5751     int size;
5752 
5753     mos = extract32(insn, 29, 3);
5754     type = extract32(insn, 22, 2);
5755     rm = extract32(insn, 16, 5);
5756     cond = extract32(insn, 12, 4);
5757     rn = extract32(insn, 5, 5);
5758     op = extract32(insn, 4, 1);
5759     nzcv = extract32(insn, 0, 4);
5760 
5761     if (mos) {
5762         unallocated_encoding(s);
5763         return;
5764     }
5765 
5766     switch (type) {
5767     case 0:
5768         size = MO_32;
5769         break;
5770     case 1:
5771         size = MO_64;
5772         break;
5773     case 3:
5774         size = MO_16;
5775         if (dc_isar_feature(aa64_fp16, s)) {
5776             break;
5777         }
5778         /* fallthru */
5779     default:
5780         unallocated_encoding(s);
5781         return;
5782     }
5783 
5784     if (!fp_access_check(s)) {
5785         return;
5786     }
5787 
5788     if (cond < 0x0e) { /* not always */
5789         TCGLabel *label_match = gen_new_label();
5790         label_continue = gen_new_label();
5791         arm_gen_test_cc(cond, label_match);
5792         /* nomatch: */
5793         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
5794         tcg_gen_br(label_continue);
5795         gen_set_label(label_match);
5796     }
5797 
5798     handle_fp_compare(s, size, rn, rm, false, op);
5799 
5800     if (cond < 0x0e) {
5801         gen_set_label(label_continue);
5802     }
5803 }
5804 
5805 /* Floating point conditional select
5806  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5 4    0
5807  * +---+---+---+-----------+------+---+------+------+-----+------+------+
5808  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 1 1 |  Rn  |  Rd  |
5809  * +---+---+---+-----------+------+---+------+------+-----+------+------+
5810  */
5811 static void disas_fp_csel(DisasContext *s, uint32_t insn)
5812 {
5813     unsigned int mos, type, rm, cond, rn, rd;
5814     TCGv_i64 t_true, t_false;
5815     DisasCompare64 c;
5816     MemOp sz;
5817 
5818     mos = extract32(insn, 29, 3);
5819     type = extract32(insn, 22, 2);
5820     rm = extract32(insn, 16, 5);
5821     cond = extract32(insn, 12, 4);
5822     rn = extract32(insn, 5, 5);
5823     rd = extract32(insn, 0, 5);
5824 
5825     if (mos) {
5826         unallocated_encoding(s);
5827         return;
5828     }
5829 
5830     switch (type) {
5831     case 0:
5832         sz = MO_32;
5833         break;
5834     case 1:
5835         sz = MO_64;
5836         break;
5837     case 3:
5838         sz = MO_16;
5839         if (dc_isar_feature(aa64_fp16, s)) {
5840             break;
5841         }
5842         /* fallthru */
5843     default:
5844         unallocated_encoding(s);
5845         return;
5846     }
5847 
5848     if (!fp_access_check(s)) {
5849         return;
5850     }
5851 
5852     /* Zero extend sreg & hreg inputs to 64 bits now.  */
5853     t_true = tcg_temp_new_i64();
5854     t_false = tcg_temp_new_i64();
5855     read_vec_element(s, t_true, rn, 0, sz);
5856     read_vec_element(s, t_false, rm, 0, sz);
5857 
5858     a64_test_cc(&c, cond);
5859     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
5860                         t_true, t_false);
5861 
5862     /* Note that sregs & hregs write back zeros to the high bits,
5863        and we've already done the zero-extension.  */
5864     write_fp_dreg(s, rd, t_true);
5865 }
5866 
5867 /* Floating-point data-processing (1 source) - half precision */
5868 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
5869 {
5870     TCGv_ptr fpst = NULL;
5871     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
5872     TCGv_i32 tcg_res = tcg_temp_new_i32();
5873 
5874     switch (opcode) {
5875     case 0x0: /* FMOV */
5876         tcg_gen_mov_i32(tcg_res, tcg_op);
5877         break;
5878     case 0x1: /* FABS */
5879         tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
5880         break;
5881     case 0x2: /* FNEG */
5882         tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
5883         break;
5884     case 0x3: /* FSQRT */
5885         fpst = fpstatus_ptr(FPST_FPCR_F16);
5886         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
5887         break;
5888     case 0x8: /* FRINTN */
5889     case 0x9: /* FRINTP */
5890     case 0xa: /* FRINTM */
5891     case 0xb: /* FRINTZ */
5892     case 0xc: /* FRINTA */
5893     {
5894         TCGv_i32 tcg_rmode;
5895 
5896         fpst = fpstatus_ptr(FPST_FPCR_F16);
5897         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
5898         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5899         gen_restore_rmode(tcg_rmode, fpst);
5900         break;
5901     }
5902     case 0xe: /* FRINTX */
5903         fpst = fpstatus_ptr(FPST_FPCR_F16);
5904         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
5905         break;
5906     case 0xf: /* FRINTI */
5907         fpst = fpstatus_ptr(FPST_FPCR_F16);
5908         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5909         break;
5910     default:
5911         g_assert_not_reached();
5912     }
5913 
5914     write_fp_sreg(s, rd, tcg_res);
5915 }
5916 
5917 /* Floating-point data-processing (1 source) - single precision */
5918 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
5919 {
5920     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
5921     TCGv_i32 tcg_op, tcg_res;
5922     TCGv_ptr fpst;
5923     int rmode = -1;
5924 
5925     tcg_op = read_fp_sreg(s, rn);
5926     tcg_res = tcg_temp_new_i32();
5927 
5928     switch (opcode) {
5929     case 0x0: /* FMOV */
5930         tcg_gen_mov_i32(tcg_res, tcg_op);
5931         goto done;
5932     case 0x1: /* FABS */
5933         gen_helper_vfp_abss(tcg_res, tcg_op);
5934         goto done;
5935     case 0x2: /* FNEG */
5936         gen_helper_vfp_negs(tcg_res, tcg_op);
5937         goto done;
5938     case 0x3: /* FSQRT */
5939         gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
5940         goto done;
5941     case 0x6: /* BFCVT */
5942         gen_fpst = gen_helper_bfcvt;
5943         break;
5944     case 0x8: /* FRINTN */
5945     case 0x9: /* FRINTP */
5946     case 0xa: /* FRINTM */
5947     case 0xb: /* FRINTZ */
5948     case 0xc: /* FRINTA */
5949         rmode = opcode & 7;
5950         gen_fpst = gen_helper_rints;
5951         break;
5952     case 0xe: /* FRINTX */
5953         gen_fpst = gen_helper_rints_exact;
5954         break;
5955     case 0xf: /* FRINTI */
5956         gen_fpst = gen_helper_rints;
5957         break;
5958     case 0x10: /* FRINT32Z */
5959         rmode = FPROUNDING_ZERO;
5960         gen_fpst = gen_helper_frint32_s;
5961         break;
5962     case 0x11: /* FRINT32X */
5963         gen_fpst = gen_helper_frint32_s;
5964         break;
5965     case 0x12: /* FRINT64Z */
5966         rmode = FPROUNDING_ZERO;
5967         gen_fpst = gen_helper_frint64_s;
5968         break;
5969     case 0x13: /* FRINT64X */
5970         gen_fpst = gen_helper_frint64_s;
5971         break;
5972     default:
5973         g_assert_not_reached();
5974     }
5975 
5976     fpst = fpstatus_ptr(FPST_FPCR);
5977     if (rmode >= 0) {
5978         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
5979         gen_fpst(tcg_res, tcg_op, fpst);
5980         gen_restore_rmode(tcg_rmode, fpst);
5981     } else {
5982         gen_fpst(tcg_res, tcg_op, fpst);
5983     }
5984 
5985  done:
5986     write_fp_sreg(s, rd, tcg_res);
5987 }
5988 
5989 /* Floating-point data-processing (1 source) - double precision */
5990 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
5991 {
5992     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
5993     TCGv_i64 tcg_op, tcg_res;
5994     TCGv_ptr fpst;
5995     int rmode = -1;
5996 
5997     switch (opcode) {
5998     case 0x0: /* FMOV */
5999         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6000         return;
6001     }
6002 
6003     tcg_op = read_fp_dreg(s, rn);
6004     tcg_res = tcg_temp_new_i64();
6005 
6006     switch (opcode) {
6007     case 0x1: /* FABS */
6008         gen_helper_vfp_absd(tcg_res, tcg_op);
6009         goto done;
6010     case 0x2: /* FNEG */
6011         gen_helper_vfp_negd(tcg_res, tcg_op);
6012         goto done;
6013     case 0x3: /* FSQRT */
6014         gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
6015         goto done;
6016     case 0x8: /* FRINTN */
6017     case 0x9: /* FRINTP */
6018     case 0xa: /* FRINTM */
6019     case 0xb: /* FRINTZ */
6020     case 0xc: /* FRINTA */
6021         rmode = opcode & 7;
6022         gen_fpst = gen_helper_rintd;
6023         break;
6024     case 0xe: /* FRINTX */
6025         gen_fpst = gen_helper_rintd_exact;
6026         break;
6027     case 0xf: /* FRINTI */
6028         gen_fpst = gen_helper_rintd;
6029         break;
6030     case 0x10: /* FRINT32Z */
6031         rmode = FPROUNDING_ZERO;
6032         gen_fpst = gen_helper_frint32_d;
6033         break;
6034     case 0x11: /* FRINT32X */
6035         gen_fpst = gen_helper_frint32_d;
6036         break;
6037     case 0x12: /* FRINT64Z */
6038         rmode = FPROUNDING_ZERO;
6039         gen_fpst = gen_helper_frint64_d;
6040         break;
6041     case 0x13: /* FRINT64X */
6042         gen_fpst = gen_helper_frint64_d;
6043         break;
6044     default:
6045         g_assert_not_reached();
6046     }
6047 
6048     fpst = fpstatus_ptr(FPST_FPCR);
6049     if (rmode >= 0) {
6050         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6051         gen_fpst(tcg_res, tcg_op, fpst);
6052         gen_restore_rmode(tcg_rmode, fpst);
6053     } else {
6054         gen_fpst(tcg_res, tcg_op, fpst);
6055     }
6056 
6057  done:
6058     write_fp_dreg(s, rd, tcg_res);
6059 }
6060 
6061 static void handle_fp_fcvt(DisasContext *s, int opcode,
6062                            int rd, int rn, int dtype, int ntype)
6063 {
6064     switch (ntype) {
6065     case 0x0:
6066     {
6067         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6068         if (dtype == 1) {
6069             /* Single to double */
6070             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6071             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
6072             write_fp_dreg(s, rd, tcg_rd);
6073         } else {
6074             /* Single to half */
6075             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6076             TCGv_i32 ahp = get_ahp_flag();
6077             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6078 
6079             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6080             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6081             write_fp_sreg(s, rd, tcg_rd);
6082         }
6083         break;
6084     }
6085     case 0x1:
6086     {
6087         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6088         TCGv_i32 tcg_rd = tcg_temp_new_i32();
6089         if (dtype == 0) {
6090             /* Double to single */
6091             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
6092         } else {
6093             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6094             TCGv_i32 ahp = get_ahp_flag();
6095             /* Double to half */
6096             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6097             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6098         }
6099         write_fp_sreg(s, rd, tcg_rd);
6100         break;
6101     }
6102     case 0x3:
6103     {
6104         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6105         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6106         TCGv_i32 tcg_ahp = get_ahp_flag();
6107         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6108         if (dtype == 0) {
6109             /* Half to single */
6110             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6111             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6112             write_fp_sreg(s, rd, tcg_rd);
6113         } else {
6114             /* Half to double */
6115             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6116             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6117             write_fp_dreg(s, rd, tcg_rd);
6118         }
6119         break;
6120     }
6121     default:
6122         g_assert_not_reached();
6123     }
6124 }
6125 
6126 /* Floating point data-processing (1 source)
6127  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
6128  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6129  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
6130  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6131  */
6132 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6133 {
6134     int mos = extract32(insn, 29, 3);
6135     int type = extract32(insn, 22, 2);
6136     int opcode = extract32(insn, 15, 6);
6137     int rn = extract32(insn, 5, 5);
6138     int rd = extract32(insn, 0, 5);
6139 
6140     if (mos) {
6141         goto do_unallocated;
6142     }
6143 
6144     switch (opcode) {
6145     case 0x4: case 0x5: case 0x7:
6146     {
6147         /* FCVT between half, single and double precision */
6148         int dtype = extract32(opcode, 0, 2);
6149         if (type == 2 || dtype == type) {
6150             goto do_unallocated;
6151         }
6152         if (!fp_access_check(s)) {
6153             return;
6154         }
6155 
6156         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6157         break;
6158     }
6159 
6160     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6161         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6162             goto do_unallocated;
6163         }
6164         /* fall through */
6165     case 0x0 ... 0x3:
6166     case 0x8 ... 0xc:
6167     case 0xe ... 0xf:
6168         /* 32-to-32 and 64-to-64 ops */
6169         switch (type) {
6170         case 0:
6171             if (!fp_access_check(s)) {
6172                 return;
6173             }
6174             handle_fp_1src_single(s, opcode, rd, rn);
6175             break;
6176         case 1:
6177             if (!fp_access_check(s)) {
6178                 return;
6179             }
6180             handle_fp_1src_double(s, opcode, rd, rn);
6181             break;
6182         case 3:
6183             if (!dc_isar_feature(aa64_fp16, s)) {
6184                 goto do_unallocated;
6185             }
6186 
6187             if (!fp_access_check(s)) {
6188                 return;
6189             }
6190             handle_fp_1src_half(s, opcode, rd, rn);
6191             break;
6192         default:
6193             goto do_unallocated;
6194         }
6195         break;
6196 
6197     case 0x6:
6198         switch (type) {
6199         case 1: /* BFCVT */
6200             if (!dc_isar_feature(aa64_bf16, s)) {
6201                 goto do_unallocated;
6202             }
6203             if (!fp_access_check(s)) {
6204                 return;
6205             }
6206             handle_fp_1src_single(s, opcode, rd, rn);
6207             break;
6208         default:
6209             goto do_unallocated;
6210         }
6211         break;
6212 
6213     default:
6214     do_unallocated:
6215         unallocated_encoding(s);
6216         break;
6217     }
6218 }
6219 
6220 /* Floating-point data-processing (2 source) - single precision */
6221 static void handle_fp_2src_single(DisasContext *s, int opcode,
6222                                   int rd, int rn, int rm)
6223 {
6224     TCGv_i32 tcg_op1;
6225     TCGv_i32 tcg_op2;
6226     TCGv_i32 tcg_res;
6227     TCGv_ptr fpst;
6228 
6229     tcg_res = tcg_temp_new_i32();
6230     fpst = fpstatus_ptr(FPST_FPCR);
6231     tcg_op1 = read_fp_sreg(s, rn);
6232     tcg_op2 = read_fp_sreg(s, rm);
6233 
6234     switch (opcode) {
6235     case 0x0: /* FMUL */
6236         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6237         break;
6238     case 0x1: /* FDIV */
6239         gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6240         break;
6241     case 0x2: /* FADD */
6242         gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6243         break;
6244     case 0x3: /* FSUB */
6245         gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6246         break;
6247     case 0x4: /* FMAX */
6248         gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6249         break;
6250     case 0x5: /* FMIN */
6251         gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6252         break;
6253     case 0x6: /* FMAXNM */
6254         gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6255         break;
6256     case 0x7: /* FMINNM */
6257         gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6258         break;
6259     case 0x8: /* FNMUL */
6260         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6261         gen_helper_vfp_negs(tcg_res, tcg_res);
6262         break;
6263     }
6264 
6265     write_fp_sreg(s, rd, tcg_res);
6266 }
6267 
6268 /* Floating-point data-processing (2 source) - double precision */
6269 static void handle_fp_2src_double(DisasContext *s, int opcode,
6270                                   int rd, int rn, int rm)
6271 {
6272     TCGv_i64 tcg_op1;
6273     TCGv_i64 tcg_op2;
6274     TCGv_i64 tcg_res;
6275     TCGv_ptr fpst;
6276 
6277     tcg_res = tcg_temp_new_i64();
6278     fpst = fpstatus_ptr(FPST_FPCR);
6279     tcg_op1 = read_fp_dreg(s, rn);
6280     tcg_op2 = read_fp_dreg(s, rm);
6281 
6282     switch (opcode) {
6283     case 0x0: /* FMUL */
6284         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6285         break;
6286     case 0x1: /* FDIV */
6287         gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6288         break;
6289     case 0x2: /* FADD */
6290         gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6291         break;
6292     case 0x3: /* FSUB */
6293         gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6294         break;
6295     case 0x4: /* FMAX */
6296         gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6297         break;
6298     case 0x5: /* FMIN */
6299         gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6300         break;
6301     case 0x6: /* FMAXNM */
6302         gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6303         break;
6304     case 0x7: /* FMINNM */
6305         gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6306         break;
6307     case 0x8: /* FNMUL */
6308         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6309         gen_helper_vfp_negd(tcg_res, tcg_res);
6310         break;
6311     }
6312 
6313     write_fp_dreg(s, rd, tcg_res);
6314 }
6315 
6316 /* Floating-point data-processing (2 source) - half precision */
6317 static void handle_fp_2src_half(DisasContext *s, int opcode,
6318                                 int rd, int rn, int rm)
6319 {
6320     TCGv_i32 tcg_op1;
6321     TCGv_i32 tcg_op2;
6322     TCGv_i32 tcg_res;
6323     TCGv_ptr fpst;
6324 
6325     tcg_res = tcg_temp_new_i32();
6326     fpst = fpstatus_ptr(FPST_FPCR_F16);
6327     tcg_op1 = read_fp_hreg(s, rn);
6328     tcg_op2 = read_fp_hreg(s, rm);
6329 
6330     switch (opcode) {
6331     case 0x0: /* FMUL */
6332         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6333         break;
6334     case 0x1: /* FDIV */
6335         gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6336         break;
6337     case 0x2: /* FADD */
6338         gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6339         break;
6340     case 0x3: /* FSUB */
6341         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6342         break;
6343     case 0x4: /* FMAX */
6344         gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6345         break;
6346     case 0x5: /* FMIN */
6347         gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6348         break;
6349     case 0x6: /* FMAXNM */
6350         gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6351         break;
6352     case 0x7: /* FMINNM */
6353         gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6354         break;
6355     case 0x8: /* FNMUL */
6356         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6357         tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6358         break;
6359     default:
6360         g_assert_not_reached();
6361     }
6362 
6363     write_fp_sreg(s, rd, tcg_res);
6364 }
6365 
6366 /* Floating point data-processing (2 source)
6367  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
6368  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6369  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | opcode | 1 0 |  Rn  |  Rd  |
6370  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6371  */
6372 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6373 {
6374     int mos = extract32(insn, 29, 3);
6375     int type = extract32(insn, 22, 2);
6376     int rd = extract32(insn, 0, 5);
6377     int rn = extract32(insn, 5, 5);
6378     int rm = extract32(insn, 16, 5);
6379     int opcode = extract32(insn, 12, 4);
6380 
6381     if (opcode > 8 || mos) {
6382         unallocated_encoding(s);
6383         return;
6384     }
6385 
6386     switch (type) {
6387     case 0:
6388         if (!fp_access_check(s)) {
6389             return;
6390         }
6391         handle_fp_2src_single(s, opcode, rd, rn, rm);
6392         break;
6393     case 1:
6394         if (!fp_access_check(s)) {
6395             return;
6396         }
6397         handle_fp_2src_double(s, opcode, rd, rn, rm);
6398         break;
6399     case 3:
6400         if (!dc_isar_feature(aa64_fp16, s)) {
6401             unallocated_encoding(s);
6402             return;
6403         }
6404         if (!fp_access_check(s)) {
6405             return;
6406         }
6407         handle_fp_2src_half(s, opcode, rd, rn, rm);
6408         break;
6409     default:
6410         unallocated_encoding(s);
6411     }
6412 }
6413 
6414 /* Floating-point data-processing (3 source) - single precision */
6415 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6416                                   int rd, int rn, int rm, int ra)
6417 {
6418     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6419     TCGv_i32 tcg_res = tcg_temp_new_i32();
6420     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6421 
6422     tcg_op1 = read_fp_sreg(s, rn);
6423     tcg_op2 = read_fp_sreg(s, rm);
6424     tcg_op3 = read_fp_sreg(s, ra);
6425 
6426     /* These are fused multiply-add, and must be done as one
6427      * floating point operation with no rounding between the
6428      * multiplication and addition steps.
6429      * NB that doing the negations here as separate steps is
6430      * correct : an input NaN should come out with its sign bit
6431      * flipped if it is a negated-input.
6432      */
6433     if (o1 == true) {
6434         gen_helper_vfp_negs(tcg_op3, tcg_op3);
6435     }
6436 
6437     if (o0 != o1) {
6438         gen_helper_vfp_negs(tcg_op1, tcg_op1);
6439     }
6440 
6441     gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6442 
6443     write_fp_sreg(s, rd, tcg_res);
6444 }
6445 
6446 /* Floating-point data-processing (3 source) - double precision */
6447 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6448                                   int rd, int rn, int rm, int ra)
6449 {
6450     TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6451     TCGv_i64 tcg_res = tcg_temp_new_i64();
6452     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6453 
6454     tcg_op1 = read_fp_dreg(s, rn);
6455     tcg_op2 = read_fp_dreg(s, rm);
6456     tcg_op3 = read_fp_dreg(s, ra);
6457 
6458     /* These are fused multiply-add, and must be done as one
6459      * floating point operation with no rounding between the
6460      * multiplication and addition steps.
6461      * NB that doing the negations here as separate steps is
6462      * correct : an input NaN should come out with its sign bit
6463      * flipped if it is a negated-input.
6464      */
6465     if (o1 == true) {
6466         gen_helper_vfp_negd(tcg_op3, tcg_op3);
6467     }
6468 
6469     if (o0 != o1) {
6470         gen_helper_vfp_negd(tcg_op1, tcg_op1);
6471     }
6472 
6473     gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6474 
6475     write_fp_dreg(s, rd, tcg_res);
6476 }
6477 
6478 /* Floating-point data-processing (3 source) - half precision */
6479 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6480                                 int rd, int rn, int rm, int ra)
6481 {
6482     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6483     TCGv_i32 tcg_res = tcg_temp_new_i32();
6484     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
6485 
6486     tcg_op1 = read_fp_hreg(s, rn);
6487     tcg_op2 = read_fp_hreg(s, rm);
6488     tcg_op3 = read_fp_hreg(s, ra);
6489 
6490     /* These are fused multiply-add, and must be done as one
6491      * floating point operation with no rounding between the
6492      * multiplication and addition steps.
6493      * NB that doing the negations here as separate steps is
6494      * correct : an input NaN should come out with its sign bit
6495      * flipped if it is a negated-input.
6496      */
6497     if (o1 == true) {
6498         tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6499     }
6500 
6501     if (o0 != o1) {
6502         tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6503     }
6504 
6505     gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6506 
6507     write_fp_sreg(s, rd, tcg_res);
6508 }
6509 
6510 /* Floating point data-processing (3 source)
6511  *   31  30  29 28       24 23  22  21  20  16  15  14  10 9    5 4    0
6512  * +---+---+---+-----------+------+----+------+----+------+------+------+
6513  * | M | 0 | S | 1 1 1 1 1 | type | o1 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
6514  * +---+---+---+-----------+------+----+------+----+------+------+------+
6515  */
6516 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6517 {
6518     int mos = extract32(insn, 29, 3);
6519     int type = extract32(insn, 22, 2);
6520     int rd = extract32(insn, 0, 5);
6521     int rn = extract32(insn, 5, 5);
6522     int ra = extract32(insn, 10, 5);
6523     int rm = extract32(insn, 16, 5);
6524     bool o0 = extract32(insn, 15, 1);
6525     bool o1 = extract32(insn, 21, 1);
6526 
6527     if (mos) {
6528         unallocated_encoding(s);
6529         return;
6530     }
6531 
6532     switch (type) {
6533     case 0:
6534         if (!fp_access_check(s)) {
6535             return;
6536         }
6537         handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6538         break;
6539     case 1:
6540         if (!fp_access_check(s)) {
6541             return;
6542         }
6543         handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6544         break;
6545     case 3:
6546         if (!dc_isar_feature(aa64_fp16, s)) {
6547             unallocated_encoding(s);
6548             return;
6549         }
6550         if (!fp_access_check(s)) {
6551             return;
6552         }
6553         handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6554         break;
6555     default:
6556         unallocated_encoding(s);
6557     }
6558 }
6559 
6560 /* Floating point immediate
6561  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
6562  * +---+---+---+-----------+------+---+------------+-------+------+------+
6563  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
6564  * +---+---+---+-----------+------+---+------------+-------+------+------+
6565  */
6566 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6567 {
6568     int rd = extract32(insn, 0, 5);
6569     int imm5 = extract32(insn, 5, 5);
6570     int imm8 = extract32(insn, 13, 8);
6571     int type = extract32(insn, 22, 2);
6572     int mos = extract32(insn, 29, 3);
6573     uint64_t imm;
6574     MemOp sz;
6575 
6576     if (mos || imm5) {
6577         unallocated_encoding(s);
6578         return;
6579     }
6580 
6581     switch (type) {
6582     case 0:
6583         sz = MO_32;
6584         break;
6585     case 1:
6586         sz = MO_64;
6587         break;
6588     case 3:
6589         sz = MO_16;
6590         if (dc_isar_feature(aa64_fp16, s)) {
6591             break;
6592         }
6593         /* fallthru */
6594     default:
6595         unallocated_encoding(s);
6596         return;
6597     }
6598 
6599     if (!fp_access_check(s)) {
6600         return;
6601     }
6602 
6603     imm = vfp_expand_imm(sz, imm8);
6604     write_fp_dreg(s, rd, tcg_constant_i64(imm));
6605 }
6606 
6607 /* Handle floating point <=> fixed point conversions. Note that we can
6608  * also deal with fp <=> integer conversions as a special case (scale == 64)
6609  * OPTME: consider handling that special case specially or at least skipping
6610  * the call to scalbn in the helpers for zero shifts.
6611  */
6612 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6613                            bool itof, int rmode, int scale, int sf, int type)
6614 {
6615     bool is_signed = !(opcode & 1);
6616     TCGv_ptr tcg_fpstatus;
6617     TCGv_i32 tcg_shift, tcg_single;
6618     TCGv_i64 tcg_double;
6619 
6620     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
6621 
6622     tcg_shift = tcg_constant_i32(64 - scale);
6623 
6624     if (itof) {
6625         TCGv_i64 tcg_int = cpu_reg(s, rn);
6626         if (!sf) {
6627             TCGv_i64 tcg_extend = tcg_temp_new_i64();
6628 
6629             if (is_signed) {
6630                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6631             } else {
6632                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6633             }
6634 
6635             tcg_int = tcg_extend;
6636         }
6637 
6638         switch (type) {
6639         case 1: /* float64 */
6640             tcg_double = tcg_temp_new_i64();
6641             if (is_signed) {
6642                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6643                                      tcg_shift, tcg_fpstatus);
6644             } else {
6645                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6646                                      tcg_shift, tcg_fpstatus);
6647             }
6648             write_fp_dreg(s, rd, tcg_double);
6649             break;
6650 
6651         case 0: /* float32 */
6652             tcg_single = tcg_temp_new_i32();
6653             if (is_signed) {
6654                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6655                                      tcg_shift, tcg_fpstatus);
6656             } else {
6657                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6658                                      tcg_shift, tcg_fpstatus);
6659             }
6660             write_fp_sreg(s, rd, tcg_single);
6661             break;
6662 
6663         case 3: /* float16 */
6664             tcg_single = tcg_temp_new_i32();
6665             if (is_signed) {
6666                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6667                                      tcg_shift, tcg_fpstatus);
6668             } else {
6669                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6670                                      tcg_shift, tcg_fpstatus);
6671             }
6672             write_fp_sreg(s, rd, tcg_single);
6673             break;
6674 
6675         default:
6676             g_assert_not_reached();
6677         }
6678     } else {
6679         TCGv_i64 tcg_int = cpu_reg(s, rd);
6680         TCGv_i32 tcg_rmode;
6681 
6682         if (extract32(opcode, 2, 1)) {
6683             /* There are too many rounding modes to all fit into rmode,
6684              * so FCVTA[US] is a special case.
6685              */
6686             rmode = FPROUNDING_TIEAWAY;
6687         }
6688 
6689         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
6690 
6691         switch (type) {
6692         case 1: /* float64 */
6693             tcg_double = read_fp_dreg(s, rn);
6694             if (is_signed) {
6695                 if (!sf) {
6696                     gen_helper_vfp_tosld(tcg_int, tcg_double,
6697                                          tcg_shift, tcg_fpstatus);
6698                 } else {
6699                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
6700                                          tcg_shift, tcg_fpstatus);
6701                 }
6702             } else {
6703                 if (!sf) {
6704                     gen_helper_vfp_tould(tcg_int, tcg_double,
6705                                          tcg_shift, tcg_fpstatus);
6706                 } else {
6707                     gen_helper_vfp_touqd(tcg_int, tcg_double,
6708                                          tcg_shift, tcg_fpstatus);
6709                 }
6710             }
6711             if (!sf) {
6712                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6713             }
6714             break;
6715 
6716         case 0: /* float32 */
6717             tcg_single = read_fp_sreg(s, rn);
6718             if (sf) {
6719                 if (is_signed) {
6720                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
6721                                          tcg_shift, tcg_fpstatus);
6722                 } else {
6723                     gen_helper_vfp_touqs(tcg_int, tcg_single,
6724                                          tcg_shift, tcg_fpstatus);
6725                 }
6726             } else {
6727                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6728                 if (is_signed) {
6729                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
6730                                          tcg_shift, tcg_fpstatus);
6731                 } else {
6732                     gen_helper_vfp_touls(tcg_dest, tcg_single,
6733                                          tcg_shift, tcg_fpstatus);
6734                 }
6735                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6736             }
6737             break;
6738 
6739         case 3: /* float16 */
6740             tcg_single = read_fp_sreg(s, rn);
6741             if (sf) {
6742                 if (is_signed) {
6743                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
6744                                          tcg_shift, tcg_fpstatus);
6745                 } else {
6746                     gen_helper_vfp_touqh(tcg_int, tcg_single,
6747                                          tcg_shift, tcg_fpstatus);
6748                 }
6749             } else {
6750                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6751                 if (is_signed) {
6752                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
6753                                          tcg_shift, tcg_fpstatus);
6754                 } else {
6755                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
6756                                          tcg_shift, tcg_fpstatus);
6757                 }
6758                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6759             }
6760             break;
6761 
6762         default:
6763             g_assert_not_reached();
6764         }
6765 
6766         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
6767     }
6768 }
6769 
6770 /* Floating point <-> fixed point conversions
6771  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
6772  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6773  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
6774  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6775  */
6776 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
6777 {
6778     int rd = extract32(insn, 0, 5);
6779     int rn = extract32(insn, 5, 5);
6780     int scale = extract32(insn, 10, 6);
6781     int opcode = extract32(insn, 16, 3);
6782     int rmode = extract32(insn, 19, 2);
6783     int type = extract32(insn, 22, 2);
6784     bool sbit = extract32(insn, 29, 1);
6785     bool sf = extract32(insn, 31, 1);
6786     bool itof;
6787 
6788     if (sbit || (!sf && scale < 32)) {
6789         unallocated_encoding(s);
6790         return;
6791     }
6792 
6793     switch (type) {
6794     case 0: /* float32 */
6795     case 1: /* float64 */
6796         break;
6797     case 3: /* float16 */
6798         if (dc_isar_feature(aa64_fp16, s)) {
6799             break;
6800         }
6801         /* fallthru */
6802     default:
6803         unallocated_encoding(s);
6804         return;
6805     }
6806 
6807     switch ((rmode << 3) | opcode) {
6808     case 0x2: /* SCVTF */
6809     case 0x3: /* UCVTF */
6810         itof = true;
6811         break;
6812     case 0x18: /* FCVTZS */
6813     case 0x19: /* FCVTZU */
6814         itof = false;
6815         break;
6816     default:
6817         unallocated_encoding(s);
6818         return;
6819     }
6820 
6821     if (!fp_access_check(s)) {
6822         return;
6823     }
6824 
6825     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
6826 }
6827 
6828 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
6829 {
6830     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
6831      * without conversion.
