xref: /qemu/target/i386/arch_dump.c (revision 28035bcd)
1 /*
2  * i386 memory mapping
3  *
4  * Copyright Fujitsu, Corp. 2011, 2012
5  *
6  * Authors:
7  *     Wen Congyang <wency@cn.fujitsu.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 #include "qemu/osdep.h"
15 #include "cpu.h"
16 #include "exec/cpu-all.h"
17 #include "sysemu/dump.h"
18 #include "elf.h"
19 #include "sysemu/memory_mapping.h"
20 
21 #define ELF_NOTE_SIZE(hdr_size, name_size, desc_size)   \
22     ((DIV_ROUND_UP((hdr_size), 4)                       \
23       + DIV_ROUND_UP((name_size), 4)                    \
24       + DIV_ROUND_UP((desc_size), 4)) * 4)
25 
26 #ifdef TARGET_X86_64
27 typedef struct {
28     target_ulong r15, r14, r13, r12, rbp, rbx, r11, r10;
29     target_ulong r9, r8, rax, rcx, rdx, rsi, rdi, orig_rax;
30     target_ulong rip, cs, eflags;
31     target_ulong rsp, ss;
32     target_ulong fs_base, gs_base;
33     target_ulong ds, es, fs, gs;
34 } x86_64_user_regs_struct;
35 
36 typedef struct {
37     char pad1[32];
38     uint32_t pid;
39     char pad2[76];
40     x86_64_user_regs_struct regs;
41     char pad3[8];
42 } x86_64_elf_prstatus;
43 
44 static int x86_64_write_elf64_note(WriteCoreDumpFunction f,
45                                    CPUX86State *env, int id,
46                                    void *opaque)
47 {
48     x86_64_user_regs_struct regs;
49     Elf64_Nhdr *note;
50     char *buf;
51     int descsz, note_size, name_size = 5;
52     const char *name = "CORE";
53     int ret;
54 
55     regs.r15 = env->regs[15];
56     regs.r14 = env->regs[14];
57     regs.r13 = env->regs[13];
58     regs.r12 = env->regs[12];
59     regs.r11 = env->regs[11];
60     regs.r10 = env->regs[10];
61     regs.r9  = env->regs[9];
62     regs.r8  = env->regs[8];
63     regs.rbp = env->regs[R_EBP];
64     regs.rsp = env->regs[R_ESP];
65     regs.rdi = env->regs[R_EDI];
66     regs.rsi = env->regs[R_ESI];
67     regs.rdx = env->regs[R_EDX];
68     regs.rcx = env->regs[R_ECX];
69     regs.rbx = env->regs[R_EBX];
70     regs.rax = env->regs[R_EAX];
71     regs.rip = env->eip;
72     regs.eflags = env->eflags;
73 
74     regs.orig_rax = 0; /* FIXME */
75     regs.cs = env->segs[R_CS].selector;
76     regs.ss = env->segs[R_SS].selector;
77     regs.fs_base = env->segs[R_FS].base;
78     regs.gs_base = env->segs[R_GS].base;
79     regs.ds = env->segs[R_DS].selector;
80     regs.es = env->segs[R_ES].selector;
81     regs.fs = env->segs[R_FS].selector;
82     regs.gs = env->segs[R_GS].selector;
83 
84     descsz = sizeof(x86_64_elf_prstatus);
85     note_size = ELF_NOTE_SIZE(sizeof(Elf64_Nhdr), name_size, descsz);
86     note = g_malloc0(note_size);
87     note->n_namesz = cpu_to_le32(name_size);
88     note->n_descsz = cpu_to_le32(descsz);
89     note->n_type = cpu_to_le32(NT_PRSTATUS);
90     buf = (char *)note;
91     buf += ROUND_UP(sizeof(Elf64_Nhdr), 4);
92     memcpy(buf, name, name_size);
93     buf += ROUND_UP(name_size, 4);
94     memcpy(buf + 32, &id, 4); /* pr_pid */
95     buf += descsz - sizeof(x86_64_user_regs_struct)-sizeof(target_ulong);
96     memcpy(buf, &regs, sizeof(x86_64_user_regs_struct));
97 
98     ret = f(note, note_size, opaque);
99     g_free(note);
100     if (ret < 0) {
101         return -1;
102     }
103 
104     return 0;
105 }
106 #endif
107 
108 typedef struct {
109     uint32_t ebx, ecx, edx, esi, edi, ebp, eax;
110     unsigned short ds, __ds, es, __es;
111     unsigned short fs, __fs, gs, __gs;
112     uint32_t orig_eax, eip;
113     unsigned short cs, __cs;
114     uint32_t eflags, esp;
115     unsigned short ss, __ss;
116 } x86_user_regs_struct;
117 
118 typedef struct {
119     char pad1[24];
120     uint32_t pid;
121     char pad2[44];
122     x86_user_regs_struct regs;
123     char pad3[4];
124 } x86_elf_prstatus;
125 
126 static void x86_fill_elf_prstatus(x86_elf_prstatus *prstatus, CPUX86State *env,
