xref: /qemu/target/hppa/op_helper.c (revision b2a3cbb8)
1 /*
2  * Helpers for HPPA instructions.
3  *
4  * Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/helper-proto.h"
25 #include "exec/cpu_ldst.h"
26 #include "qemu/timer.h"
27 #include "sysemu/runstate.h"
28 #include "fpu/softfloat.h"
29 #include "trace.h"
30 
31 G_NORETURN void HELPER(excp)(CPUHPPAState *env, int excp)
32 {
33     CPUState *cs = env_cpu(env);
34 
35     cs->exception_index = excp;
36     cpu_loop_exit(cs);
37 }
38 
39 G_NORETURN void hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra)
40 {
41     CPUState *cs = env_cpu(env);
42 
43     cs->exception_index = excp;
44     cpu_loop_exit_restore(cs, ra);
45 }
46 
47 void HELPER(tsv)(CPUHPPAState *env, target_ureg cond)
48 {
49     if (unlikely((target_sreg)cond < 0)) {
50         hppa_dynamic_excp(env, EXCP_OVERFLOW, GETPC());
51     }
52 }
53 
54 void HELPER(tcond)(CPUHPPAState *env, target_ureg cond)
55 {
56     if (unlikely(cond)) {
57         hppa_dynamic_excp(env, EXCP_COND, GETPC());
58     }
59 }
60 
61 static void atomic_store_3(CPUHPPAState *env, target_ulong addr,
62                            uint32_t val, uintptr_t ra)
63 {
64     int mmu_idx = cpu_mmu_index(env, 0);
65     uint32_t old, new, cmp, mask, *haddr;
66     void *vaddr;
67 
68     vaddr = probe_access(env, addr, 3, MMU_DATA_STORE, mmu_idx, ra);
69     if (vaddr == NULL) {
70         cpu_loop_exit_atomic(env_cpu(env), ra);
71     }
72     haddr = (uint32_t *)((uintptr_t)vaddr & -4);
73     mask = addr & 1 ? 0x00ffffffu : 0xffffff00u;
74 
75     old = *haddr;
76     while (1) {
77         new = be32_to_cpu((cpu_to_be32(old) & ~mask) | (val & mask));
78         cmp = qatomic_cmpxchg(haddr, old, new);
79         if (cmp == old) {
80             return;
81         }
82         old = cmp;
83     }
84 }
85 
86 static void do_stby_b(CPUHPPAState *env, target_ulong addr, target_ureg val,
87                       bool parallel, uintptr_t ra)
88 {
89     switch (addr & 3) {
90     case 3:
91         cpu_stb_data_ra(env, addr, val, ra);
92         break;
93     case 2:
94         cpu_stw_data_ra(env, addr, val, ra);
95         break;
96     case 1:
97         /* The 3 byte store must appear atomic.  */
98         if (parallel) {
99             atomic_store_3(env, addr, val, ra);
100         } else {
101             cpu_stb_data_ra(env, addr, val >> 16, ra);
102             cpu_stw_data_ra(env, addr + 1, val, ra);
103         }
104         break;
105     default:
106         cpu_stl_data_ra(env, addr, val, ra);
107         break;
108     }
109 }
110 
111 void HELPER(stby_b)(CPUHPPAState *env, target_ulong addr, target_ureg val)
112 {
113     do_stby_b(env, addr, val, false, GETPC());
114 }
115 
116 void HELPER(stby_b_parallel)(CPUHPPAState *env, target_ulong addr,
117                              target_ureg val)
118 {
119     do_stby_b(env, addr, val, true, GETPC());
120 }
121 
122 static void do_stby_e(CPUHPPAState *env, target_ulong addr, target_ureg val,
123                       bool parallel, uintptr_t ra)
124 {
125     switch (addr & 3) {
126     case 3:
127         /* The 3 byte store must appear atomic.  */
128         if (parallel) {
129             atomic_store_3(env, addr - 3, val, ra);
130         } else {
131             cpu_stw_data_ra(env, addr - 3, val >> 16, ra);
132             cpu_stb_data_ra(env, addr - 1, val >> 8, ra);
133         }
134         break;
135     case 2:
136         cpu_stw_data_ra(env, addr - 2, val >> 16, ra);
137         break;
138     case 1:
139         cpu_stb_data_ra(env, addr - 1, val >> 24, ra);
140         break;
141     default:
142         /* Nothing is stored, but protection is checked and the