6832      */
6833 
6834     if (itof) {
6835         TCGv_i64 tcg_rn = cpu_reg(s, rn);
6836         TCGv_i64 tmp;
6837 
6838         switch (type) {
6839         case 0:
6840             /* 32 bit */
6841             tmp = tcg_temp_new_i64();
6842             tcg_gen_ext32u_i64(tmp, tcg_rn);
6843             write_fp_dreg(s, rd, tmp);
6844             break;
6845         case 1:
6846             /* 64 bit */
6847             write_fp_dreg(s, rd, tcg_rn);
6848             break;
6849         case 2:
6850             /* 64 bit to top half. */
6851             tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
6852             clear_vec_high(s, true, rd);
6853             break;
6854         case 3:
6855             /* 16 bit */
6856             tmp = tcg_temp_new_i64();
6857             tcg_gen_ext16u_i64(tmp, tcg_rn);
6858             write_fp_dreg(s, rd, tmp);
6859             break;
6860         default:
6861             g_assert_not_reached();
6862         }
6863     } else {
6864         TCGv_i64 tcg_rd = cpu_reg(s, rd);
6865 
6866         switch (type) {
6867         case 0:
6868             /* 32 bit */
6869             tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
6870             break;
6871         case 1:
6872             /* 64 bit */
6873             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
6874             break;
6875         case 2:
6876             /* 64 bits from top half */
6877             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
6878             break;
6879         case 3:
6880             /* 16 bit */
6881             tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
6882             break;
6883         default:
6884             g_assert_not_reached();
6885         }
6886     }
6887 }
6888 
6889 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
6890 {
6891     TCGv_i64 t = read_fp_dreg(s, rn);
6892     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
6893 
6894     gen_helper_fjcvtzs(t, t, fpstatus);
6895 
6896     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
6897     tcg_gen_extrh_i64_i32(cpu_ZF, t);
6898     tcg_gen_movi_i32(cpu_CF, 0);
6899     tcg_gen_movi_i32(cpu_NF, 0);
6900     tcg_gen_movi_i32(cpu_VF, 0);
6901 }
6902 
6903 /* Floating point <-> integer conversions
6904  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
6905  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6906  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
6907  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6908  */
6909 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
6910 {
6911     int rd = extract32(insn, 0, 5);
6912     int rn = extract32(insn, 5, 5);
6913     int opcode = extract32(insn, 16, 3);
6914     int rmode = extract32(insn, 19, 2);
6915     int type = extract32(insn, 22, 2);
6916     bool sbit = extract32(insn, 29, 1);
6917     bool sf = extract32(insn, 31, 1);
6918     bool itof = false;
6919 
6920     if (sbit) {
6921         goto do_unallocated;
6922     }
6923 
6924     switch (opcode) {
6925     case 2: /* SCVTF */
6926     case 3: /* UCVTF */
6927         itof = true;
6928         /* fallthru */
6929     case 4: /* FCVTAS */
6930     case 5: /* FCVTAU */
6931         if (rmode != 0) {
6932             goto do_unallocated;
6933         }
6934         /* fallthru */
6935     case 0: /* FCVT[NPMZ]S */
6936     case 1: /* FCVT[NPMZ]U */
6937         switch (type) {
6938         case 0: /* float32 */
6939         case 1: /* float64 */
6940             break;
6941         case 3: /* float16 */
6942             if (!dc_isar_feature(aa64_fp16, s)) {
6943                 goto do_unallocated;
6944             }
6945             break;
6946         default:
6947             goto do_unallocated;
6948         }
6949         if (!fp_access_check(s)) {
6950             return;
6951         }
6952         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
6953         break;
6954 
6955     default:
6956         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
6957         case 0b01100110: /* FMOV half <-> 32-bit int */
6958         case 0b01100111:
6959         case 0b11100110: /* FMOV half <-> 64-bit int */
6960         case 0b11100111:
6961             if (!dc_isar_feature(aa64_fp16, s)) {
6962                 goto do_unallocated;
6963             }
6964             /* fallthru */
6965         case 0b00000110: /* FMOV 32-bit */
6966         case 0b00000111:
6967         case 0b10100110: /* FMOV 64-bit */
6968         case 0b10100111:
6969         case 0b11001110: /* FMOV top half of 128-bit */
6970         case 0b11001111:
6971             if (!fp_access_check(s)) {
6972                 return;
6973             }
6974             itof = opcode & 1;
6975             handle_fmov(s, rd, rn, type, itof);
6976             break;
6977 
6978         case 0b00111110: /* FJCVTZS */
6979             if (!dc_isar_feature(aa64_jscvt, s)) {
6980                 goto do_unallocated;
6981             } else if (fp_access_check(s)) {
6982                 handle_fjcvtzs(s, rd, rn);
6983             }
6984             break;
6985 
6986         default:
6987         do_unallocated:
6988             unallocated_encoding(s);
6989             return;
6990         }
6991         break;
6992     }
6993 }
6994 
6995 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
6996  *   31  30  29 28     25 24                          0
6997  * +---+---+---+---------+-----------------------------+
6998  * |   | 0 |   | 1 1 1 1 |                             |
6999  * +---+---+---+---------+-----------------------------+
7000  */
7001 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7002 {
7003     if (extract32(insn, 24, 1)) {
7004         /* Floating point data-processing (3 source) */
7005         disas_fp_3src(s, insn);
7006     } else if (extract32(insn, 21, 1) == 0) {
7007         /* Floating point to fixed point conversions */
7008         disas_fp_fixed_conv(s, insn);
7009     } else {
7010         switch (extract32(insn, 10, 2)) {
7011         case 1:
7012             /* Floating point conditional compare */
7013             disas_fp_ccomp(s, insn);
7014             break;
7015         case 2:
7016             /* Floating point data-processing (2 source) */
7017             disas_fp_2src(s, insn);
7018             break;
7019         case 3:
7020             /* Floating point conditional select */
7021             disas_fp_csel(s, insn);
7022             break;
7023         case 0:
7024             switch (ctz32(extract32(insn, 12, 4))) {
7025             case 0: /* [15:12] == xxx1 */
7026                 /* Floating point immediate */
7027                 disas_fp_imm(s, insn);
7028                 break;
7029             case 1: /* [15:12] == xx10 */
7030                 /* Floating point compare */
7031                 disas_fp_compare(s, insn);
7032                 break;
7033             case 2: /* [15:12] == x100 */
7034                 /* Floating point data-processing (1 source) */
7035                 disas_fp_1src(s, insn);
7036                 break;
7037             case 3: /* [15:12] == 1000 */
7038                 unallocated_encoding(s);
7039                 break;
7040             default: /* [15:12] == 0000 */
7041                 /* Floating point <-> integer conversions */
7042                 disas_fp_int_conv(s, insn);
7043                 break;
7044             }
7045             break;
7046         }
7047     }
7048 }
7049 
7050 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7051                      int pos)
7052 {
7053     /* Extract 64 bits from the middle of two concatenated 64 bit
7054      * vector register slices left:right. The extracted bits start
7055      * at 'pos' bits into the right (least significant) side.
7056      * We return the result in tcg_right, and guarantee not to
7057      * trash tcg_left.
7058      */
7059     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7060     assert(pos > 0 && pos < 64);
7061 
7062     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7063     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7064     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7065 }
7066 
7067 /* EXT
7068  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
7069  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7070  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
7071  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7072  */
7073 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7074 {
7075     int is_q = extract32(insn, 30, 1);
7076     int op2 = extract32(insn, 22, 2);
7077     int imm4 = extract32(insn, 11, 4);
7078     int rm = extract32(insn, 16, 5);
7079     int rn = extract32(insn, 5, 5);
7080     int rd = extract32(insn, 0, 5);
7081     int pos = imm4 << 3;
7082     TCGv_i64 tcg_resl, tcg_resh;
7083 
7084     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7085         unallocated_encoding(s);
7086         return;
7087     }
7088 
7089     if (!fp_access_check(s)) {
7090         return;
7091     }
7092 
7093     tcg_resh = tcg_temp_new_i64();
7094     tcg_resl = tcg_temp_new_i64();
7095 
7096     /* Vd gets bits starting at pos bits into Vm:Vn. This is
7097      * either extracting 128 bits from a 128:128 concatenation, or
7098      * extracting 64 bits from a 64:64 concatenation.
7099      */
7100     if (!is_q) {
7101         read_vec_element(s, tcg_resl, rn, 0, MO_64);
7102         if (pos != 0) {
7103             read_vec_element(s, tcg_resh, rm, 0, MO_64);
7104             do_ext64(s, tcg_resh, tcg_resl, pos);
7105         }
7106     } else {
7107         TCGv_i64 tcg_hh;
7108         typedef struct {
7109             int reg;
7110             int elt;
7111         } EltPosns;
7112         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7113         EltPosns *elt = eltposns;
7114 
7115         if (pos >= 64) {
7116             elt++;
7117             pos -= 64;
7118         }
7119 
7120         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7121         elt++;
7122         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7123         elt++;
7124         if (pos != 0) {
7125             do_ext64(s, tcg_resh, tcg_resl, pos);
7126             tcg_hh = tcg_temp_new_i64();
7127             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7128             do_ext64(s, tcg_hh, tcg_resh, pos);
7129         }
7130     }
7131 
7132     write_vec_element(s, tcg_resl, rd, 0, MO_64);
7133     if (is_q) {
7134         write_vec_element(s, tcg_resh, rd, 1, MO_64);
7135     }
7136     clear_vec_high(s, is_q, rd);
7137 }
7138 
7139 /* TBL/TBX
7140  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
7141  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7142  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
7143  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7144  */
7145 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7146 {
7147     int op2 = extract32(insn, 22, 2);
7148     int is_q = extract32(insn, 30, 1);
7149     int rm = extract32(insn, 16, 5);
7150     int rn = extract32(insn, 5, 5);
7151     int rd = extract32(insn, 0, 5);
7152     int is_tbx = extract32(insn, 12, 1);
7153     int len = (extract32(insn, 13, 2) + 1) * 16;
7154 
7155     if (op2 != 0) {
7156         unallocated_encoding(s);
7157         return;
7158     }
7159 
7160     if (!fp_access_check(s)) {
7161         return;
7162     }
7163 
7164     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7165                        vec_full_reg_offset(s, rm), tcg_env,
7166                        is_q ? 16 : 8, vec_full_reg_size(s),
7167                        (len << 6) | (is_tbx << 5) | rn,
7168                        gen_helper_simd_tblx);
7169 }
7170 
7171 /* ZIP/UZP/TRN
7172  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
7173  * +---+---+-------------+------+---+------+---+------------------+------+
7174  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
7175  * +---+---+-------------+------+---+------+---+------------------+------+
7176  */
7177 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7178 {
7179     int rd = extract32(insn, 0, 5);
7180     int rn = extract32(insn, 5, 5);
7181     int rm = extract32(insn, 16, 5);
7182     int size = extract32(insn, 22, 2);
7183     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7184      * bit 2 indicates 1 vs 2 variant of the insn.
7185      */
7186     int opcode = extract32(insn, 12, 2);
7187     bool part = extract32(insn, 14, 1);
7188     bool is_q = extract32(insn, 30, 1);
7189     int esize = 8 << size;
7190     int i;
7191     int datasize = is_q ? 128 : 64;
7192     int elements = datasize / esize;
7193     TCGv_i64 tcg_res[2], tcg_ele;
7194 
7195     if (opcode == 0 || (size == 3 && !is_q)) {
7196         unallocated_encoding(s);
7197         return;
7198     }
7199 
7200     if (!fp_access_check(s)) {
7201         return;
7202     }
7203 
7204     tcg_res[0] = tcg_temp_new_i64();
7205     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
7206     tcg_ele = tcg_temp_new_i64();
7207 
7208     for (i = 0; i < elements; i++) {
7209         int o, w;
7210 
7211         switch (opcode) {
7212         case 1: /* UZP1/2 */
7213         {
7214             int midpoint = elements / 2;
7215             if (i < midpoint) {
7216                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
7217             } else {
7218                 read_vec_element(s, tcg_ele, rm,
7219                                  2 * (i - midpoint) + part, size);
7220             }
7221             break;
7222         }
7223         case 2: /* TRN1/2 */
7224             if (i & 1) {
7225                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
7226             } else {
7227                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
7228             }
7229             break;
7230         case 3: /* ZIP1/2 */
7231         {
7232             int base = part * elements / 2;
7233             if (i & 1) {
7234                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
7235             } else {
7236                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
7237             }
7238             break;
7239         }
7240         default:
7241             g_assert_not_reached();
7242         }
7243 
7244         w = (i * esize) / 64;
7245         o = (i * esize) % 64;
7246         if (o == 0) {
7247             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
7248         } else {
7249             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
7250             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
7251         }
7252     }
7253 
7254     for (i = 0; i <= is_q; ++i) {
7255         write_vec_element(s, tcg_res[i], rd, i, MO_64);
7256     }
7257     clear_vec_high(s, is_q, rd);
7258 }
7259 
7260 /*
7261  * do_reduction_op helper
7262  *
7263  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7264  * important for correct NaN propagation that we do these
7265  * operations in exactly the order specified by the pseudocode.
7266  *
7267  * This is a recursive function, TCG temps should be freed by the
7268  * calling function once it is done with the values.
7269  */
7270 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7271                                 int esize, int size, int vmap, TCGv_ptr fpst)
7272 {
7273     if (esize == size) {
7274         int element;
7275         MemOp msize = esize == 16 ? MO_16 : MO_32;
7276         TCGv_i32 tcg_elem;
7277 
7278         /* We should have one register left here */
7279         assert(ctpop8(vmap) == 1);
7280         element = ctz32(vmap);
7281         assert(element < 8);
7282 
7283         tcg_elem = tcg_temp_new_i32();
7284         read_vec_element_i32(s, tcg_elem, rn, element, msize);
7285         return tcg_elem;
7286     } else {
7287         int bits = size / 2;
7288         int shift = ctpop8(vmap) / 2;
7289         int vmap_lo = (vmap >> shift) & vmap;
7290         int vmap_hi = (vmap & ~vmap_lo);
7291         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7292 
7293         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7294         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7295         tcg_res = tcg_temp_new_i32();
7296 
7297         switch (fpopcode) {
7298         case 0x0c: /* fmaxnmv half-precision */
7299             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7300             break;
7301         case 0x0f: /* fmaxv half-precision */
7302             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7303             break;
7304         case 0x1c: /* fminnmv half-precision */
7305             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7306             break;
7307         case 0x1f: /* fminv half-precision */
7308             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7309             break;
7310         case 0x2c: /* fmaxnmv */
7311             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7312             break;
7313         case 0x2f: /* fmaxv */
7314             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7315             break;
7316         case 0x3c: /* fminnmv */
7317             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7318             break;
7319         case 0x3f: /* fminv */
7320             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7321             break;
7322         default:
7323             g_assert_not_reached();
7324         }
7325         return tcg_res;
7326     }
7327 }
7328 
7329 /* AdvSIMD across lanes
7330  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
7331  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7332  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
7333  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7334  */
7335 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7336 {
7337     int rd = extract32(insn, 0, 5);
7338     int rn = extract32(insn, 5, 5);
7339     int size = extract32(insn, 22, 2);
7340     int opcode = extract32(insn, 12, 5);
7341     bool is_q = extract32(insn, 30, 1);
7342     bool is_u = extract32(insn, 29, 1);
7343     bool is_fp = false;
7344     bool is_min = false;
7345     int esize;
7346     int elements;
7347     int i;
7348     TCGv_i64 tcg_res, tcg_elt;
7349 
7350     switch (opcode) {
7351     case 0x1b: /* ADDV */
7352         if (is_u) {
7353             unallocated_encoding(s);
7354             return;
7355         }
7356         /* fall through */
7357     case 0x3: /* SADDLV, UADDLV */
7358     case 0xa: /* SMAXV, UMAXV */
7359     case 0x1a: /* SMINV, UMINV */
7360         if (size == 3 || (size == 2 && !is_q)) {
7361             unallocated_encoding(s);
7362             return;
7363         }
7364         break;
7365     case 0xc: /* FMAXNMV, FMINNMV */
7366     case 0xf: /* FMAXV, FMINV */
7367         /* Bit 1 of size field encodes min vs max and the actual size
7368          * depends on the encoding of the U bit. If not set (and FP16
7369          * enabled) then we do half-precision float instead of single
7370          * precision.
7371          */
7372         is_min = extract32(size, 1, 1);
7373         is_fp = true;
7374         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7375             size = 1;
7376         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7377             unallocated_encoding(s);
7378             return;
7379         } else {
7380             size = 2;
7381         }
7382         break;
7383     default:
7384         unallocated_encoding(s);
7385         return;
7386     }
7387 
7388     if (!fp_access_check(s)) {
7389         return;
7390     }
7391 
7392     esize = 8 << size;
7393     elements = (is_q ? 128 : 64) / esize;
7394 
7395     tcg_res = tcg_temp_new_i64();
7396     tcg_elt = tcg_temp_new_i64();
7397 
7398     /* These instructions operate across all lanes of a vector
7399      * to produce a single result. We can guarantee that a 64
7400      * bit intermediate is sufficient:
7401      *  + for [US]ADDLV the maximum element size is 32 bits, and
7402      *    the result type is 64 bits
7403      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7404      *    same as the element size, which is 32 bits at most
7405      * For the integer operations we can choose to work at 64
7406      * or 32 bits and truncate at the end; for simplicity
7407      * we use 64 bits always. The floating point
7408      * ops do require 32 bit intermediates, though.
7409      */
7410     if (!is_fp) {
7411         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7412 
7413         for (i = 1; i < elements; i++) {
7414             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7415 
7416             switch (opcode) {
7417             case 0x03: /* SADDLV / UADDLV */
7418             case 0x1b: /* ADDV */
7419                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7420                 break;
7421             case 0x0a: /* SMAXV / UMAXV */
7422                 if (is_u) {
7423                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7424                 } else {
7425                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7426                 }
7427                 break;
7428             case 0x1a: /* SMINV / UMINV */
7429                 if (is_u) {
7430                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7431                 } else {
7432                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7433                 }
7434                 break;
7435             default:
7436                 g_assert_not_reached();
7437             }
7438 
7439         }
7440     } else {
7441         /* Floating point vector reduction ops which work across 32
7442          * bit (single) or 16 bit (half-precision) intermediates.
7443          * Note that correct NaN propagation requires that we do these
7444          * operations in exactly the order specified by the pseudocode.
7445          */
7446         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7447         int fpopcode = opcode | is_min << 4 | is_u << 5;
7448         int vmap = (1 << elements) - 1;
7449         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7450                                              (is_q ? 128 : 64), vmap, fpst);
7451         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7452     }
7453 
7454     /* Now truncate the result to the width required for the final output */
7455     if (opcode == 0x03) {
7456         /* SADDLV, UADDLV: result is 2*esize */
7457         size++;
7458     }
7459 
7460     switch (size) {
7461     case 0:
7462         tcg_gen_ext8u_i64(tcg_res, tcg_res);
7463         break;
7464     case 1:
7465         tcg_gen_ext16u_i64(tcg_res, tcg_res);
7466         break;
7467     case 2:
7468         tcg_gen_ext32u_i64(tcg_res, tcg_res);
7469         break;
7470     case 3:
7471         break;
7472     default:
7473         g_assert_not_reached();
7474     }
7475 
7476     write_fp_dreg(s, rd, tcg_res);
7477 }
7478 
7479 /* DUP (Element, Vector)
7480  *
7481  *  31  30   29              21 20    16 15        10  9    5 4    0
7482  * +---+---+-------------------+--------+-------------+------+------+
7483  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7484  * +---+---+-------------------+--------+-------------+------+------+
7485  *
7486  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7487  */
7488 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7489                              int imm5)
7490 {
7491     int size = ctz32(imm5);
7492     int index;
7493 
7494     if (size > 3 || (size == 3 && !is_q)) {
7495         unallocated_encoding(s);
7496         return;
7497     }
7498 
7499     if (!fp_access_check(s)) {
7500         return;
7501     }
7502 
7503     index = imm5 >> (size + 1);
7504     tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7505                          vec_reg_offset(s, rn, index, size),
7506                          is_q ? 16 : 8, vec_full_reg_size(s));
7507 }
7508 
7509 /* DUP (element, scalar)
7510  *  31                   21 20    16 15        10  9    5 4    0
7511  * +-----------------------+--------+-------------+------+------+
7512  * | 0 1 0 1 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7513  * +-----------------------+--------+-------------+------+------+
7514  */
7515 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7516                               int imm5)
7517 {
7518     int size = ctz32(imm5);
7519     int index;
7520     TCGv_i64 tmp;
7521 
7522     if (size > 3) {
7523         unallocated_encoding(s);
7524         return;
7525     }
7526 
7527     if (!fp_access_check(s)) {
7528         return;
7529     }
7530 
7531     index = imm5 >> (size + 1);
7532 
7533     /* This instruction just extracts the specified element and
7534      * zero-extends it into the bottom of the destination register.
7535      */
7536     tmp = tcg_temp_new_i64();
7537     read_vec_element(s, tmp, rn, index, size);
7538     write_fp_dreg(s, rd, tmp);
7539 }
7540 
7541 /* DUP (General)
7542  *
7543  *  31  30   29              21 20    16 15        10  9    5 4    0
7544  * +---+---+-------------------+--------+-------------+------+------+
7545  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 1 1 |  Rn  |  Rd  |
7546  * +---+---+-------------------+--------+-------------+------+------+
7547  *
7548  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7549  */
7550 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7551                              int imm5)
7552 {
7553     int size = ctz32(imm5);
7554     uint32_t dofs, oprsz, maxsz;
7555 
7556     if (size > 3 || ((size == 3) && !is_q)) {
7557         unallocated_encoding(s);
7558         return;
7559     }
7560 
7561     if (!fp_access_check(s)) {
7562         return;
7563     }
7564 
7565     dofs = vec_full_reg_offset(s, rd);
7566     oprsz = is_q ? 16 : 8;
7567     maxsz = vec_full_reg_size(s);
7568 
7569     tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7570 }
7571 
7572 /* INS (Element)
7573  *
7574  *  31                   21 20    16 15  14    11  10 9    5 4    0
7575  * +-----------------------+--------+------------+---+------+------+
7576  * | 0 1 1 0 1 1 1 0 0 0 0 |  imm5  | 0 |  imm4  | 1 |  Rn  |  Rd  |
7577  * +-----------------------+--------+------------+---+------+------+
7578  *
7579  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7580  * index: encoded in imm5<4:size+1>
7581  */
7582 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7583                              int imm4, int imm5)
7584 {
7585     int size = ctz32(imm5);
7586     int src_index, dst_index;
7587     TCGv_i64 tmp;
7588 
7589     if (size > 3) {
7590         unallocated_encoding(s);
7591         return;
7592     }
7593 
7594     if (!fp_access_check(s)) {
7595         return;
7596     }
7597 
7598     dst_index = extract32(imm5, 1+size, 5);
7599     src_index = extract32(imm4, size, 4);
7600 
7601     tmp = tcg_temp_new_i64();
7602 
7603     read_vec_element(s, tmp, rn, src_index, size);
7604     write_vec_element(s, tmp, rd, dst_index, size);
7605 
7606     /* INS is considered a 128-bit write for SVE. */
7607     clear_vec_high(s, true, rd);
7608 }
7609 
7610 
7611 /* INS (General)
7612  *
7613  *  31                   21 20    16 15        10  9    5 4    0
7614  * +-----------------------+--------+-------------+------+------+
7615  * | 0 1 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 1 1 1 |  Rn  |  Rd  |
7616  * +-----------------------+--------+-------------+------+------+
7617  *
7618  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7619  * index: encoded in imm5<4:size+1>
7620  */
7621 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7622 {
7623     int size = ctz32(imm5);
7624     int idx;
7625 
7626     if (size > 3) {
7627         unallocated_encoding(s);
7628         return;
7629     }
7630 
7631     if (!fp_access_check(s)) {
7632         return;
7633     }
7634 
7635     idx = extract32(imm5, 1 + size, 4 - size);
7636     write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7637 
7638     /* INS is considered a 128-bit write for SVE. */
7639     clear_vec_high(s, true, rd);
7640 }
7641 
7642 /*
7643  * UMOV (General)
7644  * SMOV (General)
7645  *
7646  *  31  30   29              21 20    16 15    12   10 9    5 4    0
7647  * +---+---+-------------------+--------+-------------+------+------+
7648  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 1 U 1 1 |  Rn  |  Rd  |
7649  * +---+---+-------------------+--------+-------------+------+------+
7650  *
7651  * U: unsigned when set
7652  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7653  */
7654 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7655                                   int rn, int rd, int imm5)
7656 {
7657     int size = ctz32(imm5);
7658     int element;
7659     TCGv_i64 tcg_rd;
7660 
7661     /* Check for UnallocatedEncodings */
7662     if (is_signed) {
7663         if (size > 2 || (size == 2 && !is_q)) {
7664             unallocated_encoding(s);
7665             return;
7666         }
7667     } else {
7668         if (size > 3
7669             || (size < 3 && is_q)
7670             || (size == 3 && !is_q)) {
7671             unallocated_encoding(s);
7672             return;
7673         }
7674     }
7675 
7676     if (!fp_access_check(s)) {
7677         return;
7678     }
7679 
7680     element = extract32(imm5, 1+size, 4);
7681 
7682     tcg_rd = cpu_reg(s, rd);
7683     read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7684     if (is_signed && !is_q) {
7685         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7686     }
7687 }
7688 
7689 /* AdvSIMD copy
7690  *   31  30  29  28             21 20  16 15  14  11 10  9    5 4    0
7691  * +---+---+----+-----------------+------+---+------+---+------+------+
7692  * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
7693  * +---+---+----+-----------------+------+---+------+---+------+------+
7694  */
7695 static void disas_simd_copy(DisasContext *s, uint32_t insn)
7696 {
7697     int rd = extract32(insn, 0, 5);
7698     int rn = extract32(insn, 5, 5);
7699     int imm4 = extract32(insn, 11, 4);
7700     int op = extract32(insn, 29, 1);
7701     int is_q = extract32(insn, 30, 1);
7702     int imm5 = extract32(insn, 16, 5);
7703 
7704     if (op) {
7705         if (is_q) {
7706             /* INS (element) */
7707             handle_simd_inse(s, rd, rn, imm4, imm5);
7708         } else {
7709             unallocated_encoding(s);
7710         }
7711     } else {
7712         switch (imm4) {
7713         case 0:
7714             /* DUP (element - vector) */
7715             handle_simd_dupe(s, is_q, rd, rn, imm5);
7716             break;
7717         case 1:
7718             /* DUP (general) */
7719             handle_simd_dupg(s, is_q, rd, rn, imm5);
7720             break;
7721         case 3:
7722             if (is_q) {
7723                 /* INS (general) */
7724                 handle_simd_insg(s, rd, rn, imm5);
7725             } else {
7726                 unallocated_encoding(s);
7727             }
7728             break;
7729         case 5:
7730         case 7:
7731             /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
7732             handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
7733             break;
7734         default:
7735             unallocated_encoding(s);
7736             break;
7737         }
7738     }
7739 }
7740 
7741 /* AdvSIMD modified immediate
7742  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
7743  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7744  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
7745  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7746  *
7747  * There are a number of operations that can be carried out here:
7748  *   MOVI - move (shifted) imm into register
7749  *   MVNI - move inverted (shifted) imm into register
7750  *   ORR  - bitwise OR of (shifted) imm with register
7751  *   BIC  - bitwise clear of (shifted) imm with register
7752  * With ARMv8.2 we also have:
7753  *   FMOV half-precision
7754  */
7755 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
7756 {
7757     int rd = extract32(insn, 0, 5);
7758     int cmode = extract32(insn, 12, 4);
7759     int o2 = extract32(insn, 11, 1);
7760     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
7761     bool is_neg = extract32(insn, 29, 1);
7762     bool is_q = extract32(insn, 30, 1);
7763     uint64_t imm = 0;
7764 
7765     if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
7766         /* Check for FMOV (vector, immediate) - half-precision */
7767         if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
7768             unallocated_encoding(s);
7769             return;
7770         }
7771     }
7772 
7773     if (!fp_access_check(s)) {
7774         return;
7775     }
7776 
7777     if (cmode == 15 && o2 && !is_neg) {
7778         /* FMOV (vector, immediate) - half-precision */
7779         imm = vfp_expand_imm(MO_16, abcdefgh);
7780         /* now duplicate across the lanes */
7781         imm = dup_const(MO_16, imm);
7782     } else {
7783         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
7784     }
7785 
7786     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
7787         /* MOVI or MVNI, with MVNI negation handled above.  */
7788         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
7789                              vec_full_reg_size(s), imm);
7790     } else {
7791         /* ORR or BIC, with BIC negation to AND handled above.  */
7792         if (is_neg) {
7793             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
7794         } else {
7795             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
7796         }
7797     }
7798 }
7799 
7800 /* AdvSIMD scalar copy
7801  *  31 30  29  28             21 20  16 15  14  11 10  9    5 4    0
7802  * +-----+----+-----------------+------+---+------+---+------+------+
7803  * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
7804  * +-----+----+-----------------+------+---+------+---+------+------+
7805  */
7806 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
7807 {
7808     int rd = extract32(insn, 0, 5);
7809     int rn = extract32(insn, 5, 5);
7810     int imm4 = extract32(insn, 11, 4);
7811     int imm5 = extract32(insn, 16, 5);
7812     int op = extract32(insn, 29, 1);
7813 
7814     if (op != 0 || imm4 != 0) {
7815         unallocated_encoding(s);
7816         return;
7817     }
7818 
7819     /* DUP (element, scalar) */
7820     handle_simd_dupes(s, rd, rn, imm5);
7821 }
7822 
7823 /* AdvSIMD scalar pairwise
7824  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
7825  * +-----+---+-----------+------+-----------+--------+-----+------+------+
7826  * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
7827  * +-----+---+-----------+------+-----------+--------+-----+------+------+
7828  */
7829 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
7830 {
7831     int u = extract32(insn, 29, 1);
7832     int size = extract32(insn, 22, 2);
7833     int opcode = extract32(insn, 12, 5);
7834     int rn = extract32(insn, 5, 5);
7835     int rd = extract32(insn, 0, 5);
7836     TCGv_ptr fpst;
7837 
7838     /* For some ops (the FP ones), size[1] is part of the encoding.
