xref: /qemu/target/i386/hvf/x86hvf.c (revision abff1abf)
1 /*
2  * Copyright (c) 2003-2008 Fabrice Bellard
3  * Copyright (C) 2016 Veertu Inc,
4  * Copyright (C) 2017 Google Inc,
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 
22 #include "qemu-common.h"
23 #include "x86hvf.h"
24 #include "vmx.h"
25 #include "vmcs.h"
26 #include "cpu.h"
27 #include "x86_descr.h"
28 #include "x86_decode.h"
29 
30 #include "hw/i386/apic_internal.h"
31 
32 #include <Hypervisor/hv.h>
33 #include <Hypervisor/hv_vmx.h>
34 
35 void hvf_set_segment(struct CPUState *cpu, struct vmx_segment *vmx_seg,
36                      SegmentCache *qseg, bool is_tr)
37 {
38     vmx_seg->sel = qseg->selector;
39     vmx_seg->base = qseg->base;
40     vmx_seg->limit = qseg->limit;
41 
42     if (!qseg->selector && !x86_is_real(cpu) && !is_tr) {
43         /* the TR register is usable after processor reset despite
44          * having a null selector */
45         vmx_seg->ar = 1 << 16;
46         return;
47     }
48     vmx_seg->ar = (qseg->flags >> DESC_TYPE_SHIFT) & 0xf;
49     vmx_seg->ar |= ((qseg->flags >> DESC_G_SHIFT) & 1) << 15;
50     vmx_seg->ar |= ((qseg->flags >> DESC_B_SHIFT) & 1) << 14;
51     vmx_seg->ar |= ((qseg->flags >> DESC_L_SHIFT) & 1) << 13;
52     vmx_seg->ar |= ((qseg->flags >> DESC_AVL_SHIFT) & 1) << 12;
53     vmx_seg->ar |= ((qseg->flags >> DESC_P_SHIFT) & 1) << 7;
54     vmx_seg->ar |= ((qseg->flags >> DESC_DPL_SHIFT) & 3) << 5;
55     vmx_seg->ar |= ((qseg->flags >> DESC_S_SHIFT) & 1) << 4;
56 }
57 
58 void hvf_get_segment(SegmentCache *qseg, struct vmx_segment *vmx_seg)
59 {
60     qseg->limit = vmx_seg->limit;
61     qseg->base = vmx_seg->base;
62     qseg->selector = vmx_seg->sel;
63     qseg->flags = ((vmx_seg->ar & 0xf) << DESC_TYPE_SHIFT) |
64                   (((vmx_seg->ar >> 4) & 1) << DESC_S_SHIFT) |
65                   (((vmx_seg->ar >> 5) & 3) << DESC_DPL_SHIFT) |
66                   (((vmx_seg->ar >> 7) & 1) << DESC_P_SHIFT) |
67                   (((vmx_seg->ar >> 12) & 1) << DESC_AVL_SHIFT) |
68                   (((vmx_seg->ar >> 13) & 1) << DESC_L_SHIFT) |
69                   (((vmx_seg->ar >> 14) & 1) << DESC_B_SHIFT) |
70                   (((vmx_seg->ar >> 15) & 1) << DESC_G_SHIFT);
71 }
72 
73 void hvf_put_xsave(CPUState *cpu_state)
74 {
75 
76     struct X86XSaveArea *xsave;
77 
78     xsave = X86_CPU(cpu_state)->env.xsave_buf;
79 
80     x86_cpu_xsave_all_areas(X86_CPU(cpu_state), xsave);
81 
82     if (hv_vcpu_write_fpstate(cpu_state->hvf_fd, (void*)xsave, 4096)) {
83         abort();
84     }
85 }
86 
87 void hvf_put_segments(CPUState *cpu_state)
88 {
89     CPUX86State *env = &X86_CPU(cpu_state)->env;
90     struct vmx_segment seg;
91 
92     wvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_LIMIT, env->idt.limit);
93     wvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_BASE, env->idt.base);
94 
95     wvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_LIMIT, env->gdt.limit);
96     wvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_BASE, env->gdt.base);
97 
98     /* wvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR2, env->cr[2]); */
99     wvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR3, env->cr[3]);
100     vmx_update_tpr(cpu_state);
101     wvmcs(cpu_state->hvf_fd, VMCS_GUEST_IA32_EFER, env->efer);
102 
103     macvm_set_cr4(cpu_state->hvf_fd, env->cr[4]);
104     macvm_set_cr0(cpu_state->hvf_fd, env->cr[0]);
105 
106     hvf_set_segment(cpu_state, &seg, &env->segs[R_CS], false);
107     vmx_write_segment_descriptor(cpu_state, &seg, R_CS);
108 
109     hvf_set_segment(cpu_state, &seg, &env->segs[R_DS], false);