143            cacheline is marked dirty.  */
144         probe_write(env, addr, 0, cpu_mmu_index(env, 0), ra);
145         break;
146     }
147 }
148 
149 void HELPER(stby_e)(CPUHPPAState *env, target_ulong addr, target_ureg val)
150 {
151     do_stby_e(env, addr, val, false, GETPC());
152 }
153 
154 void HELPER(stby_e_parallel)(CPUHPPAState *env, target_ulong addr,
155                              target_ureg val)
156 {
157     do_stby_e(env, addr, val, true, GETPC());
158 }
159 
160 void HELPER(ldc_check)(target_ulong addr)
161 {
162     if (unlikely(addr & 0xf)) {
163         qemu_log_mask(LOG_GUEST_ERROR,
164                       "Undefined ldc to unaligned address mod 16: "
165                       TARGET_FMT_lx "\n", addr);
166     }
167 }
168 
169 target_ureg HELPER(probe)(CPUHPPAState *env, target_ulong addr,
170                           uint32_t level, uint32_t want)
171 {
172 #ifdef CONFIG_USER_ONLY
173     return (page_check_range(addr, 1, want) == 0) ? 1 : 0;
174 #else
175     int prot, excp;
176     hwaddr phys;
177 
178     trace_hppa_tlb_probe(addr, level, want);
179     /* Fail if the requested privilege level is higher than current.  */
180     if (level < (env->iaoq_f & 3)) {
181         return 0;
182     }
183 
184     excp = hppa_get_physical_address(env, addr, level, 0, &phys, &prot);
185     if (excp >= 0) {
186         if (env->psw & PSW_Q) {
187             /* ??? Needs tweaking for hppa64.  */
188             env->cr[CR_IOR] = addr;
189             env->cr[CR_ISR] = addr >> 32;
190         }
191         if (excp == EXCP_DTLB_MISS) {
192             excp = EXCP_NA_DTLB_MISS;
193         }
194         hppa_dynamic_excp(env, excp, GETPC());
195     }
196     return (want & prot) != 0;
197 #endif
198 }
199 
200 void HELPER(loaded_fr0)(CPUHPPAState *env)
201 {
202     uint32_t shadow = env->fr[0] >> 32;
203     int rm, d;
204 
205     env->fr0_shadow = shadow;
206 
207     switch (extract32(shadow, 9, 2)) {
208     default:
209         rm = float_round_nearest_even;
210         break;
211     case 1:
212         rm = float_round_to_zero;
213         break;
214     case 2:
215         rm = float_round_up;
216         break;
217     case 3:
218         rm = float_round_down;
219         break;
220     }
221     set_float_rounding_mode(rm, &env->fp_status);
222 
223     d = extract32(shadow, 5, 1);
224     set_flush_to_zero(d, &env->fp_status);
225     set_flush_inputs_to_zero(d, &env->fp_status);
226 }
227 
228 void cpu_hppa_loaded_fr0(CPUHPPAState *env)
229 {
230     helper_loaded_fr0(env);
231 }
232 
233 #define CONVERT_BIT(X, SRC, DST)        \
234     ((SRC) > (DST)                      \
235      ? (X) / ((SRC) / (DST)) & (DST)    \
236      : ((X) & (SRC)) * ((DST) / (SRC)))
237 
238 static void update_fr0_op(CPUHPPAState *env, uintptr_t ra)
239 {
240     uint32_t soft_exp = get_float_exception_flags(&env->fp_status);
241     uint32_t hard_exp = 0;
242     uint32_t shadow = env->fr0_shadow;
243 
244     if (likely(soft_exp == 0)) {
245         env->fr[0] = (uint64_t)shadow << 32;
246         return;
247     }
248     set_float_exception_flags(0, &env->fp_status);
249 
250     hard_exp |= CONVERT_BIT(soft_exp, float_flag_inexact,   1u << 0);
251     hard_exp |= CONVERT_BIT(soft_exp, float_flag_underflow, 1u << 1);
252     hard_exp |= CONVERT_BIT(soft_exp, float_flag_overflow,  1u << 2);
253     hard_exp |= CONVERT_BIT(soft_exp, float_flag_divbyzero, 1u << 3);
254     hard_exp |= CONVERT_BIT(soft_exp, float_flag_invalid,   1u << 4);
255     shadow |= hard_exp << (32 - 5);
256     env->fr0_shadow = shadow;
257     env->fr[0] = (uint64_t)shadow << 32;
258 
