xref: /qemu/target/hexagon/decode.c (revision 4614b8f3)
1 /*
2  *  Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License, or
7  *  (at your option) any later version.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include "qemu/osdep.h"
19 #include "iclass.h"
20 #include "attribs.h"
21 #include "genptr.h"
22 #include "decode.h"
23 #include "insn.h"
24 #include "printinsn.h"
25 #include "mmvec/decode_ext_mmvec.h"
26 
27 #define fZXTN(N, M, VAL) ((VAL) & ((1LL << (N)) - 1))
28 
29 enum {
30     EXT_IDX_noext = 0,
31     EXT_IDX_noext_AFTER = 4,
32     EXT_IDX_mmvec = 4,
33     EXT_IDX_mmvec_AFTER = 8,
34     XX_LAST_EXT_IDX
35 };
36 
37 /*
38  *  Certain operand types represent a non-contiguous set of values.
39  *  For example, the compound compare-and-jump instruction can only access
40  *  registers R0-R7 and R16-23.
41  *  This table represents the mapping from the encoding to the actual values.
42  */
43 
44 #define DEF_REGMAP(NAME, ELEMENTS, ...) \
45     static const unsigned int DECODE_REGISTER_##NAME[ELEMENTS] = \
46     { __VA_ARGS__ };
47         /* Name   Num Table */
48 DEF_REGMAP(R_16,  16, 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23)
49 DEF_REGMAP(R__8,  8,  0, 2, 4, 6, 16, 18, 20, 22)
50 DEF_REGMAP(R_8,   8,  0, 1, 2, 3, 4, 5, 6, 7)
51 
52 #define DECODE_MAPPED_REG(OPNUM, NAME) \
53     insn->regno[OPNUM] = DECODE_REGISTER_##NAME[insn->regno[OPNUM]];
54 
55 /* Helper functions for decode_*_generated.c.inc */
56 #define DECODE_MAPPED(NAME) \
57 static int decode_mapped_reg_##NAME(DisasContext *ctx, int x) \
58 { \
59     return DECODE_REGISTER_##NAME[x]; \
60 }
61 DECODE_MAPPED(R_16)
62 DECODE_MAPPED(R_8)
63 DECODE_MAPPED(R__8)
64 
65 /* Helper function for decodetree_trans_funcs_generated.c.inc */
66 static int shift_left(DisasContext *ctx, int x, int n, int immno)
67 {
68     int ret = x;
69     Insn *insn = ctx->insn;
70     if (!insn->extension_valid ||
71         insn->which_extended != immno) {
72         ret <<= n;
73     }
74     return ret;
75 }
76 
77 /* Include the generated decoder for 32 bit insn */
78 #include "decode_normal_generated.c.inc"
79 #include "decode_hvx_generated.c.inc"
80 
81 /* Include the generated decoder for 16 bit insn */
82 #include "decode_subinsn_a_generated.c.inc"
83 #include "decode_subinsn_l1_generated.c.inc"
84 #include "decode_subinsn_l2_generated.c.inc"
85 #include "decode_subinsn_s1_generated.c.inc"
86 #include "decode_subinsn_s2_generated.c.inc"
87 
88 /* Include the generated helpers for the decoder */
89 #include "decodetree_trans_funcs_generated.c.inc"
90 
91 void decode_send_insn_to(Packet *packet, int start, int newloc)
92 {
93     Insn tmpinsn;
94     int direction;
95     int i;
96     if (start == newloc) {
97         return;
98     }
99     if (start < newloc) {
100         /* Move towards end */
101         direction = 1;
102     } else {
103         /* move towards beginning */
104         direction = -1;
105     }
106     for (i = start; i != newloc; i += direction) {
107         tmpinsn = packet->insn[i];
108         packet->insn[i] = packet->insn[i + direction];
109         packet->insn[i + direction] = tmpinsn;
110     }
111 }
112 
113 /* Fill newvalue registers with the correct regno */
114 static void
115 decode_fill_newvalue_regno(Packet *packet)
116 {
117     int i, use_regidx, offset, def_idx, dst_idx;
118     uint16_t def_opcode, use_opcode;
119     char *dststr;
120 
121     for (i = 1; i < packet->num_insns; i++) {
122         if (GET_ATTRIB(packet->insn[i].opcode, A_DOTNEWVALUE) &&
123             !GET_ATTRIB(packet->insn[i].opcode, A_EXTENSION)) {
124             use_opcode = packet->insn[i].opcode;
125 
126             /* It's a store, so we're adjusting the Nt field */
127             if (GET_ATTRIB(use_opcode, A_STORE)) {
128                 use_regidx = strchr(opcode_reginfo[use_opcode], 't') -
129                     opcode_reginfo[use_opcode];
130             } else {    /* It's a Jump, so we're adjusting the Ns field */
131                 use_regidx = strchr(opcode_reginfo[use_opcode], 's') -
132                     opcode_reginfo[use_opcode];
133             }
134             g_assert(packet->insn[i].new_read_idx != -1 &&
135                      packet->insn[i].new_read_idx == use_regidx);
136 
137             /*
138              * What's encoded at the N-field is the offset to who's producing
139              * the value.  Shift off the LSB which indicates odd/even register,
140              * then walk backwards and skip over the constant extenders.
