xref: /qemu/target/hexagon/macros.h (revision 7cebff0d)
1 /*
2  *  Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License, or
7  *  (at your option) any later version.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #ifndef HEXAGON_MACROS_H
19 #define HEXAGON_MACROS_H
20 
21 #include "cpu.h"
22 #include "hex_regs.h"
23 #include "reg_fields.h"
24 
25 #ifdef QEMU_GENERATE
26 #define READ_REG(dest, NUM)              gen_read_reg(dest, NUM)
27 #define READ_PREG(dest, NUM)             gen_read_preg(dest, (NUM))
28 #else
29 #define READ_REG(NUM)                    (env->gpr[(NUM)])
30 #define READ_PREG(NUM)                   (env->pred[NUM])
31 
32 #define WRITE_RREG(NUM, VAL)             log_reg_write(env, NUM, VAL, slot)
33 #define WRITE_PREG(NUM, VAL)             log_pred_write(env, NUM, VAL)
34 #endif
35 
36 #define PCALIGN 4
37 #define PCALIGN_MASK (PCALIGN - 1)
38 
39 #define GET_FIELD(FIELD, REGIN) \
40     fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \
41                    reg_field_info[FIELD].offset)
42 
43 #ifdef QEMU_GENERATE
44 #define GET_USR_FIELD(FIELD, DST) \
45     tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \
46                        reg_field_info[FIELD].offset, \
47                        reg_field_info[FIELD].width)
48 
49 #define TYPE_INT(X)          __builtin_types_compatible_p(typeof(X), int)
50 #define TYPE_TCGV(X)         __builtin_types_compatible_p(typeof(X), TCGv)
51 #define TYPE_TCGV_I64(X)     __builtin_types_compatible_p(typeof(X), TCGv_i64)
52 
53 #define SET_USR_FIELD_FUNC(X) \
54     __builtin_choose_expr(TYPE_INT(X), \
55         gen_set_usr_fieldi, \
56         __builtin_choose_expr(TYPE_TCGV(X), \
57             gen_set_usr_field, (void)0))
58 #define SET_USR_FIELD(FIELD, VAL) \
59     SET_USR_FIELD_FUNC(VAL)(FIELD, VAL)
60 #else
61 #define GET_USR_FIELD(FIELD) \
62     fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
63                    reg_field_info[FIELD].offset)
64 
65 #define SET_USR_FIELD(FIELD, VAL) \
66     fINSERT_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
67                  reg_field_info[FIELD].offset, (VAL))
68 #endif
69 
70 #ifdef QEMU_GENERATE
71 /*
72  * Section 5.5 of the Hexagon V67 Programmer's Reference Manual
73  *
74  * Slot 1 store with slot 0 load
75  * A slot 1 store operation with a slot 0 load operation can appear in a packet.
76  * The packet attribute :mem_noshuf inhibits the instruction reordering that
77  * would otherwise be done by the assembler. For example:
78  *     {
79  *         memw(R5) = R2 // slot 1 store
80  *         R3 = memh(R6) // slot 0 load
81  *     }:mem_noshuf
82  * Unlike most packetized operations, these memory operations are not executed
83  * in parallel (Section 3.3.1). Instead, the store instruction in Slot 1
84  * effectively executes first, followed by the load instruction in Slot 0. If
85  * the addresses of the two operations are overlapping, the load will receive
86  * the newly stored data. This feature is supported in processor versions
87  * V65 or greater.
88  *
89  *
90  * For qemu, we look for a load in slot 0 when there is  a store in slot 1
91  * in the same packet.  When we see this, we call a helper that merges the
92  * bytes from the store buffer with the value loaded from memory.