7839      * For ADDP strictly it is not but size[1] is always 1 for valid
7840      * encodings.
7841      */
7842     opcode |= (extract32(size, 1, 1) << 5);
7843 
7844     switch (opcode) {
7845     case 0x3b: /* ADDP */
7846         if (u || size != 3) {
7847             unallocated_encoding(s);
7848             return;
7849         }
7850         if (!fp_access_check(s)) {
7851             return;
7852         }
7853 
7854         fpst = NULL;
7855         break;
7856     case 0xc: /* FMAXNMP */
7857     case 0xd: /* FADDP */
7858     case 0xf: /* FMAXP */
7859     case 0x2c: /* FMINNMP */
7860     case 0x2f: /* FMINP */
7861         /* FP op, size[0] is 32 or 64 bit*/
7862         if (!u) {
7863             if (!dc_isar_feature(aa64_fp16, s)) {
7864                 unallocated_encoding(s);
7865                 return;
7866             } else {
7867                 size = MO_16;
7868             }
7869         } else {
7870             size = extract32(size, 0, 1) ? MO_64 : MO_32;
7871         }
7872 
7873         if (!fp_access_check(s)) {
7874             return;
7875         }
7876 
7877         fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7878         break;
7879     default:
7880         unallocated_encoding(s);
7881         return;
7882     }
7883 
7884     if (size == MO_64) {
7885         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7886         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7887         TCGv_i64 tcg_res = tcg_temp_new_i64();
7888 
7889         read_vec_element(s, tcg_op1, rn, 0, MO_64);
7890         read_vec_element(s, tcg_op2, rn, 1, MO_64);
7891 
7892         switch (opcode) {
7893         case 0x3b: /* ADDP */
7894             tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
7895             break;
7896         case 0xc: /* FMAXNMP */
7897             gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7898             break;
7899         case 0xd: /* FADDP */
7900             gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7901             break;
7902         case 0xf: /* FMAXP */
7903             gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7904             break;
7905         case 0x2c: /* FMINNMP */
7906             gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7907             break;
7908         case 0x2f: /* FMINP */
7909             gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7910             break;
7911         default:
7912             g_assert_not_reached();
7913         }
7914 
7915         write_fp_dreg(s, rd, tcg_res);
7916     } else {
7917         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7918         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7919         TCGv_i32 tcg_res = tcg_temp_new_i32();
7920 
7921         read_vec_element_i32(s, tcg_op1, rn, 0, size);
7922         read_vec_element_i32(s, tcg_op2, rn, 1, size);
7923 
7924         if (size == MO_16) {
7925             switch (opcode) {
7926             case 0xc: /* FMAXNMP */
7927                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7928                 break;
7929             case 0xd: /* FADDP */
7930                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
7931                 break;
7932             case 0xf: /* FMAXP */
7933                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
7934                 break;
7935             case 0x2c: /* FMINNMP */
7936                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7937                 break;
7938             case 0x2f: /* FMINP */
7939                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
7940                 break;
7941             default:
7942                 g_assert_not_reached();
7943             }
7944         } else {
7945             switch (opcode) {
7946             case 0xc: /* FMAXNMP */
7947                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7948                 break;
7949             case 0xd: /* FADDP */
7950                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7951                 break;
7952             case 0xf: /* FMAXP */
7953                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7954                 break;
7955             case 0x2c: /* FMINNMP */
7956                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7957                 break;
7958             case 0x2f: /* FMINP */
7959                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7960                 break;
7961             default:
7962                 g_assert_not_reached();
7963             }
7964         }
7965 
7966         write_fp_sreg(s, rd, tcg_res);
7967     }
7968 }
7969 
7970 /*
7971  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
7972  *
7973  * This code is handles the common shifting code and is used by both
7974  * the vector and scalar code.
7975  */
7976 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
7977                                     TCGv_i64 tcg_rnd, bool accumulate,
7978                                     bool is_u, int size, int shift)
7979 {
7980     bool extended_result = false;
7981     bool round = tcg_rnd != NULL;
7982     int ext_lshift = 0;
7983     TCGv_i64 tcg_src_hi;
7984 
7985     if (round && size == 3) {
7986         extended_result = true;
7987         ext_lshift = 64 - shift;
7988         tcg_src_hi = tcg_temp_new_i64();
7989     } else if (shift == 64) {
7990         if (!accumulate && is_u) {
7991             /* result is zero */
7992             tcg_gen_movi_i64(tcg_res, 0);
7993             return;
7994         }
7995     }
7996 
7997     /* Deal with the rounding step */
7998     if (round) {
7999         if (extended_result) {
8000             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8001             if (!is_u) {
8002                 /* take care of sign extending tcg_res */
8003                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8004                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8005                                  tcg_src, tcg_src_hi,
8006                                  tcg_rnd, tcg_zero);
8007             } else {
8008                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8009                                  tcg_src, tcg_zero,
8010                                  tcg_rnd, tcg_zero);
8011             }
8012         } else {
8013             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8014         }
8015     }
8016 
8017     /* Now do the shift right */
8018     if (round && extended_result) {
8019         /* extended case, >64 bit precision required */
8020         if (ext_lshift == 0) {
8021             /* special case, only high bits matter */
8022             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8023         } else {
8024             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8025             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8026             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8027         }
8028     } else {
8029         if (is_u) {
8030             if (shift == 64) {
8031                 /* essentially shifting in 64 zeros */
8032                 tcg_gen_movi_i64(tcg_src, 0);
8033             } else {
8034                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8035             }
8036         } else {
8037             if (shift == 64) {
8038                 /* effectively extending the sign-bit */
8039                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8040             } else {
8041                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8042             }
8043         }
8044     }
8045 
8046     if (accumulate) {
8047         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8048     } else {
8049         tcg_gen_mov_i64(tcg_res, tcg_src);
8050     }
8051 }
8052 
8053 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8054 static void handle_scalar_simd_shri(DisasContext *s,
8055                                     bool is_u, int immh, int immb,
8056                                     int opcode, int rn, int rd)
8057 {
8058     const int size = 3;
8059     int immhb = immh << 3 | immb;
8060     int shift = 2 * (8 << size) - immhb;
8061     bool accumulate = false;
8062     bool round = false;
8063     bool insert = false;
8064     TCGv_i64 tcg_rn;
8065     TCGv_i64 tcg_rd;
8066     TCGv_i64 tcg_round;
8067 
8068     if (!extract32(immh, 3, 1)) {
8069         unallocated_encoding(s);
8070         return;
8071     }
8072 
8073     if (!fp_access_check(s)) {
8074         return;
8075     }
8076 
8077     switch (opcode) {
8078     case 0x02: /* SSRA / USRA (accumulate) */
8079         accumulate = true;
8080         break;
8081     case 0x04: /* SRSHR / URSHR (rounding) */
8082         round = true;
8083         break;
8084     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8085         accumulate = round = true;
8086         break;
8087     case 0x08: /* SRI */
8088         insert = true;
8089         break;
8090     }
8091 
8092     if (round) {
8093         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8094     } else {
8095         tcg_round = NULL;
8096     }
8097 
8098     tcg_rn = read_fp_dreg(s, rn);
8099     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8100 
8101     if (insert) {
8102         /* shift count same as element size is valid but does nothing;
8103          * special case to avoid potential shift by 64.
8104          */
8105         int esize = 8 << size;
8106         if (shift != esize) {
8107             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8108             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8109         }
8110     } else {
8111         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8112                                 accumulate, is_u, size, shift);
8113     }
8114 
8115     write_fp_dreg(s, rd, tcg_rd);
8116 }
8117 
8118 /* SHL/SLI - Scalar shift left */
8119 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8120                                     int immh, int immb, int opcode,
8121                                     int rn, int rd)
8122 {
8123     int size = 32 - clz32(immh) - 1;
8124     int immhb = immh << 3 | immb;
8125     int shift = immhb - (8 << size);
8126     TCGv_i64 tcg_rn;
8127     TCGv_i64 tcg_rd;
8128 
8129     if (!extract32(immh, 3, 1)) {
8130         unallocated_encoding(s);
8131         return;
8132     }
8133 
8134     if (!fp_access_check(s)) {
8135         return;
8136     }
8137 
8138     tcg_rn = read_fp_dreg(s, rn);
8139     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8140 
8141     if (insert) {
8142         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8143     } else {
8144         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8145     }
8146 
8147     write_fp_dreg(s, rd, tcg_rd);
8148 }
8149 
8150 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8151  * (signed/unsigned) narrowing */
8152 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8153                                    bool is_u_shift, bool is_u_narrow,
8154                                    int immh, int immb, int opcode,
8155                                    int rn, int rd)
8156 {
8157     int immhb = immh << 3 | immb;
8158     int size = 32 - clz32(immh) - 1;
8159     int esize = 8 << size;
8160     int shift = (2 * esize) - immhb;
8161     int elements = is_scalar ? 1 : (64 / esize);
8162     bool round = extract32(opcode, 0, 1);
8163     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8164     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8165     TCGv_i32 tcg_rd_narrowed;
8166     TCGv_i64 tcg_final;
8167 
8168     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8169         { gen_helper_neon_narrow_sat_s8,
8170           gen_helper_neon_unarrow_sat8 },
8171         { gen_helper_neon_narrow_sat_s16,
8172           gen_helper_neon_unarrow_sat16 },
8173         { gen_helper_neon_narrow_sat_s32,
8174           gen_helper_neon_unarrow_sat32 },
8175         { NULL, NULL },
8176     };
8177     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8178         gen_helper_neon_narrow_sat_u8,
8179         gen_helper_neon_narrow_sat_u16,
8180         gen_helper_neon_narrow_sat_u32,
8181         NULL
8182     };
8183     NeonGenNarrowEnvFn *narrowfn;
8184 
8185     int i;
8186 
8187     assert(size < 4);
8188 
8189     if (extract32(immh, 3, 1)) {
8190         unallocated_encoding(s);
8191         return;
8192     }
8193 
8194     if (!fp_access_check(s)) {
8195         return;
8196     }
8197 
8198     if (is_u_shift) {
8199         narrowfn = unsigned_narrow_fns[size];
8200     } else {
8201         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8202     }
8203 
8204     tcg_rn = tcg_temp_new_i64();
8205     tcg_rd = tcg_temp_new_i64();
8206     tcg_rd_narrowed = tcg_temp_new_i32();
8207     tcg_final = tcg_temp_new_i64();
8208 
8209     if (round) {
8210         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8211     } else {
8212         tcg_round = NULL;
8213     }
8214 
8215     for (i = 0; i < elements; i++) {
8216         read_vec_element(s, tcg_rn, rn, i, ldop);
8217         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8218                                 false, is_u_shift, size+1, shift);
8219         narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
8220         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8221         if (i == 0) {
8222             tcg_gen_mov_i64(tcg_final, tcg_rd);
8223         } else {
8224             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8225         }
8226     }
8227 
8228     if (!is_q) {
8229         write_vec_element(s, tcg_final, rd, 0, MO_64);
8230     } else {
8231         write_vec_element(s, tcg_final, rd, 1, MO_64);
8232     }
8233     clear_vec_high(s, is_q, rd);
8234 }
8235 
8236 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8237 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8238                              bool src_unsigned, bool dst_unsigned,
8239                              int immh, int immb, int rn, int rd)
8240 {
8241     int immhb = immh << 3 | immb;
8242     int size = 32 - clz32(immh) - 1;
8243     int shift = immhb - (8 << size);
8244     int pass;
8245 
8246     assert(immh != 0);
8247     assert(!(scalar && is_q));
8248 
8249     if (!scalar) {
8250         if (!is_q && extract32(immh, 3, 1)) {
8251             unallocated_encoding(s);
8252             return;
8253         }
8254 
8255         /* Since we use the variable-shift helpers we must
8256          * replicate the shift count into each element of
8257          * the tcg_shift value.
8258          */
8259         switch (size) {
8260         case 0:
8261             shift |= shift << 8;
8262             /* fall through */
8263         case 1:
8264             shift |= shift << 16;
8265             break;
8266         case 2:
8267         case 3:
8268             break;
8269         default:
8270             g_assert_not_reached();
8271         }
8272     }
8273 
8274     if (!fp_access_check(s)) {
8275         return;
8276     }
8277 
8278     if (size == 3) {
8279         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8280         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8281             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8282             { NULL, gen_helper_neon_qshl_u64 },
8283         };
8284         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8285         int maxpass = is_q ? 2 : 1;
8286 
8287         for (pass = 0; pass < maxpass; pass++) {
8288             TCGv_i64 tcg_op = tcg_temp_new_i64();
8289 
8290             read_vec_element(s, tcg_op, rn, pass, MO_64);
8291             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8292             write_vec_element(s, tcg_op, rd, pass, MO_64);
8293         }
8294         clear_vec_high(s, is_q, rd);
8295     } else {
8296         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8297         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8298             {
8299                 { gen_helper_neon_qshl_s8,
8300                   gen_helper_neon_qshl_s16,
8301                   gen_helper_neon_qshl_s32 },
8302                 { gen_helper_neon_qshlu_s8,
8303                   gen_helper_neon_qshlu_s16,
8304                   gen_helper_neon_qshlu_s32 }
8305             }, {
8306                 { NULL, NULL, NULL },
8307                 { gen_helper_neon_qshl_u8,
8308                   gen_helper_neon_qshl_u16,
8309                   gen_helper_neon_qshl_u32 }
8310             }
8311         };
8312         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8313         MemOp memop = scalar ? size : MO_32;
8314         int maxpass = scalar ? 1 : is_q ? 4 : 2;
8315 
8316         for (pass = 0; pass < maxpass; pass++) {
8317             TCGv_i32 tcg_op = tcg_temp_new_i32();
8318 
8319             read_vec_element_i32(s, tcg_op, rn, pass, memop);
8320             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8321             if (scalar) {
8322                 switch (size) {
8323                 case 0:
8324                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
8325                     break;
8326                 case 1:
8327                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8328                     break;
8329                 case 2:
8330                     break;
8331                 default:
8332                     g_assert_not_reached();
8333                 }
8334                 write_fp_sreg(s, rd, tcg_op);
8335             } else {
8336                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8337             }
8338         }
8339 
8340         if (!scalar) {
8341             clear_vec_high(s, is_q, rd);
8342         }
8343     }
8344 }
8345 
8346 /* Common vector code for handling integer to FP conversion */
8347 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8348                                    int elements, int is_signed,
8349                                    int fracbits, int size)
8350 {
8351     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8352     TCGv_i32 tcg_shift = NULL;
8353 
8354     MemOp mop = size | (is_signed ? MO_SIGN : 0);
8355     int pass;
8356 
8357     if (fracbits || size == MO_64) {
8358         tcg_shift = tcg_constant_i32(fracbits);
8359     }
8360 
8361     if (size == MO_64) {
8362         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8363         TCGv_i64 tcg_double = tcg_temp_new_i64();
8364 
8365         for (pass = 0; pass < elements; pass++) {
8366             read_vec_element(s, tcg_int64, rn, pass, mop);
8367 
8368             if (is_signed) {
8369                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8370                                      tcg_shift, tcg_fpst);
8371             } else {
8372                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8373                                      tcg_shift, tcg_fpst);
8374             }
8375             if (elements == 1) {
8376                 write_fp_dreg(s, rd, tcg_double);
8377             } else {
8378                 write_vec_element(s, tcg_double, rd, pass, MO_64);
8379             }
8380         }
8381     } else {
8382         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8383         TCGv_i32 tcg_float = tcg_temp_new_i32();
8384 
8385         for (pass = 0; pass < elements; pass++) {
8386             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8387 
8388             switch (size) {
8389             case MO_32:
8390                 if (fracbits) {
8391                     if (is_signed) {
8392                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
8393                                              tcg_shift, tcg_fpst);
8394                     } else {
8395                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
8396                                              tcg_shift, tcg_fpst);
8397                     }
8398                 } else {
8399                     if (is_signed) {
8400                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8401                     } else {
8402                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8403                     }
8404                 }
8405                 break;
8406             case MO_16:
8407                 if (fracbits) {
8408                     if (is_signed) {
8409                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8410                                              tcg_shift, tcg_fpst);
8411                     } else {
8412                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8413                                              tcg_shift, tcg_fpst);
8414                     }
8415                 } else {
8416                     if (is_signed) {
8417                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8418                     } else {
8419                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8420                     }
8421                 }
8422                 break;
8423             default:
8424                 g_assert_not_reached();
8425             }
8426 
8427             if (elements == 1) {
8428                 write_fp_sreg(s, rd, tcg_float);
8429             } else {
8430                 write_vec_element_i32(s, tcg_float, rd, pass, size);
8431             }
8432         }
8433     }
8434 
8435     clear_vec_high(s, elements << size == 16, rd);
8436 }
8437 
8438 /* UCVTF/SCVTF - Integer to FP conversion */
8439 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8440                                          bool is_q, bool is_u,
8441                                          int immh, int immb, int opcode,
8442                                          int rn, int rd)
8443 {
8444     int size, elements, fracbits;
8445     int immhb = immh << 3 | immb;
8446 
8447     if (immh & 8) {
8448         size = MO_64;
8449         if (!is_scalar && !is_q) {
8450             unallocated_encoding(s);
8451             return;
8452         }
8453     } else if (immh & 4) {
8454         size = MO_32;
8455     } else if (immh & 2) {
8456         size = MO_16;
8457         if (!dc_isar_feature(aa64_fp16, s)) {
8458             unallocated_encoding(s);
8459             return;
8460         }
8461     } else {
8462         /* immh == 0 would be a failure of the decode logic */
8463         g_assert(immh == 1);
8464         unallocated_encoding(s);
8465         return;
8466     }
8467 
8468     if (is_scalar) {
8469         elements = 1;
8470     } else {
8471         elements = (8 << is_q) >> size;
8472     }
8473     fracbits = (16 << size) - immhb;
8474 
8475     if (!fp_access_check(s)) {
8476         return;
8477     }
8478 
8479     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8480 }
8481 
8482 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8483 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8484                                          bool is_q, bool is_u,
8485                                          int immh, int immb, int rn, int rd)
8486 {
8487     int immhb = immh << 3 | immb;
8488     int pass, size, fracbits;
8489     TCGv_ptr tcg_fpstatus;
8490     TCGv_i32 tcg_rmode, tcg_shift;
8491 
8492     if (immh & 0x8) {
8493         size = MO_64;
8494         if (!is_scalar && !is_q) {
8495             unallocated_encoding(s);
8496             return;
8497         }
8498     } else if (immh & 0x4) {
8499         size = MO_32;
8500     } else if (immh & 0x2) {
8501         size = MO_16;
8502         if (!dc_isar_feature(aa64_fp16, s)) {
8503             unallocated_encoding(s);
8504             return;
8505         }
8506     } else {
8507         /* Should have split out AdvSIMD modified immediate earlier.  */
8508         assert(immh == 1);
8509         unallocated_encoding(s);
8510         return;
8511     }
8512 
8513     if (!fp_access_check(s)) {
8514         return;
8515     }
8516 
8517     assert(!(is_scalar && is_q));
8518 
8519     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8520     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
8521     fracbits = (16 << size) - immhb;
8522     tcg_shift = tcg_constant_i32(fracbits);
8523 
8524     if (size == MO_64) {
8525         int maxpass = is_scalar ? 1 : 2;
8526 
8527         for (pass = 0; pass < maxpass; pass++) {
8528             TCGv_i64 tcg_op = tcg_temp_new_i64();
8529 
8530             read_vec_element(s, tcg_op, rn, pass, MO_64);
8531             if (is_u) {
8532                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8533             } else {
8534                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8535             }
8536             write_vec_element(s, tcg_op, rd, pass, MO_64);
8537         }
8538         clear_vec_high(s, is_q, rd);
8539     } else {
8540         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8541         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8542 
8543         switch (size) {
8544         case MO_16:
8545             if (is_u) {
8546                 fn = gen_helper_vfp_touhh;
8547             } else {
8548                 fn = gen_helper_vfp_toshh;
8549             }
8550             break;
8551         case MO_32:
8552             if (is_u) {
8553                 fn = gen_helper_vfp_touls;
8554             } else {
8555                 fn = gen_helper_vfp_tosls;
8556             }
8557             break;
8558         default:
8559             g_assert_not_reached();
8560         }
8561 
8562         for (pass = 0; pass < maxpass; pass++) {
8563             TCGv_i32 tcg_op = tcg_temp_new_i32();
8564 
8565             read_vec_element_i32(s, tcg_op, rn, pass, size);
8566             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8567             if (is_scalar) {
8568                 write_fp_sreg(s, rd, tcg_op);
8569             } else {
8570                 write_vec_element_i32(s, tcg_op, rd, pass, size);
8571             }
8572         }
8573         if (!is_scalar) {
8574             clear_vec_high(s, is_q, rd);
8575         }
8576     }
8577 
8578     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8579 }
8580 
8581 /* AdvSIMD scalar shift by immediate
8582  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
8583  * +-----+---+-------------+------+------+--------+---+------+------+
8584  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
8585  * +-----+---+-------------+------+------+--------+---+------+------+
8586  *
8587  * This is the scalar version so it works on a fixed sized registers
8588  */
8589 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8590 {
8591     int rd = extract32(insn, 0, 5);
8592     int rn = extract32(insn, 5, 5);
8593     int opcode = extract32(insn, 11, 5);
8594     int immb = extract32(insn, 16, 3);
8595     int immh = extract32(insn, 19, 4);
8596     bool is_u = extract32(insn, 29, 1);
8597 
8598     if (immh == 0) {
8599         unallocated_encoding(s);
8600         return;
8601     }
8602 
8603     switch (opcode) {
8604     case 0x08: /* SRI */
8605         if (!is_u) {
8606             unallocated_encoding(s);
8607             return;
8608         }
8609         /* fall through */
8610     case 0x00: /* SSHR / USHR */
8611     case 0x02: /* SSRA / USRA */
8612     case 0x04: /* SRSHR / URSHR */
8613     case 0x06: /* SRSRA / URSRA */
8614         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8615         break;
8616     case 0x0a: /* SHL / SLI */
8617         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8618         break;
8619     case 0x1c: /* SCVTF, UCVTF */
8620         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8621                                      opcode, rn, rd);
8622         break;
8623     case 0x10: /* SQSHRUN, SQSHRUN2 */
8624     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8625         if (!is_u) {
8626             unallocated_encoding(s);
8627             return;
8628         }
8629         handle_vec_simd_sqshrn(s, true, false, false, true,
8630                                immh, immb, opcode, rn, rd);
8631         break;
8632     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8633     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8634         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8635                                immh, immb, opcode, rn, rd);
8636         break;
8637     case 0xc: /* SQSHLU */
8638         if (!is_u) {
8639             unallocated_encoding(s);
8640             return;
8641         }
8642         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8643         break;
8644     case 0xe: /* SQSHL, UQSHL */
8645         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8646         break;
8647     case 0x1f: /* FCVTZS, FCVTZU */
8648         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8649         break;
8650     default:
8651         unallocated_encoding(s);
8652         break;
8653     }
8654 }
8655 
8656 /* AdvSIMD scalar three different
8657  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
8658  * +-----+---+-----------+------+---+------+--------+-----+------+------+
8659  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
8660  * +-----+---+-----------+------+---+------+--------+-----+------+------+
8661  */
8662 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8663 {
8664     bool is_u = extract32(insn, 29, 1);
8665     int size = extract32(insn, 22, 2);
8666     int opcode = extract32(insn, 12, 4);
8667     int rm = extract32(insn, 16, 5);
8668     int rn = extract32(insn, 5, 5);
8669     int rd = extract32(insn, 0, 5);
8670 
8671     if (is_u) {
8672         unallocated_encoding(s);
8673         return;
8674     }
8675 
8676     switch (opcode) {
8677     case 0x9: /* SQDMLAL, SQDMLAL2 */
8678     case 0xb: /* SQDMLSL, SQDMLSL2 */
8679     case 0xd: /* SQDMULL, SQDMULL2 */
8680         if (size == 0 || size == 3) {
8681             unallocated_encoding(s);
8682             return;
8683         }
8684         break;
8685     default:
8686         unallocated_encoding(s);
8687         return;
8688     }
8689 
8690     if (!fp_access_check(s)) {
8691         return;
8692     }
8693 
8694     if (size == 2) {
8695         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8696         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8697         TCGv_i64 tcg_res = tcg_temp_new_i64();
8698 
8699         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8700         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8701 
8702         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8703         gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
8704 
8705         switch (opcode) {
8706         case 0xd: /* SQDMULL, SQDMULL2 */
8707             break;
8708         case 0xb: /* SQDMLSL, SQDMLSL2 */
8709             tcg_gen_neg_i64(tcg_res, tcg_res);
8710             /* fall through */
8711         case 0x9: /* SQDMLAL, SQDMLAL2 */
8712             read_vec_element(s, tcg_op1, rd, 0, MO_64);
8713             gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
8714                                               tcg_res, tcg_op1);
8715             break;
8716         default:
8717             g_assert_not_reached();
8718         }
8719 
8720         write_fp_dreg(s, rd, tcg_res);
8721     } else {
8722         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8723         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8724         TCGv_i64 tcg_res = tcg_temp_new_i64();
8725 
8726         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8727         gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
8728 
8729         switch (opcode) {
8730         case 0xd: /* SQDMULL, SQDMULL2 */
8731             break;
8732         case 0xb: /* SQDMLSL, SQDMLSL2 */
8733             gen_helper_neon_negl_u32(tcg_res, tcg_res);
8734             /* fall through */
8735         case 0x9: /* SQDMLAL, SQDMLAL2 */
8736         {
8737             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8738             read_vec_element(s, tcg_op3, rd, 0, MO_32);
8739             gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
8740                                               tcg_res, tcg_op3);
8741             break;
8742         }
8743         default:
8744             g_assert_not_reached();
8745         }
8746 
8747         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8748         write_fp_dreg(s, rd, tcg_res);
8749     }
8750 }
8751 
8752 static void handle_3same_64(DisasContext *s, int opcode, bool u,
8753                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
8754 {
8755     /* Handle 64x64->64 opcodes which are shared between the scalar
8756      * and vector 3-same groups. We cover every opcode where size == 3
8757      * is valid in either the three-reg-same (integer, not pairwise)
8758      * or scalar-three-reg-same groups.
8759      */
8760     TCGCond cond;
8761 
8762     switch (opcode) {
8763     case 0x1: /* SQADD */
8764         if (u) {
8765             gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8766         } else {
8767             gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8768         }
8769         break;
8770     case 0x5: /* SQSUB */
8771         if (u) {
8772             gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8773         } else {
8774             gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8775         }
8776         break;
8777     case 0x6: /* CMGT, CMHI */
8778         cond = u ? TCG_COND_GTU : TCG_COND_GT;
8779     do_cmop:
8780         /* 64 bit integer comparison, result = test ? -1 : 0. */
8781         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8782         break;
8783     case 0x7: /* CMGE, CMHS */
8784         cond = u ? TCG_COND_GEU : TCG_COND_GE;
8785         goto do_cmop;
8786     case 0x11: /* CMTST, CMEQ */
8787         if (u) {
8788             cond = TCG_COND_EQ;
8789             goto do_cmop;
8790         }
8791         gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8792         break;
8793     case 0x8: /* SSHL, USHL */
8794         if (u) {
8795             gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
8796         } else {
8797             gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
8798         }
8799         break;
8800     case 0x9: /* SQSHL, UQSHL */
8801         if (u) {
8802             gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8803         } else {
8804             gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8805         }
8806         break;
8807     case 0xa: /* SRSHL, URSHL */
8808         if (u) {
8809             gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
8810         } else {
8811             gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
8812         }
8813         break;
8814     case 0xb: /* SQRSHL, UQRSHL */
8815         if (u) {
8816             gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8817         } else {
8818             gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8819         }
8820         break;
8821     case 0x10: /* ADD, SUB */
8822         if (u) {
8823             tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
8824         } else {
8825             tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
8826         }
8827         break;
8828     default:
8829         g_assert_not_reached();
8830     }
8831 }
8832 
8833 /* Handle the 3-same-operands float operations; shared by the scalar
8834  * and vector encodings. The caller must filter out any encodings
8835  * not allocated for the encoding it is dealing with.
