xref: /qemu/target/i386/hvf/vmx.h (revision 308e7549)
1 /*
2  * Copyright (C) 2016 Veertu Inc,
3  * Copyright (C) 2017 Google Inc,
4  * Based on Veertu vddh/vmm/vmx.h
5  *
6  * Interfaces to Hypervisor.framework to read/write X86 registers and VMCS.
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2 of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with this program; if not, see <http://www.gnu.org/licenses/>.
20  *
21  * This file contain code under public domain from the hvdos project:
22  * https://github.com/mist64/hvdos
23  */
24 
25 #ifndef VMX_H
26 #define VMX_H
27 
28 #include <Hypervisor/hv.h>
29 #include <Hypervisor/hv_vmx.h>
30 #include "vmcs.h"
31 #include "cpu.h"
32 #include "x86.h"
33 
34 #include "exec/address-spaces.h"
35 
36 static inline uint64_t rreg(hv_vcpuid_t vcpu, hv_x86_reg_t reg)
37 {
38     uint64_t v;
39 
40     if (hv_vcpu_read_register(vcpu, reg, &v)) {
41         abort();
42     }
43 
44     return v;
45 }
46 
47 /* write GPR */
48 static inline void wreg(hv_vcpuid_t vcpu, hv_x86_reg_t reg, uint64_t v)
49 {
50     if (hv_vcpu_write_register(vcpu, reg, v)) {
51         abort();
52     }
53 }
54 
55 /* read VMCS field */
56 static inline uint64_t rvmcs(hv_vcpuid_t vcpu, uint32_t field)
57 {
58     uint64_t v;
59 
60     hv_vmx_vcpu_read_vmcs(vcpu, field, &v);
61 
62     return v;
63 }
64 
65 /* write VMCS field */
66 static inline void wvmcs(hv_vcpuid_t vcpu, uint32_t field, uint64_t v)
67 {
68     hv_vmx_vcpu_write_vmcs(vcpu, field, v);
69 }
70 
71 /* desired control word constrained by hardware/hypervisor capabilities */
72 static inline uint64_t cap2ctrl(uint64_t cap, uint64_t ctrl)
73 {
74     return (ctrl | (cap & 0xffffffff)) & (cap >> 32);
75 }
76 
77 #define VM_ENTRY_GUEST_LMA (1LL << 9)
78 
79 #define AR_TYPE_ACCESSES_MASK 1
80 #define AR_TYPE_READABLE_MASK (1 << 1)
81 #define AR_TYPE_WRITEABLE_MASK (1 << 2)
82 #define AR_TYPE_CODE_MASK (1 << 3)
83 #define AR_TYPE_MASK 0x0f
84 #define AR_TYPE_BUSY_64_TSS 11
85 #define AR_TYPE_BUSY_32_TSS 11
86 #define AR_TYPE_BUSY_16_TSS 3
87 #define AR_TYPE_LDT 2
88 
89 static void enter_long_mode(hv_vcpuid_t vcpu, uint64_t cr0, uint64_t efer)
90 {
91     uint64_t entry_ctls;
92 
93     efer |= MSR_EFER_LMA;
94     wvmcs(vcpu, VMCS_GUEST_IA32_EFER, efer);
95     entry_ctls = rvmcs(vcpu, VMCS_ENTRY_CTLS);
96     wvmcs(vcpu, VMCS_ENTRY_CTLS, rvmcs(vcpu, VMCS_ENTRY_CTLS) |
97           VM_ENTRY_GUEST_LMA);
98 
99     uint64_t guest_tr_ar = rvmcs(vcpu, VMCS_GUEST_TR_ACCESS_RIGHTS);
100     if ((efer & MSR_EFER_LME) &&
101         (guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
102         wvmcs(vcpu, VMCS_GUEST_TR_ACCESS_RIGHTS,
103               (guest_tr_ar & ~AR_TYPE_MASK) | AR_TYPE_BUSY_64_TSS);
104     }
105 }
106 
107 static void exit_long_mode(hv_vcpuid_t vcpu, uint64_t cr0, uint64_t efer)
108 {
109     uint64_t entry_ctls;
110 
111     entry_ctls = rvmcs(vcpu, VMCS_ENTRY_CTLS);
112     wvmcs(vcpu, VMCS_ENTRY_CTLS, entry_ctls & ~VM_ENTRY_GUEST_LMA);
113 
114     efer &= ~MSR_EFER_LMA;
115     wvmcs(vcpu, VMCS_GUEST_IA32_EFER, efer);
116 }
117 
118 static inline void macvm_set_cr0(hv_vcpuid_t vcpu, uint64_t cr0)
119 {
120     int i;
121     uint64_t pdpte[4] = {0, 0, 0, 0};
122     uint64_t efer = rvmcs(vcpu, VMCS_GUEST_IA32_EFER);
123     uint64_t old_cr0 = rvmcs(vcpu, VMCS_GUEST_CR0);
124     uint64_t mask = CR0_PG | CR0_CD | CR0_NW | CR0_NE | CR0_ET;
125 
126     if ((cr0 & CR0_PG) && (rvmcs(vcpu, VMCS_GUEST_CR4) & CR4_PAE) &&
127         !(efer & MSR_EFER_LME)) {
128         address_space_read(&address_space_memory,