127                                   int id)
128 {
129     memset(prstatus, 0, sizeof(x86_elf_prstatus));
130     prstatus->regs.ebp = env->regs[R_EBP] & 0xffffffff;
131     prstatus->regs.esp = env->regs[R_ESP] & 0xffffffff;
132     prstatus->regs.edi = env->regs[R_EDI] & 0xffffffff;
133     prstatus->regs.esi = env->regs[R_ESI] & 0xffffffff;
134     prstatus->regs.edx = env->regs[R_EDX] & 0xffffffff;
135     prstatus->regs.ecx = env->regs[R_ECX] & 0xffffffff;
136     prstatus->regs.ebx = env->regs[R_EBX] & 0xffffffff;
137     prstatus->regs.eax = env->regs[R_EAX] & 0xffffffff;
138     prstatus->regs.eip = env->eip & 0xffffffff;
139     prstatus->regs.eflags = env->eflags & 0xffffffff;
140 
141     prstatus->regs.cs = env->segs[R_CS].selector;
142     prstatus->regs.ss = env->segs[R_SS].selector;
143     prstatus->regs.ds = env->segs[R_DS].selector;
144     prstatus->regs.es = env->segs[R_ES].selector;
145     prstatus->regs.fs = env->segs[R_FS].selector;
146     prstatus->regs.gs = env->segs[R_GS].selector;
147 
148     prstatus->pid = id;
149 }
150 
151 static int x86_write_elf64_note(WriteCoreDumpFunction f, CPUX86State *env,
152                                 int id, void *opaque)
153 {
154     x86_elf_prstatus prstatus;
155     Elf64_Nhdr *note;
156     char *buf;
157     int descsz, note_size, name_size = 5;
158     const char *name = "CORE";
159     int ret;
160 
161     x86_fill_elf_prstatus(&prstatus, env, id);
162     descsz = sizeof(x86_elf_prstatus);
163     note_size = ELF_NOTE_SIZE(sizeof(Elf64_Nhdr), name_size, descsz);
164     note = g_malloc0(note_size);
165     note->n_namesz = cpu_to_le32(name_size);
166     note->n_descsz = cpu_to_le32(descsz);
167     note->n_type = cpu_to_le32(NT_PRSTATUS);
168     buf = (char *)note;
169     buf += ROUND_UP(sizeof(Elf64_Nhdr), 4);
170     memcpy(buf, name, name_size);
171     buf += ROUND_UP(name_size, 4);
172     memcpy(buf, &prstatus, sizeof(prstatus));
173 
174     ret = f(note, note_size, opaque);
175     g_free(note);
176     if (ret < 0) {
177         return -1;
178     }
179 
180     return 0;
181 }
182 
183 int x86_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
184                              int cpuid, void *opaque)
185 {
186     X86CPU *cpu = X86_CPU(cs);
187     int ret;
188 #ifdef TARGET_X86_64
189     X86CPU *first_x86_cpu = X86_CPU(first_cpu);
190     bool lma = !!(first_x86_cpu->env.hflags & HF_LMA_MASK);
191 
192     if (lma) {
193         ret = x86_64_write_elf64_note(f, &cpu->env, cpuid, opaque);
194     } else {
195 #endif
196         ret = x86_write_elf64_note(f, &cpu->env, cpuid, opaque);
197 #ifdef TARGET_X86_64
198     }
199 #endif
200 
201     return ret;
202 }
203 
204 int x86_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
205                              int cpuid, void *opaque)
206 {
207     X86CPU *cpu = X86_CPU(cs);
208     x86_elf_prstatus prstatus;
209     Elf32_Nhdr *note;
210     char *buf;
211     int descsz, note_size, name_size = 5;
212     const char *name = "CORE";
213     int ret;
214 
215     x86_fill_elf_prstatus(&prstatus, &cpu->env, cpuid);
216     descsz = sizeof(x86_elf_prstatus);
217     note_size = ELF_NOTE_SIZE(sizeof(Elf32_Nhdr), name_size, descsz);
218     note = g_malloc0(note_size);
219     note->n_namesz = cpu_to_le32(name_size);
220     note->n_descsz = cpu_to_le32(descsz);
221     note->n_type = cpu_to_le32(NT_PRSTATUS);
222     buf = (char *)note;
223     buf += ROUND_UP(sizeof(Elf32_Nhdr), 4);
224     memcpy(buf, name, name_size);
225     buf += ROUND_UP(name_size, 4);
226     memcpy(buf, &prstatus, sizeof(prstatus));
227 
228     ret = f(note, note_size, opaque);
229     g_free(note);
230     if (ret < 0) {
231         return -1;
232     }
233 
234     return 0;
235 }
236 
237 /*
238  * please count up QEMUCPUSTATE_VERSION if you have changed definition of
239  * QEMUCPUState, and modify the tools using this information accordingly.
