xref: /qemu/target/hppa/op_helper.c (revision b83a80e8)
1 /*
2  * Helpers for HPPA instructions.
3  *
4  * Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "exec/cpu_ldst.h"
25 #include "qemu/timer.h"
26 #include "sysemu/runstate.h"
27 #include "fpu/softfloat.h"
28 #include "trace.h"
29 
30 void QEMU_NORETURN HELPER(excp)(CPUHPPAState *env, int excp)
31 {
32     CPUState *cs = env_cpu(env);
33 
34     cs->exception_index = excp;
35     cpu_loop_exit(cs);
36 }
37 
38 void QEMU_NORETURN hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra)
39 {
40     CPUState *cs = env_cpu(env);
41 
42     cs->exception_index = excp;
43     cpu_loop_exit_restore(cs, ra);
44 }
45 
46 void HELPER(tsv)(CPUHPPAState *env, target_ureg cond)
47 {
48     if (unlikely((target_sreg)cond < 0)) {
49         hppa_dynamic_excp(env, EXCP_OVERFLOW, GETPC());
50     }
51 }
52 
53 void HELPER(tcond)(CPUHPPAState *env, target_ureg cond)
54 {
55     if (unlikely(cond)) {
56         hppa_dynamic_excp(env, EXCP_COND, GETPC());
57     }
58 }
59 
60 static void atomic_store_3(CPUHPPAState *env, target_ulong addr,
61                            uint32_t val, uintptr_t ra)
62 {
63     int mmu_idx = cpu_mmu_index(env, 0);
64     uint32_t old, new, cmp, mask, *haddr;
65     void *vaddr;
66 
67     vaddr = probe_access(env, addr, 3, MMU_DATA_STORE, mmu_idx, ra);
68     if (vaddr == NULL) {
69         cpu_loop_exit_atomic(env_cpu(env), ra);
70     }
71     haddr = (uint32_t *)((uintptr_t)vaddr & -4);
72     mask = addr & 1 ? 0x00ffffffu : 0xffffff00u;
73 
74     old = *haddr;
75     while (1) {
76         new = be32_to_cpu((cpu_to_be32(old) & ~mask) | (val & mask));
77         cmp = qatomic_cmpxchg(haddr, old, new);
78         if (cmp == old) {
79             return;
80         }
81         old = cmp;
82     }
83 }
84 
85 static void do_stby_b(CPUHPPAState *env, target_ulong addr, target_ureg val,
86                       bool parallel, uintptr_t ra)
87 {
88     switch (addr & 3) {
89     case 3:
90         cpu_stb_data_ra(env, addr, val, ra);
91         break;
92     case 2:
93         cpu_stw_data_ra(env, addr, val, ra);
94         break;
95     case 1:
96         /* The 3 byte store must appear atomic.  */
97         if (parallel) {
98             atomic_store_3(env, addr, val, ra);
99         } else {
100             cpu_stb_data_ra(env, addr, val >> 16, ra);
101             cpu_stw_data_ra(env, addr + 1, val, ra);
102         }
103         break;
104     default:
105         cpu_stl_data_ra(env, addr, val, ra);
106         break;
107     }
108 }
109 
110 void HELPER(stby_b)(CPUHPPAState *env, target_ulong addr, target_ureg val)
111 {
112     do_stby_b(env, addr, val, false, GETPC());
113 }
114 
115 void HELPER(stby_b_parallel)(CPUHPPAState *env, target_ulong addr,
116                              target_ureg val)
117 {
118     do_stby_b(env, addr, val, true, GETPC());
119 }
120 
121 static void do_stby_e(CPUHPPAState *env, target_ulong addr, target_ureg val,
122                       bool parallel, uintptr_t ra)
123 {
124     switch (addr & 3) {
125     case 3:
126         /* The 3 byte store must appear atomic.  */
127         if (parallel) {
128             atomic_store_3(env, addr - 3, val, ra);
129         } else {
130             cpu_stw_data_ra(env, addr - 3, val >> 16, ra);
131             cpu_stb_data_ra(env, addr - 1, val >> 8, ra);
132         }
133         break;
134     case 2:
135         cpu_stw_data_ra(env, addr - 2, val >> 16, ra);
136         break;
137     case 1:
138         cpu_stb_data_ra(env, addr - 1, val >> 24, ra);
139         break;
140     default:
141         /* Nothing is stored, but protection is checked and the
