xref: /qemu/target/i386/kvm/kvm.c (revision 9edc6313)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright (C) 2006-2008 Qumranet Technologies
5  * Copyright IBM, Corp. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include <sys/ioctl.h>
19 #include <sys/utsname.h>
20 #include <sys/syscall.h>
21 
22 #include <linux/kvm.h>
23 #include "standard-headers/asm-x86/kvm_para.h"
24 
25 #include "cpu.h"
26 #include "host-cpu.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/hw_accel.h"
29 #include "sysemu/kvm_int.h"
30 #include "sysemu/runstate.h"
31 #include "kvm_i386.h"
32 #include "sev.h"
33 #include "hyperv.h"
34 #include "hyperv-proto.h"
35 
36 #include "exec/gdbstub.h"
37 #include "qemu/host-utils.h"
38 #include "qemu/main-loop.h"
39 #include "qemu/config-file.h"
40 #include "qemu/error-report.h"
41 #include "qemu/memalign.h"
42 #include "hw/i386/x86.h"
43 #include "hw/i386/apic.h"
44 #include "hw/i386/apic_internal.h"
45 #include "hw/i386/apic-msidef.h"
46 #include "hw/i386/intel_iommu.h"
47 #include "hw/i386/x86-iommu.h"
48 #include "hw/i386/e820_memory_layout.h"
49 
50 #include "hw/pci/pci.h"
51 #include "hw/pci/msi.h"
52 #include "hw/pci/msix.h"
53 #include "migration/blocker.h"
54 #include "exec/memattrs.h"
55 #include "trace.h"
56 
57 //#define DEBUG_KVM
58 
59 #ifdef DEBUG_KVM
60 #define DPRINTF(fmt, ...) \
61     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
62 #else
63 #define DPRINTF(fmt, ...) \
64     do { } while (0)
65 #endif
66 
67 /* From arch/x86/kvm/lapic.h */
68 #define KVM_APIC_BUS_CYCLE_NS       1
69 #define KVM_APIC_BUS_FREQUENCY      (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
70 
71 #define MSR_KVM_WALL_CLOCK  0x11
72 #define MSR_KVM_SYSTEM_TIME 0x12
73 
74 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
75  * 255 kvm_msr_entry structs */
76 #define MSR_BUF_SIZE 4096
77 
78 static void kvm_init_msrs(X86CPU *cpu);
79 
80 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
81     KVM_CAP_INFO(SET_TSS_ADDR),
82     KVM_CAP_INFO(EXT_CPUID),
83     KVM_CAP_INFO(MP_STATE),
84     KVM_CAP_LAST_INFO
85 };
86 
87 static bool has_msr_star;
88 static bool has_msr_hsave_pa;
89 static bool has_msr_tsc_aux;
90 static bool has_msr_tsc_adjust;
91 static bool has_msr_tsc_deadline;
92 static bool has_msr_feature_control;
93 static bool has_msr_misc_enable;
94 static bool has_msr_smbase;
95 static bool has_msr_bndcfgs;
96 static int lm_capable_kernel;
97 static bool has_msr_hv_hypercall;
98 static bool has_msr_hv_crash;
99 static bool has_msr_hv_reset;
100 static bool has_msr_hv_vpindex;
101 static bool hv_vpindex_settable;
102 static bool has_msr_hv_runtime;
103 static bool has_msr_hv_synic;
104 static bool has_msr_hv_stimer;
105 static bool has_msr_hv_frequencies;
106 static bool has_msr_hv_reenlightenment;
107 static bool has_msr_xss;
108 static bool has_msr_umwait;
109 static bool has_msr_spec_ctrl;
110 static bool has_tsc_scale_msr;
111 static bool has_msr_tsx_ctrl;
112 static bool has_msr_virt_ssbd;
113 static bool has_msr_smi_count;
114 static bool has_msr_arch_capabs;
115 static bool has_msr_core_capabs;
116 static bool has_msr_vmx_vmfunc;
117 static bool has_msr_ucode_rev;
118 static bool has_msr_vmx_procbased_ctls2;
119 static bool has_msr_perf_capabs;
120 static bool has_msr_pkrs;
121 
122 static uint32_t has_architectural_pmu_version;
123 static uint32_t num_architectural_pmu_gp_counters;
124 static uint32_t num_architectural_pmu_fixed_counters;
125 
126 static int has_xsave;
127 static int has_xsave2;
128 static int has_xcrs;
129 static int has_pit_state2;
130 static int has_sregs2;
131 static int has_exception_payload;
132 
133 static bool has_msr_mcg_ext_ctl;
