xref: /qemu/target/hexagon/macros.h (revision 0955d66e)
1 /*
2  *  Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License, or
7  *  (at your option) any later version.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #ifndef HEXAGON_MACROS_H
19 #define HEXAGON_MACROS_H
20 
21 #include "cpu.h"
22 #include "hex_regs.h"
23 #include "reg_fields.h"
24 
25 #ifdef QEMU_GENERATE
26 #define READ_REG(dest, NUM)              gen_read_reg(dest, NUM)
27 #else
28 #define READ_REG(NUM)                    (env->gpr[(NUM)])
29 #define READ_PREG(NUM)                   (env->pred[NUM])
30 
31 #define WRITE_RREG(NUM, VAL)             log_reg_write(env, NUM, VAL, slot)
32 #define WRITE_PREG(NUM, VAL)             log_pred_write(env, NUM, VAL)
33 #endif
34 
35 #define PCALIGN 4
36 #define PCALIGN_MASK (PCALIGN - 1)
37 
38 #define GET_FIELD(FIELD, REGIN) \
39     fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \
40                    reg_field_info[FIELD].offset)
41 
42 #ifdef QEMU_GENERATE
43 #define GET_USR_FIELD(FIELD, DST) \
44     tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \
45                        reg_field_info[FIELD].offset, \
46                        reg_field_info[FIELD].width)
47 
48 #define TYPE_INT(X)          __builtin_types_compatible_p(typeof(X), int)
49 #define TYPE_TCGV(X)         __builtin_types_compatible_p(typeof(X), TCGv)
50 #define TYPE_TCGV_I64(X)     __builtin_types_compatible_p(typeof(X), TCGv_i64)
51 
52 #define SET_USR_FIELD_FUNC(X) \
53     __builtin_choose_expr(TYPE_INT(X), \
54         gen_set_usr_fieldi, \
55         __builtin_choose_expr(TYPE_TCGV(X), \
56             gen_set_usr_field, (void)0))
57 #define SET_USR_FIELD(FIELD, VAL) \
58     SET_USR_FIELD_FUNC(VAL)(FIELD, VAL)
59 #else
60 #define GET_USR_FIELD(FIELD) \
61     fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
62                    reg_field_info[FIELD].offset)
63 
64 #define SET_USR_FIELD(FIELD, VAL) \
65     fINSERT_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
66                  reg_field_info[FIELD].offset, (VAL))
67 #endif
68 
69 #ifdef QEMU_GENERATE
70 /*
71  * Section 5.5 of the Hexagon V67 Programmer's Reference Manual
72  *
73  * Slot 1 store with slot 0 load
74  * A slot 1 store operation with a slot 0 load operation can appear in a packet.
75  * The packet attribute :mem_noshuf inhibits the instruction reordering that
76  * would otherwise be done by the assembler. For example:
77  *     {
78  *         memw(R5) = R2 // slot 1 store
79  *         R3 = memh(R6) // slot 0 load
80  *     }:mem_noshuf
81  * Unlike most packetized operations, these memory operations are not executed
82  * in parallel (Section 3.3.1). Instead, the store instruction in Slot 1
83  * effectively executes first, followed by the load instruction in Slot 0. If
84  * the addresses of the two operations are overlapping, the load will receive
85  * the newly stored data. This feature is supported in processor versions
86  * V65 or greater.
87  *
88  *
89  * For qemu, we look for a load in slot 0 when there is  a store in slot 1
90  * in the same packet.  When we see this, we call a helper that merges the
91  * bytes from the store buffer with the value loaded from memory.