141              */
142             offset = packet->insn[i].regno[use_regidx] >> 1;
143             def_idx = i - offset;
144             for (int j = 0; j < offset; j++) {
145                 if (GET_ATTRIB(packet->insn[i - j - 1].opcode, A_IT_EXTENDER)) {
146                     def_idx--;
147                 }
148             }
149 
150             /*
151              * Check for a badly encoded N-field which points to an instruction
152              * out-of-range
153              */
154             g_assert(!((def_idx < 0) || (def_idx > (packet->num_insns - 1))));
155 
156             /*
157              * packet->insn[def_idx] is the producer
158              * Figure out which type of destination it produces
159              * and the corresponding index in the reginfo
160              */
161             def_opcode = packet->insn[def_idx].opcode;
162             dststr = strstr(opcode_wregs[def_opcode], "Rd");
163             if (dststr) {
164                 dststr = strchr(opcode_reginfo[def_opcode], 'd');
165             } else {
166                 dststr = strstr(opcode_wregs[def_opcode], "Rx");
167                 if (dststr) {
168                     dststr = strchr(opcode_reginfo[def_opcode], 'x');
169                 } else {
170                     dststr = strstr(opcode_wregs[def_opcode], "Re");
171                     if (dststr) {
172                         dststr = strchr(opcode_reginfo[def_opcode], 'e');
173                     } else {
174                         dststr = strstr(opcode_wregs[def_opcode], "Ry");
175                         if (dststr) {
176                             dststr = strchr(opcode_reginfo[def_opcode], 'y');
177                         } else {
178                             g_assert_not_reached();
179                         }
180                     }
181                 }
182             }
183             g_assert(dststr != NULL);
184 
185             /* Now patch up the consumer with the register number */
186             dst_idx = dststr - opcode_reginfo[def_opcode];
187             g_assert(packet->insn[def_idx].dest_idx != -1 &&
188                      packet->insn[def_idx].dest_idx == dst_idx);
189             packet->insn[i].regno[use_regidx] =
190                 packet->insn[def_idx].regno[dst_idx];
191             /*
192              * We need to remember who produces this value to later
193              * check if it was dynamically cancelled
194              */
195             packet->insn[i].new_value_producer_slot =
196                 packet->insn[def_idx].slot;
197         }
198     }
199 }
200 
201 /* Split CJ into a compare and a jump */
202 static void decode_split_cmpjump(Packet *pkt)
203 {
204     int last, i;
205     int numinsns = pkt->num_insns;
206 
207     /*
208      * First, split all compare-jumps.
209      * The compare is sent to the end as a new instruction.
210      * Do it this way so we don't reorder dual jumps. Those need to stay in
211      * original order.