259     if (hard_exp & shadow) {
260         hppa_dynamic_excp(env, EXCP_ASSIST, ra);
261     }
262 }
263 
264 float32 HELPER(fsqrt_s)(CPUHPPAState *env, float32 arg)
265 {
266     float32 ret = float32_sqrt(arg, &env->fp_status);
267     update_fr0_op(env, GETPC());
268     return ret;
269 }
270 
271 float32 HELPER(frnd_s)(CPUHPPAState *env, float32 arg)
272 {
273     float32 ret = float32_round_to_int(arg, &env->fp_status);
274     update_fr0_op(env, GETPC());
275     return ret;
276 }
277 
278 float32 HELPER(fadd_s)(CPUHPPAState *env, float32 a, float32 b)
279 {
280     float32 ret = float32_add(a, b, &env->fp_status);
281     update_fr0_op(env, GETPC());
282     return ret;
283 }
284 
285 float32 HELPER(fsub_s)(CPUHPPAState *env, float32 a, float32 b)
286 {
287     float32 ret = float32_sub(a, b, &env->fp_status);
288     update_fr0_op(env, GETPC());
289     return ret;
290 }
291 
292 float32 HELPER(fmpy_s)(CPUHPPAState *env, float32 a, float32 b)
293 {
294     float32 ret = float32_mul(a, b, &env->fp_status);
295     update_fr0_op(env, GETPC());
296     return ret;
297 }
298 
299 float32 HELPER(fdiv_s)(CPUHPPAState *env, float32 a, float32 b)
300 {
301     float32 ret = float32_div(a, b, &env->fp_status);
302     update_fr0_op(env, GETPC());
303     return ret;
304 }
305 
306 float64 HELPER(fsqrt_d)(CPUHPPAState *env, float64 arg)
307 {
308     float64 ret = float64_sqrt(arg, &env->fp_status);
309     update_fr0_op(env, GETPC());
310     return ret;
311 }
312 
313 float64 HELPER(frnd_d)(CPUHPPAState *env, float64 arg)
314 {
315     float64 ret = float64_round_to_int(arg, &env->fp_status);
316     update_fr0_op(env, GETPC());
317     return ret;
318 }
319 
320 float64 HELPER(fadd_d)(CPUHPPAState *env, float64 a, float64 b)
321 {
322     float64 ret = float64_add(a, b, &env->fp_status);
323     update_fr0_op(env, GETPC());
324     return ret;
325 }
326 
327 float64 HELPER(fsub_d)(CPUHPPAState *env, float64 a, float64 b)
328 {
329     float64 ret = float64_sub(a, b, &env->fp_status);
330     update_fr0_op(env, GETPC());
331     return ret;
332 }
333 
334 float64 HELPER(fmpy_d)(CPUHPPAState *env, float64 a, float64 b)
335 {
336     float64 ret = float64_mul(a, b, &env->fp_status);
337     update_fr0_op(env, GETPC());
338     return ret;
339 }
340 
341 float64 HELPER(fdiv_d)(CPUHPPAState *env, float64 a, float64 b)
342 {
343     float64 ret = float64_div(a, b, &env->fp_status);
344     update_fr0_op(env, GETPC());
345     return ret;
346 }
347 
348 float64 HELPER(fcnv_s_d)(CPUHPPAState *env, float32 arg)
349 {
350     float64 ret = float32_to_float64(arg, &env->fp_status);
351     update_fr0_op(env, GETPC());
352     return ret;
353 }
354 
355 float32 HELPER(fcnv_d_s)(CPUHPPAState *env, float64 arg)
356 {
357     float32 ret = float64_to_float32(arg, &env->fp_status);
358     update_fr0_op(env, GETPC());
359     return ret;
360 }
361 
362 float32 HELPER(fcnv_w_s)(CPUHPPAState *env, int32_t arg)
363 {
364     float32 ret = int32_to_float32(arg, &env->fp_status);
365     update_fr0_op(env, GETPC());
366     return ret;
367 }
368 
369 float32 HELPER(fcnv_dw_s)(CPUHPPAState *env, int64_t arg)
370 {
371     float32 ret = int64_to_float32(arg, &env->fp_status);
372     update_fr0_op(env, GETPC());
373     return ret;
374 }
375 
376 float64 HELPER(fcnv_w_d)(CPUHPPAState *env, int32_t arg)
377 {
378     float64 ret = int32_to_float64(arg, &env->fp_status);
379     update_fr0_op(env, GETPC());
380     return ret;
381 }
382 
383 float64 HELPER(fcnv_dw_d)(CPUHPPAState *env, int64_t arg)
384 {
385     float64 ret = int64_to_float64(arg, &env->fp_status);
386     update_fr0_op(env, GETPC());
387     return ret;
388 }
389 
