xref: /qemu/target/i386/arch_dump.c (revision 7271a819)
1 /*
2  * i386 memory mapping
3  *
4  * Copyright Fujitsu, Corp. 2011, 2012
5  *
6  * Authors:
7  *     Wen Congyang <wency@cn.fujitsu.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 #include "qemu/osdep.h"
15 #include "cpu.h"
16 #include "sysemu/dump.h"
17 #include "elf.h"
18 #include "sysemu/memory_mapping.h"
19 
20 #define ELF_NOTE_SIZE(hdr_size, name_size, desc_size)   \
21     ((DIV_ROUND_UP((hdr_size), 4)                       \
22       + DIV_ROUND_UP((name_size), 4)                    \
23       + DIV_ROUND_UP((desc_size), 4)) * 4)
24 
25 #ifdef TARGET_X86_64
26 typedef struct {
27     target_ulong r15, r14, r13, r12, rbp, rbx, r11, r10;
28     target_ulong r9, r8, rax, rcx, rdx, rsi, rdi, orig_rax;
29     target_ulong rip, cs, eflags;
30     target_ulong rsp, ss;
31     target_ulong fs_base, gs_base;
32     target_ulong ds, es, fs, gs;
33 } x86_64_user_regs_struct;
34 
35 typedef struct {
36     char pad1[32];
37     uint32_t pid;
38     char pad2[76];
39     x86_64_user_regs_struct regs;
40     char pad3[8];
41 } x86_64_elf_prstatus;
42 
43 static int x86_64_write_elf64_note(WriteCoreDumpFunction f,
44                                    CPUX86State *env, int id,
45                                    void *opaque)
46 {
47     x86_64_user_regs_struct regs;
48     Elf64_Nhdr *note;
49     char *buf;
50     int descsz, note_size, name_size = 5;
51     const char *name = "CORE";
52     int ret;
53 
54     regs.r15 = env->regs[15];
55     regs.r14 = env->regs[14];
56     regs.r13 = env->regs[13];
57     regs.r12 = env->regs[12];
58     regs.r11 = env->regs[11];
59     regs.r10 = env->regs[10];
60     regs.r9  = env->regs[9];
61     regs.r8  = env->regs[8];
62     regs.rbp = env->regs[R_EBP];
63     regs.rsp = env->regs[R_ESP];
64     regs.rdi = env->regs[R_EDI];
65     regs.rsi = env->regs[R_ESI];
66     regs.rdx = env->regs[R_EDX];
67     regs.rcx = env->regs[R_ECX];
68     regs.rbx = env->regs[R_EBX];
69     regs.rax = env->regs[R_EAX];
70     regs.rip = env->eip;
71     regs.eflags = env->eflags;
72 
73     regs.orig_rax = 0; /* FIXME */
74     regs.cs = env->segs[R_CS].selector;
75     regs.ss = env->segs[R_SS].selector;
76     regs.fs_base = env->segs[R_FS].base;
77     regs.gs_base = env->segs[R_GS].base;
78     regs.ds = env->segs[R_DS].selector;
79     regs.es = env->segs[R_ES].selector;
80     regs.fs = env->segs[R_FS].selector;
81     regs.gs = env->segs[R_GS].selector;
82 
83     descsz = sizeof(x86_64_elf_prstatus);
84     note_size = ELF_NOTE_SIZE(sizeof(Elf64_Nhdr), name_size, descsz);
85     note = g_malloc0(note_size);
86     note->n_namesz = cpu_to_le32(name_size);
87     note->n_descsz = cpu_to_le32(descsz);
88     note->n_type = cpu_to_le32(NT_PRSTATUS);
89     buf = (char *)note;
90     buf += ROUND_UP(sizeof(Elf64_Nhdr), 4);
91     memcpy(buf, name, name_size);
92     buf += ROUND_UP(name_size, 4);
93     memcpy(buf + 32, &id, 4); /* pr_pid */
94     buf += descsz - sizeof(x86_64_user_regs_struct)-sizeof(target_ulong);
95     memcpy(buf, &regs, sizeof(x86_64_user_regs_struct));
96 
97     ret = f(note, note_size, opaque);
98     g_free(note);
99     if (ret < 0) {
100         return -1;
101     }
102 
103     return 0;
104 }
105 #endif
106 
107 typedef struct {
108     uint32_t ebx, ecx, edx, esi, edi, ebp, eax;
109     unsigned short ds, __ds, es, __es;
110     unsigned short fs, __fs, gs, __gs;
111     uint32_t orig_eax, eip;
112     unsigned short cs, __cs;
113     uint32_t eflags, esp;
114     unsigned short ss, __ss;
115 } x86_user_regs_struct;
116 
117 typedef struct {
118     char pad1[24];
119     uint32_t pid;
120     char pad2[44];
121     x86_user_regs_struct regs;
122     char pad3[4];
123 } x86_elf_prstatus;
124 
125 static void x86_fill_elf_prstatus(x86_elf_prstatus *prstatus, CPUX86State *env,
126                                   int id)
