xref: /qemu/target/i386/helper.c (revision d7a84021)
1 /*
2  *  i386 helpers (without register variable usage)
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qapi/qapi-events-run-state.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "sysemu/runstate.h"
25 #include "kvm/kvm_i386.h"
26 #ifndef CONFIG_USER_ONLY
27 #include "sysemu/hw_accel.h"
28 #include "monitor/monitor.h"
29 #endif
30 
31 void cpu_sync_bndcs_hflags(CPUX86State *env)
32 {
33     uint32_t hflags = env->hflags;
34     uint32_t hflags2 = env->hflags2;
35     uint32_t bndcsr;
36 
37     if ((hflags & HF_CPL_MASK) == 3) {
38         bndcsr = env->bndcs_regs.cfgu;
39     } else {
40         bndcsr = env->msr_bndcfgs;
41     }
42 
43     if ((env->cr[4] & CR4_OSXSAVE_MASK)
44         && (env->xcr0 & XSTATE_BNDCSR_MASK)
45         && (bndcsr & BNDCFG_ENABLE)) {
46         hflags |= HF_MPX_EN_MASK;
47     } else {
48         hflags &= ~HF_MPX_EN_MASK;
49     }
50 
51     if (bndcsr & BNDCFG_BNDPRESERVE) {
52         hflags2 |= HF2_MPX_PR_MASK;
53     } else {
54         hflags2 &= ~HF2_MPX_PR_MASK;
55     }
56 
57     env->hflags = hflags;
58     env->hflags2 = hflags2;
59 }
60 
61 static void cpu_x86_version(CPUX86State *env, int *family, int *model)
62 {
63     int cpuver = env->cpuid_version;
64 
65     if (family == NULL || model == NULL) {
66         return;
67     }
68 
69     *family = (cpuver >> 8) & 0x0f;
70     *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f);
71 }
72 
73 /* Broadcast MCA signal for processor version 06H_EH and above */
74 int cpu_x86_support_mca_broadcast(CPUX86State *env)
75 {
76     int family = 0;
77     int model = 0;
78 
79     cpu_x86_version(env, &family, &model);
80     if ((family == 6 && model >= 14) || family > 6) {
81         return 1;
82     }
83 
84     return 0;
85 }
86 
87 /***********************************************************/
88 /* x86 mmu */
89 /* XXX: add PGE support */
90 
91 void x86_cpu_set_a20(X86CPU *cpu, int a20_state)
92 {
93     CPUX86State *env = &cpu->env;
94 
95     a20_state = (a20_state != 0);
96     if (a20_state != ((env->a20_mask >> 20) & 1)) {
97         CPUState *cs = CPU(cpu);
98 
99         qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state);
100         /* if the cpu is currently executing code, we must unlink it and
101            all the potentially executing TB */
102         cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
103 
104         /* when a20 is changed, all the MMU mappings are invalid, so
105            we must flush everything */
106         tlb_flush(cs);
107         env->a20_mask = ~(1 << 20) | (a20_state << 20);
108     }
109 }
110 
111 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0)
112 {
113     X86CPU *cpu = env_archcpu(env);
114     int pe_state;
115 
116     qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0);
117     if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) !=
118         (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) {
119         tlb_flush(CPU(cpu));
120     }
121 
122 #ifdef TARGET_X86_64
123     if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) &&
124         (env->efer & MSR_EFER_LME)) {
125         /* enter in long mode */
126         /* XXX: generate an exception */
127         if (!(env->cr[4] & CR4_PAE_MASK))
128             return;
129         env->efer |= MSR_EFER_LMA;
130         env->hflags |= HF_LMA_MASK;
131     } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) &&
132                (env->efer & MSR_EFER_LMA)) {
133         /* exit long mode */
134         env->efer &= ~MSR_EFER_LMA;
135         env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
136         env->eip &= 0xffffffff;
137     }
138 #endif
139     env->cr[0] = new_cr0 | CR0_ET_MASK;
140 
141     /* update PE flag in hidden flags */
142     pe_state = (env->cr[0] & CR0_PE_MASK);
143     env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT);
144     /* ensure that ADDSEG is always set in real mode */
145     env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT);
146     /* update FPU flags */
147     env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
148         ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
149 }
150 
151 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
152    the PDPT */