8836  */
8837 static void handle_3same_float(DisasContext *s, int size, int elements,
8838                                int fpopcode, int rd, int rn, int rm)
8839 {
8840     int pass;
8841     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
8842 
8843     for (pass = 0; pass < elements; pass++) {
8844         if (size) {
8845             /* Double */
8846             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8847             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8848             TCGv_i64 tcg_res = tcg_temp_new_i64();
8849 
8850             read_vec_element(s, tcg_op1, rn, pass, MO_64);
8851             read_vec_element(s, tcg_op2, rm, pass, MO_64);
8852 
8853             switch (fpopcode) {
8854             case 0x39: /* FMLS */
8855                 /* As usual for ARM, separate negation for fused multiply-add */
8856                 gen_helper_vfp_negd(tcg_op1, tcg_op1);
8857                 /* fall through */
8858             case 0x19: /* FMLA */
8859                 read_vec_element(s, tcg_res, rd, pass, MO_64);
8860                 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
8861                                        tcg_res, fpst);
8862                 break;
8863             case 0x18: /* FMAXNM */
8864                 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8865                 break;
8866             case 0x1a: /* FADD */
8867                 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8868                 break;
8869             case 0x1b: /* FMULX */
8870                 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
8871                 break;
8872             case 0x1c: /* FCMEQ */
8873                 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8874                 break;
8875             case 0x1e: /* FMAX */
8876                 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8877                 break;
8878             case 0x1f: /* FRECPS */
8879                 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8880                 break;
8881             case 0x38: /* FMINNM */
8882                 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8883                 break;
8884             case 0x3a: /* FSUB */
8885                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8886                 break;
8887             case 0x3e: /* FMIN */
8888                 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8889                 break;
8890             case 0x3f: /* FRSQRTS */
8891                 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8892                 break;
8893             case 0x5b: /* FMUL */
8894                 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
8895                 break;
8896             case 0x5c: /* FCMGE */
8897                 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8898                 break;
8899             case 0x5d: /* FACGE */
8900                 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8901                 break;
8902             case 0x5f: /* FDIV */
8903                 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
8904                 break;
8905             case 0x7a: /* FABD */
8906                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8907                 gen_helper_vfp_absd(tcg_res, tcg_res);
8908                 break;
8909             case 0x7c: /* FCMGT */
8910                 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8911                 break;
8912             case 0x7d: /* FACGT */
8913                 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8914                 break;
8915             default:
8916                 g_assert_not_reached();
8917             }
8918 
8919             write_vec_element(s, tcg_res, rd, pass, MO_64);
8920         } else {
8921             /* Single */
8922             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8923             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8924             TCGv_i32 tcg_res = tcg_temp_new_i32();
8925 
8926             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
8927             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
8928 
8929             switch (fpopcode) {
8930             case 0x39: /* FMLS */
8931                 /* As usual for ARM, separate negation for fused multiply-add */
8932                 gen_helper_vfp_negs(tcg_op1, tcg_op1);
8933                 /* fall through */
8934             case 0x19: /* FMLA */
8935                 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8936                 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
8937                                        tcg_res, fpst);
8938                 break;
8939             case 0x1a: /* FADD */
8940                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8941                 break;
8942             case 0x1b: /* FMULX */
8943                 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
8944                 break;
8945             case 0x1c: /* FCMEQ */
8946                 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8947                 break;
8948             case 0x1e: /* FMAX */
8949                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8950                 break;
8951             case 0x1f: /* FRECPS */
8952                 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8953                 break;
8954             case 0x18: /* FMAXNM */
8955                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8956                 break;
8957             case 0x38: /* FMINNM */
8958                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8959                 break;
8960             case 0x3a: /* FSUB */
8961                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8962                 break;
8963             case 0x3e: /* FMIN */
8964                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8965                 break;
8966             case 0x3f: /* FRSQRTS */
8967                 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8968                 break;
8969             case 0x5b: /* FMUL */
8970                 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
8971                 break;
8972             case 0x5c: /* FCMGE */
8973                 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8974                 break;
8975             case 0x5d: /* FACGE */
8976                 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8977                 break;
8978             case 0x5f: /* FDIV */
8979                 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
8980                 break;
8981             case 0x7a: /* FABD */
8982                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8983                 gen_helper_vfp_abss(tcg_res, tcg_res);
8984                 break;
8985             case 0x7c: /* FCMGT */
8986                 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8987                 break;
8988             case 0x7d: /* FACGT */
8989                 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8990                 break;
8991             default:
8992                 g_assert_not_reached();
8993             }
8994 
8995             if (elements == 1) {
8996                 /* scalar single so clear high part */
8997                 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8998 
8999                 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9000                 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9001             } else {
9002                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9003             }
9004         }
9005     }
9006 
9007     clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9008 }
9009 
9010 /* AdvSIMD scalar three same
9011  *  31 30  29 28       24 23  22  21 20  16 15    11  10 9    5 4    0
9012  * +-----+---+-----------+------+---+------+--------+---+------+------+
9013  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
9014  * +-----+---+-----------+------+---+------+--------+---+------+------+
9015  */
9016 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9017 {
9018     int rd = extract32(insn, 0, 5);
9019     int rn = extract32(insn, 5, 5);
9020     int opcode = extract32(insn, 11, 5);
9021     int rm = extract32(insn, 16, 5);
9022     int size = extract32(insn, 22, 2);
9023     bool u = extract32(insn, 29, 1);
9024     TCGv_i64 tcg_rd;
9025 
9026     if (opcode >= 0x18) {
9027         /* Floating point: U, size[1] and opcode indicate operation */
9028         int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9029         switch (fpopcode) {
9030         case 0x1b: /* FMULX */
9031         case 0x1f: /* FRECPS */
9032         case 0x3f: /* FRSQRTS */
9033         case 0x5d: /* FACGE */
9034         case 0x7d: /* FACGT */
9035         case 0x1c: /* FCMEQ */
9036         case 0x5c: /* FCMGE */
9037         case 0x7c: /* FCMGT */
9038         case 0x7a: /* FABD */
9039             break;
9040         default:
9041             unallocated_encoding(s);
9042             return;
9043         }
9044 
9045         if (!fp_access_check(s)) {
9046             return;
9047         }
9048 
9049         handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9050         return;
9051     }
9052 
9053     switch (opcode) {
9054     case 0x1: /* SQADD, UQADD */
9055     case 0x5: /* SQSUB, UQSUB */
9056     case 0x9: /* SQSHL, UQSHL */
9057     case 0xb: /* SQRSHL, UQRSHL */
9058         break;
9059     case 0x8: /* SSHL, USHL */
9060     case 0xa: /* SRSHL, URSHL */
9061     case 0x6: /* CMGT, CMHI */
9062     case 0x7: /* CMGE, CMHS */
9063     case 0x11: /* CMTST, CMEQ */
9064     case 0x10: /* ADD, SUB (vector) */
9065         if (size != 3) {
9066             unallocated_encoding(s);
9067             return;
9068         }
9069         break;
9070     case 0x16: /* SQDMULH, SQRDMULH (vector) */
9071         if (size != 1 && size != 2) {
9072             unallocated_encoding(s);
9073             return;
9074         }
9075         break;
9076     default:
9077         unallocated_encoding(s);
9078         return;
9079     }
9080 
9081     if (!fp_access_check(s)) {
9082         return;
9083     }
9084 
9085     tcg_rd = tcg_temp_new_i64();
9086 
9087     if (size == 3) {
9088         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9089         TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9090 
9091         handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9092     } else {
9093         /* Do a single operation on the lowest element in the vector.
9094          * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9095          * no side effects for all these operations.
9096          * OPTME: special-purpose helpers would avoid doing some
9097          * unnecessary work in the helper for the 8 and 16 bit cases.
9098          */
9099         NeonGenTwoOpEnvFn *genenvfn;
9100         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9101         TCGv_i32 tcg_rm = tcg_temp_new_i32();
9102         TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9103 
9104         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9105         read_vec_element_i32(s, tcg_rm, rm, 0, size);
9106 
9107         switch (opcode) {
9108         case 0x1: /* SQADD, UQADD */
9109         {
9110             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9111                 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9112                 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9113                 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9114             };
9115             genenvfn = fns[size][u];
9116             break;
9117         }
9118         case 0x5: /* SQSUB, UQSUB */
9119         {
9120             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9121                 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9122                 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9123                 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9124             };
9125             genenvfn = fns[size][u];
9126             break;
9127         }
9128         case 0x9: /* SQSHL, UQSHL */
9129         {
9130             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9131                 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9132                 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9133                 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9134             };
9135             genenvfn = fns[size][u];
9136             break;
9137         }
9138         case 0xb: /* SQRSHL, UQRSHL */
9139         {
9140             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9141                 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9142                 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9143                 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9144             };
9145             genenvfn = fns[size][u];
9146             break;
9147         }
9148         case 0x16: /* SQDMULH, SQRDMULH */
9149         {
9150             static NeonGenTwoOpEnvFn * const fns[2][2] = {
9151                 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9152                 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9153             };
9154             assert(size == 1 || size == 2);
9155             genenvfn = fns[size - 1][u];
9156             break;
9157         }
9158         default:
9159             g_assert_not_reached();
9160         }
9161 
9162         genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm);
9163         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9164     }
9165 
9166     write_fp_dreg(s, rd, tcg_rd);
9167 }
9168 
9169 /* AdvSIMD scalar three same FP16
9170  *  31 30  29 28       24 23  22 21 20  16 15 14 13    11 10  9  5 4  0
9171  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9172  * | 0 1 | U | 1 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 | Rn | Rd |
9173  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9174  * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9175  * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9176  */
9177 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9178                                                   uint32_t insn)
9179 {
9180     int rd = extract32(insn, 0, 5);
9181     int rn = extract32(insn, 5, 5);
9182     int opcode = extract32(insn, 11, 3);
9183     int rm = extract32(insn, 16, 5);
9184     bool u = extract32(insn, 29, 1);
9185     bool a = extract32(insn, 23, 1);
9186     int fpopcode = opcode | (a << 3) |  (u << 4);
9187     TCGv_ptr fpst;
9188     TCGv_i32 tcg_op1;
9189     TCGv_i32 tcg_op2;
9190     TCGv_i32 tcg_res;
9191 
9192     switch (fpopcode) {
9193     case 0x03: /* FMULX */
9194     case 0x04: /* FCMEQ (reg) */
9195     case 0x07: /* FRECPS */
9196     case 0x0f: /* FRSQRTS */
9197     case 0x14: /* FCMGE (reg) */
9198     case 0x15: /* FACGE */
9199     case 0x1a: /* FABD */
9200     case 0x1c: /* FCMGT (reg) */
9201     case 0x1d: /* FACGT */
9202         break;
9203     default:
9204         unallocated_encoding(s);
9205         return;
9206     }
9207 
9208     if (!dc_isar_feature(aa64_fp16, s)) {
9209         unallocated_encoding(s);
9210     }
9211 
9212     if (!fp_access_check(s)) {
9213         return;
9214     }
9215 
9216     fpst = fpstatus_ptr(FPST_FPCR_F16);
9217 
9218     tcg_op1 = read_fp_hreg(s, rn);
9219     tcg_op2 = read_fp_hreg(s, rm);
9220     tcg_res = tcg_temp_new_i32();
9221 
9222     switch (fpopcode) {
9223     case 0x03: /* FMULX */
9224         gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9225         break;
9226     case 0x04: /* FCMEQ (reg) */
9227         gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9228         break;
9229     case 0x07: /* FRECPS */
9230         gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9231         break;
9232     case 0x0f: /* FRSQRTS */
9233         gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9234         break;
9235     case 0x14: /* FCMGE (reg) */
9236         gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9237         break;
9238     case 0x15: /* FACGE */
9239         gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9240         break;
9241     case 0x1a: /* FABD */
9242         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9243         tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9244         break;
9245     case 0x1c: /* FCMGT (reg) */
9246         gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9247         break;
9248     case 0x1d: /* FACGT */
9249         gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9250         break;
9251     default:
9252         g_assert_not_reached();
9253     }
9254 
9255     write_fp_sreg(s, rd, tcg_res);
9256 }
9257 
9258 /* AdvSIMD scalar three same extra
9259  *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9260  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9261  * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9262  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9263  */
9264 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9265                                                    uint32_t insn)
9266 {
9267     int rd = extract32(insn, 0, 5);
9268     int rn = extract32(insn, 5, 5);
9269     int opcode = extract32(insn, 11, 4);
9270     int rm = extract32(insn, 16, 5);
9271     int size = extract32(insn, 22, 2);
9272     bool u = extract32(insn, 29, 1);
9273     TCGv_i32 ele1, ele2, ele3;
9274     TCGv_i64 res;
9275     bool feature;
9276 
9277     switch (u * 16 + opcode) {
9278     case 0x10: /* SQRDMLAH (vector) */
9279     case 0x11: /* SQRDMLSH (vector) */
9280         if (size != 1 && size != 2) {
9281             unallocated_encoding(s);
9282             return;
9283         }
9284         feature = dc_isar_feature(aa64_rdm, s);
9285         break;
9286     default:
9287         unallocated_encoding(s);
9288         return;
9289     }
9290     if (!feature) {
9291         unallocated_encoding(s);
9292         return;
9293     }
9294     if (!fp_access_check(s)) {
9295         return;
9296     }
9297 
9298     /* Do a single operation on the lowest element in the vector.
9299      * We use the standard Neon helpers and rely on 0 OP 0 == 0
9300      * with no side effects for all these operations.
9301      * OPTME: special-purpose helpers would avoid doing some
9302      * unnecessary work in the helper for the 16 bit cases.
9303      */
9304     ele1 = tcg_temp_new_i32();
9305     ele2 = tcg_temp_new_i32();
9306     ele3 = tcg_temp_new_i32();
9307 
9308     read_vec_element_i32(s, ele1, rn, 0, size);
9309     read_vec_element_i32(s, ele2, rm, 0, size);
9310     read_vec_element_i32(s, ele3, rd, 0, size);
9311 
9312     switch (opcode) {
9313     case 0x0: /* SQRDMLAH */
9314         if (size == 1) {
9315             gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3);
9316         } else {
9317             gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3);
9318         }
9319         break;
9320     case 0x1: /* SQRDMLSH */
9321         if (size == 1) {
9322             gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3);
9323         } else {
9324             gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3);
9325         }
9326         break;
9327     default:
9328         g_assert_not_reached();
9329     }
9330 
9331     res = tcg_temp_new_i64();
9332     tcg_gen_extu_i32_i64(res, ele3);
9333     write_fp_dreg(s, rd, res);
9334 }
9335 
9336 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9337                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9338                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9339 {
9340     /* Handle 64->64 opcodes which are shared between the scalar and
9341      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9342      * is valid in either group and also the double-precision fp ops.
9343      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9344      * requires them.
9345      */
9346     TCGCond cond;
9347 
9348     switch (opcode) {
9349     case 0x4: /* CLS, CLZ */
9350         if (u) {
9351             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9352         } else {
9353             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9354         }
9355         break;
9356     case 0x5: /* NOT */
9357         /* This opcode is shared with CNT and RBIT but we have earlier
9358          * enforced that size == 3 if and only if this is the NOT insn.
9359          */
9360         tcg_gen_not_i64(tcg_rd, tcg_rn);
9361         break;
9362     case 0x7: /* SQABS, SQNEG */
9363         if (u) {
9364             gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9365         } else {
9366             gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9367         }
9368         break;
9369     case 0xa: /* CMLT */
9370         cond = TCG_COND_LT;
9371     do_cmop:
9372         /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9373         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9374         break;
9375     case 0x8: /* CMGT, CMGE */
9376         cond = u ? TCG_COND_GE : TCG_COND_GT;
9377         goto do_cmop;
9378     case 0x9: /* CMEQ, CMLE */
9379         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9380         goto do_cmop;
9381     case 0xb: /* ABS, NEG */
9382         if (u) {
9383             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9384         } else {
9385             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9386         }
9387         break;
9388     case 0x2f: /* FABS */
9389         gen_helper_vfp_absd(tcg_rd, tcg_rn);
9390         break;
9391     case 0x6f: /* FNEG */
9392         gen_helper_vfp_negd(tcg_rd, tcg_rn);
9393         break;
9394     case 0x7f: /* FSQRT */
9395         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9396         break;
9397     case 0x1a: /* FCVTNS */
9398     case 0x1b: /* FCVTMS */
9399     case 0x1c: /* FCVTAS */
9400     case 0x3a: /* FCVTPS */
9401     case 0x3b: /* FCVTZS */
9402         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9403         break;
9404     case 0x5a: /* FCVTNU */
9405     case 0x5b: /* FCVTMU */
9406     case 0x5c: /* FCVTAU */
9407     case 0x7a: /* FCVTPU */
9408     case 0x7b: /* FCVTZU */
9409         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9410         break;
9411     case 0x18: /* FRINTN */
9412     case 0x19: /* FRINTM */
9413     case 0x38: /* FRINTP */
9414     case 0x39: /* FRINTZ */
9415     case 0x58: /* FRINTA */
9416     case 0x79: /* FRINTI */
9417         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9418         break;
9419     case 0x59: /* FRINTX */
9420         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9421         break;
9422     case 0x1e: /* FRINT32Z */
9423     case 0x5e: /* FRINT32X */
9424         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9425         break;
9426     case 0x1f: /* FRINT64Z */
9427     case 0x5f: /* FRINT64X */
9428         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9429         break;
9430     default:
9431         g_assert_not_reached();
9432     }
9433 }
9434 
9435 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9436                                    bool is_scalar, bool is_u, bool is_q,
9437                                    int size, int rn, int rd)
9438 {
9439     bool is_double = (size == MO_64);
9440     TCGv_ptr fpst;
9441 
9442     if (!fp_access_check(s)) {
9443         return;
9444     }
9445 
9446     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9447 
9448     if (is_double) {
9449         TCGv_i64 tcg_op = tcg_temp_new_i64();
9450         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9451         TCGv_i64 tcg_res = tcg_temp_new_i64();
9452         NeonGenTwoDoubleOpFn *genfn;
9453         bool swap = false;
9454         int pass;
9455 
9456         switch (opcode) {
9457         case 0x2e: /* FCMLT (zero) */
9458             swap = true;
9459             /* fallthrough */
9460         case 0x2c: /* FCMGT (zero) */
9461             genfn = gen_helper_neon_cgt_f64;
9462             break;
9463         case 0x2d: /* FCMEQ (zero) */
9464             genfn = gen_helper_neon_ceq_f64;
9465             break;
9466         case 0x6d: /* FCMLE (zero) */
9467             swap = true;
9468             /* fall through */
9469         case 0x6c: /* FCMGE (zero) */
9470             genfn = gen_helper_neon_cge_f64;
9471             break;
9472         default:
9473             g_assert_not_reached();
9474         }
9475 
9476         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9477             read_vec_element(s, tcg_op, rn, pass, MO_64);
9478             if (swap) {
9479                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9480             } else {
9481                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9482             }
9483             write_vec_element(s, tcg_res, rd, pass, MO_64);
9484         }
9485 
9486         clear_vec_high(s, !is_scalar, rd);
9487     } else {
9488         TCGv_i32 tcg_op = tcg_temp_new_i32();
9489         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9490         TCGv_i32 tcg_res = tcg_temp_new_i32();
9491         NeonGenTwoSingleOpFn *genfn;
9492         bool swap = false;
9493         int pass, maxpasses;
9494 
9495         if (size == MO_16) {
9496             switch (opcode) {
9497             case 0x2e: /* FCMLT (zero) */
9498                 swap = true;
9499                 /* fall through */
9500             case 0x2c: /* FCMGT (zero) */
9501                 genfn = gen_helper_advsimd_cgt_f16;
9502                 break;
9503             case 0x2d: /* FCMEQ (zero) */
9504                 genfn = gen_helper_advsimd_ceq_f16;
9505                 break;
9506             case 0x6d: /* FCMLE (zero) */
9507                 swap = true;
9508                 /* fall through */
9509             case 0x6c: /* FCMGE (zero) */
9510                 genfn = gen_helper_advsimd_cge_f16;
9511                 break;
9512             default:
9513                 g_assert_not_reached();
9514             }
9515         } else {
9516             switch (opcode) {
9517             case 0x2e: /* FCMLT (zero) */
9518                 swap = true;
9519                 /* fall through */
9520             case 0x2c: /* FCMGT (zero) */
9521                 genfn = gen_helper_neon_cgt_f32;
9522                 break;
9523             case 0x2d: /* FCMEQ (zero) */
9524                 genfn = gen_helper_neon_ceq_f32;
9525                 break;
9526             case 0x6d: /* FCMLE (zero) */
9527                 swap = true;
9528                 /* fall through */
9529             case 0x6c: /* FCMGE (zero) */
9530                 genfn = gen_helper_neon_cge_f32;
9531                 break;
9532             default:
9533                 g_assert_not_reached();
9534             }
9535         }
9536 
9537         if (is_scalar) {
9538             maxpasses = 1;
9539         } else {
9540             int vector_size = 8 << is_q;
9541             maxpasses = vector_size >> size;
9542         }
9543 
9544         for (pass = 0; pass < maxpasses; pass++) {
9545             read_vec_element_i32(s, tcg_op, rn, pass, size);
9546             if (swap) {
9547                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9548             } else {
9549                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9550             }
9551             if (is_scalar) {
9552                 write_fp_sreg(s, rd, tcg_res);
9553             } else {
9554                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9555             }
9556         }
9557 
9558         if (!is_scalar) {
9559             clear_vec_high(s, is_q, rd);
9560         }
9561     }
9562 }
9563 
9564 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9565                                     bool is_scalar, bool is_u, bool is_q,
9566                                     int size, int rn, int rd)
9567 {
9568     bool is_double = (size == 3);
9569     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9570 
9571     if (is_double) {
9572         TCGv_i64 tcg_op = tcg_temp_new_i64();
9573         TCGv_i64 tcg_res = tcg_temp_new_i64();
9574         int pass;
9575 
9576         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9577             read_vec_element(s, tcg_op, rn, pass, MO_64);
9578             switch (opcode) {
9579             case 0x3d: /* FRECPE */
9580                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9581                 break;
9582             case 0x3f: /* FRECPX */
9583                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9584                 break;
9585             case 0x7d: /* FRSQRTE */
9586                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9587                 break;
9588             default:
9589                 g_assert_not_reached();
9590             }
9591             write_vec_element(s, tcg_res, rd, pass, MO_64);
9592         }
9593         clear_vec_high(s, !is_scalar, rd);
9594     } else {
9595         TCGv_i32 tcg_op = tcg_temp_new_i32();
9596         TCGv_i32 tcg_res = tcg_temp_new_i32();
9597         int pass, maxpasses;
9598 
9599         if (is_scalar) {
9600             maxpasses = 1;
9601         } else {
9602             maxpasses = is_q ? 4 : 2;
9603         }
9604 
9605         for (pass = 0; pass < maxpasses; pass++) {
9606             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9607 
9608             switch (opcode) {
9609             case 0x3c: /* URECPE */
9610                 gen_helper_recpe_u32(tcg_res, tcg_op);
9611                 break;
9612             case 0x3d: /* FRECPE */
9613                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9614                 break;
9615             case 0x3f: /* FRECPX */
9616                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9617                 break;
9618             case 0x7d: /* FRSQRTE */
9619                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9620                 break;
9621             default:
9622                 g_assert_not_reached();
9623             }
9624 
9625             if (is_scalar) {
9626                 write_fp_sreg(s, rd, tcg_res);
9627             } else {
9628                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9629             }
9630         }
9631         if (!is_scalar) {
9632             clear_vec_high(s, is_q, rd);
9633         }
9634     }
9635 }
9636 
9637 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9638                                 int opcode, bool u, bool is_q,
9639                                 int size, int rn, int rd)
9640 {
9641     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9642      * in the source becomes a size element in the destination).
9643      */
9644     int pass;
9645     TCGv_i32 tcg_res[2];
9646     int destelt = is_q ? 2 : 0;
9647     int passes = scalar ? 1 : 2;
9648 
9649     if (scalar) {
9650         tcg_res[1] = tcg_constant_i32(0);
9651     }
9652 
9653     for (pass = 0; pass < passes; pass++) {
9654         TCGv_i64 tcg_op = tcg_temp_new_i64();
9655         NeonGenNarrowFn *genfn = NULL;
9656         NeonGenNarrowEnvFn *genenvfn = NULL;
9657 
9658         if (scalar) {
9659             read_vec_element(s, tcg_op, rn, pass, size + 1);
9660         } else {
9661             read_vec_element(s, tcg_op, rn, pass, MO_64);
9662         }
9663         tcg_res[pass] = tcg_temp_new_i32();
9664 
9665         switch (opcode) {
9666         case 0x12: /* XTN, SQXTUN */
9667         {
9668             static NeonGenNarrowFn * const xtnfns[3] = {
9669                 gen_helper_neon_narrow_u8,
9670                 gen_helper_neon_narrow_u16,
9671                 tcg_gen_extrl_i64_i32,
9672             };
9673             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9674                 gen_helper_neon_unarrow_sat8,
9675                 gen_helper_neon_unarrow_sat16,
9676                 gen_helper_neon_unarrow_sat32,
9677             };
9678             if (u) {
9679                 genenvfn = sqxtunfns[size];
9680             } else {
9681                 genfn = xtnfns[size];
9682             }
9683             break;
9684         }
9685         case 0x14: /* SQXTN, UQXTN */
9686         {
9687             static NeonGenNarrowEnvFn * const fns[3][2] = {
9688                 { gen_helper_neon_narrow_sat_s8,
9689                   gen_helper_neon_narrow_sat_u8 },
9690                 { gen_helper_neon_narrow_sat_s16,
9691                   gen_helper_neon_narrow_sat_u16 },
9692                 { gen_helper_neon_narrow_sat_s32,
9693                   gen_helper_neon_narrow_sat_u32 },
9694             };
9695             genenvfn = fns[size][u];
9696             break;
9697         }
9698         case 0x16: /* FCVTN, FCVTN2 */
9699             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9700             if (size == 2) {
9701                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
9702             } else {
9703                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9704                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9705                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9706                 TCGv_i32 ahp = get_ahp_flag();
9707 
9708                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9709                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9710                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9711                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9712             }
9713             break;
9714         case 0x36: /* BFCVTN, BFCVTN2 */
9715             {
9716                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9717                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
9718             }
9719             break;
9720         case 0x56:  /* FCVTXN, FCVTXN2 */
9721             /* 64 bit to 32 bit float conversion
9722              * with von Neumann rounding (round to odd)
9723              */
9724             assert(size == 2);
9725             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
9726             break;
9727         default:
9728             g_assert_not_reached();
9729         }
9730 
9731         if (genfn) {
9732             genfn(tcg_res[pass], tcg_op);
9733         } else if (genenvfn) {
9734             genenvfn(tcg_res[pass], tcg_env, tcg_op);
9735         }
9736     }
9737 
9738     for (pass = 0; pass < 2; pass++) {
9739         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9740     }
9741     clear_vec_high(s, is_q, rd);
9742 }
9743 
9744 /* Remaining saturating accumulating ops */
9745 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9746                                 bool is_q, int size, int rn, int rd)
9747 {
9748     bool is_double = (size == 3);
9749 
9750     if (is_double) {
9751         TCGv_i64 tcg_rn = tcg_temp_new_i64();
9752         TCGv_i64 tcg_rd = tcg_temp_new_i64();
9753         int pass;
9754 
9755         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9756             read_vec_element(s, tcg_rn, rn, pass, MO_64);
9757             read_vec_element(s, tcg_rd, rd, pass, MO_64);
9758 
9759             if (is_u) { /* USQADD */
9760                 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9761             } else { /* SUQADD */
9762                 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9763             }
9764             write_vec_element(s, tcg_rd, rd, pass, MO_64);
9765         }
9766         clear_vec_high(s, !is_scalar, rd);
9767     } else {
9768         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9769         TCGv_i32 tcg_rd = tcg_temp_new_i32();
9770         int pass, maxpasses;
9771 
9772         if (is_scalar) {
9773             maxpasses = 1;
9774         } else {
9775             maxpasses = is_q ? 4 : 2;
9776         }
9777 
9778         for (pass = 0; pass < maxpasses; pass++) {
9779             if (is_scalar) {
9780                 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9781                 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9782             } else {
9783                 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9784                 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9785             }
9786 
9787             if (is_u) { /* USQADD */
9788                 switch (size) {
9789                 case 0:
9790                     gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9791                     break;
9792                 case 1:
9793                     gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9794                     break;
9795                 case 2:
9796                     gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9797                     break;
9798                 default:
9799                     g_assert_not_reached();
9800                 }
9801             } else { /* SUQADD */
9802                 switch (size) {
9803                 case 0:
9804                     gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9805                     break;
9806                 case 1:
9807                     gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9808                     break;
9809                 case 2:
9810                     gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9811                     break;
9812                 default:
9813                     g_assert_not_reached();
9814                 }
9815             }
9816 
9817             if (is_scalar) {
9818                 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
9819             }
9820             write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9821         }
9822         clear_vec_high(s, is_q, rd);
9823     }
9824 }
9825 
9826 /* AdvSIMD scalar two reg misc
9827  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
9828  * +-----+---+-----------+------+-----------+--------+-----+------+------+
9829  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
9830  * +-----+---+-----------+------+-----------+--------+-----+------+------+
9831  */
9832 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
9833 {
9834     int rd = extract32(insn, 0, 5);
9835     int rn = extract32(insn, 5, 5);
9836     int opcode = extract32(insn, 12, 5);
9837     int size = extract32(insn, 22, 2);
9838     bool u = extract32(insn, 29, 1);
9839     bool is_fcvt = false;
9840     int rmode;
9841     TCGv_i32 tcg_rmode;
9842     TCGv_ptr tcg_fpstatus;
9843 
9844     switch (opcode) {
9845     case 0x3: /* USQADD / SUQADD*/
9846         if (!fp_access_check(s)) {
9847             return;
9848         }
9849         handle_2misc_satacc(s, true, u, false, size, rn, rd);
9850         return;
9851     case 0x7: /* SQABS / SQNEG */
9852         break;
9853     case 0xa: /* CMLT */
9854         if (u) {
9855             unallocated_encoding(s);
9856             return;
9857         }
9858         /* fall through */
9859     case 0x8: /* CMGT, CMGE */
9860     case 0x9: /* CMEQ, CMLE */
9861     case 0xb: /* ABS, NEG */
9862         if (size != 3) {
9863             unallocated_encoding(s);
9864             return;
9865         }
9866         break;
9867     case 0x12: /* SQXTUN */
9868         if (!u) {
9869             unallocated_encoding(s);
9870             return;
9871         }
9872         /* fall through */
9873     case 0x14: /* SQXTN, UQXTN */
9874         if (size == 3) {
9875             unallocated_encoding(s);
9876             return;
9877         }
9878         if (!fp_access_check(s)) {
9879             return;
9880         }
9881         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
9882         return;
9883     case 0xc ... 0xf:
9884     case 0x16 ... 0x1d:
9885     case 0x1f:
9886         /* Floating point: U, size[1] and opcode indicate operation;
9887          * size[0] indicates single or double precision.