92  */
93 #define CHECK_NOSHUF \
94     do { \
95         if (insn->slot == 0 && pkt->pkt_has_store_s1) { \
96             process_store(ctx, pkt, 1); \
97         } \
98     } while (0)
99 
100 #define MEM_LOAD1s(DST, VA) \
101     do { \
102         CHECK_NOSHUF; \
103         tcg_gen_qemu_ld8s(DST, VA, ctx->mem_idx); \
104     } while (0)
105 #define MEM_LOAD1u(DST, VA) \
106     do { \
107         CHECK_NOSHUF; \
108         tcg_gen_qemu_ld8u(DST, VA, ctx->mem_idx); \
109     } while (0)
110 #define MEM_LOAD2s(DST, VA) \
111     do { \
112         CHECK_NOSHUF; \
113         tcg_gen_qemu_ld16s(DST, VA, ctx->mem_idx); \
114     } while (0)
115 #define MEM_LOAD2u(DST, VA) \
116     do { \
117         CHECK_NOSHUF; \
118         tcg_gen_qemu_ld16u(DST, VA, ctx->mem_idx); \
119     } while (0)
120 #define MEM_LOAD4s(DST, VA) \
121     do { \
122         CHECK_NOSHUF; \
123         tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
124     } while (0)
125 #define MEM_LOAD4u(DST, VA) \
126     do { \
127         CHECK_NOSHUF; \
128         tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
129     } while (0)
130 #define MEM_LOAD8u(DST, VA) \
131     do { \
132         CHECK_NOSHUF; \
133         tcg_gen_qemu_ld64(DST, VA, ctx->mem_idx); \
134     } while (0)
135 
136 #define MEM_STORE1_FUNC(X) \
137     __builtin_choose_expr(TYPE_INT(X), \
138         gen_store1i, \
139         __builtin_choose_expr(TYPE_TCGV(X), \
140             gen_store1, (void)0))
141 #define MEM_STORE1(VA, DATA, SLOT) \
142     MEM_STORE1_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
143 
144 #define MEM_STORE2_FUNC(X) \
145     __builtin_choose_expr(TYPE_INT(X), \
146         gen_store2i, \
147         __builtin_choose_expr(TYPE_TCGV(X), \
148             gen_store2, (void)0))
149 #define MEM_STORE2(VA, DATA, SLOT) \
150     MEM_STORE2_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
151 
152 #define MEM_STORE4_FUNC(X) \
153     __builtin_choose_expr(TYPE_INT(X), \
154         gen_store4i, \
155         __builtin_choose_expr(TYPE_TCGV(X), \
156             gen_store4, (void)0))
157 #define MEM_STORE4(VA, DATA, SLOT) \
158     MEM_STORE4_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
159 
160 #define MEM_STORE8_FUNC(X) \
161     __builtin_choose_expr(TYPE_INT(X), \
162         gen_store8i, \
163         __builtin_choose_expr(TYPE_TCGV_I64(X), \
164             gen_store8, (void)0))
165 #define MEM_STORE8(VA, DATA, SLOT) \
166     MEM_STORE8_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
167 #else
168 #define MEM_LOAD1s(VA) ((int8_t)mem_load1(env, slot, VA))
169 #define MEM_LOAD1u(VA) ((uint8_t)mem_load1(env, slot, VA))
170 #define MEM_LOAD2s(VA) ((int16_t)mem_load2(env, slot, VA))
171 #define MEM_LOAD2u(VA) ((uint16_t)mem_load2(env, slot, VA))
172 #define MEM_LOAD4s(VA) ((int32_t)mem_load4(env, slot, VA))
173 #define MEM_LOAD4u(VA) ((uint32_t)mem_load4(env, slot, VA))
174 #define MEM_LOAD8s(VA) ((int64_t)mem_load8(env, slot, VA))
175 #define MEM_LOAD8u(VA) ((uint64_t)mem_load8(env, slot, VA))
176 
177 #define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT)
178 #define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT)
179 #define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT)
180 #define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT)
181 #endif
182 
183 #define CANCEL cancel_slot(env, slot)
184 
185 #define LOAD_CANCEL(EA) do { CANCEL; } while (0)
186 
187 #ifdef QEMU_GENERATE
188 static inline void gen_pred_cancel(TCGv pred, int slot_num)
189  {
190     TCGv slot_mask = tcg_const_tl(1 << slot_num);
191     TCGv tmp = tcg_temp_new();
192     TCGv zero = tcg_constant_tl(0);
193     tcg_gen_or_tl(slot_mask, hex_slot_cancelled, slot_mask);
194     tcg_gen_andi_tl(tmp, pred, 1);
195     tcg_gen_movcond_tl(TCG_COND_EQ, hex_slot_cancelled, tmp, zero,
196                        slot_mask, hex_slot_cancelled);
197     tcg_temp_free(slot_mask);