153 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3)
154 {
155     env->cr[3] = new_cr3;
156     if (env->cr[0] & CR0_PG_MASK) {
157         qemu_log_mask(CPU_LOG_MMU,
158                         "CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3);
159         tlb_flush(env_cpu(env));
160     }
161 }
162 
163 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4)
164 {
165     uint32_t hflags;
166 
167 #if defined(DEBUG_MMU)
168     printf("CR4 update: %08x -> %08x\n", (uint32_t)env->cr[4], new_cr4);
169 #endif
170     if ((new_cr4 ^ env->cr[4]) &
171         (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK |
172          CR4_SMEP_MASK | CR4_SMAP_MASK | CR4_LA57_MASK)) {
173         tlb_flush(env_cpu(env));
174     }
175 
176     /* Clear bits we're going to recompute.  */
177     hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK);
178 
179     /* SSE handling */
180     if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) {
181         new_cr4 &= ~CR4_OSFXSR_MASK;
182     }
183     if (new_cr4 & CR4_OSFXSR_MASK) {
184         hflags |= HF_OSFXSR_MASK;
185     }
186 
187     if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) {
188         new_cr4 &= ~CR4_SMAP_MASK;
189     }
190     if (new_cr4 & CR4_SMAP_MASK) {
191         hflags |= HF_SMAP_MASK;
192     }
193 
194     if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) {
195         new_cr4 &= ~CR4_PKE_MASK;
196     }
197     if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKS)) {
198         new_cr4 &= ~CR4_PKS_MASK;
199     }
200 
201     env->cr[4] = new_cr4;
202     env->hflags = hflags;
203 
204     cpu_sync_bndcs_hflags(env);
205 }
206 
207 #if !defined(CONFIG_USER_ONLY)
208 hwaddr x86_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
209                                          MemTxAttrs *attrs)
210 {
211     X86CPU *cpu = X86_CPU(cs);
212     CPUX86State *env = &cpu->env;
213     target_ulong pde_addr, pte_addr;
214     uint64_t pte;
215     int32_t a20_mask;
216     uint32_t page_offset;
217     int page_size;
218 
219     *attrs = cpu_get_mem_attrs(env);
220 
221     a20_mask = x86_get_a20_mask(env);
222     if (!(env->cr[0] & CR0_PG_MASK)) {
223         pte = addr & a20_mask;
224         page_size = 4096;
225     } else if (env->cr[4] & CR4_PAE_MASK) {
226         target_ulong pdpe_addr;
227         uint64_t pde, pdpe;
228 
229 #ifdef TARGET_X86_64
230         if (env->hflags & HF_LMA_MASK) {
231             bool la57 = env->cr[4] & CR4_LA57_MASK;
232             uint64_t pml5e_addr, pml5e;
233             uint64_t pml4e_addr, pml4e;
234             int32_t sext;
235 
236             /* test virtual address sign extension */
237             sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47;
238             if (sext != 0 && sext != -1) {
239                 return -1;
240             }
241 
242             if (la57) {
243                 pml5e_addr = ((env->cr[3] & ~0xfff) +
244                         (((addr >> 48) & 0x1ff) << 3)) & a20_mask;
245                 pml5e = x86_ldq_phys(cs, pml5e_addr);
246                 if (!(pml5e & PG_PRESENT_MASK)) {
247                     return -1;
248                 }
249             } else {
250                 pml5e = env->cr[3];
251             }
252 
253             pml4e_addr = ((pml5e & PG_ADDRESS_MASK) +
254                     (((addr >> 39) & 0x1ff) << 3)) & a20_mask;
255             pml4e = x86_ldq_phys(cs, pml4e_addr);
256             if (!(pml4e & PG_PRESENT_MASK)) {
257                 return -1;
258             }
259             pdpe_addr = ((pml4e & PG_ADDRESS_MASK) +
260                          (((addr >> 30) & 0x1ff) << 3)) & a20_mask;
261             pdpe = x86_ldq_phys(cs, pdpe_addr);
262             if (!(pdpe & PG_PRESENT_MASK)) {
263                 return -1;
264             }
265             if (pdpe & PG_PSE_MASK) {
266                 page_size = 1024 * 1024 * 1024;
267                 pte = pdpe;
268                 goto out;
269             }
270 
271         } else
272 #endif
273         {
274             pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
275                 a20_mask;
276             pdpe = x86_ldq_phys(cs, pdpe_addr);
277             if (!(pdpe & PG_PRESENT_MASK))
278                 return -1;
279         }
280 