9888          */
9889         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
9890         size = extract32(size, 0, 1) ? 3 : 2;
9891         switch (opcode) {
9892         case 0x2c: /* FCMGT (zero) */
9893         case 0x2d: /* FCMEQ (zero) */
9894         case 0x2e: /* FCMLT (zero) */
9895         case 0x6c: /* FCMGE (zero) */
9896         case 0x6d: /* FCMLE (zero) */
9897             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
9898             return;
9899         case 0x1d: /* SCVTF */
9900         case 0x5d: /* UCVTF */
9901         {
9902             bool is_signed = (opcode == 0x1d);
9903             if (!fp_access_check(s)) {
9904                 return;
9905             }
9906             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
9907             return;
9908         }
9909         case 0x3d: /* FRECPE */
9910         case 0x3f: /* FRECPX */
9911         case 0x7d: /* FRSQRTE */
9912             if (!fp_access_check(s)) {
9913                 return;
9914             }
9915             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
9916             return;
9917         case 0x1a: /* FCVTNS */
9918         case 0x1b: /* FCVTMS */
9919         case 0x3a: /* FCVTPS */
9920         case 0x3b: /* FCVTZS */
9921         case 0x5a: /* FCVTNU */
9922         case 0x5b: /* FCVTMU */
9923         case 0x7a: /* FCVTPU */
9924         case 0x7b: /* FCVTZU */
9925             is_fcvt = true;
9926             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
9927             break;
9928         case 0x1c: /* FCVTAS */
9929         case 0x5c: /* FCVTAU */
9930             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
9931             is_fcvt = true;
9932             rmode = FPROUNDING_TIEAWAY;
9933             break;
9934         case 0x56: /* FCVTXN, FCVTXN2 */
9935             if (size == 2) {
9936                 unallocated_encoding(s);
9937                 return;
9938             }
9939             if (!fp_access_check(s)) {
9940                 return;
9941             }
9942             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
9943             return;
9944         default:
9945             unallocated_encoding(s);
9946             return;
9947         }
9948         break;
9949     default:
9950         unallocated_encoding(s);
9951         return;
9952     }
9953 
9954     if (!fp_access_check(s)) {
9955         return;
9956     }
9957 
9958     if (is_fcvt) {
9959         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
9960         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
9961     } else {
9962         tcg_fpstatus = NULL;
9963         tcg_rmode = NULL;
9964     }
9965 
9966     if (size == 3) {
9967         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9968         TCGv_i64 tcg_rd = tcg_temp_new_i64();
9969 
9970         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
9971         write_fp_dreg(s, rd, tcg_rd);
9972     } else {
9973         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9974         TCGv_i32 tcg_rd = tcg_temp_new_i32();
9975 
9976         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9977 
9978         switch (opcode) {
9979         case 0x7: /* SQABS, SQNEG */
9980         {
9981             NeonGenOneOpEnvFn *genfn;
9982             static NeonGenOneOpEnvFn * const fns[3][2] = {
9983                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
9984                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
9985                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
9986             };
9987             genfn = fns[size][u];
9988             genfn(tcg_rd, tcg_env, tcg_rn);
9989             break;
9990         }
9991         case 0x1a: /* FCVTNS */
9992         case 0x1b: /* FCVTMS */
9993         case 0x1c: /* FCVTAS */
9994         case 0x3a: /* FCVTPS */
9995         case 0x3b: /* FCVTZS */
9996             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
9997                                  tcg_fpstatus);
9998             break;
9999         case 0x5a: /* FCVTNU */
10000         case 0x5b: /* FCVTMU */
10001         case 0x5c: /* FCVTAU */
10002         case 0x7a: /* FCVTPU */
10003         case 0x7b: /* FCVTZU */
10004             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10005                                  tcg_fpstatus);
10006             break;
10007         default:
10008             g_assert_not_reached();
10009         }
10010 
10011         write_fp_sreg(s, rd, tcg_rd);
10012     }
10013 
10014     if (is_fcvt) {
10015         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10016     }
10017 }
10018 
10019 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10020 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10021                                  int immh, int immb, int opcode, int rn, int rd)
10022 {
10023     int size = 32 - clz32(immh) - 1;
10024     int immhb = immh << 3 | immb;
10025     int shift = 2 * (8 << size) - immhb;
10026     GVecGen2iFn *gvec_fn;
10027 
10028     if (extract32(immh, 3, 1) && !is_q) {
10029         unallocated_encoding(s);
10030         return;
10031     }
10032     tcg_debug_assert(size <= 3);
10033 
10034     if (!fp_access_check(s)) {
10035         return;
10036     }
10037 
10038     switch (opcode) {
10039     case 0x02: /* SSRA / USRA (accumulate) */
10040         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10041         break;
10042 
10043     case 0x08: /* SRI */
10044         gvec_fn = gen_gvec_sri;
10045         break;
10046 
10047     case 0x00: /* SSHR / USHR */
10048         if (is_u) {
10049             if (shift == 8 << size) {
10050                 /* Shift count the same size as element size produces zero.  */
10051                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10052                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10053                 return;
10054             }
10055             gvec_fn = tcg_gen_gvec_shri;
10056         } else {
10057             /* Shift count the same size as element size produces all sign.  */
10058             if (shift == 8 << size) {
10059                 shift -= 1;
10060             }
10061             gvec_fn = tcg_gen_gvec_sari;
10062         }
10063         break;
10064 
10065     case 0x04: /* SRSHR / URSHR (rounding) */
10066         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10067         break;
10068 
10069     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10070         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10071         break;
10072 
10073     default:
10074         g_assert_not_reached();
10075     }
10076 
10077     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10078 }
10079 
10080 /* SHL/SLI - Vector shift left */
10081 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10082                                  int immh, int immb, int opcode, int rn, int rd)
10083 {
10084     int size = 32 - clz32(immh) - 1;
10085     int immhb = immh << 3 | immb;
10086     int shift = immhb - (8 << size);
10087 
10088     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10089     assert(size >= 0 && size <= 3);
10090 
10091     if (extract32(immh, 3, 1) && !is_q) {
10092         unallocated_encoding(s);
10093         return;
10094     }
10095 
10096     if (!fp_access_check(s)) {
10097         return;
10098     }
10099 
10100     if (insert) {
10101         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10102     } else {
10103         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10104     }
10105 }
10106 
10107 /* USHLL/SHLL - Vector shift left with widening */
10108 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10109                                  int immh, int immb, int opcode, int rn, int rd)
10110 {
10111     int size = 32 - clz32(immh) - 1;
10112     int immhb = immh << 3 | immb;
10113     int shift = immhb - (8 << size);
10114     int dsize = 64;
10115     int esize = 8 << size;
10116     int elements = dsize/esize;
10117     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10118     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10119     int i;
10120 
10121     if (size >= 3) {
10122         unallocated_encoding(s);
10123         return;
10124     }
10125 
10126     if (!fp_access_check(s)) {
10127         return;
10128     }
10129 
10130     /* For the LL variants the store is larger than the load,
10131      * so if rd == rn we would overwrite parts of our input.
10132      * So load everything right now and use shifts in the main loop.
10133      */
10134     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10135 
10136     for (i = 0; i < elements; i++) {
10137         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10138         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10139         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10140         write_vec_element(s, tcg_rd, rd, i, size + 1);
10141     }
10142 }
10143 
10144 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10145 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10146                                  int immh, int immb, int opcode, int rn, int rd)
10147 {
10148     int immhb = immh << 3 | immb;
10149     int size = 32 - clz32(immh) - 1;
10150     int dsize = 64;
10151     int esize = 8 << size;
10152     int elements = dsize/esize;
10153     int shift = (2 * esize) - immhb;
10154     bool round = extract32(opcode, 0, 1);
10155     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10156     TCGv_i64 tcg_round;
10157     int i;
10158 
10159     if (extract32(immh, 3, 1)) {
10160         unallocated_encoding(s);
10161         return;
10162     }
10163 
10164     if (!fp_access_check(s)) {
10165         return;
10166     }
10167 
10168     tcg_rn = tcg_temp_new_i64();
10169     tcg_rd = tcg_temp_new_i64();
10170     tcg_final = tcg_temp_new_i64();
10171     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10172 
10173     if (round) {
10174         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10175     } else {
10176         tcg_round = NULL;
10177     }
10178 
10179     for (i = 0; i < elements; i++) {
10180         read_vec_element(s, tcg_rn, rn, i, size+1);
10181         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10182                                 false, true, size+1, shift);
10183 
10184         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10185     }
10186 
10187     if (!is_q) {
10188         write_vec_element(s, tcg_final, rd, 0, MO_64);
10189     } else {
10190         write_vec_element(s, tcg_final, rd, 1, MO_64);
10191     }
10192 
10193     clear_vec_high(s, is_q, rd);
10194 }
10195 
10196 
10197 /* AdvSIMD shift by immediate
10198  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10199  * +---+---+---+-------------+------+------+--------+---+------+------+
10200  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10201  * +---+---+---+-------------+------+------+--------+---+------+------+
10202  */
10203 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10204 {
10205     int rd = extract32(insn, 0, 5);
10206     int rn = extract32(insn, 5, 5);
10207     int opcode = extract32(insn, 11, 5);
10208     int immb = extract32(insn, 16, 3);
10209     int immh = extract32(insn, 19, 4);
10210     bool is_u = extract32(insn, 29, 1);
10211     bool is_q = extract32(insn, 30, 1);
10212 
10213     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10214     assert(immh != 0);
10215 
10216     switch (opcode) {
10217     case 0x08: /* SRI */
10218         if (!is_u) {
10219             unallocated_encoding(s);
10220             return;
10221         }
10222         /* fall through */
10223     case 0x00: /* SSHR / USHR */
10224     case 0x02: /* SSRA / USRA (accumulate) */
10225     case 0x04: /* SRSHR / URSHR (rounding) */
10226     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10227         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10228         break;
10229     case 0x0a: /* SHL / SLI */
10230         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10231         break;
10232     case 0x10: /* SHRN */
10233     case 0x11: /* RSHRN / SQRSHRUN */
10234         if (is_u) {
10235             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10236                                    opcode, rn, rd);
10237         } else {
10238             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10239         }
10240         break;
10241     case 0x12: /* SQSHRN / UQSHRN */
10242     case 0x13: /* SQRSHRN / UQRSHRN */
10243         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10244                                opcode, rn, rd);
10245         break;
10246     case 0x14: /* SSHLL / USHLL */
10247         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10248         break;
10249     case 0x1c: /* SCVTF / UCVTF */
10250         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10251                                      opcode, rn, rd);
10252         break;
10253     case 0xc: /* SQSHLU */
10254         if (!is_u) {
10255             unallocated_encoding(s);
10256             return;
10257         }
10258         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10259         break;
10260     case 0xe: /* SQSHL, UQSHL */
10261         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10262         break;
10263     case 0x1f: /* FCVTZS/ FCVTZU */
10264         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10265         return;
10266     default:
10267         unallocated_encoding(s);
10268         return;
10269     }
10270 }
10271 
10272 /* Generate code to do a "long" addition or subtraction, ie one done in
10273  * TCGv_i64 on vector lanes twice the width specified by size.
10274  */
10275 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10276                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10277 {
10278     static NeonGenTwo64OpFn * const fns[3][2] = {
10279         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10280         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10281         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10282     };
10283     NeonGenTwo64OpFn *genfn;
10284     assert(size < 3);
10285 
10286     genfn = fns[size][is_sub];
10287     genfn(tcg_res, tcg_op1, tcg_op2);
10288 }
10289 
10290 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10291                                 int opcode, int rd, int rn, int rm)
10292 {
10293     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10294     TCGv_i64 tcg_res[2];
10295     int pass, accop;
10296 
10297     tcg_res[0] = tcg_temp_new_i64();
10298     tcg_res[1] = tcg_temp_new_i64();
10299 
10300     /* Does this op do an adding accumulate, a subtracting accumulate,
10301      * or no accumulate at all?
10302      */
10303     switch (opcode) {
10304     case 5:
10305     case 8:
10306     case 9:
10307         accop = 1;
10308         break;
10309     case 10:
10310     case 11:
10311         accop = -1;
10312         break;
10313     default:
10314         accop = 0;
10315         break;
10316     }
10317 
10318     if (accop != 0) {
10319         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10320         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10321     }
10322 
10323     /* size == 2 means two 32x32->64 operations; this is worth special
10324      * casing because we can generally handle it inline.
10325      */
10326     if (size == 2) {
10327         for (pass = 0; pass < 2; pass++) {
10328             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10329             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10330             TCGv_i64 tcg_passres;
10331             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10332 
10333             int elt = pass + is_q * 2;
10334 
10335             read_vec_element(s, tcg_op1, rn, elt, memop);
10336             read_vec_element(s, tcg_op2, rm, elt, memop);
10337 
10338             if (accop == 0) {
10339                 tcg_passres = tcg_res[pass];
10340             } else {
10341                 tcg_passres = tcg_temp_new_i64();
10342             }
10343 
10344             switch (opcode) {
10345             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10346                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10347                 break;
10348             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10349                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10350                 break;
10351             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10352             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10353             {
10354                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10355                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10356 
10357                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10358                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10359                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10360                                     tcg_passres,
10361                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10362                 break;
10363             }
10364             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10365             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10366             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10367                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10368                 break;
10369             case 9: /* SQDMLAL, SQDMLAL2 */
10370             case 11: /* SQDMLSL, SQDMLSL2 */
10371             case 13: /* SQDMULL, SQDMULL2 */
10372                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10373                 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10374                                                   tcg_passres, tcg_passres);
10375                 break;
10376             default:
10377                 g_assert_not_reached();
10378             }
10379 
10380             if (opcode == 9 || opcode == 11) {
10381                 /* saturating accumulate ops */
10382                 if (accop < 0) {
10383                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10384                 }
10385                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10386                                                   tcg_res[pass], tcg_passres);
10387             } else if (accop > 0) {
10388                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10389             } else if (accop < 0) {
10390                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10391             }
10392         }
10393     } else {
10394         /* size 0 or 1, generally helper functions */
10395         for (pass = 0; pass < 2; pass++) {
10396             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10397             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10398             TCGv_i64 tcg_passres;
10399             int elt = pass + is_q * 2;
10400 
10401             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10402             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10403 
10404             if (accop == 0) {
10405                 tcg_passres = tcg_res[pass];
10406             } else {
10407                 tcg_passres = tcg_temp_new_i64();
10408             }
10409 
10410             switch (opcode) {
10411             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10412             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10413             {
10414                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10415                 static NeonGenWidenFn * const widenfns[2][2] = {
10416                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10417                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10418                 };
10419                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10420 
10421                 widenfn(tcg_op2_64, tcg_op2);
10422                 widenfn(tcg_passres, tcg_op1);
10423                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10424                               tcg_passres, tcg_op2_64);
10425                 break;
10426             }
10427             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10428             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10429                 if (size == 0) {
10430                     if (is_u) {
10431                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10432                     } else {
10433                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10434                     }
10435                 } else {
10436                     if (is_u) {
10437                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10438                     } else {
10439                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10440                     }
10441                 }
10442                 break;
10443             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10444             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10445             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10446                 if (size == 0) {
10447                     if (is_u) {
10448                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10449                     } else {
10450                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10451                     }
10452                 } else {
10453                     if (is_u) {
10454                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10455                     } else {
10456                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10457                     }
10458                 }
10459                 break;
10460             case 9: /* SQDMLAL, SQDMLAL2 */
10461             case 11: /* SQDMLSL, SQDMLSL2 */
10462             case 13: /* SQDMULL, SQDMULL2 */
10463                 assert(size == 1);
10464                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10465                 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10466                                                   tcg_passres, tcg_passres);
10467                 break;
10468             default:
10469                 g_assert_not_reached();
10470             }
10471 
10472             if (accop != 0) {
10473                 if (opcode == 9 || opcode == 11) {
10474                     /* saturating accumulate ops */
10475                     if (accop < 0) {
10476                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10477                     }
10478                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10479                                                       tcg_res[pass],
10480                                                       tcg_passres);
10481                 } else {
10482                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10483                                   tcg_res[pass], tcg_passres);
10484                 }
10485             }
10486         }
10487     }
10488 
10489     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10490     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10491 }
10492 
10493 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10494                             int opcode, int rd, int rn, int rm)
10495 {
10496     TCGv_i64 tcg_res[2];
10497     int part = is_q ? 2 : 0;
10498     int pass;
10499 
10500     for (pass = 0; pass < 2; pass++) {
10501         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10502         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10503         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10504         static NeonGenWidenFn * const widenfns[3][2] = {
10505             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10506             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10507             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10508         };
10509         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10510 
10511         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10512         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10513         widenfn(tcg_op2_wide, tcg_op2);
10514         tcg_res[pass] = tcg_temp_new_i64();
10515         gen_neon_addl(size, (opcode == 3),
10516                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10517     }
10518 
10519     for (pass = 0; pass < 2; pass++) {
10520         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10521     }
10522 }
10523 
10524 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10525 {
10526     tcg_gen_addi_i64(in, in, 1U << 31);
10527     tcg_gen_extrh_i64_i32(res, in);
10528 }
10529 
10530 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10531                                  int opcode, int rd, int rn, int rm)
10532 {
10533     TCGv_i32 tcg_res[2];
10534     int part = is_q ? 2 : 0;
10535     int pass;
10536 
10537     for (pass = 0; pass < 2; pass++) {
10538         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10539         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10540         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10541         static NeonGenNarrowFn * const narrowfns[3][2] = {
10542             { gen_helper_neon_narrow_high_u8,
10543               gen_helper_neon_narrow_round_high_u8 },
10544             { gen_helper_neon_narrow_high_u16,
10545               gen_helper_neon_narrow_round_high_u16 },
10546             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10547         };
10548         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10549 
10550         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10551         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10552 
10553         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10554 
10555         tcg_res[pass] = tcg_temp_new_i32();
10556         gennarrow(tcg_res[pass], tcg_wideres);
10557     }
10558 
10559     for (pass = 0; pass < 2; pass++) {
10560         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10561     }
10562     clear_vec_high(s, is_q, rd);
10563 }
10564 
10565 /* AdvSIMD three different
10566  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10567  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10568  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10569  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10570  */
10571 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10572 {
10573     /* Instructions in this group fall into three basic classes
10574      * (in each case with the operation working on each element in
10575      * the input vectors):
10576      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10577      *     128 bit input)
10578      * (2) wide 64 x 128 -> 128
10579      * (3) narrowing 128 x 128 -> 64
10580      * Here we do initial decode, catch unallocated cases and
10581      * dispatch to separate functions for each class.
10582      */
10583     int is_q = extract32(insn, 30, 1);
10584     int is_u = extract32(insn, 29, 1);
10585     int size = extract32(insn, 22, 2);
10586     int opcode = extract32(insn, 12, 4);
10587     int rm = extract32(insn, 16, 5);
10588     int rn = extract32(insn, 5, 5);
10589     int rd = extract32(insn, 0, 5);
10590 
10591     switch (opcode) {
10592     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10593     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10594         /* 64 x 128 -> 128 */
10595         if (size == 3) {
10596             unallocated_encoding(s);
10597             return;
10598         }
10599         if (!fp_access_check(s)) {
10600             return;
10601         }
10602         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10603         break;
10604     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10605     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10606         /* 128 x 128 -> 64 */
10607         if (size == 3) {
10608             unallocated_encoding(s);
10609             return;
10610         }
10611         if (!fp_access_check(s)) {
10612             return;
10613         }
10614         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10615         break;
10616     case 14: /* PMULL, PMULL2 */
10617         if (is_u) {
10618             unallocated_encoding(s);
10619             return;
10620         }
10621         switch (size) {
10622         case 0: /* PMULL.P8 */
10623             if (!fp_access_check(s)) {
10624                 return;
10625             }
10626             /* The Q field specifies lo/hi half input for this insn.  */
10627             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10628                              gen_helper_neon_pmull_h);
10629             break;
10630 
10631         case 3: /* PMULL.P64 */
10632             if (!dc_isar_feature(aa64_pmull, s)) {
10633                 unallocated_encoding(s);
10634                 return;
10635             }
10636             if (!fp_access_check(s)) {
10637                 return;
10638             }
10639             /* The Q field specifies lo/hi half input for this insn.  */
10640             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10641                              gen_helper_gvec_pmull_q);
10642             break;
10643 
10644         default:
10645             unallocated_encoding(s);
10646             break;
10647         }
10648         return;
10649     case 9: /* SQDMLAL, SQDMLAL2 */
10650     case 11: /* SQDMLSL, SQDMLSL2 */
10651     case 13: /* SQDMULL, SQDMULL2 */
10652         if (is_u || size == 0) {
10653             unallocated_encoding(s);
10654             return;
10655         }
10656         /* fall through */
10657     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10658     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10659     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10660     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10661     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10662     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10663     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10664         /* 64 x 64 -> 128 */
10665         if (size == 3) {
10666             unallocated_encoding(s);
10667             return;
10668         }
10669         if (!fp_access_check(s)) {
10670             return;
10671         }
10672 
10673         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10674         break;
10675     default:
10676         /* opcode 15 not allocated */
10677         unallocated_encoding(s);
10678         break;
10679     }
10680 }
10681 
10682 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10683 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10684 {
10685     int rd = extract32(insn, 0, 5);
10686     int rn = extract32(insn, 5, 5);
10687     int rm = extract32(insn, 16, 5);
10688     int size = extract32(insn, 22, 2);
10689     bool is_u = extract32(insn, 29, 1);
10690     bool is_q = extract32(insn, 30, 1);
10691 
10692     if (!fp_access_check(s)) {
10693         return;
10694     }
10695 
10696     switch (size + 4 * is_u) {
10697     case 0: /* AND */
10698         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10699         return;
10700     case 1: /* BIC */
10701         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10702         return;
10703     case 2: /* ORR */
10704         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10705         return;
10706     case 3: /* ORN */
10707         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10708         return;
10709     case 4: /* EOR */
10710         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10711         return;
10712 
10713     case 5: /* BSL bitwise select */
10714         gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10715         return;
10716     case 6: /* BIT, bitwise insert if true */
10717         gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10718         return;
10719     case 7: /* BIF, bitwise insert if false */
10720         gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10721         return;
10722 
10723     default:
10724         g_assert_not_reached();
10725     }
10726 }
10727 
10728 /* Pairwise op subgroup of C3.6.16.
10729  *
10730  * This is called directly or via the handle_3same_float for float pairwise
10731  * operations where the opcode and size are calculated differently.
10732  */
10733 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10734                                    int size, int rn, int rm, int rd)
10735 {
10736     TCGv_ptr fpst;
10737     int pass;
10738 
10739     /* Floating point operations need fpst */
10740     if (opcode >= 0x58) {
10741         fpst = fpstatus_ptr(FPST_FPCR);
10742     } else {
10743         fpst = NULL;
10744     }
10745 
10746     if (!fp_access_check(s)) {
10747         return;
10748     }
10749 
10750     /* These operations work on the concatenated rm:rn, with each pair of
10751      * adjacent elements being operated on to produce an element in the result.
10752      */
10753     if (size == 3) {
10754         TCGv_i64 tcg_res[2];
10755 
10756         for (pass = 0; pass < 2; pass++) {
10757             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10758             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10759             int passreg = (pass == 0) ? rn : rm;
10760 
10761             read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10762             read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10763             tcg_res[pass] = tcg_temp_new_i64();
10764 
10765             switch (opcode) {
10766             case 0x17: /* ADDP */
10767                 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10768                 break;
10769             case 0x58: /* FMAXNMP */
10770                 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10771                 break;
10772             case 0x5a: /* FADDP */
10773                 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10774                 break;
10775             case 0x5e: /* FMAXP */
10776                 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10777                 break;
10778             case 0x78: /* FMINNMP */
10779                 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10780                 break;
10781             case 0x7e: /* FMINP */
10782                 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10783                 break;
10784             default:
10785                 g_assert_not_reached();
10786             }
10787         }
10788 
10789         for (pass = 0; pass < 2; pass++) {
10790             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10791         }
10792     } else {
10793         int maxpass = is_q ? 4 : 2;
10794         TCGv_i32 tcg_res[4];
10795 
10796         for (pass = 0; pass < maxpass; pass++) {
10797             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10798             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10799             NeonGenTwoOpFn *genfn = NULL;
10800             int passreg = pass < (maxpass / 2) ? rn : rm;
10801             int passelt = (is_q && (pass & 1)) ? 2 : 0;
10802 
10803             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10804             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10805             tcg_res[pass] = tcg_temp_new_i32();
10806 
10807             switch (opcode) {
10808             case 0x17: /* ADDP */
10809             {
10810                 static NeonGenTwoOpFn * const fns[3] = {
10811                     gen_helper_neon_padd_u8,
10812                     gen_helper_neon_padd_u16,
10813                     tcg_gen_add_i32,
10814                 };
10815                 genfn = fns[size];
10816                 break;
10817             }
10818             case 0x14: /* SMAXP, UMAXP */
10819             {
10820                 static NeonGenTwoOpFn * const fns[3][2] = {
10821                     { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
10822                     { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
10823                     { tcg_gen_smax_i32, tcg_gen_umax_i32 },
10824                 };
10825                 genfn = fns[size][u];
10826                 break;
10827             }
10828             case 0x15: /* SMINP, UMINP */
10829             {
10830                 static NeonGenTwoOpFn * const fns[3][2] = {
10831                     { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
10832                     { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
10833                     { tcg_gen_smin_i32, tcg_gen_umin_i32 },
10834                 };
10835                 genfn = fns[size][u];
10836                 break;
10837             }
10838             /* The FP operations are all on single floats (32 bit) */
10839             case 0x58: /* FMAXNMP */
10840                 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10841                 break;
10842             case 0x5a: /* FADDP */
10843                 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10844                 break;
10845             case 0x5e: /* FMAXP */
10846                 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10847                 break;
10848             case 0x78: /* FMINNMP */
10849                 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10850                 break;
10851             case 0x7e: /* FMINP */
10852                 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10853                 break;
10854             default:
10855                 g_assert_not_reached();
10856             }
10857 
10858             /* FP ops called directly, otherwise call now */
10859             if (genfn) {
10860                 genfn(tcg_res[pass], tcg_op1, tcg_op2);
10861             }
10862         }
10863 
10864         for (pass = 0; pass < maxpass; pass++) {
10865             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10866         }
10867         clear_vec_high(s, is_q, rd);
10868     }
10869 }
10870 
10871 /* Floating point op subgroup of C3.6.16. */
10872 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
10873 {
10874     /* For floating point ops, the U, size[1] and opcode bits
10875      * together indicate the operation. size[0] indicates single
10876      * or double.
10877      */
10878     int fpopcode = extract32(insn, 11, 5)
10879         | (extract32(insn, 23, 1) << 5)
10880         | (extract32(insn, 29, 1) << 6);
10881     int is_q = extract32(insn, 30, 1);
10882     int size = extract32(insn, 22, 1);
10883     int rm = extract32(insn, 16, 5);
10884     int rn = extract32(insn, 5, 5);
10885     int rd = extract32(insn, 0, 5);
10886 
10887     int datasize = is_q ? 128 : 64;
10888     int esize = 32 << size;
10889     int elements = datasize / esize;
10890 
10891     if (size == 1 && !is_q) {
10892         unallocated_encoding(s);
10893         return;
10894     }
10895 
10896     switch (fpopcode) {
10897     case 0x58: /* FMAXNMP */
10898     case 0x5a: /* FADDP */
10899     case 0x5e: /* FMAXP */
10900     case 0x78: /* FMINNMP */
10901     case 0x7e: /* FMINP */
10902         if (size && !is_q) {
10903             unallocated_encoding(s);
10904             return;
10905         }
10906         handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
10907                                rn, rm, rd);
10908         return;
10909     case 0x1b: /* FMULX */
10910     case 0x1f: /* FRECPS */
10911     case 0x3f: /* FRSQRTS */
10912     case 0x5d: /* FACGE */
10913     case 0x7d: /* FACGT */
10914     case 0x19: /* FMLA */
10915     case 0x39: /* FMLS */
10916     case 0x18: /* FMAXNM */
10917     case 0x1a: /* FADD */
10918     case 0x1c: /* FCMEQ */
10919     case 0x1e: /* FMAX */
10920     case 0x38: /* FMINNM */
10921     case 0x3a: /* FSUB */
10922     case 0x3e: /* FMIN */
10923     case 0x5b: /* FMUL */
10924     case 0x5c: /* FCMGE */
10925     case 0x5f: /* FDIV */
10926     case 0x7a: /* FABD */
10927     case 0x7c: /* FCMGT */
10928         if (!fp_access_check(s)) {
10929             return;
10930         }
10931         handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
10932         return;
10933 
10934     case 0x1d: /* FMLAL  */
10935     case 0x3d: /* FMLSL  */
10936     case 0x59: /* FMLAL2 */
10937     case 0x79: /* FMLSL2 */
10938         if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
10939             unallocated_encoding(s);
10940             return;
10941         }
10942         if (fp_access_check(s)) {
10943             int is_s = extract32(insn, 23, 1);
10944             int is_2 = extract32(insn, 29, 1);
10945             int data = (is_2 << 1) | is_s;
10946             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
10947                                vec_full_reg_offset(s, rn),
10948                                vec_full_reg_offset(s, rm), tcg_env,
10949                                is_q ? 16 : 8, vec_full_reg_size(s),
10950                                data, gen_helper_gvec_fmlal_a64);
10951         }
10952         return;
10953 
10954     default:
10955         unallocated_encoding(s);
10956         return;
10957     }
10958 }
10959 
10960 /* Integer op subgroup of C3.6.16. */
10961 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
10962 {
10963     int is_q = extract32(insn, 30, 1);
10964     int u = extract32(insn, 29, 1);
10965     int size = extract32(insn, 22, 2);
10966     int opcode = extract32(insn, 11, 5);
10967     int rm = extract32(insn, 16, 5);
10968     int rn = extract32(insn, 5, 5);
10969     int rd = extract32(insn, 0, 5);
10970     int pass;
10971     TCGCond cond;
10972 
10973     switch (opcode) {
10974     case 0x13: /* MUL, PMUL */
10975         if (u && size != 0) {
10976             unallocated_encoding(s);
10977             return;
10978         }
10979         /* fall through */
10980     case 0x0: /* SHADD, UHADD */
10981     case 0x2: /* SRHADD, URHADD */
10982     case 0x4: /* SHSUB, UHSUB */
10983     case 0xc: /* SMAX, UMAX */
10984     case 0xd: /* SMIN, UMIN */
10985     case 0xe: /* SABD, UABD */
10986     case 0xf: /* SABA, UABA */
10987     case 0x12: /* MLA, MLS */
10988         if (size == 3) {
10989             unallocated_encoding(s);
10990             return;
10991         }
10992         break;
10993     case 0x16: /* SQDMULH, SQRDMULH */
10994         if (size == 0 || size == 3) {
10995             unallocated_encoding(s);
10996             return;
10997         }
10998         break;
10999     default:
11000         if (size == 3 && !is_q) {
11001             unallocated_encoding(s);
11002             return;
11003         }
11004         break;
11005     }
11006 
11007     if (!fp_access_check(s)) {
11008         return;
11009     }
11010 
11011     switch (opcode) {
11012     case 0x01: /* SQADD, UQADD */
11013         if (u) {
11014             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11015         } else {
11016             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11017         }
11018         return;
11019     case 0x05: /* SQSUB, UQSUB */
11020         if (u) {
11021             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11022         } else {
11023             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11024         }
11025         return;
11026     case 0x08: /* SSHL, USHL */
11027         if (u) {
11028             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11029         } else {
11030             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11031         }
11032         return;
11033     case 0x0c: /* SMAX, UMAX */
11034         if (u) {
11035             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11036         } else {
11037             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11038         }
11039         return;
11040     case 0x0d: /* SMIN, UMIN */
11041         if (u) {
11042             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11043         } else {
11044             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11045         }
11046         return;
11047     case 0xe: /* SABD, UABD */
11048         if (u) {
11049             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11050         } else {
11051             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11052         }
11053         return;
11054     case 0xf: /* SABA, UABA */
11055         if (u) {
11056             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11057         } else {
11058             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11059         }
11060         return;
11061     case 0x10: /* ADD, SUB */
11062         if (u) {
11063             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11064         } else {
11065             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11066         }
11067         return;
11068     case 0x13: /* MUL, PMUL */
11069         if (!u) { /* MUL */
11070             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11071         } else {  /* PMUL */
11072             gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11073         }
11074         return;
11075     case 0x12: /* MLA, MLS */
11076         if (u) {
11077             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11078         } else {
11079             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11080         }
11081         return;
11082     case 0x16: /* SQDMULH, SQRDMULH */
11083         {
11084             static gen_helper_gvec_3_ptr * const fns[2][2] = {
11085                 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11086                 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11087             };
11088             gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11089         }
11090         return;
11091     case 0x11:
11092         if (!u) { /* CMTST */
11093             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11094             return;
11095         }
11096         /* else CMEQ */
11097         cond = TCG_COND_EQ;
11098         goto do_gvec_cmp;
11099     case 0x06: /* CMGT, CMHI */
11100         cond = u ? TCG_COND_GTU : TCG_COND_GT;
11101         goto do_gvec_cmp;
11102     case 0x07: /* CMGE, CMHS */
11103         cond = u ? TCG_COND_GEU : TCG_COND_GE;
11104     do_gvec_cmp:
11105         tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11106                          vec_full_reg_offset(s, rn),
11107                          vec_full_reg_offset(s, rm),
11108                          is_q ? 16 : 8, vec_full_reg_size(s));
11109         return;
11110     }
11111 
11112     if (size == 3) {
11113         assert(is_q);
11114         for (pass = 0; pass < 2; pass++) {
11115             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11116             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11117             TCGv_i64 tcg_res = tcg_temp_new_i64();
11118 
11119             read_vec_element(s, tcg_op1, rn, pass, MO_64);
11120             read_vec_element(s, tcg_op2, rm, pass, MO_64);
11121 
11122             handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11123 
11124             write_vec_element(s, tcg_res, rd, pass, MO_64);
11125         }
11126     } else {
11127         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11128             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11129             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11130             TCGv_i32 tcg_res = tcg_temp_new_i32();
11131             NeonGenTwoOpFn *genfn = NULL;
11132             NeonGenTwoOpEnvFn *genenvfn = NULL;
11133 
11134             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11135             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11136 
11137             switch (opcode) {
11138             case 0x0: /* SHADD, UHADD */
11139             {
11140                 static NeonGenTwoOpFn * const fns[3][2] = {
11141                     { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11142                     { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11143                     { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11144                 };
11145                 genfn = fns[size][u];
11146                 break;
11147             }
11148             case 0x2: /* SRHADD, URHADD */
11149             {
11150                 static NeonGenTwoOpFn * const fns[3][2] = {
11151                     { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11152                     { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11153                     { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11154                 };
11155                 genfn = fns[size][u];
11156                 break;
11157             }
11158             case 0x4: /* SHSUB, UHSUB */
11159             {
11160                 static NeonGenTwoOpFn * const fns[3][2] = {
11161                     { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11162                     { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11163                     { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11164                 };
11165                 genfn = fns[size][u];
11166                 break;
11167             }
11168             case 0x9: /* SQSHL, UQSHL */
11169             {
11170                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11171                     { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11172                     { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11173                     { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11174                 };
11175                 genenvfn = fns[size][u];
11176                 break;
11177             }
11178             case 0xa: /* SRSHL, URSHL */
11179             {
11180                 static NeonGenTwoOpFn * const fns[3][2] = {
11181                     { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11182                     { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11183                     { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11184                 };
11185                 genfn = fns[size][u];
11186                 break;
11187             }
11188             case 0xb: /* SQRSHL, UQRSHL */
11189             {
11190                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11191                     { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11192                     { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11193                     { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11194                 };
11195                 genenvfn = fns[size][u];
11196                 break;
11197             }
11198             default:
11199                 g_assert_not_reached();
11200             }
11201 
11202             if (genenvfn) {
11203                 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2);
11204             } else {
11205                 genfn(tcg_res, tcg_op1, tcg_op2);
11206             }
11207 
11208             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11209         }
11210     }
11211     clear_vec_high(s, is_q, rd);
11212 }
11213 
11214 /* AdvSIMD three same
11215  *  31  30  29  28       24 23  22  21 20  16 15    11  10 9    5 4    0
11216  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11217  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
11218  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11219  */
11220 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11221 {
11222     int opcode = extract32(insn, 11, 5);
11223 
11224     switch (opcode) {
11225     case 0x3: /* logic ops */
11226         disas_simd_3same_logic(s, insn);
11227         break;
11228     case 0x17: /* ADDP */
11229     case 0x14: /* SMAXP, UMAXP */
11230     case 0x15: /* SMINP, UMINP */
11231     {
11232         /* Pairwise operations */
11233         int is_q = extract32(insn, 30, 1);
11234         int u = extract32(insn, 29, 1);
11235         int size = extract32(insn, 22, 2);
11236         int rm = extract32(insn, 16, 5);
11237         int rn = extract32(insn, 5, 5);
11238         int rd = extract32(insn, 0, 5);
11239         if (opcode == 0x17) {
11240             if (u || (size == 3 && !is_q)) {
11241                 unallocated_encoding(s);
11242                 return;
11243             }
11244         } else {
11245             if (size == 3) {
11246                 unallocated_encoding(s);
11247                 return;
11248             }
11249         }
11250         handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11251         break;
11252     }
11253     case 0x18 ... 0x31:
11254         /* floating point ops, sz[1] and U are part of opcode */
11255         disas_simd_3same_float(s, insn);
11256         break;
11257     default:
11258         disas_simd_3same_int(s, insn);
11259         break;
11260     }
11261 }
11262 
11263 /*
11264  * Advanced SIMD three same (ARMv8.2 FP16 variants)
11265  *
11266  *  31  30  29  28       24 23  22 21 20  16 15 14 13    11 10  9    5 4    0
11267  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11268  * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 |  Rn  |  Rd  |
11269  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11270  *
11271  * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11272  * (register), FACGE, FABD, FCMGT (register) and FACGT.