198     tcg_temp_free(tmp);
199 }
200 #define PRED_LOAD_CANCEL(PRED, EA) \
201     gen_pred_cancel(PRED, insn->is_endloop ? 4 : insn->slot)
202 #endif
203 
204 #define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); }
205 
206 #define fMAX(A, B) (((A) > (B)) ? (A) : (B))
207 
208 #define fMIN(A, B) (((A) < (B)) ? (A) : (B))
209 
210 #define fABS(A) (((A) < 0) ? (-(A)) : (A))
211 #define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \
212     REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG)
213 #define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \
214     ((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL)
215 #define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \
216     (fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8)))
217 #define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \
218     (((HIBIT) - (LOWBIT) + 1) ? \
219         extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \
220         0LL)
221 #define fINSERT_RANGE(INREG, HIBIT, LOWBIT, INVAL) \
222     do { \
223         int width = ((HIBIT) - (LOWBIT) + 1); \
224         INREG = (width >= 0 ? \
225             deposit64((INREG), (LOWBIT), width, (INVAL)) : \
226             INREG); \
227     } while (0)
228 
229 #define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00)
230 
231 #ifdef QEMU_GENERATE
232 #define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1)
233 #else
234 #define fLSBOLD(VAL)  ((VAL) & 1)
235 #endif
236 
237 #ifdef QEMU_GENERATE
238 #define fLSBNEW(PVAL)   tcg_gen_andi_tl(LSB, (PVAL), 1)
239 #define fLSBNEW0        tcg_gen_andi_tl(LSB, hex_new_pred_value[0], 1)
240 #define fLSBNEW1        tcg_gen_andi_tl(LSB, hex_new_pred_value[1], 1)
241 #else
242 #define fLSBNEW(PVAL)   ((PVAL) & 1)
243 #define fLSBNEW0        (env->new_pred_value[0] & 1)
244 #define fLSBNEW1        (env->new_pred_value[1] & 1)
245 #endif
246 
247 #ifdef QEMU_GENERATE
248 #define fLSBOLDNOT(VAL) \
249     do { \
250         tcg_gen_andi_tl(LSB, (VAL), 1); \
251         tcg_gen_xori_tl(LSB, LSB, 1); \
252     } while (0)
253 #define fLSBNEWNOT(PNUM) \
254     do { \
255         tcg_gen_andi_tl(LSB, (PNUM), 1); \
256         tcg_gen_xori_tl(LSB, LSB, 1); \
257     } while (0)
258 #else
259 #define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM))
260 #define fLSBOLDNOT(VAL) (!fLSBOLD(VAL))
261 #define fLSBNEW0NOT (!fLSBNEW0)
262 #define fLSBNEW1NOT (!fLSBNEW1)
263 #endif
264 
265 #define fNEWREG(VAL) ((int32_t)(VAL))
266 
267 #define fNEWREG_ST(VAL) (VAL)
268 
269 #define fSATUVALN(N, VAL) \
270     ({ \
271         fSET_OVERFLOW(); \
272         ((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \
273     })
274 #define fSATVALN(N, VAL) \
275     ({ \
276         fSET_OVERFLOW(); \
277         ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
278     })
279 #define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL)
280 #define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL)
281 #define fSATN(N, VAL) \
282     ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL))
283 #define fADDSAT64(DST, A, B) \
284     do { \
285         uint64_t __a = fCAST8u(A); \
286         uint64_t __b = fCAST8u(B); \
287         uint64_t __sum = __a + __b; \
288         uint64_t __xor = __a ^ __b; \
289         const uint64_t __mask = 0x8000000000000000ULL; \
290         if (__xor & __mask) { \
291             DST = __sum; \
292         } \
293         else if ((__a ^ __sum) & __mask) { \
294             if (__sum & __mask) { \
295                 DST = 0x7FFFFFFFFFFFFFFFLL; \
296                 fSET_OVERFLOW(); \
297             } else { \
298                 DST = 0x8000000000000000LL; \
299                 fSET_OVERFLOW(); \
300             } \
301         } else { \
302             DST = __sum; \
303         } \
304     } while (0)
305 #define fSATUN(N, VAL) \
306     ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL))