240  */
241 #define QEMUCPUSTATE_VERSION (1)
242 
243 struct QEMUCPUSegment {
244     uint32_t selector;
245     uint32_t limit;
246     uint32_t flags;
247     uint32_t pad;
248     uint64_t base;
249 };
250 
251 typedef struct QEMUCPUSegment QEMUCPUSegment;
252 
253 struct QEMUCPUState {
254     uint32_t version;
255     uint32_t size;
256     uint64_t rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp;
257     uint64_t r8, r9, r10, r11, r12, r13, r14, r15;
258     uint64_t rip, rflags;
259     QEMUCPUSegment cs, ds, es, fs, gs, ss;
260     QEMUCPUSegment ldt, tr, gdt, idt;
261     uint64_t cr[5];
262 };
263 
264 typedef struct QEMUCPUState QEMUCPUState;
265 
266 static void copy_segment(QEMUCPUSegment *d, SegmentCache *s)
267 {
268     d->pad = 0;
269     d->selector = s->selector;
270     d->limit = s->limit;
271     d->flags = s->flags;
272     d->base = s->base;
273 }
274 
275 static void qemu_get_cpustate(QEMUCPUState *s, CPUX86State *env)
276 {
277     memset(s, 0, sizeof(QEMUCPUState));
278 
279     s->version = QEMUCPUSTATE_VERSION;
280     s->size = sizeof(QEMUCPUState);
281 
282     s->rax = env->regs[R_EAX];
283     s->rbx = env->regs[R_EBX];
284     s->rcx = env->regs[R_ECX];
285     s->rdx = env->regs[R_EDX];
286     s->rsi = env->regs[R_ESI];
287     s->rdi = env->regs[R_EDI];
288     s->rsp = env->regs[R_ESP];
289     s->rbp = env->regs[R_EBP];
290 #ifdef TARGET_X86_64
291     s->r8  = env->regs[8];
292     s->r9  = env->regs[9];
293     s->r10 = env->regs[10];
294     s->r11 = env->regs[11];
295     s->r12 = env->regs[12];
296     s->r13 = env->regs[13];
297     s->r14 = env->regs[14];
298     s->r15 = env->regs[15];
299 #endif
300     s->rip = env->eip;
301     s->rflags = env->eflags;
302 
303     copy_segment(&s->cs, &env->segs[R_CS]);
304     copy_segment(&s->ds, &env->segs[R_DS]);
305     copy_segment(&s->es, &env->segs[R_ES]);
306     copy_segment(&s->fs, &env->segs[R_FS]);
307     copy_segment(&s->gs, &env->segs[R_GS]);
308     copy_segment(&s->ss, &env->segs[R_SS]);
309     copy_segment(&s->ldt, &env->ldt);
310     copy_segment(&s->tr, &env->tr);
311     copy_segment(&s->gdt, &env->gdt);
312     copy_segment(&s->idt, &env->idt);
313 
314     s->cr[0] = env->cr[0];
315     s->cr[1] = env->cr[1];
316     s->cr[2] = env->cr[2];
317     s->cr[3] = env->cr[3];
318     s->cr[4] = env->cr[4];
319 }
320 
321 static inline int cpu_write_qemu_note(WriteCoreDumpFunction f,
322                                       CPUX86State *env,
323                                       void *opaque,
324                                       int type)
325 {
326     QEMUCPUState state;
327     Elf64_Nhdr *note64;
328     Elf32_Nhdr *note32;
329     void *note;
330     char *buf;
331     int descsz, note_size, name_size = 5, note_head_size;
332     const char *name = "QEMU";
333     int ret;
334 
335     qemu_get_cpustate(&state, env);
336 
337     descsz = sizeof(state);
338     if (type == 0) {
339         note_head_size = sizeof(Elf32_Nhdr);
340     } else {
341         note_head_size = sizeof(Elf64_Nhdr);
342     }
343     note_size = (DIV_ROUND_UP(note_head_size, 4) + DIV_ROUND_UP(name_size, 4) +
344                 DIV_ROUND_UP(descsz, 4)) * 4;