93  */
94 #define CHECK_NOSHUF \
95     do { \
96         if (insn->slot == 0 && pkt->pkt_has_store_s1) { \
97             process_store(ctx, pkt, 1); \
98         } \
99     } while (0)
100 
101 #define MEM_LOAD1s(DST, VA) \
102     do { \
103         CHECK_NOSHUF; \
104         tcg_gen_qemu_ld8s(DST, VA, ctx->mem_idx); \
105     } while (0)
106 #define MEM_LOAD1u(DST, VA) \
107     do { \
108         CHECK_NOSHUF; \
109         tcg_gen_qemu_ld8u(DST, VA, ctx->mem_idx); \
110     } while (0)
111 #define MEM_LOAD2s(DST, VA) \
112     do { \
113         CHECK_NOSHUF; \
114         tcg_gen_qemu_ld16s(DST, VA, ctx->mem_idx); \
115     } while (0)
116 #define MEM_LOAD2u(DST, VA) \
117     do { \
118         CHECK_NOSHUF; \
119         tcg_gen_qemu_ld16u(DST, VA, ctx->mem_idx); \
120     } while (0)
121 #define MEM_LOAD4s(DST, VA) \
122     do { \
123         CHECK_NOSHUF; \
124         tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
125     } while (0)
126 #define MEM_LOAD4u(DST, VA) \
127     do { \
128         CHECK_NOSHUF; \
129         tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
130     } while (0)
131 #define MEM_LOAD8u(DST, VA) \
132     do { \
133         CHECK_NOSHUF; \
134         tcg_gen_qemu_ld64(DST, VA, ctx->mem_idx); \
135     } while (0)
136 #else
137 #define MEM_LOAD1s(VA) ((int8_t)mem_load1(env, slot, VA))
138 #define MEM_LOAD1u(VA) ((uint8_t)mem_load1(env, slot, VA))
139 #define MEM_LOAD2s(VA) ((int16_t)mem_load2(env, slot, VA))
140 #define MEM_LOAD2u(VA) ((uint16_t)mem_load2(env, slot, VA))
141 #define MEM_LOAD4s(VA) ((int32_t)mem_load4(env, slot, VA))
142 #define MEM_LOAD4u(VA) ((uint32_t)mem_load4(env, slot, VA))
143 #define MEM_LOAD8s(VA) ((int64_t)mem_load8(env, slot, VA))
144 #define MEM_LOAD8u(VA) ((uint64_t)mem_load8(env, slot, VA))
145 
146 #define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT)
147 #define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT)
148 #define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT)
149 #define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT)
150 #endif
151 
152 #define CANCEL cancel_slot(env, slot)
153 
154 #define LOAD_CANCEL(EA) do { CANCEL; } while (0)
155 
156 #ifdef QEMU_GENERATE
157 static inline void gen_pred_cancel(TCGv pred, int slot_num)
158  {
159     TCGv slot_mask = tcg_const_tl(1 << slot_num);
160     TCGv tmp = tcg_temp_new();
161     TCGv zero = tcg_const_tl(0);
162     TCGv one = tcg_const_tl(1);
163     tcg_gen_or_tl(slot_mask, hex_slot_cancelled, slot_mask);
164     tcg_gen_andi_tl(tmp, pred, 1);
165     tcg_gen_movcond_tl(TCG_COND_EQ, hex_slot_cancelled, tmp, zero,
166                        slot_mask, hex_slot_cancelled);
167     tcg_temp_free(slot_mask);
168     tcg_temp_free(tmp);
169     tcg_temp_free(zero);
170     tcg_temp_free(one);
171 }
172 #define PRED_LOAD_CANCEL(PRED, EA) \
173     gen_pred_cancel(PRED, insn->is_endloop ? 4 : insn->slot)
174 #endif
175 
176 #define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); }
177 
178 #define fMAX(A, B) (((A) > (B)) ? (A) : (B))
179 
180 #define fMIN(A, B) (((A) < (B)) ? (A) : (B))
181 
182 #define fABS(A) (((A) < 0) ? (-(A)) : (A))
183 #define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \
184     REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG)
185 #define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \
186     ((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL)
187 #define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \
188     (fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8)))
189 #define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \
190     (((HIBIT) - (LOWBIT) + 1) ? \
191         extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \
192         0LL)
193 
194 #define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00)
195 
196 #ifdef QEMU_GENERATE
197 #define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1)
198 #else
199 #define fLSBOLD(VAL)  ((VAL) & 1)