11273  *
11274  */
11275 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11276 {
11277     int opcode = extract32(insn, 11, 3);
11278     int u = extract32(insn, 29, 1);
11279     int a = extract32(insn, 23, 1);
11280     int is_q = extract32(insn, 30, 1);
11281     int rm = extract32(insn, 16, 5);
11282     int rn = extract32(insn, 5, 5);
11283     int rd = extract32(insn, 0, 5);
11284     /*
11285      * For these floating point ops, the U, a and opcode bits
11286      * together indicate the operation.
11287      */
11288     int fpopcode = opcode | (a << 3) | (u << 4);
11289     int datasize = is_q ? 128 : 64;
11290     int elements = datasize / 16;
11291     bool pairwise;
11292     TCGv_ptr fpst;
11293     int pass;
11294 
11295     switch (fpopcode) {
11296     case 0x0: /* FMAXNM */
11297     case 0x1: /* FMLA */
11298     case 0x2: /* FADD */
11299     case 0x3: /* FMULX */
11300     case 0x4: /* FCMEQ */
11301     case 0x6: /* FMAX */
11302     case 0x7: /* FRECPS */
11303     case 0x8: /* FMINNM */
11304     case 0x9: /* FMLS */
11305     case 0xa: /* FSUB */
11306     case 0xe: /* FMIN */
11307     case 0xf: /* FRSQRTS */
11308     case 0x13: /* FMUL */
11309     case 0x14: /* FCMGE */
11310     case 0x15: /* FACGE */
11311     case 0x17: /* FDIV */
11312     case 0x1a: /* FABD */
11313     case 0x1c: /* FCMGT */
11314     case 0x1d: /* FACGT */
11315         pairwise = false;
11316         break;
11317     case 0x10: /* FMAXNMP */
11318     case 0x12: /* FADDP */
11319     case 0x16: /* FMAXP */
11320     case 0x18: /* FMINNMP */
11321     case 0x1e: /* FMINP */
11322         pairwise = true;
11323         break;
11324     default:
11325         unallocated_encoding(s);
11326         return;
11327     }
11328 
11329     if (!dc_isar_feature(aa64_fp16, s)) {
11330         unallocated_encoding(s);
11331         return;
11332     }
11333 
11334     if (!fp_access_check(s)) {
11335         return;
11336     }
11337 
11338     fpst = fpstatus_ptr(FPST_FPCR_F16);
11339 
11340     if (pairwise) {
11341         int maxpass = is_q ? 8 : 4;
11342         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11343         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11344         TCGv_i32 tcg_res[8];
11345 
11346         for (pass = 0; pass < maxpass; pass++) {
11347             int passreg = pass < (maxpass / 2) ? rn : rm;
11348             int passelt = (pass << 1) & (maxpass - 1);
11349 
11350             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11351             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11352             tcg_res[pass] = tcg_temp_new_i32();
11353 
11354             switch (fpopcode) {
11355             case 0x10: /* FMAXNMP */
11356                 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11357                                            fpst);
11358                 break;
11359             case 0x12: /* FADDP */
11360                 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11361                 break;
11362             case 0x16: /* FMAXP */
11363                 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11364                 break;
11365             case 0x18: /* FMINNMP */
11366                 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11367                                            fpst);
11368                 break;
11369             case 0x1e: /* FMINP */
11370                 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11371                 break;
11372             default:
11373                 g_assert_not_reached();
11374             }
11375         }
11376 
11377         for (pass = 0; pass < maxpass; pass++) {
11378             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11379         }
11380     } else {
11381         for (pass = 0; pass < elements; pass++) {
11382             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11383             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11384             TCGv_i32 tcg_res = tcg_temp_new_i32();
11385 
11386             read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11387             read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11388 
11389             switch (fpopcode) {
11390             case 0x0: /* FMAXNM */
11391                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11392                 break;
11393             case 0x1: /* FMLA */
11394                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11395                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11396                                            fpst);
11397                 break;
11398             case 0x2: /* FADD */
11399                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11400                 break;
11401             case 0x3: /* FMULX */
11402                 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11403                 break;
11404             case 0x4: /* FCMEQ */
11405                 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11406                 break;
11407             case 0x6: /* FMAX */
11408                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11409                 break;
11410             case 0x7: /* FRECPS */
11411                 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11412                 break;
11413             case 0x8: /* FMINNM */
11414                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11415                 break;
11416             case 0x9: /* FMLS */
11417                 /* As usual for ARM, separate negation for fused multiply-add */
11418                 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11419                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11420                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11421                                            fpst);
11422                 break;
11423             case 0xa: /* FSUB */
11424                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11425                 break;
11426             case 0xe: /* FMIN */
11427                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11428                 break;
11429             case 0xf: /* FRSQRTS */
11430                 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11431                 break;
11432             case 0x13: /* FMUL */
11433                 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11434                 break;
11435             case 0x14: /* FCMGE */
11436                 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11437                 break;
11438             case 0x15: /* FACGE */
11439                 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11440                 break;
11441             case 0x17: /* FDIV */
11442                 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11443                 break;
11444             case 0x1a: /* FABD */
11445                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11446                 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11447                 break;
11448             case 0x1c: /* FCMGT */
11449                 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11450                 break;
11451             case 0x1d: /* FACGT */
11452                 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11453                 break;
11454             default:
11455                 g_assert_not_reached();
11456             }
11457 
11458             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11459         }
11460     }
11461 
11462     clear_vec_high(s, is_q, rd);
11463 }
11464 
11465 /* AdvSIMD three same extra
11466  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
11467  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11468  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
11469  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11470  */
11471 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11472 {
11473     int rd = extract32(insn, 0, 5);
11474     int rn = extract32(insn, 5, 5);
11475     int opcode = extract32(insn, 11, 4);
11476     int rm = extract32(insn, 16, 5);
11477     int size = extract32(insn, 22, 2);
11478     bool u = extract32(insn, 29, 1);
11479     bool is_q = extract32(insn, 30, 1);
11480     bool feature;
11481     int rot;
11482 
11483     switch (u * 16 + opcode) {
11484     case 0x10: /* SQRDMLAH (vector) */
11485     case 0x11: /* SQRDMLSH (vector) */
11486         if (size != 1 && size != 2) {
11487             unallocated_encoding(s);
11488             return;
11489         }
11490         feature = dc_isar_feature(aa64_rdm, s);
11491         break;
11492     case 0x02: /* SDOT (vector) */
11493     case 0x12: /* UDOT (vector) */
11494         if (size != MO_32) {
11495             unallocated_encoding(s);
11496             return;
11497         }
11498         feature = dc_isar_feature(aa64_dp, s);
11499         break;
11500     case 0x03: /* USDOT */
11501         if (size != MO_32) {
11502             unallocated_encoding(s);
11503             return;
11504         }
11505         feature = dc_isar_feature(aa64_i8mm, s);
11506         break;
11507     case 0x04: /* SMMLA */
11508     case 0x14: /* UMMLA */
11509     case 0x05: /* USMMLA */
11510         if (!is_q || size != MO_32) {
11511             unallocated_encoding(s);
11512             return;
11513         }
11514         feature = dc_isar_feature(aa64_i8mm, s);
11515         break;
11516     case 0x18: /* FCMLA, #0 */
11517     case 0x19: /* FCMLA, #90 */
11518     case 0x1a: /* FCMLA, #180 */
11519     case 0x1b: /* FCMLA, #270 */
11520     case 0x1c: /* FCADD, #90 */
11521     case 0x1e: /* FCADD, #270 */
11522         if (size == 0
11523             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11524             || (size == 3 && !is_q)) {
11525             unallocated_encoding(s);
11526             return;
11527         }
11528         feature = dc_isar_feature(aa64_fcma, s);
11529         break;
11530     case 0x1d: /* BFMMLA */
11531         if (size != MO_16 || !is_q) {
11532             unallocated_encoding(s);
11533             return;
11534         }
11535         feature = dc_isar_feature(aa64_bf16, s);
11536         break;
11537     case 0x1f:
11538         switch (size) {
11539         case 1: /* BFDOT */
11540         case 3: /* BFMLAL{B,T} */
11541             feature = dc_isar_feature(aa64_bf16, s);
11542             break;
11543         default:
11544             unallocated_encoding(s);
11545             return;
11546         }
11547         break;
11548     default:
11549         unallocated_encoding(s);
11550         return;
11551     }
11552     if (!feature) {
11553         unallocated_encoding(s);
11554         return;
11555     }
11556     if (!fp_access_check(s)) {
11557         return;
11558     }
11559 
11560     switch (opcode) {
11561     case 0x0: /* SQRDMLAH (vector) */
11562         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11563         return;
11564 
11565     case 0x1: /* SQRDMLSH (vector) */
11566         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11567         return;
11568 
11569     case 0x2: /* SDOT / UDOT */
11570         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11571                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11572         return;
11573 
11574     case 0x3: /* USDOT */
11575         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11576         return;
11577 
11578     case 0x04: /* SMMLA, UMMLA */
11579         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11580                          u ? gen_helper_gvec_ummla_b
11581                          : gen_helper_gvec_smmla_b);
11582         return;
11583     case 0x05: /* USMMLA */
11584         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11585         return;
11586 
11587     case 0x8: /* FCMLA, #0 */
11588     case 0x9: /* FCMLA, #90 */
11589     case 0xa: /* FCMLA, #180 */
11590     case 0xb: /* FCMLA, #270 */
11591         rot = extract32(opcode, 0, 2);
11592         switch (size) {
11593         case 1:
11594             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11595                               gen_helper_gvec_fcmlah);
11596             break;
11597         case 2:
11598             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11599                               gen_helper_gvec_fcmlas);
11600             break;
11601         case 3:
11602             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11603                               gen_helper_gvec_fcmlad);
11604             break;
11605         default:
11606             g_assert_not_reached();
11607         }
11608         return;
11609 
11610     case 0xc: /* FCADD, #90 */
11611     case 0xe: /* FCADD, #270 */
11612         rot = extract32(opcode, 1, 1);
11613         switch (size) {
11614         case 1:
11615             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11616                               gen_helper_gvec_fcaddh);
11617             break;
11618         case 2:
11619             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11620                               gen_helper_gvec_fcadds);
11621             break;
11622         case 3:
11623             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11624                               gen_helper_gvec_fcaddd);
11625             break;
11626         default:
11627             g_assert_not_reached();
11628         }
11629         return;
11630 
11631     case 0xd: /* BFMMLA */
11632         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11633         return;
11634     case 0xf:
11635         switch (size) {
11636         case 1: /* BFDOT */
11637             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11638             break;
11639         case 3: /* BFMLAL{B,T} */
11640             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11641                               gen_helper_gvec_bfmlal);
11642             break;
11643         default:
11644             g_assert_not_reached();
11645         }
11646         return;
11647 
11648     default:
11649         g_assert_not_reached();
11650     }
11651 }
11652 
11653 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11654                                   int size, int rn, int rd)
11655 {
11656     /* Handle 2-reg-misc ops which are widening (so each size element
11657      * in the source becomes a 2*size element in the destination.
11658      * The only instruction like this is FCVTL.
11659      */
11660     int pass;
11661 
11662     if (size == 3) {
11663         /* 32 -> 64 bit fp conversion */
11664         TCGv_i64 tcg_res[2];
11665         int srcelt = is_q ? 2 : 0;
11666 
11667         for (pass = 0; pass < 2; pass++) {
11668             TCGv_i32 tcg_op = tcg_temp_new_i32();
11669             tcg_res[pass] = tcg_temp_new_i64();
11670 
11671             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11672             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
11673         }
11674         for (pass = 0; pass < 2; pass++) {
11675             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11676         }
11677     } else {
11678         /* 16 -> 32 bit fp conversion */
11679         int srcelt = is_q ? 4 : 0;
11680         TCGv_i32 tcg_res[4];
11681         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11682         TCGv_i32 ahp = get_ahp_flag();
11683 
11684         for (pass = 0; pass < 4; pass++) {
11685             tcg_res[pass] = tcg_temp_new_i32();
11686 
11687             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11688             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11689                                            fpst, ahp);
11690         }
11691         for (pass = 0; pass < 4; pass++) {
11692             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11693         }
11694     }
11695 }
11696 
11697 static void handle_rev(DisasContext *s, int opcode, bool u,
11698                        bool is_q, int size, int rn, int rd)
11699 {
11700     int op = (opcode << 1) | u;
11701     int opsz = op + size;
11702     int grp_size = 3 - opsz;
11703     int dsize = is_q ? 128 : 64;
11704     int i;
11705 
11706     if (opsz >= 3) {
11707         unallocated_encoding(s);
11708         return;
11709     }
11710 
11711     if (!fp_access_check(s)) {
11712         return;
11713     }
11714 
11715     if (size == 0) {
11716         /* Special case bytes, use bswap op on each group of elements */
11717         int groups = dsize / (8 << grp_size);
11718 
11719         for (i = 0; i < groups; i++) {
11720             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11721 
11722             read_vec_element(s, tcg_tmp, rn, i, grp_size);
11723             switch (grp_size) {
11724             case MO_16:
11725                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11726                 break;
11727             case MO_32:
11728                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11729                 break;
11730             case MO_64:
11731                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11732                 break;
11733             default:
11734                 g_assert_not_reached();
11735             }
11736             write_vec_element(s, tcg_tmp, rd, i, grp_size);
11737         }
11738         clear_vec_high(s, is_q, rd);
11739     } else {
11740         int revmask = (1 << grp_size) - 1;
11741         int esize = 8 << size;
11742         int elements = dsize / esize;
11743         TCGv_i64 tcg_rn = tcg_temp_new_i64();
11744         TCGv_i64 tcg_rd[2];
11745 
11746         for (i = 0; i < 2; i++) {
11747             tcg_rd[i] = tcg_temp_new_i64();
11748             tcg_gen_movi_i64(tcg_rd[i], 0);
11749         }
11750 
11751         for (i = 0; i < elements; i++) {
11752             int e_rev = (i & 0xf) ^ revmask;
11753             int w = (e_rev * esize) / 64;
11754             int o = (e_rev * esize) % 64;
11755 
11756             read_vec_element(s, tcg_rn, rn, i, size);
11757             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11758         }
11759 
11760         for (i = 0; i < 2; i++) {
11761             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11762         }
11763         clear_vec_high(s, true, rd);
11764     }
11765 }
11766 
11767 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11768                                   bool is_q, int size, int rn, int rd)
11769 {
11770     /* Implement the pairwise operations from 2-misc:
11771      * SADDLP, UADDLP, SADALP, UADALP.
11772      * These all add pairs of elements in the input to produce a
11773      * double-width result element in the output (possibly accumulating).
11774      */
11775     bool accum = (opcode == 0x6);
11776     int maxpass = is_q ? 2 : 1;
11777     int pass;
11778     TCGv_i64 tcg_res[2];
11779 
11780     if (size == 2) {
11781         /* 32 + 32 -> 64 op */
11782         MemOp memop = size + (u ? 0 : MO_SIGN);
11783 
11784         for (pass = 0; pass < maxpass; pass++) {
11785             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11786             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11787 
11788             tcg_res[pass] = tcg_temp_new_i64();
11789 
11790             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11791             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11792             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11793             if (accum) {
11794                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11795                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11796             }
11797         }
11798     } else {
11799         for (pass = 0; pass < maxpass; pass++) {
11800             TCGv_i64 tcg_op = tcg_temp_new_i64();
11801             NeonGenOne64OpFn *genfn;
11802             static NeonGenOne64OpFn * const fns[2][2] = {
11803                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
11804                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
11805             };
11806 
11807             genfn = fns[size][u];
11808 
11809             tcg_res[pass] = tcg_temp_new_i64();
11810 
11811             read_vec_element(s, tcg_op, rn, pass, MO_64);
11812             genfn(tcg_res[pass], tcg_op);
11813 
11814             if (accum) {
11815                 read_vec_element(s, tcg_op, rd, pass, MO_64);
11816                 if (size == 0) {
11817                     gen_helper_neon_addl_u16(tcg_res[pass],
11818                                              tcg_res[pass], tcg_op);
11819                 } else {
11820                     gen_helper_neon_addl_u32(tcg_res[pass],
11821                                              tcg_res[pass], tcg_op);
11822                 }
11823             }
11824         }
11825     }
11826     if (!is_q) {
11827         tcg_res[1] = tcg_constant_i64(0);
11828     }
11829     for (pass = 0; pass < 2; pass++) {
11830         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11831     }
11832 }
11833 
11834 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11835 {
11836     /* Implement SHLL and SHLL2 */
11837     int pass;
11838     int part = is_q ? 2 : 0;
11839     TCGv_i64 tcg_res[2];
11840 
11841     for (pass = 0; pass < 2; pass++) {
11842         static NeonGenWidenFn * const widenfns[3] = {
11843             gen_helper_neon_widen_u8,
11844             gen_helper_neon_widen_u16,
11845             tcg_gen_extu_i32_i64,
11846         };
11847         NeonGenWidenFn *widenfn = widenfns[size];
11848         TCGv_i32 tcg_op = tcg_temp_new_i32();
11849 
11850         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11851         tcg_res[pass] = tcg_temp_new_i64();
11852         widenfn(tcg_res[pass], tcg_op);
11853         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11854     }
11855 
11856     for (pass = 0; pass < 2; pass++) {
11857         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11858     }
11859 }
11860 
11861 /* AdvSIMD two reg misc
11862  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
11863  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11864  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11865  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11866  */
11867 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11868 {
11869     int size = extract32(insn, 22, 2);
11870     int opcode = extract32(insn, 12, 5);
11871     bool u = extract32(insn, 29, 1);
11872     bool is_q = extract32(insn, 30, 1);
11873     int rn = extract32(insn, 5, 5);
11874     int rd = extract32(insn, 0, 5);
11875     bool need_fpstatus = false;
11876     int rmode = -1;
11877     TCGv_i32 tcg_rmode;
11878     TCGv_ptr tcg_fpstatus;
11879 
11880     switch (opcode) {
11881     case 0x0: /* REV64, REV32 */
11882     case 0x1: /* REV16 */
11883         handle_rev(s, opcode, u, is_q, size, rn, rd);
11884         return;
11885     case 0x5: /* CNT, NOT, RBIT */
11886         if (u && size == 0) {
11887             /* NOT */
11888             break;
11889         } else if (u && size == 1) {
11890             /* RBIT */
11891             break;
11892         } else if (!u && size == 0) {
11893             /* CNT */
11894             break;
11895         }
11896         unallocated_encoding(s);
11897         return;
11898     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11899     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11900         if (size == 3) {
11901             unallocated_encoding(s);
11902             return;
11903         }
11904         if (!fp_access_check(s)) {
11905             return;
11906         }
11907 
11908         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11909         return;
11910     case 0x4: /* CLS, CLZ */
11911         if (size == 3) {
11912             unallocated_encoding(s);
11913             return;
11914         }
11915         break;
11916     case 0x2: /* SADDLP, UADDLP */
11917     case 0x6: /* SADALP, UADALP */
11918         if (size == 3) {
11919             unallocated_encoding(s);
11920             return;
11921         }
11922         if (!fp_access_check(s)) {
11923             return;
11924         }
11925         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11926         return;
11927     case 0x13: /* SHLL, SHLL2 */
11928         if (u == 0 || size == 3) {
11929             unallocated_encoding(s);
11930             return;
11931         }
11932         if (!fp_access_check(s)) {
11933             return;
11934         }
11935         handle_shll(s, is_q, size, rn, rd);
11936         return;
11937     case 0xa: /* CMLT */
11938         if (u == 1) {
11939             unallocated_encoding(s);
11940             return;
11941         }
11942         /* fall through */
11943     case 0x8: /* CMGT, CMGE */
11944     case 0x9: /* CMEQ, CMLE */
11945     case 0xb: /* ABS, NEG */
11946         if (size == 3 && !is_q) {
11947             unallocated_encoding(s);
11948             return;
11949         }
11950         break;
11951     case 0x3: /* SUQADD, USQADD */
11952         if (size == 3 && !is_q) {
11953             unallocated_encoding(s);
11954             return;
11955         }
11956         if (!fp_access_check(s)) {
11957             return;
11958         }
11959         handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
11960         return;
11961     case 0x7: /* SQABS, SQNEG */
11962         if (size == 3 && !is_q) {
11963             unallocated_encoding(s);
11964             return;
11965         }
11966         break;
11967     case 0xc ... 0xf:
11968     case 0x16 ... 0x1f:
11969     {
11970         /* Floating point: U, size[1] and opcode indicate operation;
11971          * size[0] indicates single or double precision.
11972          */
11973         int is_double = extract32(size, 0, 1);
11974         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11975         size = is_double ? 3 : 2;
11976         switch (opcode) {
11977         case 0x2f: /* FABS */
11978         case 0x6f: /* FNEG */
11979             if (size == 3 && !is_q) {
11980                 unallocated_encoding(s);
11981                 return;
11982             }
11983             break;
11984         case 0x1d: /* SCVTF */
11985         case 0x5d: /* UCVTF */
11986         {
11987             bool is_signed = (opcode == 0x1d) ? true : false;
11988             int elements = is_double ? 2 : is_q ? 4 : 2;
11989             if (is_double && !is_q) {
11990                 unallocated_encoding(s);
11991                 return;
11992             }
11993             if (!fp_access_check(s)) {
11994                 return;
11995             }
11996             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11997             return;
11998         }
11999         case 0x2c: /* FCMGT (zero) */
12000         case 0x2d: /* FCMEQ (zero) */
12001         case 0x2e: /* FCMLT (zero) */
12002         case 0x6c: /* FCMGE (zero) */
12003         case 0x6d: /* FCMLE (zero) */
12004             if (size == 3 && !is_q) {
12005                 unallocated_encoding(s);
12006                 return;
12007             }
12008             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12009             return;
12010         case 0x7f: /* FSQRT */
12011             if (size == 3 && !is_q) {
12012                 unallocated_encoding(s);
12013                 return;
12014             }
12015             break;
12016         case 0x1a: /* FCVTNS */
12017         case 0x1b: /* FCVTMS */
12018         case 0x3a: /* FCVTPS */
12019         case 0x3b: /* FCVTZS */
12020         case 0x5a: /* FCVTNU */
12021         case 0x5b: /* FCVTMU */
12022         case 0x7a: /* FCVTPU */
12023         case 0x7b: /* FCVTZU */
12024             need_fpstatus = true;
12025             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12026             if (size == 3 && !is_q) {
12027                 unallocated_encoding(s);
12028                 return;
12029             }
12030             break;
12031         case 0x5c: /* FCVTAU */
12032         case 0x1c: /* FCVTAS */
12033             need_fpstatus = true;
12034             rmode = FPROUNDING_TIEAWAY;
12035             if (size == 3 && !is_q) {
12036                 unallocated_encoding(s);
12037                 return;
12038             }
12039             break;
12040         case 0x3c: /* URECPE */
12041             if (size == 3) {
12042                 unallocated_encoding(s);
12043                 return;
12044             }
12045             /* fall through */
12046         case 0x3d: /* FRECPE */
12047         case 0x7d: /* FRSQRTE */
12048             if (size == 3 && !is_q) {
12049                 unallocated_encoding(s);
12050                 return;
12051             }
12052             if (!fp_access_check(s)) {
12053                 return;
12054             }
12055             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12056             return;
12057         case 0x56: /* FCVTXN, FCVTXN2 */
12058             if (size == 2) {
12059                 unallocated_encoding(s);
12060                 return;
12061             }
12062             /* fall through */
12063         case 0x16: /* FCVTN, FCVTN2 */
12064             /* handle_2misc_narrow does a 2*size -> size operation, but these
12065              * instructions encode the source size rather than dest size.
12066              */
12067             if (!fp_access_check(s)) {
12068                 return;
12069             }
12070             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12071             return;
12072         case 0x36: /* BFCVTN, BFCVTN2 */
12073             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12074                 unallocated_encoding(s);
12075                 return;
12076             }
12077             if (!fp_access_check(s)) {
12078                 return;
12079             }
12080             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12081             return;
12082         case 0x17: /* FCVTL, FCVTL2 */
12083             if (!fp_access_check(s)) {
12084                 return;
12085             }
12086             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12087             return;
12088         case 0x18: /* FRINTN */
12089         case 0x19: /* FRINTM */
12090         case 0x38: /* FRINTP */
12091         case 0x39: /* FRINTZ */
12092             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12093             /* fall through */
12094         case 0x59: /* FRINTX */
12095         case 0x79: /* FRINTI */
12096             need_fpstatus = true;
12097             if (size == 3 && !is_q) {
12098                 unallocated_encoding(s);
12099                 return;
12100             }
12101             break;
12102         case 0x58: /* FRINTA */
12103             rmode = FPROUNDING_TIEAWAY;
12104             need_fpstatus = true;
12105             if (size == 3 && !is_q) {
12106                 unallocated_encoding(s);
12107                 return;
12108             }
12109             break;
12110         case 0x7c: /* URSQRTE */
12111             if (size == 3) {
12112                 unallocated_encoding(s);
12113                 return;
12114             }
12115             break;
12116         case 0x1e: /* FRINT32Z */
12117         case 0x1f: /* FRINT64Z */
12118             rmode = FPROUNDING_ZERO;
12119             /* fall through */
12120         case 0x5e: /* FRINT32X */
12121         case 0x5f: /* FRINT64X */
12122             need_fpstatus = true;
12123             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12124                 unallocated_encoding(s);
12125                 return;
12126             }
12127             break;
12128         default:
12129             unallocated_encoding(s);
12130             return;
12131         }
12132         break;
12133     }
12134     default:
12135         unallocated_encoding(s);
12136         return;
12137     }
12138 
12139     if (!fp_access_check(s)) {
12140         return;
12141     }
12142 
12143     if (need_fpstatus || rmode >= 0) {
12144         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12145     } else {
12146         tcg_fpstatus = NULL;
12147     }
12148     if (rmode >= 0) {
12149         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12150     } else {
12151         tcg_rmode = NULL;
12152     }
12153 
12154     switch (opcode) {
12155     case 0x5:
12156         if (u && size == 0) { /* NOT */
12157             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12158             return;
12159         }
12160         break;
12161     case 0x8: /* CMGT, CMGE */
12162         if (u) {
12163             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12164         } else {
12165             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12166         }
12167         return;
12168     case 0x9: /* CMEQ, CMLE */
12169         if (u) {
12170             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12171         } else {
12172             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12173         }
12174         return;
12175     case 0xa: /* CMLT */
12176         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12177         return;
12178     case 0xb:
12179         if (u) { /* ABS, NEG */
12180             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12181         } else {
12182             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12183         }
12184         return;
12185     }
12186 
12187     if (size == 3) {
12188         /* All 64-bit element operations can be shared with scalar 2misc */
12189         int pass;
12190 
12191         /* Coverity claims (size == 3 && !is_q) has been eliminated
12192          * from all paths leading to here.