307 #define fSATH(VAL) (fSATN(16, VAL))
308 #define fSATUH(VAL) (fSATUN(16, VAL))
309 #define fSATUB(VAL) (fSATUN(8, VAL))
310 #define fSATB(VAL) (fSATN(8, VAL))
311 #define fIMMEXT(IMM) (IMM = IMM)
312 #define fMUST_IMMEXT(IMM) fIMMEXT(IMM)
313 
314 #define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK)
315 
316 #ifdef QEMU_GENERATE
317 static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift)
318 {
319     /*
320      * Section 2.2.4 of the Hexagon V67 Programmer's Reference Manual
321      *
322      *  The "I" value from a modifier register is divided into two pieces
323      *      LSB         bits 23:17
324      *      MSB         bits 31:28
325      * The value is signed
326      *
327      * At the end we shift the result according to the shift argument
328      */
329     TCGv msb = tcg_temp_new();
330     TCGv lsb = tcg_temp_new();
331 
332     tcg_gen_extract_tl(lsb, val, 17, 7);
333     tcg_gen_sari_tl(msb, val, 21);
334     tcg_gen_deposit_tl(result, msb, lsb, 0, 7);
335 
336     tcg_gen_shli_tl(result, result, shift);
337 
338     tcg_temp_free(msb);
339     tcg_temp_free(lsb);
340 
341     return result;
342 }
343 #define fREAD_IREG(VAL, SHIFT) gen_read_ireg(ireg, (VAL), (SHIFT))
344 #else
345 #define fREAD_IREG(VAL) \
346     (fSXTN(11, 64, (((VAL) & 0xf0000000) >> 21) | ((VAL >> 17) & 0x7f)))
347 #endif
348 
349 #define fREAD_LR() (READ_REG(HEX_REG_LR))
350 
351 #define fWRITE_LR(A) WRITE_RREG(HEX_REG_LR, A)
352 #define fWRITE_FP(A) WRITE_RREG(HEX_REG_FP, A)
353 #define fWRITE_SP(A) WRITE_RREG(HEX_REG_SP, A)
354 
355 #define fREAD_SP() (READ_REG(HEX_REG_SP))
356 #define fREAD_LC0 (READ_REG(HEX_REG_LC0))
357 #define fREAD_LC1 (READ_REG(HEX_REG_LC1))
358 #define fREAD_SA0 (READ_REG(HEX_REG_SA0))
359 #define fREAD_SA1 (READ_REG(HEX_REG_SA1))
360 #define fREAD_FP() (READ_REG(HEX_REG_FP))
361 #ifdef FIXME
362 /* Figure out how to get insn->extension_valid to helper */
363 #define fREAD_GP() \
364     (insn->extension_valid ? 0 : READ_REG(HEX_REG_GP))
365 #else
366 #define fREAD_GP() READ_REG(HEX_REG_GP)
367 #endif
368 #define fREAD_PC() (READ_REG(HEX_REG_PC))
369 
370 #define fREAD_NPC() (env->next_PC & (0xfffffffe))
371 
372 #define fREAD_P0() (READ_PREG(0))
373 #define fREAD_P3() (READ_PREG(3))
374 
375 #define fCHECK_PCALIGN(A)
376 
377 #define fWRITE_NPC(A) write_new_pc(env, A)
378 
379 #define fBRANCH(LOC, TYPE)          fWRITE_NPC(LOC)
380 #define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR)
381 #define fHINTJR(TARGET) { /* Not modelled in qemu */}
382 #define fCALL(A) \
383     do { \
384         fWRITE_LR(fREAD_NPC()); \
385         fBRANCH(A, COF_TYPE_CALL); \
386     } while (0)
387 #define fCALLR(A) \
388     do { \
389         fWRITE_LR(fREAD_NPC()); \
390         fBRANCH(A, COF_TYPE_CALLR); \
391     } while (0)
392 #define fWRITE_LOOP_REGS0(START, COUNT) \
393     do { \
394         WRITE_RREG(HEX_REG_LC0, COUNT);  \
395         WRITE_RREG(HEX_REG_SA0, START); \
396     } while (0)
397 #define fWRITE_LOOP_REGS1(START, COUNT) \
398     do { \
399         WRITE_RREG(HEX_REG_LC1, COUNT);  \
400         WRITE_RREG(HEX_REG_SA1, START);\
401     } while (0)
402 #define fWRITE_LC0(VAL) WRITE_RREG(HEX_REG_LC0, VAL)
403 #define fWRITE_LC1(VAL) WRITE_RREG(HEX_REG_LC1, VAL)
404 
405 #define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1)
406 #define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL))
407 #define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG))
408 #define fWRITE_P0(VAL) WRITE_PREG(0, VAL)
409 #define fWRITE_P1(VAL) WRITE_PREG(1, VAL)
410 #define fWRITE_P2(VAL) WRITE_PREG(2, VAL)
411 #define fWRITE_P3(VAL) WRITE_PREG(3, VAL)
412 #define fPART1(WORK) if (part1) { WORK; return; }
413 #define fCAST4u(A) ((uint32_t)(A))
414 #define fCAST4s(A) ((int32_t)(A))
415 #define fCAST8u(A) ((uint64_t)(A))
416 #define fCAST8s(A) ((int64_t)(A))
417 #define fCAST4_4s(A) ((int32_t)(A))
418 #define fCAST4_4u(A) ((uint32_t)(A))