212      */
213     for (i = 0; i < numinsns; i++) {
214         /* It's a cmp-jump */
215         if (GET_ATTRIB(pkt->insn[i].opcode, A_NEWCMPJUMP)) {
216             last = pkt->num_insns;
217             pkt->insn[last] = pkt->insn[i];    /* copy the instruction */
218             pkt->insn[last].part1 = true;      /* last insn does the CMP */
219             pkt->insn[i].part1 = false;        /* existing insn does the JUMP */
220             pkt->num_insns++;
221         }
222     }
223 
224     /* Now re-shuffle all the compares back to the beginning */
225     for (i = 0; i < pkt->num_insns; i++) {
226         if (pkt->insn[i].part1) {
227             decode_send_insn_to(pkt, i, 0);
228         }
229     }
230 }
231 
232 static bool decode_opcode_can_jump(int opcode)
233 {
234     if ((GET_ATTRIB(opcode, A_JUMP)) ||
235         (GET_ATTRIB(opcode, A_CALL)) ||
236         (opcode == J2_trap0) ||
237         (opcode == J2_pause)) {
238         /* Exception to A_JUMP attribute */
239         if (opcode == J4_hintjumpr) {
240             return false;
241         }
242         return true;
243     }
244 
245     return false;
246 }
247 
248 static bool decode_opcode_ends_loop(int opcode)
249 {
250     return GET_ATTRIB(opcode, A_HWLOOP0_END) ||
251            GET_ATTRIB(opcode, A_HWLOOP1_END);
252 }
253 
254 /* Set the is_* fields in each instruction */
255 static void decode_set_insn_attr_fields(Packet *pkt)
256 {
257     int i;
258     int numinsns = pkt->num_insns;
259     uint16_t opcode;
260 
261     pkt->pkt_has_cof = false;
262     pkt->pkt_has_multi_cof = false;
263     pkt->pkt_has_endloop = false;
264     pkt->pkt_has_dczeroa = false;
265 
266     for (i = 0; i < numinsns; i++) {
267         opcode = pkt->insn[i].opcode;
268         if (pkt->insn[i].part1) {
269             continue;    /* Skip compare of cmp-jumps */
270         }
271 
272         if (GET_ATTRIB(opcode, A_DCZEROA)) {
273             pkt->pkt_has_dczeroa = true;
274         }
275 
276         if (GET_ATTRIB(opcode, A_STORE)) {
277             if (GET_ATTRIB(opcode, A_SCALAR_STORE) &&
278                 !GET_ATTRIB(opcode, A_MEMSIZE_0B)) {
279                 if (pkt->insn[i].slot == 0) {
280                     pkt->pkt_has_store_s0 = true;
281                 } else {
282                     pkt->pkt_has_store_s1 = true;
283                 }
284             }
285         }
286 
287         if (decode_opcode_can_jump(opcode)) {
288             if (pkt->pkt_has_cof) {
289                 pkt->pkt_has_multi_cof = true;
290             }
291             pkt->pkt_has_cof = true;
292         }
293 
294         pkt->insn[i].is_endloop = decode_opcode_ends_loop(opcode);
295 
296         pkt->pkt_has_endloop |= pkt->insn[i].is_endloop;
297 
298         if (pkt->pkt_has_endloop) {
299             if (pkt->pkt_has_cof) {
300                 pkt->pkt_has_multi_cof = true;
301             }
302             pkt->pkt_has_cof = true;
303         }
304     }
305 }
306 
307 /*
308  * Shuffle for execution
309  * Move stores to end (in same order as encoding)
310  * Move compares to beginning (for use by .new insns)
311  */
312 static void decode_shuffle_for_execution(Packet *packet)
313 {
314     bool changed = false;
315     int i;
316     bool flag;    /* flag means we've seen a non-memory instruction */
317     int n_mems;
318     int last_insn = packet->num_insns - 1;
319 
320     /*
321      * Skip end loops, somehow an end loop is getting in and messing
322      * up the order
323      */
324     if (decode_opcode_ends_loop(packet->insn[last_insn].opcode)) {
325         last_insn--;
326     }
327 
328     do {
329         changed = false;
330         /*
331          * Stores go last, must not reorder.
332          * Cannot shuffle stores past loads, either.
333          * Iterate backwards.  If we see a non-memory instruction,
334          * then a store, shuffle the store to the front.  Don't shuffle
335          * stores wrt each other or a load.