110     vmx_write_segment_descriptor(cpu_state, &seg, R_DS);
111 
112     hvf_set_segment(cpu_state, &seg, &env->segs[R_ES], false);
113     vmx_write_segment_descriptor(cpu_state, &seg, R_ES);
114 
115     hvf_set_segment(cpu_state, &seg, &env->segs[R_SS], false);
116     vmx_write_segment_descriptor(cpu_state, &seg, R_SS);
117 
118     hvf_set_segment(cpu_state, &seg, &env->segs[R_FS], false);
119     vmx_write_segment_descriptor(cpu_state, &seg, R_FS);
120 
121     hvf_set_segment(cpu_state, &seg, &env->segs[R_GS], false);
122     vmx_write_segment_descriptor(cpu_state, &seg, R_GS);
123 
124     hvf_set_segment(cpu_state, &seg, &env->tr, true);
125     vmx_write_segment_descriptor(cpu_state, &seg, R_TR);
126 
127     hvf_set_segment(cpu_state, &seg, &env->ldt, false);
128     vmx_write_segment_descriptor(cpu_state, &seg, R_LDTR);
129 
130     hv_vcpu_flush(cpu_state->hvf_fd);
131 }
132 
133 void hvf_put_msrs(CPUState *cpu_state)
134 {
135     CPUX86State *env = &X86_CPU(cpu_state)->env;
136 
137     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_CS,
138                       env->sysenter_cs);
139     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_ESP,
140                       env->sysenter_esp);
141     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_EIP,
142                       env->sysenter_eip);
143 
144     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_STAR, env->star);
145 
146 #ifdef TARGET_X86_64
147     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_CSTAR, env->cstar);
148     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_KERNELGSBASE, env->kernelgsbase);
149     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_FMASK, env->fmask);
150     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_LSTAR, env->lstar);
151 #endif
152 
153     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_GSBASE, env->segs[R_GS].base);
154     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_FSBASE, env->segs[R_FS].base);
155 }
156 
157 
158 void hvf_get_xsave(CPUState *cpu_state)
159 {
160     struct X86XSaveArea *xsave;
161 
162     xsave = X86_CPU(cpu_state)->env.xsave_buf;
163 
164     if (hv_vcpu_read_fpstate(cpu_state->hvf_fd, (void*)xsave, 4096)) {
165         abort();
166     }
167 
168     x86_cpu_xrstor_all_areas(X86_CPU(cpu_state), xsave);
169 }
170 
171 void hvf_get_segments(CPUState *cpu_state)
172 {
173     CPUX86State *env = &X86_CPU(cpu_state)->env;
174 
175     struct vmx_segment seg;
176 
177     env->interrupt_injected = -1;
178 
179     vmx_read_segment_descriptor(cpu_state, &seg, R_CS);
180     hvf_get_segment(&env->segs[R_CS], &seg);
181 
182     vmx_read_segment_descriptor(cpu_state, &seg, R_DS);
183     hvf_get_segment(&env->segs[R_DS], &seg);
184 
185     vmx_read_segment_descriptor(cpu_state, &seg, R_ES);
186     hvf_get_segment(&env->segs[R_ES], &seg);
187 
188     vmx_read_segment_descriptor(cpu_state, &seg, R_FS);
189     hvf_get_segment(&env->segs[R_FS], &seg);
190 
191     vmx_read_segment_descriptor(cpu_state, &seg, R_GS);
192     hvf_get_segment(&env->segs[R_GS], &seg);
193 
194     vmx_read_segment_descriptor(cpu_state, &seg, R_SS);
195     hvf_get_segment(&env->segs[R_SS], &seg);
196 
197     vmx_read_segment_descriptor(cpu_state, &seg, R_TR);
198     hvf_get_segment(&env->tr, &seg);
199 
200     vmx_read_segment_descriptor(cpu_state, &seg, R_LDTR);
201     hvf_get_segment(&env->ldt, &seg);
202 
203     env->idt.limit = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_LIMIT);
204     env->idt.base = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_BASE);