12193          */
12194         tcg_debug_assert(is_q);
12195         for (pass = 0; pass < 2; pass++) {
12196             TCGv_i64 tcg_op = tcg_temp_new_i64();
12197             TCGv_i64 tcg_res = tcg_temp_new_i64();
12198 
12199             read_vec_element(s, tcg_op, rn, pass, MO_64);
12200 
12201             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12202                             tcg_rmode, tcg_fpstatus);
12203 
12204             write_vec_element(s, tcg_res, rd, pass, MO_64);
12205         }
12206     } else {
12207         int pass;
12208 
12209         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12210             TCGv_i32 tcg_op = tcg_temp_new_i32();
12211             TCGv_i32 tcg_res = tcg_temp_new_i32();
12212 
12213             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12214 
12215             if (size == 2) {
12216                 /* Special cases for 32 bit elements */
12217                 switch (opcode) {
12218                 case 0x4: /* CLS */
12219                     if (u) {
12220                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12221                     } else {
12222                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
12223                     }
12224                     break;
12225                 case 0x7: /* SQABS, SQNEG */
12226                     if (u) {
12227                         gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
12228                     } else {
12229                         gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
12230                     }
12231                     break;
12232                 case 0x2f: /* FABS */
12233                     gen_helper_vfp_abss(tcg_res, tcg_op);
12234                     break;
12235                 case 0x6f: /* FNEG */
12236                     gen_helper_vfp_negs(tcg_res, tcg_op);
12237                     break;
12238                 case 0x7f: /* FSQRT */
12239                     gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
12240                     break;
12241                 case 0x1a: /* FCVTNS */
12242                 case 0x1b: /* FCVTMS */
12243                 case 0x1c: /* FCVTAS */
12244                 case 0x3a: /* FCVTPS */
12245                 case 0x3b: /* FCVTZS */
12246                     gen_helper_vfp_tosls(tcg_res, tcg_op,
12247                                          tcg_constant_i32(0), tcg_fpstatus);
12248                     break;
12249                 case 0x5a: /* FCVTNU */
12250                 case 0x5b: /* FCVTMU */
12251                 case 0x5c: /* FCVTAU */
12252                 case 0x7a: /* FCVTPU */
12253                 case 0x7b: /* FCVTZU */
12254                     gen_helper_vfp_touls(tcg_res, tcg_op,
12255                                          tcg_constant_i32(0), tcg_fpstatus);
12256                     break;
12257                 case 0x18: /* FRINTN */
12258                 case 0x19: /* FRINTM */
12259                 case 0x38: /* FRINTP */
12260                 case 0x39: /* FRINTZ */
12261                 case 0x58: /* FRINTA */
12262                 case 0x79: /* FRINTI */
12263                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12264                     break;
12265                 case 0x59: /* FRINTX */
12266                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12267                     break;
12268                 case 0x7c: /* URSQRTE */
12269                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
12270                     break;
12271                 case 0x1e: /* FRINT32Z */
12272                 case 0x5e: /* FRINT32X */
12273                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12274                     break;
12275                 case 0x1f: /* FRINT64Z */
12276                 case 0x5f: /* FRINT64X */
12277                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12278                     break;
12279                 default:
12280                     g_assert_not_reached();
12281                 }
12282             } else {
12283                 /* Use helpers for 8 and 16 bit elements */
12284                 switch (opcode) {
12285                 case 0x5: /* CNT, RBIT */
12286                     /* For these two insns size is part of the opcode specifier
12287                      * (handled earlier); they always operate on byte elements.
12288                      */
12289                     if (u) {
12290                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12291                     } else {
12292                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12293                     }
12294                     break;
12295                 case 0x7: /* SQABS, SQNEG */
12296                 {
12297                     NeonGenOneOpEnvFn *genfn;
12298                     static NeonGenOneOpEnvFn * const fns[2][2] = {
12299                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12300                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12301                     };
12302                     genfn = fns[size][u];
12303                     genfn(tcg_res, tcg_env, tcg_op);
12304                     break;
12305                 }
12306                 case 0x4: /* CLS, CLZ */
12307                     if (u) {
12308                         if (size == 0) {
12309                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
12310                         } else {
12311                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
12312                         }
12313                     } else {
12314                         if (size == 0) {
12315                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
12316                         } else {
12317                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
12318                         }
12319                     }
12320                     break;
12321                 default:
12322                     g_assert_not_reached();
12323                 }
12324             }
12325 
12326             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12327         }
12328     }
12329     clear_vec_high(s, is_q, rd);
12330 
12331     if (tcg_rmode) {
12332         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12333     }
12334 }
12335 
12336 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12337  *
12338  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
12339  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12340  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12341  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12342  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12343  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12344  *
12345  * This actually covers two groups where scalar access is governed by
12346  * bit 28. A bunch of the instructions (float to integral) only exist
12347  * in the vector form and are un-allocated for the scalar decode. Also
12348  * in the scalar decode Q is always 1.
12349  */
12350 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12351 {
12352     int fpop, opcode, a, u;
12353     int rn, rd;
12354     bool is_q;
12355     bool is_scalar;
12356     bool only_in_vector = false;
12357 
12358     int pass;
12359     TCGv_i32 tcg_rmode = NULL;
12360     TCGv_ptr tcg_fpstatus = NULL;
12361     bool need_fpst = true;
12362     int rmode = -1;
12363 
12364     if (!dc_isar_feature(aa64_fp16, s)) {
12365         unallocated_encoding(s);
12366         return;
12367     }
12368 
12369     rd = extract32(insn, 0, 5);
12370     rn = extract32(insn, 5, 5);
12371 
12372     a = extract32(insn, 23, 1);
12373     u = extract32(insn, 29, 1);
12374     is_scalar = extract32(insn, 28, 1);
12375     is_q = extract32(insn, 30, 1);
12376 
12377     opcode = extract32(insn, 12, 5);
12378     fpop = deposit32(opcode, 5, 1, a);
12379     fpop = deposit32(fpop, 6, 1, u);
12380 
12381     switch (fpop) {
12382     case 0x1d: /* SCVTF */
12383     case 0x5d: /* UCVTF */
12384     {
12385         int elements;
12386 
12387         if (is_scalar) {
12388             elements = 1;
12389         } else {
12390             elements = (is_q ? 8 : 4);
12391         }
12392 
12393         if (!fp_access_check(s)) {
12394             return;
12395         }
12396         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12397         return;
12398     }
12399     break;
12400     case 0x2c: /* FCMGT (zero) */
12401     case 0x2d: /* FCMEQ (zero) */
12402     case 0x2e: /* FCMLT (zero) */
12403     case 0x6c: /* FCMGE (zero) */
12404     case 0x6d: /* FCMLE (zero) */
12405         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12406         return;
12407     case 0x3d: /* FRECPE */
12408     case 0x3f: /* FRECPX */
12409         break;
12410     case 0x18: /* FRINTN */
12411         only_in_vector = true;
12412         rmode = FPROUNDING_TIEEVEN;
12413         break;
12414     case 0x19: /* FRINTM */
12415         only_in_vector = true;
12416         rmode = FPROUNDING_NEGINF;
12417         break;
12418     case 0x38: /* FRINTP */
12419         only_in_vector = true;
12420         rmode = FPROUNDING_POSINF;
12421         break;
12422     case 0x39: /* FRINTZ */
12423         only_in_vector = true;
12424         rmode = FPROUNDING_ZERO;
12425         break;
12426     case 0x58: /* FRINTA */
12427         only_in_vector = true;
12428         rmode = FPROUNDING_TIEAWAY;
12429         break;
12430     case 0x59: /* FRINTX */
12431     case 0x79: /* FRINTI */
12432         only_in_vector = true;
12433         /* current rounding mode */
12434         break;
12435     case 0x1a: /* FCVTNS */
12436         rmode = FPROUNDING_TIEEVEN;
12437         break;
12438     case 0x1b: /* FCVTMS */
12439         rmode = FPROUNDING_NEGINF;
12440         break;
12441     case 0x1c: /* FCVTAS */
12442         rmode = FPROUNDING_TIEAWAY;
12443         break;
12444     case 0x3a: /* FCVTPS */
12445         rmode = FPROUNDING_POSINF;
12446         break;
12447     case 0x3b: /* FCVTZS */
12448         rmode = FPROUNDING_ZERO;
12449         break;
12450     case 0x5a: /* FCVTNU */
12451         rmode = FPROUNDING_TIEEVEN;
12452         break;
12453     case 0x5b: /* FCVTMU */
12454         rmode = FPROUNDING_NEGINF;
12455         break;
12456     case 0x5c: /* FCVTAU */
12457         rmode = FPROUNDING_TIEAWAY;
12458         break;
12459     case 0x7a: /* FCVTPU */
12460         rmode = FPROUNDING_POSINF;
12461         break;
12462     case 0x7b: /* FCVTZU */
12463         rmode = FPROUNDING_ZERO;
12464         break;
12465     case 0x2f: /* FABS */
12466     case 0x6f: /* FNEG */
12467         need_fpst = false;
12468         break;
12469     case 0x7d: /* FRSQRTE */
12470     case 0x7f: /* FSQRT (vector) */
12471         break;
12472     default:
12473         unallocated_encoding(s);
12474         return;
12475     }
12476 
12477 
12478     /* Check additional constraints for the scalar encoding */
12479     if (is_scalar) {
12480         if (!is_q) {
12481             unallocated_encoding(s);
12482             return;
12483         }
12484         /* FRINTxx is only in the vector form */
12485         if (only_in_vector) {
12486             unallocated_encoding(s);
12487             return;
12488         }
12489     }
12490 
12491     if (!fp_access_check(s)) {
12492         return;
12493     }
12494 
12495     if (rmode >= 0 || need_fpst) {
12496         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12497     }
12498 
12499     if (rmode >= 0) {
12500         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12501     }
12502 
12503     if (is_scalar) {
12504         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12505         TCGv_i32 tcg_res = tcg_temp_new_i32();
12506 
12507         switch (fpop) {
12508         case 0x1a: /* FCVTNS */
12509         case 0x1b: /* FCVTMS */
12510         case 0x1c: /* FCVTAS */
12511         case 0x3a: /* FCVTPS */
12512         case 0x3b: /* FCVTZS */
12513             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12514             break;
12515         case 0x3d: /* FRECPE */
12516             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12517             break;
12518         case 0x3f: /* FRECPX */
12519             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12520             break;
12521         case 0x5a: /* FCVTNU */
12522         case 0x5b: /* FCVTMU */
12523         case 0x5c: /* FCVTAU */
12524         case 0x7a: /* FCVTPU */
12525         case 0x7b: /* FCVTZU */
12526             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12527             break;
12528         case 0x6f: /* FNEG */
12529             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12530             break;
12531         case 0x7d: /* FRSQRTE */
12532             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12533             break;
12534         default:
12535             g_assert_not_reached();
12536         }
12537 
12538         /* limit any sign extension going on */
12539         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12540         write_fp_sreg(s, rd, tcg_res);
12541     } else {
12542         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12543             TCGv_i32 tcg_op = tcg_temp_new_i32();
12544             TCGv_i32 tcg_res = tcg_temp_new_i32();
12545 
12546             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12547 
12548             switch (fpop) {
12549             case 0x1a: /* FCVTNS */
12550             case 0x1b: /* FCVTMS */
12551             case 0x1c: /* FCVTAS */
12552             case 0x3a: /* FCVTPS */
12553             case 0x3b: /* FCVTZS */
12554                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12555                 break;
12556             case 0x3d: /* FRECPE */
12557                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12558                 break;
12559             case 0x5a: /* FCVTNU */
12560             case 0x5b: /* FCVTMU */
12561             case 0x5c: /* FCVTAU */
12562             case 0x7a: /* FCVTPU */
12563             case 0x7b: /* FCVTZU */
12564                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12565                 break;
12566             case 0x18: /* FRINTN */
12567             case 0x19: /* FRINTM */
12568             case 0x38: /* FRINTP */
12569             case 0x39: /* FRINTZ */
12570             case 0x58: /* FRINTA */
12571             case 0x79: /* FRINTI */
12572                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12573                 break;
12574             case 0x59: /* FRINTX */
12575                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12576                 break;
12577             case 0x2f: /* FABS */
12578                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12579                 break;
12580             case 0x6f: /* FNEG */
12581                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12582                 break;
12583             case 0x7d: /* FRSQRTE */
12584                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12585                 break;
12586             case 0x7f: /* FSQRT */
12587                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12588                 break;
12589             default:
12590                 g_assert_not_reached();
12591             }
12592 
12593             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12594         }
12595 
12596         clear_vec_high(s, is_q, rd);
12597     }
12598 
12599     if (tcg_rmode) {
12600         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12601     }
12602 }
12603 
12604 /* AdvSIMD scalar x indexed element
12605  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12606  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12607  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12608  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12609  * AdvSIMD vector x indexed element
12610  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12611  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12612  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12613  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12614  */
12615 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12616 {
12617     /* This encoding has two kinds of instruction:
12618      *  normal, where we perform elt x idxelt => elt for each
12619      *     element in the vector
12620      *  long, where we perform elt x idxelt and generate a result of
12621      *     double the width of the input element
12622      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12623      */
12624     bool is_scalar = extract32(insn, 28, 1);
12625     bool is_q = extract32(insn, 30, 1);
12626     bool u = extract32(insn, 29, 1);
12627     int size = extract32(insn, 22, 2);
12628     int l = extract32(insn, 21, 1);
12629     int m = extract32(insn, 20, 1);
12630     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12631     int rm = extract32(insn, 16, 4);
12632     int opcode = extract32(insn, 12, 4);
12633     int h = extract32(insn, 11, 1);
12634     int rn = extract32(insn, 5, 5);
12635     int rd = extract32(insn, 0, 5);
12636     bool is_long = false;
12637     int is_fp = 0;
12638     bool is_fp16 = false;
12639     int index;
12640     TCGv_ptr fpst;
12641 
12642     switch (16 * u + opcode) {
12643     case 0x08: /* MUL */
12644     case 0x10: /* MLA */
12645     case 0x14: /* MLS */
12646         if (is_scalar) {
12647             unallocated_encoding(s);
12648             return;
12649         }
12650         break;
12651     case 0x02: /* SMLAL, SMLAL2 */
12652     case 0x12: /* UMLAL, UMLAL2 */
12653     case 0x06: /* SMLSL, SMLSL2 */
12654     case 0x16: /* UMLSL, UMLSL2 */
12655     case 0x0a: /* SMULL, SMULL2 */
12656     case 0x1a: /* UMULL, UMULL2 */
12657         if (is_scalar) {
12658             unallocated_encoding(s);
12659             return;
12660         }
12661         is_long = true;
12662         break;
12663     case 0x03: /* SQDMLAL, SQDMLAL2 */
12664     case 0x07: /* SQDMLSL, SQDMLSL2 */
12665     case 0x0b: /* SQDMULL, SQDMULL2 */
12666         is_long = true;
12667         break;
12668     case 0x0c: /* SQDMULH */
12669     case 0x0d: /* SQRDMULH */
12670         break;
12671     case 0x01: /* FMLA */
12672     case 0x05: /* FMLS */
12673     case 0x09: /* FMUL */
12674     case 0x19: /* FMULX */
12675         is_fp = 1;
12676         break;
12677     case 0x1d: /* SQRDMLAH */
12678     case 0x1f: /* SQRDMLSH */
12679         if (!dc_isar_feature(aa64_rdm, s)) {
12680             unallocated_encoding(s);
12681             return;
12682         }
12683         break;
12684     case 0x0e: /* SDOT */
12685     case 0x1e: /* UDOT */
12686         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12687             unallocated_encoding(s);
12688             return;
12689         }
12690         break;
12691     case 0x0f:
12692         switch (size) {
12693         case 0: /* SUDOT */
12694         case 2: /* USDOT */
12695             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12696                 unallocated_encoding(s);
12697                 return;
12698             }
12699             size = MO_32;
12700             break;
12701         case 1: /* BFDOT */
12702             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12703                 unallocated_encoding(s);
12704                 return;
12705             }
12706             size = MO_32;
12707             break;
12708         case 3: /* BFMLAL{B,T} */
12709             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12710                 unallocated_encoding(s);
12711                 return;
12712             }
12713             /* can't set is_fp without other incorrect size checks */
12714             size = MO_16;
12715             break;
12716         default:
12717             unallocated_encoding(s);
12718             return;
12719         }
12720         break;
12721     case 0x11: /* FCMLA #0 */
12722     case 0x13: /* FCMLA #90 */
12723     case 0x15: /* FCMLA #180 */
12724     case 0x17: /* FCMLA #270 */
12725         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12726             unallocated_encoding(s);
12727             return;
12728         }
12729         is_fp = 2;
12730         break;
12731     case 0x00: /* FMLAL */
12732     case 0x04: /* FMLSL */
12733     case 0x18: /* FMLAL2 */
12734     case 0x1c: /* FMLSL2 */
12735         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12736             unallocated_encoding(s);
12737             return;
12738         }
12739         size = MO_16;
12740         /* is_fp, but we pass tcg_env not fp_status.  */
12741         break;
12742     default:
12743         unallocated_encoding(s);
12744         return;
12745     }
12746 
12747     switch (is_fp) {
12748     case 1: /* normal fp */
12749         /* convert insn encoded size to MemOp size */
12750         switch (size) {
12751         case 0: /* half-precision */
12752             size = MO_16;
12753             is_fp16 = true;
12754             break;
12755         case MO_32: /* single precision */
12756         case MO_64: /* double precision */
12757             break;
12758         default:
12759             unallocated_encoding(s);
12760             return;
12761         }
12762         break;
12763 
12764     case 2: /* complex fp */
12765         /* Each indexable element is a complex pair.  */
12766         size += 1;
12767         switch (size) {
12768         case MO_32:
12769             if (h && !is_q) {
12770                 unallocated_encoding(s);
12771                 return;
12772             }
12773             is_fp16 = true;
12774             break;
12775         case MO_64:
12776             break;
12777         default:
12778             unallocated_encoding(s);
12779             return;
12780         }
12781         break;
12782 
12783     default: /* integer */
12784         switch (size) {
12785         case MO_8:
12786         case MO_64:
12787             unallocated_encoding(s);
12788             return;
12789         }
12790         break;
12791     }
12792     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12793         unallocated_encoding(s);
12794         return;
12795     }
12796 
12797     /* Given MemOp size, adjust register and indexing.  */
12798     switch (size) {
12799     case MO_16:
12800         index = h << 2 | l << 1 | m;
12801         break;
12802     case MO_32:
12803         index = h << 1 | l;
12804         rm |= m << 4;
12805         break;
12806     case MO_64:
12807         if (l || !is_q) {
12808             unallocated_encoding(s);
12809             return;
12810         }
12811         index = h;
12812         rm |= m << 4;
12813         break;
12814     default:
12815         g_assert_not_reached();
12816     }
12817 
12818     if (!fp_access_check(s)) {
12819         return;
12820     }
12821 
12822     if (is_fp) {
12823         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12824     } else {
12825         fpst = NULL;
12826     }
12827 
12828     switch (16 * u + opcode) {
12829     case 0x0e: /* SDOT */
12830     case 0x1e: /* UDOT */
12831         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12832                          u ? gen_helper_gvec_udot_idx_b
12833                          : gen_helper_gvec_sdot_idx_b);
12834         return;
12835     case 0x0f:
12836         switch (extract32(insn, 22, 2)) {
12837         case 0: /* SUDOT */
12838             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12839                              gen_helper_gvec_sudot_idx_b);
12840             return;
12841         case 1: /* BFDOT */
12842             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12843                              gen_helper_gvec_bfdot_idx);
12844             return;
12845         case 2: /* USDOT */
12846             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12847                              gen_helper_gvec_usdot_idx_b);
12848             return;
12849         case 3: /* BFMLAL{B,T} */
12850             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
12851                               gen_helper_gvec_bfmlal_idx);
12852             return;
12853         }
12854         g_assert_not_reached();
12855     case 0x11: /* FCMLA #0 */
12856     case 0x13: /* FCMLA #90 */
12857     case 0x15: /* FCMLA #180 */
12858     case 0x17: /* FCMLA #270 */
12859         {
12860             int rot = extract32(insn, 13, 2);
12861             int data = (index << 2) | rot;
12862             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12863                                vec_full_reg_offset(s, rn),
12864                                vec_full_reg_offset(s, rm),
12865                                vec_full_reg_offset(s, rd), fpst,
12866                                is_q ? 16 : 8, vec_full_reg_size(s), data,
12867                                size == MO_64
12868                                ? gen_helper_gvec_fcmlas_idx
12869                                : gen_helper_gvec_fcmlah_idx);
12870         }
12871         return;
12872 
12873     case 0x00: /* FMLAL */
12874     case 0x04: /* FMLSL */
12875     case 0x18: /* FMLAL2 */
12876     case 0x1c: /* FMLSL2 */
12877         {
12878             int is_s = extract32(opcode, 2, 1);
12879             int is_2 = u;
12880             int data = (index << 2) | (is_2 << 1) | is_s;
12881             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
12882                                vec_full_reg_offset(s, rn),
12883                                vec_full_reg_offset(s, rm), tcg_env,
12884                                is_q ? 16 : 8, vec_full_reg_size(s),
12885                                data, gen_helper_gvec_fmlal_idx_a64);
12886         }
12887         return;
12888 
12889     case 0x08: /* MUL */
12890         if (!is_long && !is_scalar) {
12891             static gen_helper_gvec_3 * const fns[3] = {
12892                 gen_helper_gvec_mul_idx_h,
12893                 gen_helper_gvec_mul_idx_s,
12894                 gen_helper_gvec_mul_idx_d,
12895             };
12896             tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
12897                                vec_full_reg_offset(s, rn),
12898                                vec_full_reg_offset(s, rm),
12899                                is_q ? 16 : 8, vec_full_reg_size(s),
12900                                index, fns[size - 1]);
12901             return;
12902         }
12903         break;
12904 
12905     case 0x10: /* MLA */
12906         if (!is_long && !is_scalar) {
12907             static gen_helper_gvec_4 * const fns[3] = {
12908                 gen_helper_gvec_mla_idx_h,
12909                 gen_helper_gvec_mla_idx_s,
12910                 gen_helper_gvec_mla_idx_d,
12911             };
12912             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
12913                                vec_full_reg_offset(s, rn),
12914                                vec_full_reg_offset(s, rm),
12915                                vec_full_reg_offset(s, rd),
12916                                is_q ? 16 : 8, vec_full_reg_size(s),
12917                                index, fns[size - 1]);
12918             return;
12919         }
12920         break;
12921 
12922     case 0x14: /* MLS */
12923         if (!is_long && !is_scalar) {
12924             static gen_helper_gvec_4 * const fns[3] = {
12925                 gen_helper_gvec_mls_idx_h,
12926                 gen_helper_gvec_mls_idx_s,
12927                 gen_helper_gvec_mls_idx_d,
12928             };
12929             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
12930                                vec_full_reg_offset(s, rn),
12931                                vec_full_reg_offset(s, rm),
12932                                vec_full_reg_offset(s, rd),
12933                                is_q ? 16 : 8, vec_full_reg_size(s),
12934                                index, fns[size - 1]);
12935             return;
12936         }
12937         break;
12938     }
12939 
12940     if (size == 3) {
12941         TCGv_i64 tcg_idx = tcg_temp_new_i64();
12942         int pass;
12943 
12944         assert(is_fp && is_q && !is_long);
12945 
12946         read_vec_element(s, tcg_idx, rm, index, MO_64);
12947 
12948         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12949             TCGv_i64 tcg_op = tcg_temp_new_i64();
12950             TCGv_i64 tcg_res = tcg_temp_new_i64();
12951 
12952             read_vec_element(s, tcg_op, rn, pass, MO_64);
12953 
12954             switch (16 * u + opcode) {
12955             case 0x05: /* FMLS */
12956                 /* As usual for ARM, separate negation for fused multiply-add */
12957                 gen_helper_vfp_negd(tcg_op, tcg_op);
12958                 /* fall through */
12959             case 0x01: /* FMLA */
12960                 read_vec_element(s, tcg_res, rd, pass, MO_64);
12961                 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
12962                 break;
12963             case 0x09: /* FMUL */
12964                 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
12965                 break;
12966             case 0x19: /* FMULX */
12967                 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
12968                 break;
12969             default:
12970                 g_assert_not_reached();
12971             }
12972 
12973             write_vec_element(s, tcg_res, rd, pass, MO_64);
12974         }
12975 
12976         clear_vec_high(s, !is_scalar, rd);
12977     } else if (!is_long) {
12978         /* 32 bit floating point, or 16 or 32 bit integer.
12979          * For the 16 bit scalar case we use the usual Neon helpers and
12980          * rely on the fact that 0 op 0 == 0 with no side effects.
12981          */
12982         TCGv_i32 tcg_idx = tcg_temp_new_i32();
12983         int pass, maxpasses;
12984 
12985         if (is_scalar) {
12986             maxpasses = 1;
12987         } else {
12988             maxpasses = is_q ? 4 : 2;
12989         }
12990 
12991         read_vec_element_i32(s, tcg_idx, rm, index, size);
12992 
12993         if (size == 1 && !is_scalar) {
12994             /* The simplest way to handle the 16x16 indexed ops is to duplicate
12995              * the index into both halves of the 32 bit tcg_idx and then use
12996              * the usual Neon helpers.
12997              */
12998             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12999         }
13000 
13001         for (pass = 0; pass < maxpasses; pass++) {
13002             TCGv_i32 tcg_op = tcg_temp_new_i32();
13003             TCGv_i32 tcg_res = tcg_temp_new_i32();
13004 
13005             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13006 
13007             switch (16 * u + opcode) {
13008             case 0x08: /* MUL */
13009             case 0x10: /* MLA */
13010             case 0x14: /* MLS */
13011             {
13012                 static NeonGenTwoOpFn * const fns[2][2] = {
13013                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13014                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
13015                 };
13016                 NeonGenTwoOpFn *genfn;
13017                 bool is_sub = opcode == 0x4;
13018 
13019                 if (size == 1) {
13020                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13021                 } else {
13022                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13023                 }
13024                 if (opcode == 0x8) {
13025                     break;
13026                 }
13027                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13028                 genfn = fns[size - 1][is_sub];
13029                 genfn(tcg_res, tcg_op, tcg_res);
13030                 break;
13031             }
13032             case 0x05: /* FMLS */
13033             case 0x01: /* FMLA */
13034                 read_vec_element_i32(s, tcg_res, rd, pass,
13035                                      is_scalar ? size : MO_32);
13036                 switch (size) {
13037                 case 1:
13038                     if (opcode == 0x5) {
13039                         /* As usual for ARM, separate negation for fused
13040                          * multiply-add */
13041                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13042                     }
13043                     if (is_scalar) {
13044                         gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13045                                                    tcg_res, fpst);
13046                     } else {
13047                         gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13048                                                     tcg_res, fpst);
13049                     }
13050                     break;
13051                 case 2:
13052                     if (opcode == 0x5) {
13053                         /* As usual for ARM, separate negation for
13054                          * fused multiply-add */
13055                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13056                     }
13057                     gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13058                                            tcg_res, fpst);
13059                     break;
13060                 default:
13061                     g_assert_not_reached();
13062                 }
13063                 break;
13064             case 0x09: /* FMUL */
13065                 switch (size) {
13066                 case 1:
13067                     if (is_scalar) {
13068                         gen_helper_advsimd_mulh(tcg_res, tcg_op,
13069                                                 tcg_idx, fpst);
13070                     } else {
13071                         gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13072                                                  tcg_idx, fpst);
13073                     }
13074                     break;
13075                 case 2:
13076                     gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13077                     break;
13078                 default:
13079                     g_assert_not_reached();
13080                 }
13081                 break;
13082             case 0x19: /* FMULX */
13083                 switch (size) {
13084                 case 1:
13085                     if (is_scalar) {
13086                         gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13087                                                  tcg_idx, fpst);
13088                     } else {
13089                         gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13090                                                   tcg_idx, fpst);
13091                     }
13092                     break;
13093                 case 2:
13094                     gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13095                     break;
13096                 default:
13097                     g_assert_not_reached();
13098                 }
13099                 break;
13100             case 0x0c: /* SQDMULH */
13101                 if (size == 1) {
13102                     gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
13103                                                tcg_op, tcg_idx);
13104                 } else {
13105                     gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
13106                                                tcg_op, tcg_idx);
13107                 }
13108                 break;
13109             case 0x0d: /* SQRDMULH */
13110                 if (size == 1) {
13111                     gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
13112                                                 tcg_op, tcg_idx);
13113                 } else {
13114                     gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
13115                                                 tcg_op, tcg_idx);
13116                 }
13117                 break;
13118             case 0x1d: /* SQRDMLAH */
13119                 read_vec_element_i32(s, tcg_res, rd, pass,
13120                                      is_scalar ? size : MO_32);
13121                 if (size == 1) {
13122                     gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env,
13123                                                 tcg_op, tcg_idx, tcg_res);
13124                 } else {
13125                     gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env,
13126                                                 tcg_op, tcg_idx, tcg_res);
13127                 }
13128                 break;
13129             case 0x1f: /* SQRDMLSH */
13130                 read_vec_element_i32(s, tcg_res, rd, pass,
13131                                      is_scalar ? size : MO_32);
13132                 if (size == 1) {
13133                     gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env,
13134                                                 tcg_op, tcg_idx, tcg_res);
13135                 } else {
13136                     gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env,
13137                                                 tcg_op, tcg_idx, tcg_res);
13138                 }
13139                 break;
13140             default:
13141                 g_assert_not_reached();
13142             }
13143 
13144             if (is_scalar) {
13145                 write_fp_sreg(s, rd, tcg_res);
13146             } else {
13147                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13148             }
13149         }
13150 
13151         clear_vec_high(s, is_q, rd);
13152     } else {
13153         /* long ops: 16x16->32 or 32x32->64 */
13154         TCGv_i64 tcg_res[2];
13155         int pass;
13156         bool satop = extract32(opcode, 0, 1);
13157         MemOp memop = MO_32;
13158 
13159         if (satop || !u) {
13160             memop |= MO_SIGN;
13161         }
13162 
13163         if (size == 2) {
13164             TCGv_i64 tcg_idx = tcg_temp_new_i64();
13165 
13166             read_vec_element(s, tcg_idx, rm, index, memop);
13167 
13168             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13169                 TCGv_i64 tcg_op = tcg_temp_new_i64();
13170                 TCGv_i64 tcg_passres;
13171                 int passelt;
13172 
13173                 if (is_scalar) {
13174                     passelt = 0;
13175                 } else {
13176                     passelt = pass + (is_q * 2);
13177                 }
13178 
13179                 read_vec_element(s, tcg_op, rn, passelt, memop);
13180 
13181                 tcg_res[pass] = tcg_temp_new_i64();
13182 
13183                 if (opcode == 0xa || opcode == 0xb) {
13184                     /* Non-accumulating ops */
13185                     tcg_passres = tcg_res[pass];
13186                 } else {
13187                     tcg_passres = tcg_temp_new_i64();
13188                 }
13189 
13190                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13191 
13192                 if (satop) {
13193                     /* saturating, doubling */
13194                     gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
13195                                                       tcg_passres, tcg_passres);
13196                 }
13197 
13198                 if (opcode == 0xa || opcode == 0xb) {
13199                     continue;
13200                 }
13201 
13202                 /* Accumulating op: handle accumulate step */
13203                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13204 
13205                 switch (opcode) {
13206                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13207                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13208                     break;
13209                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13210                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13211                     break;
13212                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13213                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
13214                     /* fall through */
13215                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13216                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
13217                                                       tcg_res[pass],
13218                                                       tcg_passres);
13219                     break;
13220                 default:
13221                     g_assert_not_reached();
13222                 }
13223             }
13224 
13225             clear_vec_high(s, !is_scalar, rd);
13226         } else {
13227             TCGv_i32 tcg_idx = tcg_temp_new_i32();
13228 
13229             assert(size == 1);
13230             read_vec_element_i32(s, tcg_idx, rm, index, size);
13231 
13232             if (!is_scalar) {
13233                 /* The simplest way to handle the 16x16 indexed ops is to
13234                  * duplicate the index into both halves of the 32 bit tcg_idx
13235                  * and then use the usual Neon helpers.
