xref: /qemu/target/i386/gdbstub.c (revision b30d1886)
1 /*
2  * x86 gdb server stub
3  *
4  * Copyright (c) 2003-2005 Fabrice Bellard
5  * Copyright (c) 2013 SUSE LINUX Products GmbH
6  *
7  * This library is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2 of the License, or (at your option) any later version.
11  *
12  * This library is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19  */
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "cpu.h"
23 #include "exec/gdbstub.h"
24 
25 #ifdef TARGET_X86_64
26 static const int gpr_map[16] = {
27     R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
28     8, 9, 10, 11, 12, 13, 14, 15
29 };
30 #else
31 #define gpr_map gpr_map32
32 #endif
33 static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
34 
35 #define IDX_IP_REG      CPU_NB_REGS
36 #define IDX_FLAGS_REG   (IDX_IP_REG + 1)
37 #define IDX_SEG_REGS    (IDX_FLAGS_REG + 1)
38 #define IDX_FP_REGS     (IDX_SEG_REGS + 6)
39 #define IDX_XMM_REGS    (IDX_FP_REGS + 16)
40 #define IDX_MXCSR_REG   (IDX_XMM_REGS + CPU_NB_REGS)
41 
42 int x86_cpu_gdb_read_register(CPUState *cs, uint8_t *mem_buf, int n)
43 {
44     X86CPU *cpu = X86_CPU(cs);
45     CPUX86State *env = &cpu->env;
46 
47     /* N.B. GDB can't deal with changes in registers or sizes in the middle
48        of a session. So if we're in 32-bit mode on a 64-bit cpu, still act
49        as if we're on a 64-bit cpu. */
50 
51     if (n < CPU_NB_REGS) {
52         if (TARGET_LONG_BITS == 64) {
53             if (env->hflags & HF_CS64_MASK) {
54                 return gdb_get_reg64(mem_buf, env->regs[gpr_map[n]]);
55             } else if (n < CPU_NB_REGS32) {
56                 return gdb_get_reg64(mem_buf,
57                                      env->regs[gpr_map[n]] & 0xffffffffUL);
58             } else {
59                 memset(mem_buf, 0, sizeof(target_ulong));
60                 return sizeof(target_ulong);
61             }
62         } else {
63             return gdb_get_reg32(mem_buf, env->regs[gpr_map32[n]]);
64         }
65     } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
66 #ifdef USE_X86LDOUBLE
67         /* FIXME: byteswap float values - after fixing fpregs layout. */
68         memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
69 #else
70         memset(mem_buf, 0, 10);
71 #endif
72         return 10;
73     } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
74         n -= IDX_XMM_REGS;
75         if (n < CPU_NB_REGS32 || TARGET_LONG_BITS == 64) {
76             stq_p(mem_buf, env->xmm_regs[n].ZMM_Q(0));
77             stq_p(mem_buf + 8, env->xmm_regs[n].ZMM_Q(1));
78             return 16;
79         }
80     } else {
81         switch (n) {
82         case IDX_IP_REG:
83             if (TARGET_LONG_BITS == 64) {
84                 if (env->hflags & HF_CS64_MASK) {
85                     return gdb_get_reg64(mem_buf, env->eip);
86                 } else {
87                     return gdb_get_reg64(mem_buf, env->eip & 0xffffffffUL);
88                 }
89             } else {
90                 return gdb_get_reg32(mem_buf, env->eip);
91             }
92         case IDX_FLAGS_REG:
93             return gdb_get_reg32(mem_buf, env->eflags);
94 
95         case IDX_SEG_REGS:
96             return gdb_get_reg32(mem_buf, env->segs[R_CS].selector);
97         case IDX_SEG_REGS + 1:
98             return gdb_get_reg32(mem_buf, env->segs[R_SS].selector);
99         case IDX_SEG_REGS + 2:
100             return gdb_get_reg32(mem_buf, env->segs[R_DS].selector);
101         case IDX_SEG_REGS + 3:
102             return gdb_get_reg32(mem_buf, env->segs[R_ES].selector);
103         case IDX_SEG_REGS + 4:
104             return gdb_get_reg32(mem_buf, env->segs[R_FS].selector);
105         case IDX_SEG_REGS + 5:
106             return gdb_get_reg32(mem_buf, env->segs[R_GS].selector);
107 
108         case IDX_FP_REGS + 8:
109             return gdb_get_reg32(mem_buf, env->fpuc);
110         case IDX_FP_REGS + 9:
111             return gdb_get_reg32(mem_buf, (env->fpus & ~0x3800) |
112                                           (env->fpstt & 0x7) << 11);
113         case IDX_FP_REGS + 10:
114             return gdb_get_reg32(mem_buf, 0); /* ftag */
115         case IDX_FP_REGS + 11:
116             return gdb_get_reg32(mem_buf, 0); /* fiseg */
117         case IDX_FP_REGS + 12:
118             return gdb_get_reg32(mem_buf, 0); /* fioff */
119         case IDX_FP_REGS + 13:
120             return gdb_get_reg32(mem_buf, 0); /* foseg */
121         case IDX_FP_REGS + 14:
122             return gdb_get_reg32(mem_buf, 0); /* fooff */
123         case IDX_FP_REGS + 15:
124             return gdb_get_reg32(mem_buf, 0); /* fop */
125 
126         case IDX_MXCSR_REG:
127             return gdb_get_reg32(mem_buf, env->mxcsr);
128         }
129     }
130     return 0;