200 #endif
201 
202 #ifdef QEMU_GENERATE
203 #define fLSBNEW(PVAL)   tcg_gen_mov_tl(LSB, (PVAL))
204 #define fLSBNEW0        tcg_gen_mov_tl(LSB, hex_new_pred_value[0])
205 #define fLSBNEW1        tcg_gen_mov_tl(LSB, hex_new_pred_value[1])
206 #else
207 #define fLSBNEW(PVAL)   (PVAL)
208 #define fLSBNEW0        new_pred_value(env, 0)
209 #define fLSBNEW1        new_pred_value(env, 1)
210 #endif
211 
212 #ifdef QEMU_GENERATE
213 static inline void gen_logical_not(TCGv dest, TCGv src)
214 {
215     TCGv one = tcg_const_tl(1);
216     TCGv zero = tcg_const_tl(0);
217 
218     tcg_gen_movcond_tl(TCG_COND_NE, dest, src, zero, zero, one);
219 
220     tcg_temp_free(one);
221     tcg_temp_free(zero);
222 }
223 #define fLSBOLDNOT(VAL) \
224     do { \
225         tcg_gen_andi_tl(LSB, (VAL), 1); \
226         tcg_gen_xori_tl(LSB, LSB, 1); \
227     } while (0)
228 #define fLSBNEWNOT(PNUM) \
229     gen_logical_not(LSB, (PNUM))
230 #else
231 #define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM))
232 #define fLSBOLDNOT(VAL) (!fLSBOLD(VAL))
233 #define fLSBNEW0NOT (!fLSBNEW0)
234 #define fLSBNEW1NOT (!fLSBNEW1)
235 #endif
236 
237 #define fNEWREG(VAL) ((int32_t)(VAL))
238 
239 #define fNEWREG_ST(VAL) (VAL)
240 
241 #define fSATUVALN(N, VAL) \
242     ({ \
243         fSET_OVERFLOW(); \
244         ((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \
245     })
246 #define fSATVALN(N, VAL) \
247     ({ \
248         fSET_OVERFLOW(); \
249         ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
250     })
251 #define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL)
252 #define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL)
253 #define fSATN(N, VAL) \
254     ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL))
255 #define fADDSAT64(DST, A, B) \
256     do { \
257         uint64_t __a = fCAST8u(A); \
258         uint64_t __b = fCAST8u(B); \
259         uint64_t __sum = __a + __b; \
260         uint64_t __xor = __a ^ __b; \
261         const uint64_t __mask = 0x8000000000000000ULL; \
262         if (__xor & __mask) { \
263             DST = __sum; \
264         } \
265         else if ((__a ^ __sum) & __mask) { \
266             if (__sum & __mask) { \
267                 DST = 0x7FFFFFFFFFFFFFFFLL; \
268                 fSET_OVERFLOW(); \
269             } else { \
270                 DST = 0x8000000000000000LL; \
271                 fSET_OVERFLOW(); \
272             } \
273         } else { \
274             DST = __sum; \
275         } \
276     } while (0)
277 #define fSATUN(N, VAL) \
278     ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL))
279 #define fSATH(VAL) (fSATN(16, VAL))
280 #define fSATUH(VAL) (fSATUN(16, VAL))
281 #define fSATUB(VAL) (fSATUN(8, VAL))
282 #define fSATB(VAL) (fSATN(8, VAL))
283 #define fIMMEXT(IMM) (IMM = IMM)
284 #define fMUST_IMMEXT(IMM) fIMMEXT(IMM)
285 
286 #define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK)
287 
288 #define fREAD_LR() (READ_REG(HEX_REG_LR))
289 
290 #define fWRITE_LR(A) WRITE_RREG(HEX_REG_LR, A)
291 #define fWRITE_FP(A) WRITE_RREG(HEX_REG_FP, A)
292 #define fWRITE_SP(A) WRITE_RREG(HEX_REG_SP, A)
293 
294 #define fREAD_SP() (READ_REG(HEX_REG_SP))
295 #define fREAD_LC0 (READ_REG(HEX_REG_LC0))
296 #define fREAD_LC1 (READ_REG(HEX_REG_LC1))
297 #define fREAD_SA0 (READ_REG(HEX_REG_SA0))
298 #define fREAD_SA1 (READ_REG(HEX_REG_SA1))
299 #define fREAD_FP() (READ_REG(HEX_REG_FP))
300 #ifdef FIXME
301 /* Figure out how to get insn->extension_valid to helper */
302 #define fREAD_GP() \
303     (insn->extension_valid ? 0 : READ_REG(HEX_REG_GP))
304 #else
305 #define fREAD_GP() READ_REG(HEX_REG_GP)
306 #endif
307 #define fREAD_PC() (READ_REG(HEX_REG_PC))
308 
309 #define fREAD_NPC() (env->next_PC & (0xfffffffe))
310 
311 #define fREAD_P0() (READ_PREG(0))
312 #define fREAD_P3() (READ_PREG(3))
313 
314 #define fCHECK_PCALIGN(A)
315 
316 #define fWRITE_NPC(A) write_new_pc(env, A)
317 
318 #define fBRANCH(LOC, TYPE)          fWRITE_NPC(LOC)