13236                  */
13237                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13238             }
13239 
13240             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13241                 TCGv_i32 tcg_op = tcg_temp_new_i32();
13242                 TCGv_i64 tcg_passres;
13243 
13244                 if (is_scalar) {
13245                     read_vec_element_i32(s, tcg_op, rn, pass, size);
13246                 } else {
13247                     read_vec_element_i32(s, tcg_op, rn,
13248                                          pass + (is_q * 2), MO_32);
13249                 }
13250 
13251                 tcg_res[pass] = tcg_temp_new_i64();
13252 
13253                 if (opcode == 0xa || opcode == 0xb) {
13254                     /* Non-accumulating ops */
13255                     tcg_passres = tcg_res[pass];
13256                 } else {
13257                     tcg_passres = tcg_temp_new_i64();
13258                 }
13259 
13260                 if (memop & MO_SIGN) {
13261                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13262                 } else {
13263                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13264                 }
13265                 if (satop) {
13266                     gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
13267                                                       tcg_passres, tcg_passres);
13268                 }
13269 
13270                 if (opcode == 0xa || opcode == 0xb) {
13271                     continue;
13272                 }
13273 
13274                 /* Accumulating op: handle accumulate step */
13275                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13276 
13277                 switch (opcode) {
13278                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13279                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13280                                              tcg_passres);
13281                     break;
13282                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13283                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13284                                              tcg_passres);
13285                     break;
13286                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13287                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13288                     /* fall through */
13289                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13290                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
13291                                                       tcg_res[pass],
13292                                                       tcg_passres);
13293                     break;
13294                 default:
13295                     g_assert_not_reached();
13296                 }
13297             }
13298 
13299             if (is_scalar) {
13300                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13301             }
13302         }
13303 
13304         if (is_scalar) {
13305             tcg_res[1] = tcg_constant_i64(0);
13306         }
13307 
13308         for (pass = 0; pass < 2; pass++) {
13309             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13310         }
13311     }
13312 }
13313 
13314 /* Crypto AES
13315  *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
13316  * +-----------------+------+-----------+--------+-----+------+------+
13317  * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
13318  * +-----------------+------+-----------+--------+-----+------+------+
13319  */
13320 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13321 {
13322     int size = extract32(insn, 22, 2);
13323     int opcode = extract32(insn, 12, 5);
13324     int rn = extract32(insn, 5, 5);
13325     int rd = extract32(insn, 0, 5);
13326     gen_helper_gvec_2 *genfn2 = NULL;
13327     gen_helper_gvec_3 *genfn3 = NULL;
13328 
13329     if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13330         unallocated_encoding(s);
13331         return;
13332     }
13333 
13334     switch (opcode) {
13335     case 0x4: /* AESE */
13336         genfn3 = gen_helper_crypto_aese;
13337         break;
13338     case 0x6: /* AESMC */
13339         genfn2 = gen_helper_crypto_aesmc;
13340         break;
13341     case 0x5: /* AESD */
13342         genfn3 = gen_helper_crypto_aesd;
13343         break;
13344     case 0x7: /* AESIMC */
13345         genfn2 = gen_helper_crypto_aesimc;
13346         break;
13347     default:
13348         unallocated_encoding(s);
13349         return;
13350     }
13351 
13352     if (!fp_access_check(s)) {
13353         return;
13354     }
13355     if (genfn2) {
13356         gen_gvec_op2_ool(s, true, rd, rn, 0, genfn2);
13357     } else {
13358         gen_gvec_op3_ool(s, true, rd, rd, rn, 0, genfn3);
13359     }
13360 }
13361 
13362 /* Crypto three-reg SHA
13363  *  31             24 23  22  21 20  16  15 14    12 11 10 9    5 4    0
13364  * +-----------------+------+---+------+---+--------+-----+------+------+
13365  * | 0 1 0 1 1 1 1 0 | size | 0 |  Rm  | 0 | opcode | 0 0 |  Rn  |  Rd  |
13366  * +-----------------+------+---+------+---+--------+-----+------+------+
13367  */
13368 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13369 {
13370     int size = extract32(insn, 22, 2);
13371     int opcode = extract32(insn, 12, 3);
13372     int rm = extract32(insn, 16, 5);
13373     int rn = extract32(insn, 5, 5);
13374     int rd = extract32(insn, 0, 5);
13375     gen_helper_gvec_3 *genfn;
13376     bool feature;
13377 
13378     if (size != 0) {
13379         unallocated_encoding(s);
13380         return;
13381     }
13382 
13383     switch (opcode) {
13384     case 0: /* SHA1C */
13385         genfn = gen_helper_crypto_sha1c;
13386         feature = dc_isar_feature(aa64_sha1, s);
13387         break;
13388     case 1: /* SHA1P */
13389         genfn = gen_helper_crypto_sha1p;
13390         feature = dc_isar_feature(aa64_sha1, s);
13391         break;
13392     case 2: /* SHA1M */
13393         genfn = gen_helper_crypto_sha1m;
13394         feature = dc_isar_feature(aa64_sha1, s);
13395         break;
13396     case 3: /* SHA1SU0 */
13397         genfn = gen_helper_crypto_sha1su0;
13398         feature = dc_isar_feature(aa64_sha1, s);
13399         break;
13400     case 4: /* SHA256H */
13401         genfn = gen_helper_crypto_sha256h;
13402         feature = dc_isar_feature(aa64_sha256, s);
13403         break;
13404     case 5: /* SHA256H2 */
13405         genfn = gen_helper_crypto_sha256h2;
13406         feature = dc_isar_feature(aa64_sha256, s);
13407         break;
13408     case 6: /* SHA256SU1 */
13409         genfn = gen_helper_crypto_sha256su1;
13410         feature = dc_isar_feature(aa64_sha256, s);
13411         break;
13412     default:
13413         unallocated_encoding(s);
13414         return;
13415     }
13416 
13417     if (!feature) {
13418         unallocated_encoding(s);
13419         return;
13420     }
13421 
13422     if (!fp_access_check(s)) {
13423         return;
13424     }
13425     gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
13426 }
13427 
13428 /* Crypto two-reg SHA
13429  *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
13430  * +-----------------+------+-----------+--------+-----+------+------+
13431  * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
13432  * +-----------------+------+-----------+--------+-----+------+------+
13433  */
13434 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13435 {
13436     int size = extract32(insn, 22, 2);
13437     int opcode = extract32(insn, 12, 5);
13438     int rn = extract32(insn, 5, 5);
13439     int rd = extract32(insn, 0, 5);
13440     gen_helper_gvec_2 *genfn;
13441     bool feature;
13442 
13443     if (size != 0) {
13444         unallocated_encoding(s);
13445         return;
13446     }
13447 
13448     switch (opcode) {
13449     case 0: /* SHA1H */
13450         feature = dc_isar_feature(aa64_sha1, s);
13451         genfn = gen_helper_crypto_sha1h;
13452         break;
13453     case 1: /* SHA1SU1 */
13454         feature = dc_isar_feature(aa64_sha1, s);
13455         genfn = gen_helper_crypto_sha1su1;
13456         break;
13457     case 2: /* SHA256SU0 */
13458         feature = dc_isar_feature(aa64_sha256, s);
13459         genfn = gen_helper_crypto_sha256su0;
13460         break;
13461     default:
13462         unallocated_encoding(s);
13463         return;
13464     }
13465 
13466     if (!feature) {
13467         unallocated_encoding(s);
13468         return;
13469     }
13470 
13471     if (!fp_access_check(s)) {
13472         return;
13473     }
13474     gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
13475 }
13476 
13477 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
13478 {
13479     tcg_gen_rotli_i64(d, m, 1);
13480     tcg_gen_xor_i64(d, d, n);
13481 }
13482 
13483 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
13484 {
13485     tcg_gen_rotli_vec(vece, d, m, 1);
13486     tcg_gen_xor_vec(vece, d, d, n);
13487 }
13488 
13489 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
13490                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
13491 {
13492     static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
13493     static const GVecGen3 op = {
13494         .fni8 = gen_rax1_i64,
13495         .fniv = gen_rax1_vec,
13496         .opt_opc = vecop_list,
13497         .fno = gen_helper_crypto_rax1,
13498         .vece = MO_64,
13499     };
13500     tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
13501 }
13502 
13503 /* Crypto three-reg SHA512
13504  *  31                   21 20  16 15  14  13 12  11  10  9    5 4    0
13505  * +-----------------------+------+---+---+-----+--------+------+------+
13506  * | 1 1 0 0 1 1 1 0 0 1 1 |  Rm  | 1 | O | 0 0 | opcode |  Rn  |  Rd  |
13507  * +-----------------------+------+---+---+-----+--------+------+------+
13508  */
13509 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13510 {
13511     int opcode = extract32(insn, 10, 2);
13512     int o =  extract32(insn, 14, 1);
13513     int rm = extract32(insn, 16, 5);
13514     int rn = extract32(insn, 5, 5);
13515     int rd = extract32(insn, 0, 5);
13516     bool feature;
13517     gen_helper_gvec_3 *oolfn = NULL;
13518     GVecGen3Fn *gvecfn = NULL;
13519 
13520     if (o == 0) {
13521         switch (opcode) {
13522         case 0: /* SHA512H */
13523             feature = dc_isar_feature(aa64_sha512, s);
13524             oolfn = gen_helper_crypto_sha512h;
13525             break;
13526         case 1: /* SHA512H2 */
13527             feature = dc_isar_feature(aa64_sha512, s);
13528             oolfn = gen_helper_crypto_sha512h2;
13529             break;
13530         case 2: /* SHA512SU1 */
13531             feature = dc_isar_feature(aa64_sha512, s);
13532             oolfn = gen_helper_crypto_sha512su1;
13533             break;
13534         case 3: /* RAX1 */
13535             feature = dc_isar_feature(aa64_sha3, s);
13536             gvecfn = gen_gvec_rax1;
13537             break;
13538         default:
13539             g_assert_not_reached();
13540         }
13541     } else {
13542         switch (opcode) {
13543         case 0: /* SM3PARTW1 */
13544             feature = dc_isar_feature(aa64_sm3, s);
13545             oolfn = gen_helper_crypto_sm3partw1;
13546             break;
13547         case 1: /* SM3PARTW2 */
13548             feature = dc_isar_feature(aa64_sm3, s);
13549             oolfn = gen_helper_crypto_sm3partw2;
13550             break;
13551         case 2: /* SM4EKEY */
13552             feature = dc_isar_feature(aa64_sm4, s);
13553             oolfn = gen_helper_crypto_sm4ekey;
13554             break;
13555         default:
13556             unallocated_encoding(s);
13557             return;
13558         }
13559     }
13560 
13561     if (!feature) {
13562         unallocated_encoding(s);
13563         return;
13564     }
13565 
13566     if (!fp_access_check(s)) {
13567         return;
13568     }
13569 
13570     if (oolfn) {
13571         gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
13572     } else {
13573         gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
13574     }
13575 }
13576 
13577 /* Crypto two-reg SHA512
13578  *  31                                     12  11  10  9    5 4    0
13579  * +-----------------------------------------+--------+------+------+
13580  * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode |  Rn  |  Rd  |
13581  * +-----------------------------------------+--------+------+------+
13582  */
13583 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13584 {
13585     int opcode = extract32(insn, 10, 2);
13586     int rn = extract32(insn, 5, 5);
13587     int rd = extract32(insn, 0, 5);
13588     bool feature;
13589 
13590     switch (opcode) {
13591     case 0: /* SHA512SU0 */
13592         feature = dc_isar_feature(aa64_sha512, s);
13593         break;
13594     case 1: /* SM4E */
13595         feature = dc_isar_feature(aa64_sm4, s);
13596         break;
13597     default:
13598         unallocated_encoding(s);
13599         return;
13600     }
13601 
13602     if (!feature) {
13603         unallocated_encoding(s);
13604         return;
13605     }
13606 
13607     if (!fp_access_check(s)) {
13608         return;
13609     }
13610 
13611     switch (opcode) {
13612     case 0: /* SHA512SU0 */
13613         gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
13614         break;
13615     case 1: /* SM4E */
13616         gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
13617         break;
13618     default:
13619         g_assert_not_reached();
13620     }
13621 }
13622 
13623 /* Crypto four-register
13624  *  31               23 22 21 20  16 15  14  10 9    5 4    0
13625  * +-------------------+-----+------+---+------+------+------+
13626  * | 1 1 0 0 1 1 1 0 0 | Op0 |  Rm  | 0 |  Ra  |  Rn  |  Rd  |
13627  * +-------------------+-----+------+---+------+------+------+
13628  */
13629 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13630 {
13631     int op0 = extract32(insn, 21, 2);
13632     int rm = extract32(insn, 16, 5);
13633     int ra = extract32(insn, 10, 5);
13634     int rn = extract32(insn, 5, 5);
13635     int rd = extract32(insn, 0, 5);
13636     bool feature;
13637 
13638     switch (op0) {
13639     case 0: /* EOR3 */
13640     case 1: /* BCAX */
13641         feature = dc_isar_feature(aa64_sha3, s);
13642         break;
13643     case 2: /* SM3SS1 */
13644         feature = dc_isar_feature(aa64_sm3, s);
13645         break;
13646     default:
13647         unallocated_encoding(s);
13648         return;
13649     }
13650 
13651     if (!feature) {
13652         unallocated_encoding(s);
13653         return;
13654     }
13655 
13656     if (!fp_access_check(s)) {
13657         return;
13658     }
13659 
13660     if (op0 < 2) {
13661         TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13662         int pass;
13663 
13664         tcg_op1 = tcg_temp_new_i64();
13665         tcg_op2 = tcg_temp_new_i64();
13666         tcg_op3 = tcg_temp_new_i64();
13667         tcg_res[0] = tcg_temp_new_i64();
13668         tcg_res[1] = tcg_temp_new_i64();
13669 
13670         for (pass = 0; pass < 2; pass++) {
13671             read_vec_element(s, tcg_op1, rn, pass, MO_64);
13672             read_vec_element(s, tcg_op2, rm, pass, MO_64);
13673             read_vec_element(s, tcg_op3, ra, pass, MO_64);
13674 
13675             if (op0 == 0) {
13676                 /* EOR3 */
13677                 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13678             } else {
13679                 /* BCAX */
13680                 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13681             }
13682             tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13683         }
13684         write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13685         write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13686     } else {
13687         TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13688 
13689         tcg_op1 = tcg_temp_new_i32();
13690         tcg_op2 = tcg_temp_new_i32();
13691         tcg_op3 = tcg_temp_new_i32();
13692         tcg_res = tcg_temp_new_i32();
13693         tcg_zero = tcg_constant_i32(0);
13694 
13695         read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13696         read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13697         read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13698 
13699         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13700         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13701         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13702         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13703 
13704         write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13705         write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13706         write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13707         write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13708     }
13709 }
13710 
13711 /* Crypto XAR
13712  *  31                   21 20  16 15    10 9    5 4    0
13713  * +-----------------------+------+--------+------+------+
13714  * | 1 1 0 0 1 1 1 0 1 0 0 |  Rm  |  imm6  |  Rn  |  Rd  |
13715  * +-----------------------+------+--------+------+------+
13716  */
13717 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13718 {
13719     int rm = extract32(insn, 16, 5);
13720     int imm6 = extract32(insn, 10, 6);
13721     int rn = extract32(insn, 5, 5);
13722     int rd = extract32(insn, 0, 5);
13723 
13724     if (!dc_isar_feature(aa64_sha3, s)) {
13725         unallocated_encoding(s);
13726         return;
13727     }
13728 
13729     if (!fp_access_check(s)) {
13730         return;
13731     }
13732 
13733     gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd),
13734                  vec_full_reg_offset(s, rn),
13735                  vec_full_reg_offset(s, rm), imm6, 16,
13736                  vec_full_reg_size(s));
13737 }
13738 
13739 /* Crypto three-reg imm2
13740  *  31                   21 20  16 15  14 13 12  11  10  9    5 4    0
13741  * +-----------------------+------+-----+------+--------+------+------+
13742  * | 1 1 0 0 1 1 1 0 0 1 0 |  Rm  | 1 0 | imm2 | opcode |  Rn  |  Rd  |
13743  * +-----------------------+------+-----+------+--------+------+------+
13744  */
13745 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13746 {
13747     static gen_helper_gvec_3 * const fns[4] = {
13748         gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
13749         gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
13750     };
13751     int opcode = extract32(insn, 10, 2);
13752     int imm2 = extract32(insn, 12, 2);
13753     int rm = extract32(insn, 16, 5);
13754     int rn = extract32(insn, 5, 5);
13755     int rd = extract32(insn, 0, 5);
13756 
13757     if (!dc_isar_feature(aa64_sm3, s)) {
13758         unallocated_encoding(s);
13759         return;
13760     }
13761 
13762     if (!fp_access_check(s)) {
13763         return;
13764     }
13765 
13766     gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
13767 }
13768 
13769 /* C3.6 Data processing - SIMD, inc Crypto
13770  *
13771  * As the decode gets a little complex we are using a table based
13772  * approach for this part of the decode.
13773  */
13774 static const AArch64DecodeTable data_proc_simd[] = {
13775     /* pattern  ,  mask     ,  fn                        */
13776     { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13777     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13778     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13779     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13780     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13781     { 0x0e000400, 0x9fe08400, disas_simd_copy },
13782     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13783     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13784     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13785     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13786     { 0x0e000000, 0xbf208c00, disas_simd_tb },
13787     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13788     { 0x2e000000, 0xbf208400, disas_simd_ext },
13789     { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13790     { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13791     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13792     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13793     { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13794     { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
13795     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13796     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13797     { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
13798     { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
13799     { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
13800     { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
13801     { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
13802     { 0xce000000, 0xff808000, disas_crypto_four_reg },
13803     { 0xce800000, 0xffe00000, disas_crypto_xar },
13804     { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
13805     { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13806     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13807     { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13808     { 0x00000000, 0x00000000, NULL }
13809 };
13810 
13811 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13812 {
13813     /* Note that this is called with all non-FP cases from
13814      * table C3-6 so it must UNDEF for entries not specifically
13815      * allocated to instructions in that table.
13816      */
13817     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13818     if (fn) {
13819         fn(s, insn);
13820     } else {
13821         unallocated_encoding(s);
13822     }
13823 }
13824 
13825 /* C3.6 Data processing - SIMD and floating point */
13826 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13827 {
13828     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13829         disas_data_proc_fp(s, insn);
13830     } else {
13831         /* SIMD, including crypto */
13832         disas_data_proc_simd(s, insn);
13833     }
13834 }
13835 
13836 static bool trans_OK(DisasContext *s, arg_OK *a)
13837 {
13838     return true;
13839 }
13840 
13841 static bool trans_FAIL(DisasContext *s, arg_OK *a)
13842 {
13843     s->is_nonstreaming = true;
13844     return true;
13845 }
13846 
13847 /**
13848  * is_guarded_page:
13849  * @env: The cpu environment
13850  * @s: The DisasContext
13851  *
13852  * Return true if the page is guarded.
13853  */
13854 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13855 {
13856     uint64_t addr = s->base.pc_first;
13857 #ifdef CONFIG_USER_ONLY
13858     return page_get_flags(addr) & PAGE_BTI;
13859 #else
13860     CPUTLBEntryFull *full;
13861     void *host;
13862     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13863     int flags;
13864 
13865     /*
13866      * We test this immediately after reading an insn, which means
13867      * that the TLB entry must be present and valid, and thus this
13868      * access will never raise an exception.
13869      */
13870     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
13871                               false, &host, &full, 0);
13872     assert(!(flags & TLB_INVALID_MASK));
13873 
13874     return full->extra.arm.guarded;
13875 #endif
13876 }
13877 
13878 /**
13879  * btype_destination_ok:
13880  * @insn: The instruction at the branch destination
13881  * @bt: SCTLR_ELx.BT
13882  * @btype: PSTATE.BTYPE, and is non-zero
13883  *
13884  * On a guarded page, there are a limited number of insns
13885  * that may be present at the branch target:
13886  *   - branch target identifiers,
13887  *   - paciasp, pacibsp,
13888  *   - BRK insn
13889  *   - HLT insn
13890  * Anything else causes a Branch Target Exception.
13891  *
13892  * Return true if the branch is compatible, false to raise BTITRAP.
13893  */
13894 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
13895 {
13896     if ((insn & 0xfffff01fu) == 0xd503201fu) {
13897         /* HINT space */
13898         switch (extract32(insn, 5, 7)) {
13899         case 0b011001: /* PACIASP */
13900         case 0b011011: /* PACIBSP */
13901             /*
13902              * If SCTLR_ELx.BT, then PACI*SP are not compatible
13903              * with btype == 3.  Otherwise all btype are ok.
13904              */
13905             return !bt || btype != 3;
13906         case 0b100000: /* BTI */
13907             /* Not compatible with any btype.  */
13908             return false;
13909         case 0b100010: /* BTI c */
13910             /* Not compatible with btype == 3 */
13911             return btype != 3;
13912         case 0b100100: /* BTI j */
13913             /* Not compatible with btype == 2 */
13914             return btype != 2;
13915         case 0b100110: /* BTI jc */
13916             /* Compatible with any btype.  */
13917             return true;
13918         }
13919     } else {
13920         switch (insn & 0xffe0001fu) {
13921         case 0xd4200000u: /* BRK */
13922         case 0xd4400000u: /* HLT */
13923             /* Give priority to the breakpoint exception.  */
13924             return true;
13925         }
13926     }
13927     return false;
13928 }
13929 
13930 /* C3.1 A64 instruction index by encoding */
13931 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
13932 {
13933     switch (extract32(insn, 25, 4)) {
13934     case 0x5:
13935     case 0xd:      /* Data processing - register */
13936         disas_data_proc_reg(s, insn);
13937         break;
13938     case 0x7:
13939     case 0xf:      /* Data processing - SIMD and floating point */
13940         disas_data_proc_simd_fp(s, insn);
13941         break;
13942     default:
13943         unallocated_encoding(s);
13944         break;
13945     }
13946 }
13947 
13948 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13949                                           CPUState *cpu)
13950 {
13951     DisasContext *dc = container_of(dcbase, DisasContext, base);
13952     CPUARMState *env = cpu_env(cpu);
13953     ARMCPU *arm_cpu = env_archcpu(env);
13954     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
13955     int bound, core_mmu_idx;
13956 
13957     dc->isar = &arm_cpu->isar;
13958     dc->condjmp = 0;
13959     dc->pc_save = dc->base.pc_first;
13960     dc->aarch64 = true;
13961     dc->thumb = false;
13962     dc->sctlr_b = 0;
13963     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
13964     dc->condexec_mask = 0;
13965     dc->condexec_cond = 0;
13966     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
13967     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
13968     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
13969     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
13970     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
13971     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
13972 #if !defined(CONFIG_USER_ONLY)
13973     dc->user = (dc->current_el == 0);
13974 #endif
13975     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
13976     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
13977     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
13978     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
13979     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
13980     dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET);
13981     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
13982     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
13983     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
13984     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
13985     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
13986     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
13987     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
13988     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
13989     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
13990     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
13991     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
13992     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
13993     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
13994     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
13995     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
13996     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
13997     dc->vec_len = 0;
13998     dc->vec_stride = 0;
13999     dc->cp_regs = arm_cpu->cp_regs;
14000     dc->features = env->features;
14001     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
14002     dc->gm_blocksize = arm_cpu->gm_blocksize;
14003 
14004 #ifdef CONFIG_USER_ONLY
14005     /* In sve_probe_page, we assume TBI is enabled. */
14006     tcg_debug_assert(dc->tbid & 1);
14007 #endif
14008 
14009     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
14010 
14011     /* Single step state. The code-generation logic here is:
14012      *  SS_ACTIVE == 0:
14013      *   generate code with no special handling for single-stepping (except
14014      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14015      *   this happens anyway because those changes are all system register or
14016      *   PSTATE writes).
14017      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14018      *   emit code for one insn
14019      *   emit code to clear PSTATE.SS
14020      *   emit code to generate software step exception for completed step
14021      *   end TB (as usual for having generated an exception)
14022      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14023      *   emit code to generate a software step exception
14024      *   end the TB
14025      */
14026     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
14027     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
14028     dc->is_ldex = false;
14029 
14030     /* Bound the number of insns to execute to those left on the page.  */
14031     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14032 
14033     /* If architectural single step active, limit to 1.  */
14034     if (dc->ss_active) {
14035         bound = 1;
14036     }
14037     dc->base.max_insns = MIN(dc->base.max_insns, bound);
14038 }
14039 
14040 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14041 {
14042 }
14043 
14044 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14045 {
14046     DisasContext *dc = container_of(dcbase, DisasContext, base);
14047     target_ulong pc_arg = dc->base.pc_next;
14048 
14049     if (tb_cflags(dcbase->tb) & CF_PCREL) {
14050         pc_arg &= ~TARGET_PAGE_MASK;
14051     }
14052     tcg_gen_insn_start(pc_arg, 0, 0);
14053     dc->insn_start = tcg_last_op();
14054 }
14055 
14056 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14057 {
14058     DisasContext *s = container_of(dcbase, DisasContext, base);
14059     CPUARMState *env = cpu_env(cpu);
14060     uint64_t pc = s->base.pc_next;
14061     uint32_t insn;
14062 
14063     /* Singlestep exceptions have the highest priority. */
14064     if (s->ss_active && !s->pstate_ss) {
14065         /* Singlestep state is Active-pending.
14066          * If we're in this state at the start of a TB then either
14067          *  a) we just took an exception to an EL which is being debugged
14068          *     and this is the first insn in the exception handler
14069          *  b) debug exceptions were masked and we just unmasked them
14070          *     without changing EL (eg by clearing PSTATE.D)
14071          * In either case we're going to take a swstep exception in the
14072          * "did not step an insn" case, and so the syndrome ISV and EX
14073          * bits should be zero.
14074          */
14075         assert(s->base.num_insns == 1);
14076         gen_swstep_exception(s, 0, 0);
14077         s->base.is_jmp = DISAS_NORETURN;
14078         s->base.pc_next = pc + 4;
14079         return;
14080     }
14081 
14082     if (pc & 3) {
14083         /*
14084          * PC alignment fault.  This has priority over the instruction abort
14085          * that we would receive from a translation fault via arm_ldl_code.
14086          * This should only be possible after an indirect branch, at the
14087          * start of the TB.
14088          */
14089         assert(s->base.num_insns == 1);
14090         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
14091         s->base.is_jmp = DISAS_NORETURN;
14092         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
14093         return;
14094     }
14095 
14096     s->pc_curr = pc;
14097     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
14098     s->insn = insn;
14099     s->base.pc_next = pc + 4;
14100 
14101     s->fp_access_checked = false;
14102     s->sve_access_checked = false;
14103 
14104     if (s->pstate_il) {
14105         /*
14106          * Illegal execution state. This has priority over BTI
14107          * exceptions, but comes after instruction abort exceptions.
14108          */
14109         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
14110         return;
14111     }
14112 
14113     if (dc_isar_feature(aa64_bti, s)) {
14114         if (s->base.num_insns == 1) {
14115             /*
14116              * At the first insn of the TB, compute s->guarded_page.
14117              * We delayed computing this until successfully reading
14118              * the first insn of the TB, above.  This (mostly) ensures
14119              * that the softmmu tlb entry has been populated, and the
14120              * page table GP bit is available.
14121              *
14122              * Note that we need to compute this even if btype == 0,
14123              * because this value is used for BR instructions later
14124              * where ENV is not available.
14125              */
14126             s->guarded_page = is_guarded_page(env, s);
14127 
14128             /* First insn can have btype set to non-zero.  */
14129             tcg_debug_assert(s->btype >= 0);
14130 
14131             /*
14132              * Note that the Branch Target Exception has fairly high
14133              * priority -- below debugging exceptions but above most
14134              * everything else.  This allows us to handle this now
14135              * instead of waiting until the insn is otherwise decoded.
14136              */
14137             if (s->btype != 0
14138                 && s->guarded_page
14139                 && !btype_destination_ok(insn, s->bt, s->btype)) {
14140                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
14141                 return;
14142             }
14143         } else {
14144             /* Not the first insn: btype must be 0.  */
14145             tcg_debug_assert(s->btype == 0);
14146         }
14147     }
14148 
14149     s->is_nonstreaming = false;
14150     if (s->sme_trap_nonstreaming) {
14151         disas_sme_fa64(s, insn);
14152     }
14153 
14154     if (!disas_a64(s, insn) &&
14155         !disas_sme(s, insn) &&
14156         !disas_sve(s, insn)) {
14157         disas_a64_legacy(s, insn);
14158     }
14159 
14160     /*
14161      * After execution of most insns, btype is reset to 0.
14162      * Note that we set btype == -1 when the insn sets btype.
14163      */
14164     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14165         reset_btype(s);
14166     }
14167 }
14168 
14169 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14170 {
14171     DisasContext *dc = container_of(dcbase, DisasContext, base);
14172 
14173     if (unlikely(dc->ss_active)) {
14174         /* Note that this means single stepping WFI doesn't halt the CPU.
14175          * For conditional branch insns this is harmless unreachable code as
14176          * gen_goto_tb() has already handled emitting the debug exception
14177          * (and thus a tb-jump is not possible when singlestepping).
14178          */
14179         switch (dc->base.is_jmp) {
14180         default:
14181             gen_a64_update_pc(dc, 4);
14182             /* fall through */
14183         case DISAS_EXIT:
14184         case DISAS_JUMP:
14185             gen_step_complete_exception(dc);
14186             break;
14187         case DISAS_NORETURN:
14188             break;
14189         }
14190     } else {
14191         switch (dc->base.is_jmp) {
14192         case DISAS_NEXT:
14193         case DISAS_TOO_MANY:
14194             gen_goto_tb(dc, 1, 4);
14195             break;
14196         default:
14197         case DISAS_UPDATE_EXIT:
14198             gen_a64_update_pc(dc, 4);
14199             /* fall through */
14200         case DISAS_EXIT:
14201             tcg_gen_exit_tb(NULL, 0);
14202             break;
14203         case DISAS_UPDATE_NOCHAIN:
14204             gen_a64_update_pc(dc, 4);
14205             /* fall through */
14206         case DISAS_JUMP:
14207             tcg_gen_lookup_and_goto_ptr();
14208             break;
14209         case DISAS_NORETURN:
14210         case DISAS_SWI:
14211             break;
14212         case DISAS_WFE:
14213             gen_a64_update_pc(dc, 4);
14214             gen_helper_wfe(tcg_env);
14215             break;
14216         case DISAS_YIELD:
14217             gen_a64_update_pc(dc, 4);
14218             gen_helper_yield(tcg_env);
14219             break;
14220         case DISAS_WFI:
14221             /*
14222              * This is a special case because we don't want to just halt
14223              * the CPU if trying to debug across a WFI.
14224              */
14225             gen_a64_update_pc(dc, 4);
14226             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
14227             /*
14228              * The helper doesn't necessarily throw an exception, but we
14229              * must go back to the main loop to check for interrupts anyway.
14230              */
14231             tcg_gen_exit_tb(NULL, 0);
14232             break;
14233         }
14234     }
14235 }
14236 
14237 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14238                                  CPUState *cpu, FILE *logfile)
14239 {
14240     DisasContext *dc = container_of(dcbase, DisasContext, base);
14241 
14242     fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first));
14243     target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size);
14244 }
14245 
14246 const TranslatorOps aarch64_translator_ops = {
14247     .init_disas_context = aarch64_tr_init_disas_context,
14248     .tb_start           = aarch64_tr_tb_start,
14249     .insn_start         = aarch64_tr_insn_start,
14250     .translate_insn     = aarch64_tr_translate_insn,
14251     .tb_stop            = aarch64_tr_tb_stop,
14252     .disas_log          = aarch64_tr_disas_log,
14253 };
14254