281         pde_addr = ((pdpe & PG_ADDRESS_MASK) +
282                     (((addr >> 21) & 0x1ff) << 3)) & a20_mask;
283         pde = x86_ldq_phys(cs, pde_addr);
284         if (!(pde & PG_PRESENT_MASK)) {
285             return -1;
286         }
287         if (pde & PG_PSE_MASK) {
288             /* 2 MB page */
289             page_size = 2048 * 1024;
290             pte = pde;
291         } else {
292             /* 4 KB page */
293             pte_addr = ((pde & PG_ADDRESS_MASK) +
294                         (((addr >> 12) & 0x1ff) << 3)) & a20_mask;
295             page_size = 4096;
296             pte = x86_ldq_phys(cs, pte_addr);
297         }
298         if (!(pte & PG_PRESENT_MASK)) {
299             return -1;
300         }
301     } else {
302         uint32_t pde;
303 
304         /* page directory entry */
305         pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask;
306         pde = x86_ldl_phys(cs, pde_addr);
307         if (!(pde & PG_PRESENT_MASK))
308             return -1;
309         if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
310             pte = pde | ((pde & 0x1fe000LL) << (32 - 13));
311             page_size = 4096 * 1024;
312         } else {
313             /* page directory entry */
314             pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask;
315             pte = x86_ldl_phys(cs, pte_addr);
316             if (!(pte & PG_PRESENT_MASK)) {
317                 return -1;
318             }
319             page_size = 4096;
320         }
321         pte = pte & a20_mask;
322     }
323 
324 #ifdef TARGET_X86_64
325 out:
326 #endif
327     pte &= PG_ADDRESS_MASK & ~(page_size - 1);
328     page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
329     return pte | page_offset;
330 }
331 
332 typedef struct MCEInjectionParams {
333     Monitor *mon;
334     int bank;
335     uint64_t status;
336     uint64_t mcg_status;
337     uint64_t addr;
338     uint64_t misc;
339     int flags;
340 } MCEInjectionParams;
341 
342 static void emit_guest_memory_failure(MemoryFailureAction action, bool ar,
343                                       bool recursive)
344 {
345     MemoryFailureFlags mff = {.action_required = ar, .recursive = recursive};
346 
347     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_GUEST, action,
348                                    &mff);
349 }
350 
351 static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data)
352 {
353     MCEInjectionParams *params = data.host_ptr;
354     X86CPU *cpu = X86_CPU(cs);
355     CPUX86State *cenv = &cpu->env;
356     uint64_t *banks = cenv->mce_banks + 4 * params->bank;
357     g_autofree char *msg = NULL;
358     bool need_reset = false;
359     bool recursive;
360     bool ar = !!(params->status & MCI_STATUS_AR);
361 
362     cpu_synchronize_state(cs);
363     recursive = !!(cenv->mcg_status & MCG_STATUS_MCIP);
364 
365     /*
366      * If there is an MCE exception being processed, ignore this SRAO MCE
367      * unless unconditional injection was requested.
368      */
369     if (!(params->flags & MCE_INJECT_UNCOND_AO) && !ar && recursive) {
370         emit_guest_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, ar, recursive);
371         return;
372     }
373 
374     if (params->status & MCI_STATUS_UC) {
375         /*
376          * if MSR_MCG_CTL is not all 1s, the uncorrected error
377          * reporting is disabled
378          */
379         if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) {
380             monitor_printf(params->mon,
381                            "CPU %d: Uncorrected error reporting disabled\n",
382                            cs->cpu_index);
383             return;
384         }
385 
386         /*
387          * if MSR_MCi_CTL is not all 1s, the uncorrected error
388          * reporting is disabled for the bank
389          */
390         if (banks[0] != ~(uint64_t)0) {
391             monitor_printf(params->mon,
392                            "CPU %d: Uncorrected error reporting disabled for"
393                            " bank %d\n",
394                            cs->cpu_index, params->bank);
395             return;
396         }
397 
398         if (!(cenv->cr[4] & CR4_MCE_MASK)) {
399             need_reset = true;
400             msg = g_strdup_printf("CPU %d: MCE capability is not enabled, "