319 #define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR)
320 #define fHINTJR(TARGET) { /* Not modelled in qemu */}
321 #define fCALL(A) \
322     do { \
323         fWRITE_LR(fREAD_NPC()); \
324         fBRANCH(A, COF_TYPE_CALL); \
325     } while (0)
326 #define fCALLR(A) \
327     do { \
328         fWRITE_LR(fREAD_NPC()); \
329         fBRANCH(A, COF_TYPE_CALLR); \
330     } while (0)
331 #define fWRITE_LOOP_REGS0(START, COUNT) \
332     do { \
333         WRITE_RREG(HEX_REG_LC0, COUNT);  \
334         WRITE_RREG(HEX_REG_SA0, START); \
335     } while (0)
336 #define fWRITE_LOOP_REGS1(START, COUNT) \
337     do { \
338         WRITE_RREG(HEX_REG_LC1, COUNT);  \
339         WRITE_RREG(HEX_REG_SA1, START);\
340     } while (0)
341 #define fWRITE_LC0(VAL) WRITE_RREG(HEX_REG_LC0, VAL)
342 #define fWRITE_LC1(VAL) WRITE_RREG(HEX_REG_LC1, VAL)
343 
344 #define fCARRY_FROM_ADD(A, B, C) carry_from_add64(A, B, C)
345 
346 #define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1)
347 #define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL))
348 #define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG))
349 #define fWRITE_P0(VAL) WRITE_PREG(0, VAL)
350 #define fWRITE_P1(VAL) WRITE_PREG(1, VAL)
351 #define fWRITE_P2(VAL) WRITE_PREG(2, VAL)
352 #define fWRITE_P3(VAL) WRITE_PREG(3, VAL)
353 #define fPART1(WORK) if (part1) { WORK; return; }
354 #define fCAST4u(A) ((uint32_t)(A))
355 #define fCAST4s(A) ((int32_t)(A))
356 #define fCAST8u(A) ((uint64_t)(A))
357 #define fCAST8s(A) ((int64_t)(A))
358 #define fCAST4_4s(A) ((int32_t)(A))
359 #define fCAST4_4u(A) ((uint32_t)(A))
360 #define fCAST4_8s(A) ((int64_t)((int32_t)(A)))
361 #define fCAST4_8u(A) ((uint64_t)((uint32_t)(A)))
362 #define fCAST8_8s(A) ((int64_t)(A))
363 #define fCAST8_8u(A) ((uint64_t)(A))
364 #define fCAST2_8s(A) ((int64_t)((int16_t)(A)))
365 #define fCAST2_8u(A) ((uint64_t)((uint16_t)(A)))
366 #define fZE8_16(A) ((int16_t)((uint8_t)(A)))
367 #define fSE8_16(A) ((int16_t)((int8_t)(A)))
368 #define fSE16_32(A) ((int32_t)((int16_t)(A)))
369 #define fZE16_32(A) ((uint32_t)((uint16_t)(A)))
370 #define fSE32_64(A) ((int64_t)((int32_t)(A)))
371 #define fZE32_64(A) ((uint64_t)((uint32_t)(A)))
372 #define fSE8_32(A) ((int32_t)((int8_t)(A)))
373 #define fZE8_32(A) ((int32_t)((uint8_t)(A)))
374 #define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B))
375 #define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B))
376 #define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B))
377 #define fMPY8SS(A, B) (int)((short)(A) * (short)(B))
378 #define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B))
379 #define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B))
380 #define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B))
381 #define fMPY16US(A, B) fMPY16SU(B, A)
382 #define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B))
383 #define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B))
384 #define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B))
385 #define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B))
386 #define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B))
387 #define fROUND(A) (A + 0x8000)
388 #define fCLIP(DST, SRC, U) \
389     do { \
390         int32_t maxv = (1 << U) - 1; \
391         int32_t minv = -(1 << U); \
392         DST = fMIN(maxv, fMAX(SRC, minv)); \
393     } while (0)
394 #define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A)))
395 #define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1))))))
396 #define fCRNDN(A, N) (conv_round(A, N))
397 #define fADD128(A, B) (int128_add(A, B))
398 #define fSUB128(A, B) (int128_sub(A, B))
399 #define fSHIFTR128(A, B) (int128_rshift(A, B))
400 #define fSHIFTL128(A, B) (int128_lshift(A, B))
401 #define fAND128(A, B) (int128_and(A, B))
402 #define fCAST8S_16S(A) (int128_exts64(A))
403 #define fCAST16S_8S(A) (int128_getlo(A))
404 
405 #define fEA_RI(REG, IMM) \
406     do { \