142            cacheline is marked dirty.  */
143         probe_write(env, addr, 0, cpu_mmu_index(env, 0), ra);
144         break;
145     }
146 }
147 
148 void HELPER(stby_e)(CPUHPPAState *env, target_ulong addr, target_ureg val)
149 {
150     do_stby_e(env, addr, val, false, GETPC());
151 }
152 
153 void HELPER(stby_e_parallel)(CPUHPPAState *env, target_ulong addr,
154                              target_ureg val)
155 {
156     do_stby_e(env, addr, val, true, GETPC());
157 }
158 
159 void HELPER(ldc_check)(target_ulong addr)
160 {
161     if (unlikely(addr & 0xf)) {
162         qemu_log_mask(LOG_GUEST_ERROR,
163                       "Undefined ldc to unaligned address mod 16: "
164                       TARGET_FMT_lx "\n", addr);
165     }
166 }
167 
168 target_ureg HELPER(probe)(CPUHPPAState *env, target_ulong addr,
169                           uint32_t level, uint32_t want)
170 {
171 #ifdef CONFIG_USER_ONLY
172     return page_check_range(addr, 1, want);
173 #else
174     int prot, excp;
175     hwaddr phys;
176 
177     trace_hppa_tlb_probe(addr, level, want);
178     /* Fail if the requested privilege level is higher than current.  */
179     if (level < (env->iaoq_f & 3)) {
180         return 0;
181     }
182 
183     excp = hppa_get_physical_address(env, addr, level, 0, &phys, &prot);
184     if (excp >= 0) {
185         if (env->psw & PSW_Q) {
186             /* ??? Needs tweaking for hppa64.  */
187             env->cr[CR_IOR] = addr;
188             env->cr[CR_ISR] = addr >> 32;
189         }
190         if (excp == EXCP_DTLB_MISS) {
191             excp = EXCP_NA_DTLB_MISS;
192         }
193         hppa_dynamic_excp(env, excp, GETPC());
194     }
195     return (want & prot) != 0;
196 #endif
197 }
198 
199 void HELPER(loaded_fr0)(CPUHPPAState *env)
200 {
201     uint32_t shadow = env->fr[0] >> 32;
202     int rm, d;
203 
204     env->fr0_shadow = shadow;
205 
206     switch (extract32(shadow, 9, 2)) {
207     default:
208         rm = float_round_nearest_even;
209         break;
210     case 1:
211         rm = float_round_to_zero;
212         break;
213     case 2:
214         rm = float_round_up;
215         break;
216     case 3:
217         rm = float_round_down;
218         break;
219     }
220     set_float_rounding_mode(rm, &env->fp_status);
221 
222     d = extract32(shadow, 5, 1);
223     set_flush_to_zero(d, &env->fp_status);
224     set_flush_inputs_to_zero(d, &env->fp_status);
225 }
226 
227 void cpu_hppa_loaded_fr0(CPUHPPAState *env)
228 {
229     helper_loaded_fr0(env);
230 }
231 
232 #define CONVERT_BIT(X, SRC, DST)        \
233     ((SRC) > (DST)                      \
234      ? (X) / ((SRC) / (DST)) & (DST)    \
235      : ((X) & (SRC)) * ((DST) / (SRC)))
236 
237 static void update_fr0_op(CPUHPPAState *env, uintptr_t ra)
238 {
239     uint32_t soft_exp = get_float_exception_flags(&env->fp_status);
240     uint32_t hard_exp = 0;
241     uint32_t shadow = env->fr0_shadow;
242 
243     if (likely(soft_exp == 0)) {
244         env->fr[0] = (uint64_t)shadow << 32;
245         return;
246     }
247     set_float_exception_flags(0, &env->fp_status);
248 
249     hard_exp |= CONVERT_BIT(soft_exp, float_flag_inexact,   1u << 0);
250     hard_exp |= CONVERT_BIT(soft_exp, float_flag_underflow, 1u << 1);
251     hard_exp |= CONVERT_BIT(soft_exp, float_flag_overflow,  1u << 2);
252     hard_exp |= CONVERT_BIT(soft_exp, float_flag_divbyzero, 1u << 3);
253     hard_exp |= CONVERT_BIT(soft_exp, float_flag_invalid,   1u << 4);
254     shadow |= hard_exp << (32 - 5);
255     env->fr0_shadow = shadow;
256     env->fr[0] = (uint64_t)shadow << 32;
257 
258     if (hard_exp & shadow) {