419 #define fCAST4_8s(A) ((int64_t)((int32_t)(A)))
420 #define fCAST4_8u(A) ((uint64_t)((uint32_t)(A)))
421 #define fCAST8_8s(A) ((int64_t)(A))
422 #define fCAST8_8u(A) ((uint64_t)(A))
423 #define fCAST2_8s(A) ((int64_t)((int16_t)(A)))
424 #define fCAST2_8u(A) ((uint64_t)((uint16_t)(A)))
425 #define fZE8_16(A) ((int16_t)((uint8_t)(A)))
426 #define fSE8_16(A) ((int16_t)((int8_t)(A)))
427 #define fSE16_32(A) ((int32_t)((int16_t)(A)))
428 #define fZE16_32(A) ((uint32_t)((uint16_t)(A)))
429 #define fSE32_64(A) ((int64_t)((int32_t)(A)))
430 #define fZE32_64(A) ((uint64_t)((uint32_t)(A)))
431 #define fSE8_32(A) ((int32_t)((int8_t)(A)))
432 #define fZE8_32(A) ((int32_t)((uint8_t)(A)))
433 #define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B))
434 #define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B))
435 #define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B))
436 #define fMPY8SS(A, B) (int)((short)(A) * (short)(B))
437 #define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B))
438 #define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B))
439 #define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B))
440 #define fMPY16US(A, B) fMPY16SU(B, A)
441 #define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B))
442 #define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B))
443 #define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B))
444 #define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B))
445 #define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B))
446 #define fROUND(A) (A + 0x8000)
447 #define fCLIP(DST, SRC, U) \
448     do { \
449         int32_t maxv = (1 << U) - 1; \
450         int32_t minv = -(1 << U); \
451         DST = fMIN(maxv, fMAX(SRC, minv)); \
452     } while (0)
453 #define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A)))
454 #define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1))))))
455 #define fCRNDN(A, N) (conv_round(A, N))
456 #define fADD128(A, B) (int128_add(A, B))
457 #define fSUB128(A, B) (int128_sub(A, B))
458 #define fSHIFTR128(A, B) (int128_rshift(A, B))
459 #define fSHIFTL128(A, B) (int128_lshift(A, B))
460 #define fAND128(A, B) (int128_and(A, B))
461 #define fCAST8S_16S(A) (int128_exts64(A))
462 #define fCAST16S_8S(A) (int128_getlo(A))
463 
464 #ifdef QEMU_GENERATE
465 #define fEA_RI(REG, IMM) tcg_gen_addi_tl(EA, REG, IMM)
466 #define fEA_RRs(REG, REG2, SCALE) \
467     do { \
468         TCGv tmp = tcg_temp_new(); \
469         tcg_gen_shli_tl(tmp, REG2, SCALE); \
470         tcg_gen_add_tl(EA, REG, tmp); \
471         tcg_temp_free(tmp); \
472     } while (0)
473 #define fEA_IRs(IMM, REG, SCALE) \
474     do { \
475         tcg_gen_shli_tl(EA, REG, SCALE); \
476         tcg_gen_addi_tl(EA, EA, IMM); \
477     } while (0)
478 #else
479 #define fEA_RI(REG, IMM) \
480     do { \
481         EA = REG + IMM; \
482     } while (0)
483 #define fEA_RRs(REG, REG2, SCALE) \
484     do { \
485         EA = REG + (REG2 << SCALE); \
486     } while (0)
487 #define fEA_IRs(IMM, REG, SCALE) \
488     do { \
489         EA = IMM + (REG << SCALE); \
490     } while (0)
491 #endif
492 
493 #ifdef QEMU_GENERATE
494 #define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM)
495 #define fEA_REG(REG) tcg_gen_mov_tl(EA, REG)
496 #define fEA_BREVR(REG)      gen_helper_fbrev(EA, REG)
497 #define fPM_I(REG, IMM)     tcg_gen_addi_tl(REG, REG, IMM)
498 #define fPM_M(REG, MVAL)    tcg_gen_add_tl(REG, REG, MVAL)
499 #define fPM_CIRI(REG, IMM, MVAL) \
500     do { \
501         TCGv tcgv_siV = tcg_const_tl(siV); \
502         gen_helper_fcircadd(REG, REG, tcgv_siV, MuV, \
503                             hex_gpr[HEX_REG_CS0 + MuN]); \
504         tcg_temp_free(tcgv_siV); \
505     } while (0)
506 #else
507 #define fEA_IMM(IMM)        do { EA = (IMM); } while (0)
508 #define fEA_REG(REG)        do { EA = (REG); } while (0)
509 #define fEA_GPI(IMM)        do { EA = (fREAD_GP() + (IMM)); } while (0)