205     env->gdt.limit = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_LIMIT);
206     env->gdt.base = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_BASE);
207 
208     env->cr[0] = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR0);
209     env->cr[2] = 0;
210     env->cr[3] = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR3);
211     env->cr[4] = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR4);
212 
213     env->efer = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_IA32_EFER);
214 }
215 
216 void hvf_get_msrs(CPUState *cpu_state)
217 {
218     CPUX86State *env = &X86_CPU(cpu_state)->env;
219     uint64_t tmp;
220 
221     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_CS, &tmp);
222     env->sysenter_cs = tmp;
223 
224     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_ESP, &tmp);
225     env->sysenter_esp = tmp;
226 
227     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_EIP, &tmp);
228     env->sysenter_eip = tmp;
229 
230     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_STAR, &env->star);
231 
232 #ifdef TARGET_X86_64
233     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_CSTAR, &env->cstar);
234     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_KERNELGSBASE, &env->kernelgsbase);
235     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_FMASK, &env->fmask);
236     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_LSTAR, &env->lstar);
237 #endif
238 
239     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_APICBASE, &tmp);
240 
241     env->tsc = rdtscp() + rvmcs(cpu_state->hvf_fd, VMCS_TSC_OFFSET);
242 }
243 
244 int hvf_put_registers(CPUState *cpu_state)
245 {
246     X86CPU *x86cpu = X86_CPU(cpu_state);
247     CPUX86State *env = &x86cpu->env;
248 
249     wreg(cpu_state->hvf_fd, HV_X86_RAX, env->regs[R_EAX]);
250     wreg(cpu_state->hvf_fd, HV_X86_RBX, env->regs[R_EBX]);
251     wreg(cpu_state->hvf_fd, HV_X86_RCX, env->regs[R_ECX]);
252     wreg(cpu_state->hvf_fd, HV_X86_RDX, env->regs[R_EDX]);
253     wreg(cpu_state->hvf_fd, HV_X86_RBP, env->regs[R_EBP]);
254     wreg(cpu_state->hvf_fd, HV_X86_RSP, env->regs[R_ESP]);
255     wreg(cpu_state->hvf_fd, HV_X86_RSI, env->regs[R_ESI]);
256     wreg(cpu_state->hvf_fd, HV_X86_RDI, env->regs[R_EDI]);
257     wreg(cpu_state->hvf_fd, HV_X86_R8, env->regs[8]);
258     wreg(cpu_state->hvf_fd, HV_X86_R9, env->regs[9]);
259     wreg(cpu_state->hvf_fd, HV_X86_R10, env->regs[10]);
260     wreg(cpu_state->hvf_fd, HV_X86_R11, env->regs[11]);
261     wreg(cpu_state->hvf_fd, HV_X86_R12, env->regs[12]);
262     wreg(cpu_state->hvf_fd, HV_X86_R13, env->regs[13]);
263     wreg(cpu_state->hvf_fd, HV_X86_R14, env->regs[14]);
264     wreg(cpu_state->hvf_fd, HV_X86_R15, env->regs[15]);
265     wreg(cpu_state->hvf_fd, HV_X86_RFLAGS, env->eflags);
266     wreg(cpu_state->hvf_fd, HV_X86_RIP, env->eip);
267 
268     wreg(cpu_state->hvf_fd, HV_X86_XCR0, env->xcr0);
269 
270     hvf_put_xsave(cpu_state);
271 
272     hvf_put_segments(cpu_state);
273 
274     hvf_put_msrs(cpu_state);
275 
276     wreg(cpu_state->hvf_fd, HV_X86_DR0, env->dr[0]);
277     wreg(cpu_state->hvf_fd, HV_X86_DR1, env->dr[1]);
278     wreg(cpu_state->hvf_fd, HV_X86_DR2, env->dr[2]);
279     wreg(cpu_state->hvf_fd, HV_X86_DR3, env->dr[3]);
280     wreg(cpu_state->hvf_fd, HV_X86_DR4, env->dr[4]);
281     wreg(cpu_state->hvf_fd, HV_X86_DR5, env->dr[5]);
282     wreg(cpu_state->hvf_fd, HV_X86_DR6, env->dr[6]);
283     wreg(cpu_state->hvf_fd, HV_X86_DR7, env->dr[7]);
284 
285     return 0;
286 }
287 
288 int hvf_get_registers(CPUState *cpu_state)
289 {