259         hppa_dynamic_excp(env, EXCP_ASSIST, ra);
260     }
261 }
262 
263 float32 HELPER(fsqrt_s)(CPUHPPAState *env, float32 arg)
264 {
265     float32 ret = float32_sqrt(arg, &env->fp_status);
266     update_fr0_op(env, GETPC());
267     return ret;
268 }
269 
270 float32 HELPER(frnd_s)(CPUHPPAState *env, float32 arg)
271 {
272     float32 ret = float32_round_to_int(arg, &env->fp_status);
273     update_fr0_op(env, GETPC());
274     return ret;
275 }
276 
277 float32 HELPER(fadd_s)(CPUHPPAState *env, float32 a, float32 b)
278 {
279     float32 ret = float32_add(a, b, &env->fp_status);
280     update_fr0_op(env, GETPC());
281     return ret;
282 }
283 
284 float32 HELPER(fsub_s)(CPUHPPAState *env, float32 a, float32 b)
285 {
286     float32 ret = float32_sub(a, b, &env->fp_status);
287     update_fr0_op(env, GETPC());
288     return ret;
289 }
290 
291 float32 HELPER(fmpy_s)(CPUHPPAState *env, float32 a, float32 b)
292 {
293     float32 ret = float32_mul(a, b, &env->fp_status);
294     update_fr0_op(env, GETPC());
295     return ret;
296 }
297 
298 float32 HELPER(fdiv_s)(CPUHPPAState *env, float32 a, float32 b)
299 {
300     float32 ret = float32_div(a, b, &env->fp_status);
301     update_fr0_op(env, GETPC());
302     return ret;
303 }
304 
305 float64 HELPER(fsqrt_d)(CPUHPPAState *env, float64 arg)
306 {
307     float64 ret = float64_sqrt(arg, &env->fp_status);
308     update_fr0_op(env, GETPC());
309     return ret;
310 }
311 
312 float64 HELPER(frnd_d)(CPUHPPAState *env, float64 arg)
313 {
314     float64 ret = float64_round_to_int(arg, &env->fp_status);
315     update_fr0_op(env, GETPC());
316     return ret;
317 }
318 
319 float64 HELPER(fadd_d)(CPUHPPAState *env, float64 a, float64 b)
320 {
321     float64 ret = float64_add(a, b, &env->fp_status);
322     update_fr0_op(env, GETPC());
323     return ret;
324 }
325 
326 float64 HELPER(fsub_d)(CPUHPPAState *env, float64 a, float64 b)
327 {
328     float64 ret = float64_sub(a, b, &env->fp_status);
329     update_fr0_op(env, GETPC());
330     return ret;
331 }
332 
333 float64 HELPER(fmpy_d)(CPUHPPAState *env, float64 a, float64 b)
334 {
335     float64 ret = float64_mul(a, b, &env->fp_status);
336     update_fr0_op(env, GETPC());
337     return ret;
338 }
339 
340 float64 HELPER(fdiv_d)(CPUHPPAState *env, float64 a, float64 b)
341 {
342     float64 ret = float64_div(a, b, &env->fp_status);
343     update_fr0_op(env, GETPC());
344     return ret;
345 }
346 
347 float64 HELPER(fcnv_s_d)(CPUHPPAState *env, float32 arg)
348 {
349     float64 ret = float32_to_float64(arg, &env->fp_status);
350     update_fr0_op(env, GETPC());
351     return ret;
352 }
353 
354 float32 HELPER(fcnv_d_s)(CPUHPPAState *env, float64 arg)
355 {
356     float32 ret = float64_to_float32(arg, &env->fp_status);
357     update_fr0_op(env, GETPC());
358     return ret;
359 }
360 
361 float32 HELPER(fcnv_w_s)(CPUHPPAState *env, int32_t arg)
362 {
363     float32 ret = int32_to_float32(arg, &env->fp_status);
364     update_fr0_op(env, GETPC());
365     return ret;
366 }
367 
368 float32 HELPER(fcnv_dw_s)(CPUHPPAState *env, int64_t arg)
369 {
370     float32 ret = int64_to_float32(arg, &env->fp_status);
371     update_fr0_op(env, GETPC());
372     return ret;
373 }
374 
375 float64 HELPER(fcnv_w_d)(CPUHPPAState *env, int32_t arg)
376 {
377     float64 ret = int32_to_float64(arg, &env->fp_status);
378     update_fr0_op(env, GETPC());
379     return ret;
380 }
381 
382 float64 HELPER(fcnv_dw_d)(CPUHPPAState *env, int64_t arg)
383 {
384     float64 ret = int64_to_float64(arg, &env->fp_status);
385     update_fr0_op(env, GETPC());
386     return ret;
387 }
388 