407         EA = REG + IMM; \
408     } while (0)
409 #define fEA_RRs(REG, REG2, SCALE) \
410     do { \
411         EA = REG + (REG2 << SCALE); \
412     } while (0)
413 #define fEA_IRs(IMM, REG, SCALE) \
414     do { \
415         EA = IMM + (REG << SCALE); \
416     } while (0)
417 
418 #ifdef QEMU_GENERATE
419 #define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM)
420 #define fEA_REG(REG) tcg_gen_mov_tl(EA, REG)
421 #define fPM_I(REG, IMM)     tcg_gen_addi_tl(REG, REG, IMM)
422 #define fPM_M(REG, MVAL)    tcg_gen_add_tl(REG, REG, MVAL)
423 #else
424 #define fEA_IMM(IMM)        do { EA = (IMM); } while (0)
425 #define fEA_REG(REG)        do { EA = (REG); } while (0)
426 #define fEA_GPI(IMM)        do { EA = (fREAD_GP() + (IMM)); } while (0)
427 #define fPM_I(REG, IMM)     do { REG = REG + (IMM); } while (0)
428 #define fPM_M(REG, MVAL)    do { REG = REG + (MVAL); } while (0)
429 #endif
430 #define fSCALE(N, A) (((int64_t)(A)) << N)
431 #define fSATW(A) fSATN(32, ((long long)A))
432 #define fSAT(A) fSATN(32, (A))
433 #define fSAT_ORIG_SHL(A, ORIG_REG) \
434     ((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \
435         ? fSATVALN(32, ((int32_t)(ORIG_REG))) \
436         : ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \
437                                             : fSAT(A)))
438 #define fPASS(A) A
439 #define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \
440     (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
441                    : (fCAST##REGSTYPE(SRC) << (SHAMT)))
442 #define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \
443     fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s)
444 #define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \
445     fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u)
446 #define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \
447     (((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
448                    : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC)))
449 #define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \
450     (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \
451                    : (fCAST##REGSTYPE(SRC) >> (SHAMT)))
452 #define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \
453     fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s)
454 #define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \
455     fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u)
456 #define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \
457     (((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \
458                         << ((-(SHAMT)) - 1)) << 1, (SRC)) \
459                    : (fCAST##REGSTYPE##s(SRC) >> (SHAMT)))
460 #define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT))
461 #define fLSHIFTR(SRC, SHAMT, REGSTYPE) \
462     (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT)))
463 #define fROTL(SRC, SHAMT, REGSTYPE) \
464     (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \
465                               ((fCAST##REGSTYPE##u(SRC) >> \
466                                  ((sizeof(SRC) * 8) - (SHAMT))))))
467 #define fROTR(SRC, SHAMT, REGSTYPE) \
468     (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \
469                               ((fCAST##REGSTYPE##u(SRC) << \
470                                  ((sizeof(SRC) * 8) - (SHAMT))))))
471 #define fASHIFTL(SRC, SHAMT, REGSTYPE) \
472     (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT)))
473 
474 #ifdef QEMU_GENERATE
475 #define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA)
476 #else
477 #define fLOAD(NUM, SIZE, SIGN, EA, DST) \
478     DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA)
479 #endif
480 
481 #define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE)
482 
483 #define fGET_FRAMEKEY() READ_REG(HEX_REG_FRAMEKEY)
484 #define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32))
485 #define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL)