290     X86CPU *x86cpu = X86_CPU(cpu_state);
291     CPUX86State *env = &x86cpu->env;
292 
293     env->regs[R_EAX] = rreg(cpu_state->hvf_fd, HV_X86_RAX);
294     env->regs[R_EBX] = rreg(cpu_state->hvf_fd, HV_X86_RBX);
295     env->regs[R_ECX] = rreg(cpu_state->hvf_fd, HV_X86_RCX);
296     env->regs[R_EDX] = rreg(cpu_state->hvf_fd, HV_X86_RDX);
297     env->regs[R_EBP] = rreg(cpu_state->hvf_fd, HV_X86_RBP);
298     env->regs[R_ESP] = rreg(cpu_state->hvf_fd, HV_X86_RSP);
299     env->regs[R_ESI] = rreg(cpu_state->hvf_fd, HV_X86_RSI);
300     env->regs[R_EDI] = rreg(cpu_state->hvf_fd, HV_X86_RDI);
301     env->regs[8] = rreg(cpu_state->hvf_fd, HV_X86_R8);
302     env->regs[9] = rreg(cpu_state->hvf_fd, HV_X86_R9);
303     env->regs[10] = rreg(cpu_state->hvf_fd, HV_X86_R10);
304     env->regs[11] = rreg(cpu_state->hvf_fd, HV_X86_R11);
305     env->regs[12] = rreg(cpu_state->hvf_fd, HV_X86_R12);
306     env->regs[13] = rreg(cpu_state->hvf_fd, HV_X86_R13);
307     env->regs[14] = rreg(cpu_state->hvf_fd, HV_X86_R14);
308     env->regs[15] = rreg(cpu_state->hvf_fd, HV_X86_R15);
309 
310     env->eflags = rreg(cpu_state->hvf_fd, HV_X86_RFLAGS);
311     env->eip = rreg(cpu_state->hvf_fd, HV_X86_RIP);
312 
313     hvf_get_xsave(cpu_state);
314     env->xcr0 = rreg(cpu_state->hvf_fd, HV_X86_XCR0);
315 
316     hvf_get_segments(cpu_state);
317     hvf_get_msrs(cpu_state);
318 
319     env->dr[0] = rreg(cpu_state->hvf_fd, HV_X86_DR0);
320     env->dr[1] = rreg(cpu_state->hvf_fd, HV_X86_DR1);
321     env->dr[2] = rreg(cpu_state->hvf_fd, HV_X86_DR2);
322     env->dr[3] = rreg(cpu_state->hvf_fd, HV_X86_DR3);
323     env->dr[4] = rreg(cpu_state->hvf_fd, HV_X86_DR4);
324     env->dr[5] = rreg(cpu_state->hvf_fd, HV_X86_DR5);
325     env->dr[6] = rreg(cpu_state->hvf_fd, HV_X86_DR6);
326     env->dr[7] = rreg(cpu_state->hvf_fd, HV_X86_DR7);
327 
328     x86_update_hflags(env);
329     return 0;
330 }
331 
332 static void vmx_set_int_window_exiting(CPUState *cpu)
333 {
334      uint64_t val;
335      val = rvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS);
336      wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS, val |
337              VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING);
338 }
339 
340 void vmx_clear_int_window_exiting(CPUState *cpu)
341 {
342      uint64_t val;
343      val = rvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS);
344      wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS, val &
345              ~VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING);
346 }
347 
348 bool hvf_inject_interrupts(CPUState *cpu_state)
349 {
350     X86CPU *x86cpu = X86_CPU(cpu_state);
351     CPUX86State *env = &x86cpu->env;
352 
353     uint8_t vector;
354     uint64_t intr_type;
355     bool have_event = true;
356     if (env->interrupt_injected != -1) {
357         vector = env->interrupt_injected;
358         if (env->ins_len) {
359             intr_type = VMCS_INTR_T_SWINTR;
360         } else {
361             intr_type = VMCS_INTR_T_HWINTR;
362         }
363     } else if (env->exception_nr != -1) {
364         vector = env->exception_nr;
365         if (vector == EXCP03_INT3 || vector == EXCP04_INTO) {
366             intr_type = VMCS_INTR_T_SWEXCEPTION;
367         } else {
368             intr_type = VMCS_INTR_T_HWEXCEPTION;
369         }
370     } else if (env->nmi_injected) {
371         vector = EXCP02_NMI;
372         intr_type = VMCS_INTR_T_NMI;
373     } else {
374         have_event = false;
375     }
376 
377     uint64_t info = 0;
378     if (have_event) {
379         info = vector | intr_type | VMCS_INTR_VALID;