389 int32_t HELPER(fcnv_s_w)(CPUHPPAState *env, float32 arg)
390 {
391     int32_t ret = float32_to_int32(arg, &env->fp_status);
392     update_fr0_op(env, GETPC());
393     return ret;
394 }
395 
396 int32_t HELPER(fcnv_d_w)(CPUHPPAState *env, float64 arg)
397 {
398     int32_t ret = float64_to_int32(arg, &env->fp_status);
399     update_fr0_op(env, GETPC());
400     return ret;
401 }
402 
403 int64_t HELPER(fcnv_s_dw)(CPUHPPAState *env, float32 arg)
404 {
405     int64_t ret = float32_to_int64(arg, &env->fp_status);
406     update_fr0_op(env, GETPC());
407     return ret;
408 }
409 
410 int64_t HELPER(fcnv_d_dw)(CPUHPPAState *env, float64 arg)
411 {
412     int64_t ret = float64_to_int64(arg, &env->fp_status);
413     update_fr0_op(env, GETPC());
414     return ret;
415 }
416 
417 int32_t HELPER(fcnv_t_s_w)(CPUHPPAState *env, float32 arg)
418 {
419     int32_t ret = float32_to_int32_round_to_zero(arg, &env->fp_status);
420     update_fr0_op(env, GETPC());
421     return ret;
422 }
423 
424 int32_t HELPER(fcnv_t_d_w)(CPUHPPAState *env, float64 arg)
425 {
426     int32_t ret = float64_to_int32_round_to_zero(arg, &env->fp_status);
427     update_fr0_op(env, GETPC());
428     return ret;
429 }
430 
431 int64_t HELPER(fcnv_t_s_dw)(CPUHPPAState *env, float32 arg)
432 {
433     int64_t ret = float32_to_int64_round_to_zero(arg, &env->fp_status);
434     update_fr0_op(env, GETPC());
435     return ret;
436 }
437 
438 int64_t HELPER(fcnv_t_d_dw)(CPUHPPAState *env, float64 arg)
439 {
440     int64_t ret = float64_to_int64_round_to_zero(arg, &env->fp_status);
441     update_fr0_op(env, GETPC());
442     return ret;
443 }
444 
445 float32 HELPER(fcnv_uw_s)(CPUHPPAState *env, uint32_t arg)
446 {
447     float32 ret = uint32_to_float32(arg, &env->fp_status);
448     update_fr0_op(env, GETPC());
449     return ret;
450 }
451 
452 float32 HELPER(fcnv_udw_s)(CPUHPPAState *env, uint64_t arg)
453 {
454     float32 ret = uint64_to_float32(arg, &env->fp_status);
455     update_fr0_op(env, GETPC());
456     return ret;
457 }
458 
459 float64 HELPER(fcnv_uw_d)(CPUHPPAState *env, uint32_t arg)
460 {
461     float64 ret = uint32_to_float64(arg, &env->fp_status);
462     update_fr0_op(env, GETPC());
463     return ret;
464 }
465 
466 float64 HELPER(fcnv_udw_d)(CPUHPPAState *env, uint64_t arg)
467 {
468     float64 ret = uint64_to_float64(arg, &env->fp_status);
469     update_fr0_op(env, GETPC());
470     return ret;
471 }
472 
473 uint32_t HELPER(fcnv_s_uw)(CPUHPPAState *env, float32 arg)
474 {
475     uint32_t ret = float32_to_uint32(arg, &env->fp_status);
476     update_fr0_op(env, GETPC());
477     return ret;
478 }
479 
480 uint32_t HELPER(fcnv_d_uw)(CPUHPPAState *env, float64 arg)
481 {
482     uint32_t ret = float64_to_uint32(arg, &env->fp_status);
483     update_fr0_op(env, GETPC());
484     return ret;
485 }
486 
487 uint64_t HELPER(fcnv_s_udw)(CPUHPPAState *env, float32 arg)
488 {
489     uint64_t ret = float32_to_uint64(arg, &env->fp_status);
490     update_fr0_op(env, GETPC());
491     return ret;
492 }
493 
494 uint64_t HELPER(fcnv_d_udw)(CPUHPPAState *env, float64 arg)
495 {
496     uint64_t ret = float64_to_uint64(arg, &env->fp_status);
497     update_fr0_op(env, GETPC());
498     return ret;
499 }
500 
501 uint32_t HELPER(fcnv_t_s_uw)(CPUHPPAState *env, float32 arg)
502 {
503     uint32_t ret = float32_to_uint32_round_to_zero(arg, &env->fp_status);
504     update_fr0_op(env, GETPC());
505     return ret;
506 }
507 
508 uint32_t HELPER(fcnv_t_d_uw)(CPUHPPAState *env, float64 arg)
509 {
510     uint32_t ret = float64_to_uint32_round_to_zero(arg, &env->fp_status);
511     update_fr0_op(env, GETPC());
512     return ret;
513 }
514 