390 int32_t HELPER(fcnv_s_w)(CPUHPPAState *env, float32 arg)
391 {
392     int32_t ret = float32_to_int32(arg, &env->fp_status);
393     update_fr0_op(env, GETPC());
394     return ret;
395 }
396 
397 int32_t HELPER(fcnv_d_w)(CPUHPPAState *env, float64 arg)
398 {
399     int32_t ret = float64_to_int32(arg, &env->fp_status);
400     update_fr0_op(env, GETPC());
401     return ret;
402 }
403 
404 int64_t HELPER(fcnv_s_dw)(CPUHPPAState *env, float32 arg)
405 {
406     int64_t ret = float32_to_int64(arg, &env->fp_status);
407     update_fr0_op(env, GETPC());
408     return ret;
409 }
410 
411 int64_t HELPER(fcnv_d_dw)(CPUHPPAState *env, float64 arg)
412 {
413     int64_t ret = float64_to_int64(arg, &env->fp_status);
414     update_fr0_op(env, GETPC());
415     return ret;
416 }
417 
418 int32_t HELPER(fcnv_t_s_w)(CPUHPPAState *env, float32 arg)
419 {
420     int32_t ret = float32_to_int32_round_to_zero(arg, &env->fp_status);
421     update_fr0_op(env, GETPC());
422     return ret;
423 }
424 
425 int32_t HELPER(fcnv_t_d_w)(CPUHPPAState *env, float64 arg)
426 {
427     int32_t ret = float64_to_int32_round_to_zero(arg, &env->fp_status);
428     update_fr0_op(env, GETPC());
429     return ret;
430 }
431 
432 int64_t HELPER(fcnv_t_s_dw)(CPUHPPAState *env, float32 arg)
433 {
434     int64_t ret = float32_to_int64_round_to_zero(arg, &env->fp_status);
435     update_fr0_op(env, GETPC());
436     return ret;
437 }
438 
439 int64_t HELPER(fcnv_t_d_dw)(CPUHPPAState *env, float64 arg)
440 {
441     int64_t ret = float64_to_int64_round_to_zero(arg, &env->fp_status);
442     update_fr0_op(env, GETPC());
443     return ret;
444 }
445 
446 float32 HELPER(fcnv_uw_s)(CPUHPPAState *env, uint32_t arg)
447 {
448     float32 ret = uint32_to_float32(arg, &env->fp_status);
449     update_fr0_op(env, GETPC());
450     return ret;
451 }
452 
453 float32 HELPER(fcnv_udw_s)(CPUHPPAState *env, uint64_t arg)
454 {
455     float32 ret = uint64_to_float32(arg, &env->fp_status);
456     update_fr0_op(env, GETPC());
457     return ret;
458 }
459 
460 float64 HELPER(fcnv_uw_d)(CPUHPPAState *env, uint32_t arg)
461 {
462     float64 ret = uint32_to_float64(arg, &env->fp_status);
463     update_fr0_op(env, GETPC());
464     return ret;
465 }
466 
467 float64 HELPER(fcnv_udw_d)(CPUHPPAState *env, uint64_t arg)
468 {
469     float64 ret = uint64_to_float64(arg, &env->fp_status);
470     update_fr0_op(env, GETPC());
471     return ret;
472 }
473 
474 uint32_t HELPER(fcnv_s_uw)(CPUHPPAState *env, float32 arg)
475 {
476     uint32_t ret = float32_to_uint32(arg, &env->fp_status);
477     update_fr0_op(env, GETPC());
478     return ret;
479 }
480 
481 uint32_t HELPER(fcnv_d_uw)(CPUHPPAState *env, float64 arg)
482 {
483     uint32_t ret = float64_to_uint32(arg, &env->fp_status);
484     update_fr0_op(env, GETPC());
485     return ret;
486 }
487 
488 uint64_t HELPER(fcnv_s_udw)(CPUHPPAState *env, float32 arg)
489 {
490     uint64_t ret = float32_to_uint64(arg, &env->fp_status);
491     update_fr0_op(env, GETPC());
492     return ret;
493 }
494 
495 uint64_t HELPER(fcnv_d_udw)(CPUHPPAState *env, float64 arg)
496 {
497     uint64_t ret = float64_to_uint64(arg, &env->fp_status);
498     update_fr0_op(env, GETPC());
499     return ret;
500 }
501 
502 uint32_t HELPER(fcnv_t_s_uw)(CPUHPPAState *env, float32 arg)
503 {
504     uint32_t ret = float32_to_uint32_round_to_zero(arg, &env->fp_status);
505     update_fr0_op(env, GETPC());
506     return ret;
507 }
508 
509 uint32_t HELPER(fcnv_t_d_uw)(CPUHPPAState *env, float64 arg)
510 {
511     uint32_t ret = float64_to_uint32_round_to_zero(arg, &env->fp_status);
512     update_fr0_op(env, GETPC());
513     return ret;
514 }
515 