336          */
337         for (flag = false, n_mems = 0, i = last_insn; i >= 0; i--) {
338             int opcode = packet->insn[i].opcode;
339 
340             if (flag && GET_ATTRIB(opcode, A_STORE)) {
341                 decode_send_insn_to(packet, i, last_insn - n_mems);
342                 n_mems++;
343                 changed = true;
344             } else if (GET_ATTRIB(opcode, A_STORE)) {
345                 n_mems++;
346             } else if (GET_ATTRIB(opcode, A_LOAD)) {
347                 /*
348                  * Don't set flag, since we don't want to shuffle a
349                  * store past a load
350                  */
351                 n_mems++;
352             } else if (GET_ATTRIB(opcode, A_DOTNEWVALUE)) {
353                 /*
354                  * Don't set flag, since we don't want to shuffle past
355                  * a .new value
356                  */
357             } else {
358                 flag = true;
359             }
360         }
361 
362         if (changed) {
363             continue;
364         }
365         /* Compares go first, may be reordered wrt each other */
366         for (flag = false, i = 0; i < last_insn + 1; i++) {
367             int opcode = packet->insn[i].opcode;
368 
369             g_assert(packet->insn[i].has_pred_dest ==
370                      (strstr(opcode_wregs[opcode], "Pd4") ||
371                       strstr(opcode_wregs[opcode], "Pe4")));
372             if ((strstr(opcode_wregs[opcode], "Pd4") ||
373                  strstr(opcode_wregs[opcode], "Pe4")) &&
374                 GET_ATTRIB(opcode, A_STORE) == 0) {
375                 /* This should be a compare (not a store conditional) */
376                 if (flag) {
377                     decode_send_insn_to(packet, i, 0);
378                     changed = true;
379                     continue;
380                 }
381             } else if (GET_ATTRIB(opcode, A_IMPLICIT_WRITES_P3) &&
382                        !decode_opcode_ends_loop(packet->insn[i].opcode)) {
383                 /*
384                  * spNloop instruction
385                  * Don't reorder endloops; they are not valid for .new uses,
386                  * and we want to match HW
387                  */
388                 if (flag) {
389                     decode_send_insn_to(packet, i, 0);
390                     changed = true;
391                     continue;
392                 }
393             } else if (GET_ATTRIB(opcode, A_IMPLICIT_WRITES_P0) &&
394                        !GET_ATTRIB(opcode, A_NEWCMPJUMP)) {
395                 if (flag) {
396                     decode_send_insn_to(packet, i, 0);
397                     changed = true;
398                     continue;
399                 }
400             } else {
401                 flag = true;
402             }
403         }
404         if (changed) {
405             continue;
406         }
407     } while (changed);
408 
409     /*
410      * If we have a .new register compare/branch, move that to the very
411      * very end, past stores
412      */
413     for (i = 0; i < last_insn; i++) {
414         if (GET_ATTRIB(packet->insn[i].opcode, A_DOTNEWVALUE)) {
415             decode_send_insn_to(packet, i, last_insn);
416             break;
417         }
418     }
419 }
420 
421 static void
422 apply_extender(Packet *pkt, int i, uint32_t extender)
423 {
424     int immed_num;
425     uint32_t base_immed;
426 
427     immed_num = pkt->insn[i].which_extended;
428     base_immed = pkt->insn[i].immed[immed_num];
429 
430     pkt->insn[i].immed[immed_num] = extender | fZXTN(6, 32, base_immed);
431 }
432 
433 static void decode_apply_extenders(Packet *packet)
434 {
435     int i;
436     for (i = 0; i < packet->num_insns; i++) {
437         if (GET_ATTRIB(packet->insn[i].opcode, A_IT_EXTENDER)) {
438             packet->insn[i + 1].extension_valid = true;
439             apply_extender(packet, i + 1, packet->insn[i].immed[0]);
440         }
441     }
442 }
443 
444 static void decode_remove_extenders(Packet *packet)
445 {
446     int i, j;
447     for (i = 0; i < packet->num_insns; i++) {
448         if (GET_ATTRIB(packet->insn[i].opcode, A_IT_EXTENDER)) {
449             /* Remove this one by moving the remaining instructions down */
450             for (j = i;
451                 (j < packet->num_insns - 1) && (j < INSTRUCTIONS_MAX - 1);
452                 j++) {
453                 packet->insn[j] = packet->insn[j + 1];
454             }
455             packet->num_insns--;
456         }
457     }
458 }
459 
460 static SlotMask get_valid_slots(const Packet *pkt, unsigned int slot)
461 {
462     if (GET_ATTRIB(pkt->insn[slot].opcode, A_EXTENSION)) {
463         return mmvec_ext_decode_find_iclass_slots(pkt->insn[slot].opcode);
464     } else {
465         return find_iclass_slots(pkt->insn[slot].opcode,
466                                  pkt->insn[slot].iclass);
467     }
468 }
469 
470 /*
471  * Section 10.3 of the Hexagon V73 Programmer's Reference Manual
472  *
473  * A duplex is encoded as a 32-bit instruction with bits [15:14] set to 00.