380         uint64_t reason = rvmcs(cpu_state->hvf_fd, VMCS_EXIT_REASON);
381         if (env->nmi_injected && reason != EXIT_REASON_TASK_SWITCH) {
382             vmx_clear_nmi_blocking(cpu_state);
383         }
384 
385         if (!(env->hflags2 & HF2_NMI_MASK) || intr_type != VMCS_INTR_T_NMI) {
386             info &= ~(1 << 12); /* clear undefined bit */
387             if (intr_type == VMCS_INTR_T_SWINTR ||
388                 intr_type == VMCS_INTR_T_SWEXCEPTION) {
389                 wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INST_LENGTH, env->ins_len);
390             }
391 
392             if (env->has_error_code) {
393                 wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_EXCEPTION_ERROR,
394                       env->error_code);
395                 /* Indicate that VMCS_ENTRY_EXCEPTION_ERROR is valid */
396                 info |= VMCS_INTR_DEL_ERRCODE;
397             }
398             /*printf("reinject  %lx err %d\n", info, err);*/
399             wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INTR_INFO, info);
400         };
401     }
402 
403     if (cpu_state->interrupt_request & CPU_INTERRUPT_NMI) {
404         if (!(env->hflags2 & HF2_NMI_MASK) && !(info & VMCS_INTR_VALID)) {
405             cpu_state->interrupt_request &= ~CPU_INTERRUPT_NMI;
406             info = VMCS_INTR_VALID | VMCS_INTR_T_NMI | EXCP02_NMI;
407             wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INTR_INFO, info);
408         } else {
409             vmx_set_nmi_window_exiting(cpu_state);
410         }
411     }
412 
413     if (!(env->hflags & HF_INHIBIT_IRQ_MASK) &&
414         (cpu_state->interrupt_request & CPU_INTERRUPT_HARD) &&
415         (env->eflags & IF_MASK) && !(info & VMCS_INTR_VALID)) {
416         int line = cpu_get_pic_interrupt(&x86cpu->env);
417         cpu_state->interrupt_request &= ~CPU_INTERRUPT_HARD;
418         if (line >= 0) {
419             wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INTR_INFO, line |
420                   VMCS_INTR_VALID | VMCS_INTR_T_HWINTR);
421         }
422     }
423     if (cpu_state->interrupt_request & CPU_INTERRUPT_HARD) {
424         vmx_set_int_window_exiting(cpu_state);
425     }
426     return (cpu_state->interrupt_request
427             & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR));
428 }
429 
430 int hvf_process_events(CPUState *cpu_state)
431 {
432     X86CPU *cpu = X86_CPU(cpu_state);
433     CPUX86State *env = &cpu->env;
434 
435     env->eflags = rreg(cpu_state->hvf_fd, HV_X86_RFLAGS);
436 
437     if (cpu_state->interrupt_request & CPU_INTERRUPT_INIT) {
438         hvf_cpu_synchronize_state(cpu_state);
439         do_cpu_init(cpu);
440     }
441 
442     if (cpu_state->interrupt_request & CPU_INTERRUPT_POLL) {
443         cpu_state->interrupt_request &= ~CPU_INTERRUPT_POLL;
444         apic_poll_irq(cpu->apic_state);
445     }
446     if (((cpu_state->interrupt_request & CPU_INTERRUPT_HARD) &&
447         (env->eflags & IF_MASK)) ||
448         (cpu_state->interrupt_request & CPU_INTERRUPT_NMI)) {
449         cpu_state->halted = 0;
450     }
451     if (cpu_state->interrupt_request & CPU_INTERRUPT_SIPI) {
452         hvf_cpu_synchronize_state(cpu_state);
453         do_cpu_sipi(cpu);
454     }
455     if (cpu_state->interrupt_request & CPU_INTERRUPT_TPR) {
456         cpu_state->interrupt_request &= ~CPU_INTERRUPT_TPR;
457         hvf_cpu_synchronize_state(cpu_state);
458         apic_handle_tpr_access_report(cpu->apic_state, env->eip,
459                                       env->tpr_access_type);
460     }
461     return cpu_state->halted;
462 }
463