401                                   "raising triple fault", cs->cpu_index);
402         } else if (recursive) {
403             need_reset = true;
404             msg = g_strdup_printf("CPU %d: Previous MCE still in progress, "
405                                   "raising triple fault", cs->cpu_index);
406         }
407 
408         if (need_reset) {
409             emit_guest_memory_failure(MEMORY_FAILURE_ACTION_RESET, ar,
410                                       recursive);
411             monitor_printf(params->mon, "%s", msg);
412             qemu_log_mask(CPU_LOG_RESET, "%s\n", msg);
413             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
414             return;
415         }
416 
417         if (banks[1] & MCI_STATUS_VAL) {
418             params->status |= MCI_STATUS_OVER;
419         }
420         banks[2] = params->addr;
421         banks[3] = params->misc;
422         cenv->mcg_status = params->mcg_status;
423         banks[1] = params->status;
424         cpu_interrupt(cs, CPU_INTERRUPT_MCE);
425     } else if (!(banks[1] & MCI_STATUS_VAL)
426                || !(banks[1] & MCI_STATUS_UC)) {
427         if (banks[1] & MCI_STATUS_VAL) {
428             params->status |= MCI_STATUS_OVER;
429         }
430         banks[2] = params->addr;
431         banks[3] = params->misc;
432         banks[1] = params->status;
433     } else {
434         banks[1] |= MCI_STATUS_OVER;
435     }
436 
437     emit_guest_memory_failure(MEMORY_FAILURE_ACTION_INJECT, ar, recursive);
438 }
439 
440 void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank,
441                         uint64_t status, uint64_t mcg_status, uint64_t addr,
442                         uint64_t misc, int flags)
443 {
444     CPUState *cs = CPU(cpu);
445     CPUX86State *cenv = &cpu->env;
446     MCEInjectionParams params = {
447         .mon = mon,
448         .bank = bank,
449         .status = status,
450         .mcg_status = mcg_status,
451         .addr = addr,
452         .misc = misc,
453         .flags = flags,
454     };
455     unsigned bank_num = cenv->mcg_cap & 0xff;
456 
457     if (!cenv->mcg_cap) {
458         monitor_printf(mon, "MCE injection not supported\n");
459         return;
460     }
461     if (bank >= bank_num) {
462         monitor_printf(mon, "Invalid MCE bank number\n");
463         return;
464     }
465     if (!(status & MCI_STATUS_VAL)) {
466         monitor_printf(mon, "Invalid MCE status code\n");
467         return;
468     }
469     if ((flags & MCE_INJECT_BROADCAST)
470         && !cpu_x86_support_mca_broadcast(cenv)) {
471         monitor_printf(mon, "Guest CPU does not support MCA broadcast\n");
472         return;
473     }
474 
475     run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
476     if (flags & MCE_INJECT_BROADCAST) {
477         CPUState *other_cs;
478 
479         params.bank = 1;
480         params.status = MCI_STATUS_VAL | MCI_STATUS_UC;
481         params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
482         params.addr = 0;
483         params.misc = 0;
484         CPU_FOREACH(other_cs) {
485             if (other_cs == cs) {
486                 continue;
487             }
488             run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
489         }
490     }
491 }
492 
493 void cpu_report_tpr_access(CPUX86State *env, TPRAccess access)
494 {
495     X86CPU *cpu = env_archcpu(env);
496     CPUState *cs = env_cpu(env);
497 
498     if (kvm_enabled() || whpx_enabled()) {
499         env->tpr_access_type = access;
500 
501         cpu_interrupt(cs, CPU_INTERRUPT_TPR);
502     } else if (tcg_enabled()) {
503         cpu_restore_state(cs, cs->mem_io_pc, false);
504 
505         apic_handle_tpr_access_report(cpu->apic_state, env->eip, access);
506     }
507 }
508 #endif /* !CONFIG_USER_ONLY */
509 
510 int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector,
511                             target_ulong *base, unsigned int *limit,
512                             unsigned int *flags)
513 {
514     CPUState *cs = env_cpu(env);
515     SegmentCache *dt;
516     target_ulong ptr;
517     uint32_t e1, e2;
518     int index;
519 
520     if (selector & 0x4)
521         dt = &env->ldt;
522     else
523         dt = &env->gdt;
524     index = selector & ~7;