516 uint64_t HELPER(fcnv_t_s_udw)(CPUHPPAState *env, float32 arg)
517 {
518     uint64_t ret = float32_to_uint64_round_to_zero(arg, &env->fp_status);
519     update_fr0_op(env, GETPC());
520     return ret;
521 }
522 
523 uint64_t HELPER(fcnv_t_d_udw)(CPUHPPAState *env, float64 arg)
524 {
525     uint64_t ret = float64_to_uint64_round_to_zero(arg, &env->fp_status);
526     update_fr0_op(env, GETPC());
527     return ret;
528 }
529 
530 static void update_fr0_cmp(CPUHPPAState *env, uint32_t y,
531                            uint32_t c, FloatRelation r)
532 {
533     uint32_t shadow = env->fr0_shadow;
534 
535     switch (r) {
536     case float_relation_greater:
537         c = extract32(c, 4, 1);
538         break;
539     case float_relation_less:
540         c = extract32(c, 3, 1);
541         break;
542     case float_relation_equal:
543         c = extract32(c, 2, 1);
544         break;
545     case float_relation_unordered:
546         c = extract32(c, 1, 1);
547         break;
548     default:
549         g_assert_not_reached();
550     }
551 
552     if (y) {
553         /* targeted comparison */
554         /* set fpsr[ca[y - 1]] to current compare */
555         shadow = deposit32(shadow, 21 - (y - 1), 1, c);
556     } else {
557         /* queued comparison */
558         /* shift cq right by one place */
559         shadow = deposit32(shadow, 11, 10, extract32(shadow, 12, 10));
560         /* move fpsr[c] to fpsr[cq[0]] */
561         shadow = deposit32(shadow, 21, 1, extract32(shadow, 26, 1));
562         /* set fpsr[c] to current compare */
563         shadow = deposit32(shadow, 26, 1, c);
564     }
565 
566     env->fr0_shadow = shadow;
567     env->fr[0] = (uint64_t)shadow << 32;
568 }
569 
570 void HELPER(fcmp_s)(CPUHPPAState *env, float32 a, float32 b,
571                     uint32_t y, uint32_t c)
572 {
573     FloatRelation r;
574     if (c & 1) {
575         r = float32_compare(a, b, &env->fp_status);
576     } else {
577         r = float32_compare_quiet(a, b, &env->fp_status);
578     }
579     update_fr0_op(env, GETPC());
580     update_fr0_cmp(env, y, c, r);
581 }
582 
583 void HELPER(fcmp_d)(CPUHPPAState *env, float64 a, float64 b,
584                     uint32_t y, uint32_t c)
585 {
586     FloatRelation r;
587     if (c & 1) {
588         r = float64_compare(a, b, &env->fp_status);
589     } else {
590         r = float64_compare_quiet(a, b, &env->fp_status);
591     }
592     update_fr0_op(env, GETPC());
593     update_fr0_cmp(env, y, c, r);
594 }
595 
596 float32 HELPER(fmpyfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
597 {
598     float32 ret = float32_muladd(a, b, c, 0, &env->fp_status);
599     update_fr0_op(env, GETPC());
600     return ret;
601 }
602 
603 float32 HELPER(fmpynfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
604 {
605     float32 ret = float32_muladd(a, b, c, float_muladd_negate_product,
606                                  &env->fp_status);
607     update_fr0_op(env, GETPC());
608     return ret;
609 }
610 
611 float64 HELPER(fmpyfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
612 {
613     float64 ret = float64_muladd(a, b, c, 0, &env->fp_status);
614     update_fr0_op(env, GETPC());
615     return ret;
616 }
617 
618 float64 HELPER(fmpynfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
619 {
620     float64 ret = float64_muladd(a, b, c, float_muladd_negate_product,
621                                  &env->fp_status);
622     update_fr0_op(env, GETPC());
623     return ret;
624 }
625 
626 target_ureg HELPER(read_interval_timer)(void)
627 {
628 #ifdef CONFIG_USER_ONLY
629     /* In user-mode, QEMU_CLOCK_VIRTUAL doesn't exist.