515 uint64_t HELPER(fcnv_t_s_udw)(CPUHPPAState *env, float32 arg)
516 {
517     uint64_t ret = float32_to_uint64_round_to_zero(arg, &env->fp_status);
518     update_fr0_op(env, GETPC());
519     return ret;
520 }
521 
522 uint64_t HELPER(fcnv_t_d_udw)(CPUHPPAState *env, float64 arg)
523 {
524     uint64_t ret = float64_to_uint64_round_to_zero(arg, &env->fp_status);
525     update_fr0_op(env, GETPC());
526     return ret;
527 }
528 
529 static void update_fr0_cmp(CPUHPPAState *env, uint32_t y,
530                            uint32_t c, FloatRelation r)
531 {
532     uint32_t shadow = env->fr0_shadow;
533 
534     switch (r) {
535     case float_relation_greater:
536         c = extract32(c, 4, 1);
537         break;
538     case float_relation_less:
539         c = extract32(c, 3, 1);
540         break;
541     case float_relation_equal:
542         c = extract32(c, 2, 1);
543         break;
544     case float_relation_unordered:
545         c = extract32(c, 1, 1);
546         break;
547     default:
548         g_assert_not_reached();
549     }
550 
551     if (y) {
552         /* targeted comparison */
553         /* set fpsr[ca[y - 1]] to current compare */
554         shadow = deposit32(shadow, 21 - (y - 1), 1, c);
555     } else {
556         /* queued comparison */
557         /* shift cq right by one place */
558         shadow = deposit32(shadow, 11, 10, extract32(shadow, 12, 10));
559         /* move fpsr[c] to fpsr[cq[0]] */
560         shadow = deposit32(shadow, 21, 1, extract32(shadow, 26, 1));
561         /* set fpsr[c] to current compare */
562         shadow = deposit32(shadow, 26, 1, c);
563     }
564 
565     env->fr0_shadow = shadow;
566     env->fr[0] = (uint64_t)shadow << 32;
567 }
568 
569 void HELPER(fcmp_s)(CPUHPPAState *env, float32 a, float32 b,
570                     uint32_t y, uint32_t c)
571 {
572     FloatRelation r;
573     if (c & 1) {
574         r = float32_compare(a, b, &env->fp_status);
575     } else {
576         r = float32_compare_quiet(a, b, &env->fp_status);
577     }
578     update_fr0_op(env, GETPC());
579     update_fr0_cmp(env, y, c, r);
580 }
581 
582 void HELPER(fcmp_d)(CPUHPPAState *env, float64 a, float64 b,
583                     uint32_t y, uint32_t c)
584 {
585     FloatRelation r;
586     if (c & 1) {
587         r = float64_compare(a, b, &env->fp_status);
588     } else {
589         r = float64_compare_quiet(a, b, &env->fp_status);
590     }
591     update_fr0_op(env, GETPC());
592     update_fr0_cmp(env, y, c, r);
593 }
594 
595 float32 HELPER(fmpyfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
596 {
597     float32 ret = float32_muladd(a, b, c, 0, &env->fp_status);
598     update_fr0_op(env, GETPC());
599     return ret;
600 }
601 
602 float32 HELPER(fmpynfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
603 {
604     float32 ret = float32_muladd(a, b, c, float_muladd_negate_product,
605                                  &env->fp_status);
606     update_fr0_op(env, GETPC());
607     return ret;
608 }
609 
610 float64 HELPER(fmpyfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
611 {
612     float64 ret = float64_muladd(a, b, c, 0, &env->fp_status);
613     update_fr0_op(env, GETPC());
614     return ret;
615 }
616 
617 float64 HELPER(fmpynfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
618 {
619     float64 ret = float64_muladd(a, b, c, float_muladd_negate_product,
620                                  &env->fp_status);
621     update_fr0_op(env, GETPC());
622     return ret;
623 }
624 
625 target_ureg HELPER(read_interval_timer)(void)
626 {
627 #ifdef CONFIG_USER_ONLY
628     /* In user-mode, QEMU_CLOCK_VIRTUAL doesn't exist.