127 {
128     memset(prstatus, 0, sizeof(x86_elf_prstatus));
129     prstatus->regs.ebp = env->regs[R_EBP] & 0xffffffff;
130     prstatus->regs.esp = env->regs[R_ESP] & 0xffffffff;
131     prstatus->regs.edi = env->regs[R_EDI] & 0xffffffff;
132     prstatus->regs.esi = env->regs[R_ESI] & 0xffffffff;
133     prstatus->regs.edx = env->regs[R_EDX] & 0xffffffff;
134     prstatus->regs.ecx = env->regs[R_ECX] & 0xffffffff;
135     prstatus->regs.ebx = env->regs[R_EBX] & 0xffffffff;
136     prstatus->regs.eax = env->regs[R_EAX] & 0xffffffff;
137     prstatus->regs.eip = env->eip & 0xffffffff;
138     prstatus->regs.eflags = env->eflags & 0xffffffff;
139 
140     prstatus->regs.cs = env->segs[R_CS].selector;
141     prstatus->regs.ss = env->segs[R_SS].selector;
142     prstatus->regs.ds = env->segs[R_DS].selector;
143     prstatus->regs.es = env->segs[R_ES].selector;
144     prstatus->regs.fs = env->segs[R_FS].selector;
145     prstatus->regs.gs = env->segs[R_GS].selector;
146 
147     prstatus->pid = id;
148 }
149 
150 static int x86_write_elf64_note(WriteCoreDumpFunction f, CPUX86State *env,
151                                 int id, void *opaque)
152 {
153     x86_elf_prstatus prstatus;
154     Elf64_Nhdr *note;
155     char *buf;
156     int descsz, note_size, name_size = 5;
157     const char *name = "CORE";
158     int ret;
159 
160     x86_fill_elf_prstatus(&prstatus, env, id);
161     descsz = sizeof(x86_elf_prstatus);
162     note_size = ELF_NOTE_SIZE(sizeof(Elf64_Nhdr), name_size, descsz);
163     note = g_malloc0(note_size);
164     note->n_namesz = cpu_to_le32(name_size);
165     note->n_descsz = cpu_to_le32(descsz);
166     note->n_type = cpu_to_le32(NT_PRSTATUS);
167     buf = (char *)note;
168     buf += ROUND_UP(sizeof(Elf64_Nhdr), 4);
169     memcpy(buf, name, name_size);
170     buf += ROUND_UP(name_size, 4);
171     memcpy(buf, &prstatus, sizeof(prstatus));
172 
173     ret = f(note, note_size, opaque);
174     g_free(note);
175     if (ret < 0) {
176         return -1;
177     }
178 
179     return 0;
180 }
181 
182 int x86_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
183                              int cpuid, void *opaque)
184 {
185     X86CPU *cpu = X86_CPU(cs);
186     int ret;
187 #ifdef TARGET_X86_64
188     X86CPU *first_x86_cpu = X86_CPU(first_cpu);
189     bool lma = !!(first_x86_cpu->env.hflags & HF_LMA_MASK);
190 
191     if (lma) {
192         ret = x86_64_write_elf64_note(f, &cpu->env, cpuid, opaque);
193     } else {
194 #endif
195         ret = x86_write_elf64_note(f, &cpu->env, cpuid, opaque);
196 #ifdef TARGET_X86_64
197     }
198 #endif
199 
200     return ret;
201 }
202 
203 int x86_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
204                              int cpuid, void *opaque)
205 {
206     X86CPU *cpu = X86_CPU(cs);
207     x86_elf_prstatus prstatus;
208     Elf32_Nhdr *note;
209     char *buf;
210     int descsz, note_size, name_size = 5;
211     const char *name = "CORE";
212     int ret;
213 
214     x86_fill_elf_prstatus(&prstatus, &cpu->env, cpuid);
215     descsz = sizeof(x86_elf_prstatus);
216     note_size = ELF_NOTE_SIZE(sizeof(Elf32_Nhdr), name_size, descsz);
217     note = g_malloc0(note_size);
218     note->n_namesz = cpu_to_le32(name_size);
219     note->n_descsz = cpu_to_le32(descsz);
220     note->n_type = cpu_to_le32(NT_PRSTATUS);
221     buf = (char *)note;
222     buf += ROUND_UP(sizeof(Elf32_Nhdr), 4);
223     memcpy(buf, name, name_size);
224     buf += ROUND_UP(name_size, 4);
225     memcpy(buf, &prstatus, sizeof(prstatus));
226 
227     ret = f(note, note_size, opaque);
228     g_free(note);
229     if (ret < 0) {
230         return -1;
231     }
232 
233     return 0;
234 }
235 
236 /*
237  * please count up QEMUCPUSTATE_VERSION if you have changed definition of
238  * QEMUCPUState, and modify the tools using this information accordingly.