630        Just pass through the host cpu clock ticks.  */
631     return cpu_get_host_ticks();
632 #else
633     /* In system mode we have access to a decent high-resolution clock.
634        In order to make OS-level time accounting work with the cr16,
635        present it with a well-timed clock fixed at 250MHz.  */
636     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) >> 2;
637 #endif
638 }
639 
640 #ifndef CONFIG_USER_ONLY
641 void HELPER(write_interval_timer)(CPUHPPAState *env, target_ureg val)
642 {
643     HPPACPU *cpu = env_archcpu(env);
644     uint64_t current = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
645     uint64_t timeout;
646 
647     /* Even in 64-bit mode, the comparator is always 32-bit.  But the
648        value we expose to the guest is 1/4 of the speed of the clock,
649        so moosh in 34 bits.  */
650     timeout = deposit64(current, 0, 34, (uint64_t)val << 2);
651 
652     /* If the mooshing puts the clock in the past, advance to next round.  */
653     if (timeout < current + 1000) {
654         timeout += 1ULL << 34;
655     }
656 
657     cpu->env.cr[CR_IT] = timeout;
658     timer_mod(cpu->alarm_timer, timeout);
659 }
660 
661 void HELPER(halt)(CPUHPPAState *env)
662 {
663     qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
664     helper_excp(env, EXCP_HLT);
665 }
666 
667 void HELPER(reset)(CPUHPPAState *env)
668 {
669     qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
670     helper_excp(env, EXCP_HLT);
671 }
672 
673 target_ureg HELPER(swap_system_mask)(CPUHPPAState *env, target_ureg nsm)
674 {
675     target_ulong psw = env->psw;
676     /*
677      * Setting the PSW Q bit to 1, if it was not already 1, is an
678      * undefined operation.
679      *
680      * However, HP-UX 10.20 does this with the SSM instruction.
681      * Tested this on HP9000/712 and HP9000/785/C3750 and both
682      * machines set the Q bit from 0 to 1 without an exception,
683      * so let this go without comment.
684      */
685     env->psw = (psw & ~PSW_SM) | (nsm & PSW_SM);
686     return psw & PSW_SM;
687 }
688 
689 void HELPER(rfi)(CPUHPPAState *env)
690 {
691     env->iasq_f = (uint64_t)env->cr[CR_IIASQ] << 32;
692     env->iasq_b = (uint64_t)env->cr_back[0] << 32;
693     env->iaoq_f = env->cr[CR_IIAOQ];
694     env->iaoq_b = env->cr_back[1];
695     cpu_hppa_put_psw(env, env->cr[CR_IPSW]);
696 }
697 
698 void HELPER(getshadowregs)(CPUHPPAState *env)
699 {
700     env->gr[1] = env->shadow[0];
701     env->gr[8] = env->shadow[1];
702     env->gr[9] = env->shadow[2];
703     env->gr[16] = env->shadow[3];
704     env->gr[17] = env->shadow[4];
705     env->gr[24] = env->shadow[5];
706     env->gr[25] = env->shadow[6];
707 }
708 
709 void HELPER(rfi_r)(CPUHPPAState *env)
710 {
711     helper_getshadowregs(env);
712     helper_rfi(env);
713 }
714 #endif
715