474  * The sub-instructions that comprise a duplex are encoded as 13-bit fields
475  * in the duplex.
476  *
477  * Per table 10-4, the 4-bit duplex iclass is encoded in bits 31:29, 13
478  */
479 static uint32_t get_duplex_iclass(uint32_t encoding)
480 {
481     uint32_t iclass = extract32(encoding, 13, 1);
482     iclass = deposit32(iclass, 1, 3, extract32(encoding, 29, 3));
483     return iclass;
484 }
485 
486 /*
487  * Per table 10-5, the duplex ICLASS field values that specify the group of
488  * each sub-instruction in a duplex
489  *
490  * This table points to the decode instruction for each entry in the table
491  */
492 typedef bool (*subinsn_decode_func)(DisasContext *ctx, uint16_t insn);
493 typedef struct {
494     subinsn_decode_func decode_slot0_subinsn;
495     subinsn_decode_func decode_slot1_subinsn;
496 } subinsn_decode_groups;
497 
498 static const subinsn_decode_groups decode_groups[16] = {
499     [0x0] = { decode_subinsn_l1, decode_subinsn_l1 },
500     [0x1] = { decode_subinsn_l2, decode_subinsn_l1 },
501     [0x2] = { decode_subinsn_l2, decode_subinsn_l2 },
502     [0x3] = { decode_subinsn_a,  decode_subinsn_a },
503     [0x4] = { decode_subinsn_l1, decode_subinsn_a },
504     [0x5] = { decode_subinsn_l2, decode_subinsn_a },
505     [0x6] = { decode_subinsn_s1, decode_subinsn_a },
506     [0x7] = { decode_subinsn_s2, decode_subinsn_a },
507     [0x8] = { decode_subinsn_s1, decode_subinsn_l1 },
508     [0x9] = { decode_subinsn_s1, decode_subinsn_l2 },
509     [0xa] = { decode_subinsn_s1, decode_subinsn_s1 },
510     [0xb] = { decode_subinsn_s2, decode_subinsn_s1 },
511     [0xc] = { decode_subinsn_s2, decode_subinsn_l1 },
512     [0xd] = { decode_subinsn_s2, decode_subinsn_l2 },
513     [0xe] = { decode_subinsn_s2, decode_subinsn_s2 },
514     [0xf] = { NULL,              NULL },              /* Reserved */
515 };
516 
517 static uint16_t get_slot0_subinsn(uint32_t encoding)
518 {
519     return extract32(encoding, 0, 13);
520 }
521 
522 static uint16_t get_slot1_subinsn(uint32_t encoding)
523 {
524     return extract32(encoding, 16, 13);
525 }
526 
527 static unsigned int
528 decode_insns(DisasContext *ctx, Insn *insn, uint32_t encoding)
529 {
530     if (parse_bits(encoding) != 0) {
531         if (decode_normal(ctx, encoding) ||
532             decode_hvx(ctx, encoding)) {
533             insn->generate = opcode_genptr[insn->opcode];
534             insn->iclass = iclass_bits(encoding);
535             return 1;
536         }
537         g_assert_not_reached();
538     } else {
539         uint32_t iclass = get_duplex_iclass(encoding);
540         unsigned int slot0_subinsn = get_slot0_subinsn(encoding);
541         unsigned int slot1_subinsn = get_slot1_subinsn(encoding);
542         subinsn_decode_func decode_slot0_subinsn =
543             decode_groups[iclass].decode_slot0_subinsn;
544         subinsn_decode_func decode_slot1_subinsn =
545             decode_groups[iclass].decode_slot1_subinsn;
546 
547         /* The slot1 subinsn needs to be in the packet first */
548         if (decode_slot1_subinsn(ctx, slot1_subinsn)) {
549             insn->generate = opcode_genptr[insn->opcode];
550             insn->iclass = iclass_bits(encoding);
551             ctx->insn = ++insn;
552             if (decode_slot0_subinsn(ctx, slot0_subinsn)) {
553                 insn->generate = opcode_genptr[insn->opcode];
554                 insn->iclass = iclass_bits(encoding);
555                 return 2;
556             }
557         }
558         g_assert_not_reached();
559     }
560 }
561 
562 static void decode_add_endloop_insn(Insn *insn, int loopnum)
563 {
564     if (loopnum == 10) {
565         insn->opcode = J2_endloop01;
566         insn->generate = opcode_genptr[J2_endloop01];
567     } else if (loopnum == 1) {
568         insn->opcode = J2_endloop1;
569         insn->generate = opcode_genptr[J2_endloop1];
570     } else if (loopnum == 0) {
571         insn->opcode = J2_endloop0;