239  */
240 #define QEMUCPUSTATE_VERSION (1)
241 
242 struct QEMUCPUSegment {
243     uint32_t selector;
244     uint32_t limit;
245     uint32_t flags;
246     uint32_t pad;
247     uint64_t base;
248 };
249 
250 typedef struct QEMUCPUSegment QEMUCPUSegment;
251 
252 struct QEMUCPUState {
253     uint32_t version;
254     uint32_t size;
255     uint64_t rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp;
256     uint64_t r8, r9, r10, r11, r12, r13, r14, r15;
257     uint64_t rip, rflags;
258     QEMUCPUSegment cs, ds, es, fs, gs, ss;
259     QEMUCPUSegment ldt, tr, gdt, idt;
260     uint64_t cr[5];
261 };
262 
263 typedef struct QEMUCPUState QEMUCPUState;
264 
265 static void copy_segment(QEMUCPUSegment *d, SegmentCache *s)
266 {
267     d->pad = 0;
268     d->selector = s->selector;
269     d->limit = s->limit;
270     d->flags = s->flags;
271     d->base = s->base;
272 }
273 
274 static void qemu_get_cpustate(QEMUCPUState *s, CPUX86State *env)
275 {
276     memset(s, 0, sizeof(QEMUCPUState));
277 
278     s->version = QEMUCPUSTATE_VERSION;
279     s->size = sizeof(QEMUCPUState);
280 
281     s->rax = env->regs[R_EAX];
282     s->rbx = env->regs[R_EBX];
283     s->rcx = env->regs[R_ECX];
284     s->rdx = env->regs[R_EDX];
285     s->rsi = env->regs[R_ESI];
286     s->rdi = env->regs[R_EDI];
287     s->rsp = env->regs[R_ESP];
288     s->rbp = env->regs[R_EBP];
289 #ifdef TARGET_X86_64
290     s->r8  = env->regs[8];
291     s->r9  = env->regs[9];
292     s->r10 = env->regs[10];
293     s->r11 = env->regs[11];
294     s->r12 = env->regs[12];
295     s->r13 = env->regs[13];
296     s->r14 = env->regs[14];
297     s->r15 = env->regs[15];
298 #endif
299     s->rip = env->eip;
300     s->rflags = env->eflags;
301 
302     copy_segment(&s->cs, &env->segs[R_CS]);
303     copy_segment(&s->ds, &env->segs[R_DS]);
304     copy_segment(&s->es, &env->segs[R_ES]);
305     copy_segment(&s->fs, &env->segs[R_FS]);
306     copy_segment(&s->gs, &env->segs[R_GS]);
307     copy_segment(&s->ss, &env->segs[R_SS]);
308     copy_segment(&s->ldt, &env->ldt);
309     copy_segment(&s->tr, &env->tr);
310     copy_segment(&s->gdt, &env->gdt);
311     copy_segment(&s->idt, &env->idt);
312 
313     s->cr[0] = env->cr[0];
314     s->cr[1] = env->cr[1];
315     s->cr[2] = env->cr[2];
316     s->cr[3] = env->cr[3];
317     s->cr[4] = env->cr[4];
318 }
319 
320 static inline int cpu_write_qemu_note(WriteCoreDumpFunction f,
321                                       CPUX86State *env,
322                                       void *opaque,
323                                       int type)
324 {
325     QEMUCPUState state;
326     Elf64_Nhdr *note64;
327     Elf32_Nhdr *note32;
328     void *note;
329     char *buf;
330     int descsz, note_size, name_size = 5, note_head_size;
331     const char *name = "QEMU";
332     int ret;
333 
334     qemu_get_cpustate(&state, env);
335 
336     descsz = sizeof(state);
337     if (type == 0) {
338         note_head_size = sizeof(Elf32_Nhdr);
339     } else {
340         note_head_size = sizeof(Elf64_Nhdr);
341     }
342     note_size = (DIV_ROUND_UP(note_head_size, 4) + DIV_ROUND_UP(name_size, 4) +
343                 DIV_ROUND_UP(descsz, 4)) * 4;