510 #define fPM_I(REG, IMM)     do { REG = REG + (IMM); } while (0)
511 #define fPM_M(REG, MVAL)    do { REG = REG + (MVAL); } while (0)
512 #endif
513 #define fSCALE(N, A) (((int64_t)(A)) << N)
514 #define fSATW(A) fSATN(32, ((long long)A))
515 #define fSAT(A) fSATN(32, (A))
516 #define fSAT_ORIG_SHL(A, ORIG_REG) \
517     ((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \
518         ? fSATVALN(32, ((int32_t)(ORIG_REG))) \
519         : ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \
520                                             : fSAT(A)))
521 #define fPASS(A) A
522 #define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \
523     (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
524                    : (fCAST##REGSTYPE(SRC) << (SHAMT)))
525 #define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \
526     fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s)
527 #define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \
528     fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u)
529 #define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \
530     (((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
531                    : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC)))
532 #define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \
533     (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \
534                    : (fCAST##REGSTYPE(SRC) >> (SHAMT)))
535 #define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \
536     fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s)
537 #define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \
538     fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u)
539 #define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \
540     (((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \
541                         << ((-(SHAMT)) - 1)) << 1, (SRC)) \
542                    : (fCAST##REGSTYPE##s(SRC) >> (SHAMT)))
543 #define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT))
544 #define fLSHIFTR(SRC, SHAMT, REGSTYPE) \
545     (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT)))
546 #define fROTL(SRC, SHAMT, REGSTYPE) \
547     (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \
548                               ((fCAST##REGSTYPE##u(SRC) >> \
549                                  ((sizeof(SRC) * 8) - (SHAMT))))))
550 #define fROTR(SRC, SHAMT, REGSTYPE) \
551     (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \
552                               ((fCAST##REGSTYPE##u(SRC) << \
553                                  ((sizeof(SRC) * 8) - (SHAMT))))))
554 #define fASHIFTL(SRC, SHAMT, REGSTYPE) \
555     (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT)))
556 
557 #ifdef QEMU_GENERATE
558 #define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA)
559 #else
560 #define fLOAD(NUM, SIZE, SIGN, EA, DST) \
561     DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA)
562 #endif
563 
564 #define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE)
565 
566 #define fGET_FRAMEKEY() READ_REG(HEX_REG_FRAMEKEY)
567 #define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32))
568 #define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL)
569 
570 #ifdef CONFIG_USER_ONLY
571 #define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */
572 #else
573 /* System mode not implemented yet */
574 #define fFRAMECHECK(ADDR, EA)  g_assert_not_reached();
575 #endif
576 
577 #ifdef QEMU_GENERATE
578 #define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \
579     gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx);
580 #endif
581 
582 #ifdef QEMU_GENERATE
583 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, insn->slot)
584 #else
585 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot)
586 #endif
587 
588 #ifdef QEMU_GENERATE
589 #define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \
590     gen_store_conditional##SIZE(ctx, PRED, EA, SRC);
591 #endif
592 
593 #ifdef QEMU_GENERATE
594 #define GETBYTE_FUNC(X) \
595     __builtin_choose_expr(TYPE_TCGV(X), \
596         gen_get_byte, \
597         __builtin_choose_expr(TYPE_TCGV_I64(X), \
598             gen_get_byte_i64, (void)0))
599 #define fGETBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, true)
600 #define fGETUBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, false)
601 #else
602 #define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff))
603 #define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff))
604 #endif
605 
606 #define fSETBYTE(N, DST, VAL) \
607     do { \
608         DST = (DST & ~(0x0ffLL << ((N) * 8))) | \
609         (((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \
610     } while (0)
611 
612 #ifdef QEMU_GENERATE
613 #define fGETHALF(N, SRC)  gen_get_half(HALF, N, SRC, true)
614 #define fGETUHALF(N, SRC) gen_get_half(HALF, N, SRC, false)
615 #else
616 #define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff))
617 #define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff))
618 #endif
619 #define fSETHALF(N, DST, VAL) \
620     do { \
621         DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \
622         (((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \
623     } while (0)
624 #define fSETHALFw fSETHALF
625 #define fSETHALFd fSETHALF
626 
627 #define fGETWORD(N, SRC) \
628     ((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
629 #define fGETUWORD(N, SRC) \
630     ((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
631 
632 #define fSETWORD(N, DST, VAL) \
633     do { \
634         DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \
635               (((VAL) & 0x0ffffffffLL) << ((N) * 32)); \
636     } while (0)
637 
638 #define fSETBIT(N, DST, VAL) \
639     do { \
640         DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \
641     } while (0)
642 
643 #define fGETBIT(N, SRC) (((SRC) >> N) & 1)
644 #define fSETBITS(HI, LO, DST, VAL) \
645     do { \
646         int j; \
647         for (j = LO; j <= HI; j++) { \
648             fSETBIT(j, DST, VAL); \
649         } \
650     } while (0)
651 #define fCOUNTONES_4(VAL) ctpop32(VAL)
652 #define fCOUNTONES_8(VAL) ctpop64(VAL)
653 #define fBREV_8(VAL) revbit64(VAL)
654 #define fBREV_4(VAL) revbit32(VAL)
655 #define fCL1_8(VAL) clo64(VAL)
656 #define fCL1_4(VAL) clo32(VAL)
657 #define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN)
658 #define fDEINTERLEAVE(MIXED) deinterleave(MIXED)
659 #define fHIDE(A) A
660 #define fCONSTLL(A) A##LL
661 #define fECHO(A) (A)
662 
663 #define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0)
664 #define fPAUSE(IMM)
665 
666 #define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \
667     ((VAL) << reg_field_info[FIELD].offset)
668 #define fGET_REG_FIELD_MASK(FIELD) \
669     (((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset)
670 #define fREAD_REG_FIELD(REG, FIELD) \
671     fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \
672                    reg_field_info[FIELD].width, \
673                    reg_field_info[FIELD].offset)
674 #define fGET_FIELD(VAL, FIELD)
675 #define fSET_FIELD(VAL, FIELD, NEWVAL)
676 #define fBARRIER()
677 #define fSYNCH()
678 #define fISYNC()
679 #define fDCFETCH(REG) \
680     do { (void)REG; } while (0) /* Nothing to do in qemu */
681 #define fICINVA(REG) \
682     do { (void)REG; } while (0) /* Nothing to do in qemu */
683 #define fL2FETCH(ADDR, HEIGHT, WIDTH, STRIDE, FLAGS)
684 #define fDCCLEANA(REG) \
685     do { (void)REG; } while (0) /* Nothing to do in qemu */
686 #define fDCCLEANINVA(REG) \
687     do { (void)REG; } while (0) /* Nothing to do in qemu */
688 
689 #define fDCZEROA(REG) do { env->dczero_addr = (REG); } while (0)
690 
691 #define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \
692                                 STRBITNUM) /* Nothing */
693 
694 
695 #endif
696