572         insn->generate = opcode_genptr[J2_endloop0];
573     } else {
574         g_assert_not_reached();
575     }
576 }
577 
578 static bool decode_parsebits_is_loopend(uint32_t encoding32)
579 {
580     uint32_t bits = parse_bits(encoding32);
581     return bits == 0x2;
582 }
583 
584 static bool has_valid_slot_assignment(Packet *pkt)
585 {
586     int used_slots = 0;
587     for (int i = 0; i < pkt->num_insns; i++) {
588         int slot_mask;
589         Insn *insn = &pkt->insn[i];
590         if (decode_opcode_ends_loop(insn->opcode)) {
591             /* We overload slot 0 for endloop. */
592             continue;
593         }
594         slot_mask = 1 << insn->slot;
595         if (used_slots & slot_mask) {
596             return false;
597         }
598         used_slots |= slot_mask;
599     }
600     return true;
601 }
602 
603 static bool
604 decode_set_slot_number(Packet *pkt)
605 {
606     int slot;
607     int i;
608     bool hit_mem_insn = false;
609     bool hit_duplex = false;
610     bool slot0_found = false;
611     bool slot1_found = false;
612     int slot1_iidx = 0;
613 
614     /*
615      * The slots are encoded in reverse order
616      * For each instruction, count down until you find a suitable slot
617      */
618     for (i = 0, slot = 3; i < pkt->num_insns; i++) {
619         SlotMask valid_slots = get_valid_slots(pkt, i);
620 
621         while (!(valid_slots & (1 << slot))) {
622             slot--;
623         }
624         pkt->insn[i].slot = slot;
625         if (slot) {
626             /* I've assigned the slot, now decrement it for the next insn */
627             slot--;
628         }
629     }
630 
631     /* Fix the exceptions - mem insns to slot 0,1 */
632     for (i = pkt->num_insns - 1; i >= 0; i--) {
633         /* First memory instruction always goes to slot 0 */
634         if ((GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE) ||
635              GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE_PACKET_RULES)) &&
636             !hit_mem_insn) {
637             hit_mem_insn = true;
638             pkt->insn[i].slot = 0;
639             continue;
640         }
641 
642         /* Next memory instruction always goes to slot 1 */
643         if ((GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE) ||
644              GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE_PACKET_RULES)) &&
645             hit_mem_insn) {
646             pkt->insn[i].slot = 1;
647         }
648     }
649 
650     /* Fix the exceptions - duplex always slot 0,1 */
651     for (i = pkt->num_insns - 1; i >= 0; i--) {
652         /* First subinsn always goes to slot 0 */
653         if (GET_ATTRIB(pkt->insn[i].opcode, A_SUBINSN) && !hit_duplex) {
654             hit_duplex = true;
655             pkt->insn[i].slot = 0;
656             continue;
657         }
658 
659         /* Next subinsn always goes to slot 1 */
660         if (GET_ATTRIB(pkt->insn[i].opcode, A_SUBINSN) && hit_duplex) {
661             pkt->insn[i].slot = 1;
662         }
663     }
664 
665     /* Fix the exceptions - slot 1 is never empty, always aligns to slot 0 */
666     for (i = pkt->num_insns - 1; i >= 0; i--) {
667         /* Is slot0 used? */
668         if (pkt->insn[i].slot == 0) {
669             bool is_endloop = (pkt->insn[i].opcode == J2_endloop01);
670             is_endloop |= (pkt->insn[i].opcode == J2_endloop0);
671             is_endloop |= (pkt->insn[i].opcode == J2_endloop1);
672 
673             /*
674              * Make sure it's not endloop since, we're overloading
675              * slot0 for endloop
676              */
677             if (!is_endloop) {
678                 slot0_found = true;
679             }
680         }
681         /* Is slot1 used? */
682         if (pkt->insn[i].slot == 1) {
683             slot1_found = true;
684             slot1_iidx = i;
685         }
686     }
687     /* Is slot0 empty and slot1 used? */