344     note = g_malloc0(note_size);
345     if (type == 0) {
346         note32 = note;
347         note32->n_namesz = cpu_to_le32(name_size);
348         note32->n_descsz = cpu_to_le32(descsz);
349         note32->n_type = 0;
350     } else {
351         note64 = note;
352         note64->n_namesz = cpu_to_le32(name_size);
353         note64->n_descsz = cpu_to_le32(descsz);
354         note64->n_type = 0;
355     }
356     buf = note;
357     buf += ROUND_UP(note_head_size, 4);
358     memcpy(buf, name, name_size);
359     buf += ROUND_UP(name_size, 4);
360     memcpy(buf, &state, sizeof(state));
361 
362     ret = f(note, note_size, opaque);
363     g_free(note);
364     if (ret < 0) {
365         return -1;
366     }
367 
368     return 0;
369 }
370 
371 int x86_cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cs,
372                                  void *opaque)
373 {
374     X86CPU *cpu = X86_CPU(cs);
375 
376     return cpu_write_qemu_note(f, &cpu->env, opaque, 1);
377 }
378 
379 int x86_cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cs,
380                                  void *opaque)
381 {
382     X86CPU *cpu = X86_CPU(cs);
383 
384     return cpu_write_qemu_note(f, &cpu->env, opaque, 0);
385 }
386 
387 int cpu_get_dump_info(ArchDumpInfo *info,
388                       const GuestPhysBlockList *guest_phys_blocks)
389 {
390     bool lma = false;
391     GuestPhysBlock *block;
392 
393 #ifdef TARGET_X86_64
394     X86CPU *first_x86_cpu = X86_CPU(first_cpu);
395     lma = first_cpu && (first_x86_cpu->env.hflags & HF_LMA_MASK);
396 #endif
397 
398     if (lma) {
399         info->d_machine = EM_X86_64;
400     } else {
401         info->d_machine = EM_386;
402     }
403     info->d_endian = ELFDATA2LSB;
404 
405     if (lma) {
406         info->d_class = ELFCLASS64;
407     } else {
408         info->d_class = ELFCLASS32;
409 
410         QTAILQ_FOREACH(block, &guest_phys_blocks->head, next) {
411             if (block->target_end > UINT_MAX) {
412                 /* The memory size is greater than 4G */
413                 info->d_class = ELFCLASS64;
414                 break;
415             }
416         }
417     }
418 
419     return 0;
420 }
421 
422 ssize_t cpu_get_note_size(int class, int machine, int nr_cpus)
423 {
424     int name_size = 5; /* "CORE" or "QEMU" */
425     size_t elf_note_size = 0;
426     size_t qemu_note_size = 0;
427     int elf_desc_size = 0;
428     int qemu_desc_size = 0;
429     int note_head_size;
430 
431     if (class == ELFCLASS32) {
432         note_head_size = sizeof(Elf32_Nhdr);
433     } else {
434         note_head_size = sizeof(Elf64_Nhdr);
435     }
436 
437     if (machine == EM_386) {
438         elf_desc_size = sizeof(x86_elf_prstatus);
439     }
440 #ifdef TARGET_X86_64
441     else {
442         elf_desc_size = sizeof(x86_64_elf_prstatus);
443     }
444 #endif
445     qemu_desc_size = sizeof(QEMUCPUState);
446 
447     elf_note_size = ELF_NOTE_SIZE(note_head_size, name_size, elf_desc_size);
448     qemu_note_size = ELF_NOTE_SIZE(note_head_size, name_size, qemu_desc_size);
449 
450     return (elf_note_size + qemu_note_size) * nr_cpus;
451 }
452