131 }
132 
133 static int x86_cpu_gdb_load_seg(X86CPU *cpu, int sreg, uint8_t *mem_buf)
134 {
135     CPUX86State *env = &cpu->env;
136     uint16_t selector = ldl_p(mem_buf);
137 
138     if (selector != env->segs[sreg].selector) {
139 #if defined(CONFIG_USER_ONLY)
140         cpu_x86_load_seg(env, sreg, selector);
141 #else
142         unsigned int limit, flags;
143         target_ulong base;
144 
145         if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
146             int dpl = (env->eflags & VM_MASK) ? 3 : 0;
147             base = selector << 4;
148             limit = 0xffff;
149             flags = DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
150                     DESC_A_MASK | (dpl << DESC_DPL_SHIFT);
151         } else {
152             if (!cpu_x86_get_descr_debug(env, selector, &base, &limit,
153                                          &flags)) {
154                 return 4;
155             }
156         }
157         cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
158 #endif
159     }
160     return 4;
161 }
162 
163 int x86_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
164 {
165     X86CPU *cpu = X86_CPU(cs);
166     CPUX86State *env = &cpu->env;
167     uint32_t tmp;
168 
169     /* N.B. GDB can't deal with changes in registers or sizes in the middle
170        of a session. So if we're in 32-bit mode on a 64-bit cpu, still act
171        as if we're on a 64-bit cpu. */
172 
173     if (n < CPU_NB_REGS) {
174         if (TARGET_LONG_BITS == 64) {
175             if (env->hflags & HF_CS64_MASK) {
176                 env->regs[gpr_map[n]] = ldtul_p(mem_buf);
177             } else if (n < CPU_NB_REGS32) {
178                 env->regs[gpr_map[n]] = ldtul_p(mem_buf) & 0xffffffffUL;
179             }
180             return sizeof(target_ulong);
181         } else if (n < CPU_NB_REGS32) {
182             n = gpr_map32[n];
183             env->regs[n] &= ~0xffffffffUL;
184             env->regs[n] |= (uint32_t)ldl_p(mem_buf);
185             return 4;
186         }
187     } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
188 #ifdef USE_X86LDOUBLE
189         /* FIXME: byteswap float values - after fixing fpregs layout. */
190         memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
191 #endif
192         return 10;
193     } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
194         n -= IDX_XMM_REGS;
195         if (n < CPU_NB_REGS32 || TARGET_LONG_BITS == 64) {
196             env->xmm_regs[n].ZMM_Q(0) = ldq_p(mem_buf);
197             env->xmm_regs[n].ZMM_Q(1) = ldq_p(mem_buf + 8);
198             return 16;
199         }
200     } else {
201         switch (n) {
202         case IDX_IP_REG:
203             if (TARGET_LONG_BITS == 64) {
204                 if (env->hflags & HF_CS64_MASK) {
205                     env->eip = ldq_p(mem_buf);
206                 } else {
207                     env->eip = ldq_p(mem_buf) & 0xffffffffUL;
208                 }
209                 return 8;
210             } else {
211                 env->eip &= ~0xffffffffUL;
212                 env->eip |= (uint32_t)ldl_p(mem_buf);
213                 return 4;
214             }
215         case IDX_FLAGS_REG:
216             env->eflags = ldl_p(mem_buf);
217             return 4;
218 
219         case IDX_SEG_REGS:
220             return x86_cpu_gdb_load_seg(cpu, R_CS, mem_buf);
221         case IDX_SEG_REGS + 1:
222             return x86_cpu_gdb_load_seg(cpu, R_SS, mem_buf);
223         case IDX_SEG_REGS + 2:
224             return x86_cpu_gdb_load_seg(cpu, R_DS, mem_buf);
225         case IDX_SEG_REGS + 3:
226             return x86_cpu_gdb_load_seg(cpu, R_ES, mem_buf);
227         case IDX_SEG_REGS + 4:
228             return x86_cpu_gdb_load_seg(cpu, R_FS, mem_buf);
229         case IDX_SEG_REGS + 5:
230             return x86_cpu_gdb_load_seg(cpu, R_GS, mem_buf);
231 
232         case IDX_FP_REGS + 8:
233             cpu_set_fpuc(env, ldl_p(mem_buf));
234             return 4;
235         case IDX_FP_REGS + 9:
236             tmp = ldl_p(mem_buf);
237             env->fpstt = (tmp >> 11) & 7;
238             env->fpus = tmp & ~0x3800;
239             return 4;
240         case IDX_FP_REGS + 10: /* ftag */
241             return 4;
242         case IDX_FP_REGS + 11: /* fiseg */
243             return 4;
244         case IDX_FP_REGS + 12: /* fioff */
245             return 4;
246         case IDX_FP_REGS + 13: /* foseg */
247             return 4;
248         case IDX_FP_REGS + 14: /* fooff */
249             return 4;
250         case IDX_FP_REGS + 15: /* fop */
251             return 4;
252 
253         case IDX_MXCSR_REG:
254             cpu_set_mxcsr(env, ldl_p(mem_buf));
255             return 4;
256         }
257     }
258     /* Unrecognised register.  */
259     return 0;
260 }
261