345     note = g_malloc0(note_size);
346     if (type == 0) {
347         note32 = note;
348         note32->n_namesz = cpu_to_le32(name_size);
349         note32->n_descsz = cpu_to_le32(descsz);
350         note32->n_type = 0;
351     } else {
352         note64 = note;
353         note64->n_namesz = cpu_to_le32(name_size);
354         note64->n_descsz = cpu_to_le32(descsz);
355         note64->n_type = 0;
356     }
357     buf = note;
358     buf += ROUND_UP(note_head_size, 4);
359     memcpy(buf, name, name_size);
360     buf += ROUND_UP(name_size, 4);
361     memcpy(buf, &state, sizeof(state));
362 
363     ret = f(note, note_size, opaque);
364     g_free(note);
365     if (ret < 0) {
366         return -1;
367     }
368 
369     return 0;
370 }
371 
372 int x86_cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cs,
373                                  void *opaque)
374 {
375     X86CPU *cpu = X86_CPU(cs);
376 
377     return cpu_write_qemu_note(f, &cpu->env, opaque, 1);
378 }
379 
380 int x86_cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cs,
381                                  void *opaque)
382 {
383     X86CPU *cpu = X86_CPU(cs);
384 
385     return cpu_write_qemu_note(f, &cpu->env, opaque, 0);
386 }
387 
388 int cpu_get_dump_info(ArchDumpInfo *info,
389                       const GuestPhysBlockList *guest_phys_blocks)
390 {
391     bool lma = false;
392     GuestPhysBlock *block;
393 
394 #ifdef TARGET_X86_64
395     X86CPU *first_x86_cpu = X86_CPU(first_cpu);
396     lma = first_cpu && (first_x86_cpu->env.hflags & HF_LMA_MASK);
397 #endif
398 
399     if (lma) {
400         info->d_machine = EM_X86_64;
401     } else {
402         info->d_machine = EM_386;
403     }
404     info->d_endian = ELFDATA2LSB;
405 
406     if (lma) {
407         info->d_class = ELFCLASS64;
408     } else {
409         info->d_class = ELFCLASS32;
410 
411         QTAILQ_FOREACH(block, &guest_phys_blocks->head, next) {
412             if (block->target_end > UINT_MAX) {
413                 /* The memory size is greater than 4G */
414                 info->d_class = ELFCLASS64;
415                 break;
416             }
417         }
418     }
419 
420     return 0;
421 }
422 
423 ssize_t cpu_get_note_size(int class, int machine, int nr_cpus)
424 {
425     int name_size = 5; /* "CORE" or "QEMU" */
426     size_t elf_note_size = 0;
427     size_t qemu_note_size = 0;
428     int elf_desc_size = 0;
429     int qemu_desc_size = 0;
430     int note_head_size;
431 
432     if (class == ELFCLASS32) {
433         note_head_size = sizeof(Elf32_Nhdr);
434     } else {
435         note_head_size = sizeof(Elf64_Nhdr);
436     }
437 
438     if (machine == EM_386) {
439         elf_desc_size = sizeof(x86_elf_prstatus);
440     }
441 #ifdef TARGET_X86_64
442     else {
443         elf_desc_size = sizeof(x86_64_elf_prstatus);
444     }
445 #endif
446     qemu_desc_size = sizeof(QEMUCPUState);
447 
448     elf_note_size = ELF_NOTE_SIZE(note_head_size, name_size, elf_desc_size);
449     qemu_note_size = ELF_NOTE_SIZE(note_head_size, name_size, qemu_desc_size);
450 
451     return (elf_note_size + qemu_note_size) * nr_cpus;
452 }
453