134 
135 static struct kvm_cpuid2 *cpuid_cache;
136 static struct kvm_cpuid2 *hv_cpuid_cache;
137 static struct kvm_msr_list *kvm_feature_msrs;
138 
139 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
140 static RateLimit bus_lock_ratelimit_ctrl;
141 
142 int kvm_has_pit_state2(void)
143 {
144     return has_pit_state2;
145 }
146 
147 bool kvm_has_smm(void)
148 {
149     return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
150 }
151 
152 bool kvm_has_adjust_clock_stable(void)
153 {
154     int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
155 
156     return (ret == KVM_CLOCK_TSC_STABLE);
157 }
158 
159 bool kvm_has_adjust_clock(void)
160 {
161     return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
162 }
163 
164 bool kvm_has_exception_payload(void)
165 {
166     return has_exception_payload;
167 }
168 
169 static bool kvm_x2apic_api_set_flags(uint64_t flags)
170 {
171     KVMState *s = KVM_STATE(current_accel());
172 
173     return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
174 }
175 
176 #define MEMORIZE(fn, _result) \
177     ({ \
178         static bool _memorized; \
179         \
180         if (_memorized) { \
181             return _result; \
182         } \
183         _memorized = true; \
184         _result = fn; \
185     })
186 
187 static bool has_x2apic_api;
188 
189 bool kvm_has_x2apic_api(void)
190 {
191     return has_x2apic_api;
192 }
193 
194 bool kvm_enable_x2apic(void)
195 {
196     return MEMORIZE(
197              kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
198                                       KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
199              has_x2apic_api);
200 }
201 
202 bool kvm_hv_vpindex_settable(void)
203 {
204     return hv_vpindex_settable;
205 }
206 
207 static int kvm_get_tsc(CPUState *cs)
208 {
209     X86CPU *cpu = X86_CPU(cs);
210     CPUX86State *env = &cpu->env;
211     struct {
212         struct kvm_msrs info;
213         struct kvm_msr_entry entries[1];
214     } msr_data = {};
215     int ret;
216 
217     if (env->tsc_valid) {
218         return 0;
219     }
220 
221     memset(&msr_data, 0, sizeof(msr_data));
222     msr_data.info.nmsrs = 1;
223     msr_data.entries[0].index = MSR_IA32_TSC;
224     env->tsc_valid = !runstate_is_running();
225 
226     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
227     if (ret < 0) {
228         return ret;
229     }
230 
231     assert(ret == 1);
232     env->tsc = msr_data.entries[0].data;
233     return 0;
234 }
235 
236 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
237 {
238     kvm_get_tsc(cpu);
239 }
240 
241 void kvm_synchronize_all_tsc(void)
242 {
243     CPUState *cpu;
244 
245     if (kvm_enabled()) {
246         CPU_FOREACH(cpu) {
247             run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
248         }
249     }
250 }
251 
252 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
253 {
254     struct kvm_cpuid2 *cpuid;
255     int r, size;
256 
257     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
258     cpuid = g_malloc0(size);
259     cpuid->nent = max;
260     r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
261     if (r == 0 && cpuid->nent >= max) {
262         r = -E2BIG;
263     }
264     if (r < 0) {
265         if (r == -E2BIG) {
266             g_free(cpuid);
267             return NULL;
268         } else {
269             fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
270                     strerror(-r));
271             exit(1);
272         }
273     }
274     return cpuid;
275 }
276 
277 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
278  * for all entries.