525     ptr = dt->base + index;
526     if ((index + 7) > dt->limit
527         || cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0
528         || cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0)
529         return 0;
530 
531     *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
532     *limit = (e1 & 0xffff) | (e2 & 0x000f0000);
533     if (e2 & DESC_G_MASK)
534         *limit = (*limit << 12) | 0xfff;
535     *flags = e2;
536 
537     return 1;
538 }
539 
540 #if !defined(CONFIG_USER_ONLY)
541 void do_cpu_init(X86CPU *cpu)
542 {
543     CPUState *cs = CPU(cpu);
544     CPUX86State *env = &cpu->env;
545     CPUX86State *save = g_new(CPUX86State, 1);
546     int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI;
547 
548     *save = *env;
549 
550     cpu_reset(cs);
551     cs->interrupt_request = sipi;
552     memcpy(&env->start_init_save, &save->start_init_save,
553            offsetof(CPUX86State, end_init_save) -
554            offsetof(CPUX86State, start_init_save));
555     g_free(save);
556 
557     if (kvm_enabled()) {
558         kvm_arch_do_init_vcpu(cpu);
559     }
560     apic_init_reset(cpu->apic_state);
561 }
562 
563 void do_cpu_sipi(X86CPU *cpu)
564 {
565     apic_sipi(cpu->apic_state);
566 }
567 #else
568 void do_cpu_init(X86CPU *cpu)
569 {
570 }
571 void do_cpu_sipi(X86CPU *cpu)
572 {
573 }
574 #endif
575 
576 #ifndef CONFIG_USER_ONLY
577 uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr)
578 {
579     X86CPU *cpu = X86_CPU(cs);
580     CPUX86State *env = &cpu->env;
581     MemTxAttrs attrs = cpu_get_mem_attrs(env);
582     AddressSpace *as = cpu_addressspace(cs, attrs);
583 
584     return address_space_ldub(as, addr, attrs, NULL);
585 }
586 
587 uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr)
588 {
589     X86CPU *cpu = X86_CPU(cs);
590     CPUX86State *env = &cpu->env;
591     MemTxAttrs attrs = cpu_get_mem_attrs(env);
592     AddressSpace *as = cpu_addressspace(cs, attrs);
593 
594     return address_space_lduw(as, addr, attrs, NULL);
595 }
596 
597 uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr)
598 {
599     X86CPU *cpu = X86_CPU(cs);
600     CPUX86State *env = &cpu->env;
601     MemTxAttrs attrs = cpu_get_mem_attrs(env);
602     AddressSpace *as = cpu_addressspace(cs, attrs);
603 
604     return address_space_ldl(as, addr, attrs, NULL);
605 }
606 
607 uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr)
608 {
609     X86CPU *cpu = X86_CPU(cs);
610     CPUX86State *env = &cpu->env;
611     MemTxAttrs attrs = cpu_get_mem_attrs(env);
612     AddressSpace *as = cpu_addressspace(cs, attrs);
613 
614     return address_space_ldq(as, addr, attrs, NULL);
615 }
616 
617 void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val)
618 {
619     X86CPU *cpu = X86_CPU(cs);
620     CPUX86State *env = &cpu->env;
621     MemTxAttrs attrs = cpu_get_mem_attrs(env);
622     AddressSpace *as = cpu_addressspace(cs, attrs);
623 
624     address_space_stb(as, addr, val, attrs, NULL);
625 }
626 
627 void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val)
628 {
629     X86CPU *cpu = X86_CPU(cs);
630     CPUX86State *env = &cpu->env;
631     MemTxAttrs attrs = cpu_get_mem_attrs(env);
632     AddressSpace *as = cpu_addressspace(cs, attrs);
633 
634     address_space_stl_notdirty(as, addr, val, attrs, NULL);
635 }
636 
637 void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val)
638 {
639     X86CPU *cpu = X86_CPU(cs);
640     CPUX86State *env = &cpu->env;
641     MemTxAttrs attrs = cpu_get_mem_attrs(env);
642     AddressSpace *as = cpu_addressspace(cs, attrs);
643 
644     address_space_stw(as, addr, val, attrs, NULL);
645 }
646 
647 void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val)
648 {
649     X86CPU *cpu = X86_CPU(cs);
650     CPUX86State *env = &cpu->env;
651     MemTxAttrs attrs = cpu_get_mem_attrs(env);
652     AddressSpace *as = cpu_addressspace(cs, attrs);
653 
654     address_space_stl(as, addr, val, attrs, NULL);
655 }
656 
657 void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val)
658 {
659     X86CPU *cpu = X86_CPU(cs);
660     CPUX86State *env = &cpu->env;
661     MemTxAttrs attrs = cpu_get_mem_attrs(env);
662     AddressSpace *as = cpu_addressspace(cs, attrs);
663 
664     address_space_stq(as, addr, val, attrs, NULL);
665 }
666 #endif
667