629        Just pass through the host cpu clock ticks.  */
630     return cpu_get_host_ticks();
631 #else
632     /* In system mode we have access to a decent high-resolution clock.
633        In order to make OS-level time accounting work with the cr16,
634        present it with a well-timed clock fixed at 250MHz.  */
635     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) >> 2;
636 #endif
637 }
638 
639 #ifndef CONFIG_USER_ONLY
640 void HELPER(write_interval_timer)(CPUHPPAState *env, target_ureg val)
641 {
642     HPPACPU *cpu = env_archcpu(env);
643     uint64_t current = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
644     uint64_t timeout;
645 
646     /* Even in 64-bit mode, the comparator is always 32-bit.  But the
647        value we expose to the guest is 1/4 of the speed of the clock,
648        so moosh in 34 bits.  */
649     timeout = deposit64(current, 0, 34, (uint64_t)val << 2);
650 
651     /* If the mooshing puts the clock in the past, advance to next round.  */
652     if (timeout < current + 1000) {
653         timeout += 1ULL << 34;
654     }
655 
656     cpu->env.cr[CR_IT] = timeout;
657     timer_mod(cpu->alarm_timer, timeout);
658 }
659 
660 void HELPER(halt)(CPUHPPAState *env)
661 {
662     qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
663     helper_excp(env, EXCP_HLT);
664 }
665 
666 void HELPER(reset)(CPUHPPAState *env)
667 {
668     qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
669     helper_excp(env, EXCP_HLT);
670 }
671 
672 target_ureg HELPER(swap_system_mask)(CPUHPPAState *env, target_ureg nsm)
673 {
674     target_ulong psw = env->psw;
675     /*
676      * Setting the PSW Q bit to 1, if it was not already 1, is an
677      * undefined operation.
678      *
679      * However, HP-UX 10.20 does this with the SSM instruction.
680      * Tested this on HP9000/712 and HP9000/785/C3750 and both
681      * machines set the Q bit from 0 to 1 without an exception,
682      * so let this go without comment.
683      */
684     env->psw = (psw & ~PSW_SM) | (nsm & PSW_SM);
685     return psw & PSW_SM;
686 }
687 
688 void HELPER(rfi)(CPUHPPAState *env)
689 {
690     env->iasq_f = (uint64_t)env->cr[CR_IIASQ] << 32;
691     env->iasq_b = (uint64_t)env->cr_back[0] << 32;
692     env->iaoq_f = env->cr[CR_IIAOQ];
693     env->iaoq_b = env->cr_back[1];
694     cpu_hppa_put_psw(env, env->cr[CR_IPSW]);
695 }
696 
697 void HELPER(rfi_r)(CPUHPPAState *env)
698 {
699     env->gr[1] = env->shadow[0];
700     env->gr[8] = env->shadow[1];
701     env->gr[9] = env->shadow[2];
702     env->gr[16] = env->shadow[3];
703     env->gr[17] = env->shadow[4];
704     env->gr[24] = env->shadow[5];
705     env->gr[25] = env->shadow[6];
706     helper_rfi(env);
707 }
708 #endif
709