279  */
280 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
281 {
282     struct kvm_cpuid2 *cpuid;
283     int max = 1;
284 
285     if (cpuid_cache != NULL) {
286         return cpuid_cache;
287     }
288     while ((cpuid = try_get_cpuid(s, max)) == NULL) {
289         max *= 2;
290     }
291     cpuid_cache = cpuid;
292     return cpuid;
293 }
294 
295 static bool host_tsx_broken(void)
296 {
297     int family, model, stepping;\
298     char vendor[CPUID_VENDOR_SZ + 1];
299 
300     host_cpu_vendor_fms(vendor, &family, &model, &stepping);
301 
302     /* Check if we are running on a Haswell host known to have broken TSX */
303     return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
304            (family == 6) &&
305            ((model == 63 && stepping < 4) ||
306             model == 60 || model == 69 || model == 70);
307 }
308 
309 /* Returns the value for a specific register on the cpuid entry
310  */
311 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
312 {
313     uint32_t ret = 0;
314     switch (reg) {
315     case R_EAX:
316         ret = entry->eax;
317         break;
318     case R_EBX:
319         ret = entry->ebx;
320         break;
321     case R_ECX:
322         ret = entry->ecx;
323         break;
324     case R_EDX:
325         ret = entry->edx;
326         break;
327     }
328     return ret;
329 }
330 
331 /* Find matching entry for function/index on kvm_cpuid2 struct
332  */
333 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
334                                                  uint32_t function,
335                                                  uint32_t index)
336 {
337     int i;
338     for (i = 0; i < cpuid->nent; ++i) {
339         if (cpuid->entries[i].function == function &&
340             cpuid->entries[i].index == index) {
341             return &cpuid->entries[i];
342         }
343     }
344     /* not found: */
345     return NULL;
346 }
347 
348 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
349                                       uint32_t index, int reg)
350 {
351     struct kvm_cpuid2 *cpuid;
352     uint32_t ret = 0;
353     uint32_t cpuid_1_edx;
354     uint64_t bitmask;
355 
356     cpuid = get_supported_cpuid(s);
357 
358     struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
359     if (entry) {
360         ret = cpuid_entry_get_reg(entry, reg);
361     }
362 
363     /* Fixups for the data returned by KVM, below */
364 
365     if (function == 1 && reg == R_EDX) {
366         /* KVM before 2.6.30 misreports the following features */
367         ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
368     } else if (function == 1 && reg == R_ECX) {
369         /* We can set the hypervisor flag, even if KVM does not return it on
370          * GET_SUPPORTED_CPUID
371          */
372         ret |= CPUID_EXT_HYPERVISOR;
373         /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
374          * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
375          * and the irqchip is in the kernel.
376          */
377         if (kvm_irqchip_in_kernel() &&
378                 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
379             ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
380         }
381 
382         /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
383          * without the in-kernel irqchip
384          */
385         if (!kvm_irqchip_in_kernel()) {
386             ret &= ~CPUID_EXT_X2APIC;
387         }
388 
389         if (enable_cpu_pm) {
390             int disable_exits = kvm_check_extension(s,
391                                                     KVM_CAP_X86_DISABLE_EXITS);
392 
393             if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
394                 ret |= CPUID_EXT_MONITOR;
395             }
396         }
397     } else if (function == 6 && reg == R_EAX) {
398         ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
399     } else if (function == 7 && index == 0 && reg == R_EBX) {
400         if (host_tsx_broken()) {
401             ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
402         }
403     } else if (function == 7 && index == 0 && reg == R_EDX) {
404         /*
405          * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
406          * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
407          * returned by KVM_GET_MSR_INDEX_LIST.
408          */
409         if (!has_msr_arch_capabs) {
410             ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
411         }
412     } else if (function == 0xd && index == 0 &&
413                (reg == R_EAX || reg == R_EDX)) {
414         /*
415          * The value returned by KVM_GET_SUPPORTED_CPUID does not include
416          * features that still have to be enabled with the arch_prctl
417          * system call.  QEMU needs the full value, which is retrieved
418          * with KVM_GET_DEVICE_ATTR.
419          */
420         struct kvm_device_attr attr = {
421             .group = 0,
422             .attr = KVM_X86_XCOMP_GUEST_SUPP,
423             .addr = (unsigned long) &bitmask
424         };
425 
426         bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
427         if (!sys_attr) {
428             return ret;
429         }
430 
431         int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
432         if (rc < 0) {
433             if (rc != -ENXIO) {
434                 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
435                             "error: %d", rc);
436             }
437             return ret;
438         }
439         ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
440     } else if (function == 0x80000001 && reg == R_ECX) {
441         /*
442          * It's safe to enable TOPOEXT even if it's not returned by
443          * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
444          * us to keep CPU models including TOPOEXT runnable on older kernels.