129                            rvmcs(vcpu, VMCS_GUEST_CR3) & ~0x1f,
130                            MEMTXATTRS_UNSPECIFIED, pdpte, 32);
131         /* Only set PDPTE when appropriate. */
132         for (i = 0; i < 4; i++) {
133             wvmcs(vcpu, VMCS_GUEST_PDPTE0 + i * 2, pdpte[i]);
134         }
135     }
136 
137     wvmcs(vcpu, VMCS_CR0_MASK, mask);
138     wvmcs(vcpu, VMCS_CR0_SHADOW, cr0);
139 
140     if (efer & MSR_EFER_LME) {
141         if (!(old_cr0 & CR0_PG) && (cr0 & CR0_PG)) {
142             enter_long_mode(vcpu, cr0, efer);
143         }
144         if (/*(old_cr0 & CR0_PG) &&*/ !(cr0 & CR0_PG)) {
145             exit_long_mode(vcpu, cr0, efer);
146         }
147     }
148 
149     /* Filter new CR0 after we are finished examining it above. */
150     cr0 = (cr0 & ~(mask & ~CR0_PG));
151     wvmcs(vcpu, VMCS_GUEST_CR0, cr0 | CR0_NE | CR0_ET);
152 
153     hv_vcpu_invalidate_tlb(vcpu);
154     hv_vcpu_flush(vcpu);
155 }
156 
157 static inline void macvm_set_cr4(hv_vcpuid_t vcpu, uint64_t cr4)
158 {
159     uint64_t guest_cr4 = cr4 | CR4_VMXE;
160 
161     wvmcs(vcpu, VMCS_GUEST_CR4, guest_cr4);
162     wvmcs(vcpu, VMCS_CR4_SHADOW, cr4);
163 
164     hv_vcpu_invalidate_tlb(vcpu);
165     hv_vcpu_flush(vcpu);
166 }
167 
168 static inline void macvm_set_rip(CPUState *cpu, uint64_t rip)
169 {
170     X86CPU *x86_cpu = X86_CPU(cpu);
171     CPUX86State *env = &x86_cpu->env;
172     uint64_t val;
173 
174     /* BUG, should take considering overlap.. */
175     wreg(cpu->hvf_fd, HV_X86_RIP, rip);
176 
177     /* after moving forward in rip, we need to clean INTERRUPTABILITY */
178    val = rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY);
179    if (val & (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
180                VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
181         env->hflags &= ~HF_INHIBIT_IRQ_MASK;
182         wvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY,
183                val & ~(VMCS_INTERRUPTIBILITY_STI_BLOCKING |
184                VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING));
185    }
186 }
187 
188 static inline void vmx_clear_nmi_blocking(CPUState *cpu)
189 {
190     X86CPU *x86_cpu = X86_CPU(cpu);
191     CPUX86State *env = &x86_cpu->env;
192 
193     env->hflags2 &= ~HF2_NMI_MASK;
194     uint32_t gi = (uint32_t) rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY);
195     gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
196     wvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY, gi);
197 }
198 
199 static inline void vmx_set_nmi_blocking(CPUState *cpu)
200 {
201     X86CPU *x86_cpu = X86_CPU(cpu);
202     CPUX86State *env = &x86_cpu->env;
203 
204     env->hflags2 |= HF2_NMI_MASK;
205     uint32_t gi = (uint32_t)rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY);
206     gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
207     wvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY, gi);
208 }
209 
210 static inline void vmx_set_nmi_window_exiting(CPUState *cpu)
211 {
212     uint64_t val;
213     val = rvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS);
214     wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS, val |
215           VMCS_PRI_PROC_BASED_CTLS_NMI_WINDOW_EXITING);
216 
217 }
218 
219 static inline void vmx_clear_nmi_window_exiting(CPUState *cpu)
220 {
221 
222     uint64_t val;
223     val = rvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS);
224     wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS, val &
225           ~VMCS_PRI_PROC_BASED_CTLS_NMI_WINDOW_EXITING);
226 }
227 
228 #endif
229