486 
487 #ifdef CONFIG_USER_ONLY
488 #define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */
489 #else
490 /* System mode not implemented yet */
491 #define fFRAMECHECK(ADDR, EA)  g_assert_not_reached();
492 #endif
493 
494 #ifdef QEMU_GENERATE
495 #define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \
496     gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx);
497 #endif
498 
499 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot)
500 
501 #ifdef QEMU_GENERATE
502 #define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \
503     gen_store_conditional##SIZE(env, ctx, PdN, PRED, EA, SRC);
504 #endif
505 
506 #define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff))
507 #define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff))
508 
509 #define fSETBYTE(N, DST, VAL) \
510     do { \
511         DST = (DST & ~(0x0ffLL << ((N) * 8))) | \
512         (((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \
513     } while (0)
514 #define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff))
515 #define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff))
516 #define fSETHALF(N, DST, VAL) \
517     do { \
518         DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \
519         (((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \
520     } while (0)
521 #define fSETHALFw fSETHALF
522 #define fSETHALFd fSETHALF
523 
524 #define fGETWORD(N, SRC) \
525     ((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
526 #define fGETUWORD(N, SRC) \
527     ((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
528 
529 #define fSETWORD(N, DST, VAL) \
530     do { \
531         DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \
532               (((VAL) & 0x0ffffffffLL) << ((N) * 32)); \
533     } while (0)
534 
535 #define fSETBIT(N, DST, VAL) \
536     do { \
537         DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \
538     } while (0)
539 
540 #define fGETBIT(N, SRC) (((SRC) >> N) & 1)
541 #define fSETBITS(HI, LO, DST, VAL) \
542     do { \
543         int j; \
544         for (j = LO; j <= HI; j++) { \
545             fSETBIT(j, DST, VAL); \
546         } \
547     } while (0)
548 #define fCOUNTONES_4(VAL) ctpop32(VAL)
549 #define fCOUNTONES_8(VAL) ctpop64(VAL)
550 #define fBREV_8(VAL) revbit64(VAL)
551 #define fBREV_4(VAL) revbit32(VAL)
552 #define fCL1_8(VAL) clo64(VAL)
553 #define fCL1_4(VAL) clo32(VAL)
554 #define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN)
555 #define fDEINTERLEAVE(MIXED) deinterleave(MIXED)
556 #define fHIDE(A) A
557 #define fCONSTLL(A) A##LL
558 #define fECHO(A) (A)
559 
560 #define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0)
561 #define fPAUSE(IMM)
562 
563 #define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \
564     ((VAL) << reg_field_info[FIELD].offset)
565 #define fGET_REG_FIELD_MASK(FIELD) \
566     (((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset)
567 #define fREAD_REG_FIELD(REG, FIELD) \
568     fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \
569                    reg_field_info[FIELD].width, \
570                    reg_field_info[FIELD].offset)
571 #define fGET_FIELD(VAL, FIELD)
572 #define fSET_FIELD(VAL, FIELD, NEWVAL)
573 #define fBARRIER()
574 #define fSYNCH()
575 #define fISYNC()
576 #define fDCFETCH(REG) \
577     do { (void)REG; } while (0) /* Nothing to do in qemu */
578 #define fICINVA(REG) \
579     do { (void)REG; } while (0) /* Nothing to do in qemu */
580 #define fL2FETCH(ADDR, HEIGHT, WIDTH, STRIDE, FLAGS)
581 #define fDCCLEANA(REG) \
582     do { (void)REG; } while (0) /* Nothing to do in qemu */
583 #define fDCCLEANINVA(REG) \
584     do { (void)REG; } while (0) /* Nothing to do in qemu */
585 
586 #define fDCZEROA(REG) do { env->dczero_addr = (REG); } while (0)
587 
588 #define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \
589                                 STRBITNUM) /* Nothing */
590 
591 
592 #endif
593