688     if ((!slot0_found) && slot1_found) {
689         /* Then push it to slot0 */
690         pkt->insn[slot1_iidx].slot = 0;
691     }
692 
693     return has_valid_slot_assignment(pkt);
694 }
695 
696 /*
697  * decode_packet
698  * Decodes packet with given words
699  * Returns 0 on insufficient words,
700  * or number of words used on success
701  */
702 
703 int decode_packet(DisasContext *ctx, int max_words, const uint32_t *words,
704                   Packet *pkt, bool disas_only)
705 {
706     int num_insns = 0;
707     int words_read = 0;
708     bool end_of_packet = false;
709     int new_insns = 0;
710     int i;
711     uint32_t encoding32;
712 
713     /* Initialize */
714     memset(pkt, 0, sizeof(*pkt));
715     /* Try to build packet */
716     while (!end_of_packet && (words_read < max_words)) {
717         Insn *insn = &pkt->insn[num_insns];
718         ctx->insn = insn;
719         encoding32 = words[words_read];
720         end_of_packet = is_packet_end(encoding32);
721         new_insns = decode_insns(ctx, insn, encoding32);
722         g_assert(new_insns > 0);
723         /*
724          * If we saw an extender, mark next word extended so immediate
725          * decode works
726          */
727         if (pkt->insn[num_insns].opcode == A4_ext) {
728             pkt->insn[num_insns + 1].extension_valid = true;
729         }
730         num_insns += new_insns;
731         words_read++;
732     }
733 
734     pkt->num_insns = num_insns;
735     if (!end_of_packet) {
736         /* Ran out of words! */
737         return 0;
738     }
739     pkt->encod_pkt_size_in_bytes = words_read * 4;
740     pkt->pkt_has_hvx = false;
741     for (i = 0; i < num_insns; i++) {
742         pkt->pkt_has_hvx |=
743             GET_ATTRIB(pkt->insn[i].opcode, A_CVI);
744     }
745 
746     /*
747      * Check for :endloop in the parse bits
748      * Section 10.6 of the Programmer's Reference describes the encoding
749      *     The end of hardware loop 0 can be encoded with 2 words
750      *     The end of hardware loop 1 needs 3 words
751      */
752     if ((words_read == 2) && (decode_parsebits_is_loopend(words[0]))) {
753         decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 0);
754     }
755     if (words_read >= 3) {
756         bool has_loop0, has_loop1;
757         has_loop0 = decode_parsebits_is_loopend(words[0]);
758         has_loop1 = decode_parsebits_is_loopend(words[1]);
759         if (has_loop0 && has_loop1) {
760             decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 10);
761         } else if (has_loop1) {
762             decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 1);
763         } else if (has_loop0) {
764             decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 0);
765         }
766     }
767 
768     decode_apply_extenders(pkt);
769     if (!disas_only) {
770         decode_remove_extenders(pkt);
771         if (!decode_set_slot_number(pkt)) {
772             /* Invalid packet */
773             return 0;
774         }
775     }
776     decode_fill_newvalue_regno(pkt);
777 
778     if (pkt->pkt_has_hvx) {
779         mmvec_ext_decode_checks(pkt, disas_only);
780     }
781 
782     if (!disas_only) {
783         decode_shuffle_for_execution(pkt);
784         decode_split_cmpjump(pkt);
785         decode_set_insn_attr_fields(pkt);
786     }
787 
788     return words_read;
789 }
790 
791 /* Used for "-d in_asm" logging */
792 int disassemble_hexagon(uint32_t *words, int nwords, bfd_vma pc,
793                         GString *buf)
794 {
795     DisasContext ctx;
796     Packet pkt;
797 
798     memset(&ctx, 0, sizeof(DisasContext));
799     ctx.pkt = &pkt;
800 
801     if (decode_packet(&ctx, nwords, words, &pkt, true) > 0) {
802         snprint_a_pkt_disas(buf, &pkt, words, pc);
803         return pkt.encod_pkt_size_in_bytes;
804     } else {
805         g_string_assign(buf, "<invalid>");
806         return 0;
807     }
808 }
809