445          */
446         ret |= CPUID_EXT3_TOPOEXT;
447     } else if (function == 0x80000001 && reg == R_EDX) {
448         /* On Intel, kvm returns cpuid according to the Intel spec,
449          * so add missing bits according to the AMD spec:
450          */
451         cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
452         ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
453     } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
454         /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
455          * be enabled without the in-kernel irqchip
456          */
457         if (!kvm_irqchip_in_kernel()) {
458             ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
459         }
460         if (kvm_irqchip_is_split()) {
461             ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
462         }
463     } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
464         ret |= 1U << KVM_HINTS_REALTIME;
465     }
466 
467     return ret;
468 }
469 
470 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
471 {
472     struct {
473         struct kvm_msrs info;
474         struct kvm_msr_entry entries[1];
475     } msr_data = {};
476     uint64_t value;
477     uint32_t ret, can_be_one, must_be_one;
478 
479     if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
480         return 0;
481     }
482 
483     /* Check if requested MSR is supported feature MSR */
484     int i;
485     for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
486         if (kvm_feature_msrs->indices[i] == index) {
487             break;
488         }
489     if (i == kvm_feature_msrs->nmsrs) {
490         return 0; /* if the feature MSR is not supported, simply return 0 */
491     }
492 
493     msr_data.info.nmsrs = 1;
494     msr_data.entries[0].index = index;
495 
496     ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
497     if (ret != 1) {
498         error_report("KVM get MSR (index=0x%x) feature failed, %s",
499             index, strerror(-ret));
500         exit(1);
501     }
502 
503     value = msr_data.entries[0].data;
504     switch (index) {
505     case MSR_IA32_VMX_PROCBASED_CTLS2:
506         if (!has_msr_vmx_procbased_ctls2) {
507             /* KVM forgot to add these bits for some time, do this ourselves. */
508             if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
509                 CPUID_XSAVE_XSAVES) {
510                 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
511             }
512             if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
513                 CPUID_EXT_RDRAND) {
514                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
515             }
516             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
517                 CPUID_7_0_EBX_INVPCID) {
518                 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
519             }
520             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
521                 CPUID_7_0_EBX_RDSEED) {
522                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
523             }
524             if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
525                 CPUID_EXT2_RDTSCP) {
526                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
527             }
528         }
529         /* fall through */
530     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
531     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
532     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
533     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
534         /*
535          * Return true for bits that can be one, but do not have to be one.
536          * The SDM tells us which bits could have a "must be one" setting,
537          * so we can do the opposite transformation in make_vmx_msr_value.
538          */
539         must_be_one = (uint32_t)value;
540         can_be_one = (uint32_t)(value >> 32);
541         return can_be_one & ~must_be_one;
542 
543     default:
544         return value;
545     }
546 }
547 
548 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
549                                      int *max_banks)
550 {
551     int r;
552 
553     r = kvm_check_extension(s, KVM_CAP_MCE);
554     if (r > 0) {
555         *max_banks = r;
556         return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
557     }
558     return -ENOSYS;
559 }
560 
561 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
562 {
563     CPUState *cs = CPU(cpu);
564     CPUX86State *env = &cpu->env;
565     uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
566                       MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
567     uint64_t mcg_status = MCG_STATUS_MCIP;
568     int flags = 0;
569 
570     if (code == BUS_MCEERR_AR) {
571         status |= MCI_STATUS_AR | 0x134;
572         mcg_status |= MCG_STATUS_EIPV;
573     } else {
574         status |= 0xc0;
575         mcg_status |= MCG_STATUS_RIPV;
576     }
577 
578     flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
579     /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
580      * guest kernel back into env->mcg_ext_ctl.
581      */
582     cpu_synchronize_state(cs);
583     if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
584         mcg_status |= MCG_STATUS_LMCE;
585         flags = 0;
586     }
587 
588     cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
589                        (MCM_ADDR_PHYS << 6) | 0xc, flags);
590 }
591 
592 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
593 {
594     MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
595 
596     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
597                                    &mff);
598 }
599 
600 static void hardware_memory_error(void *host_addr)
601 {
602     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
603     error_report("QEMU got Hardware memory error at addr %p", host_addr);
604     exit(1);
605 }
606 
607 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
608 {
609     X86CPU *cpu = X86_CPU(c);
610     CPUX86State *env = &cpu->env;
611     ram_addr_t ram_addr;
612     hwaddr paddr;
613 
614     /* If we get an action required MCE, it has been injected by KVM
615      * while the VM was running.  An action optional MCE instead should
616      * be coming from the main thread, which qemu_init_sigbus identifies
617      * as the "early kill" thread.
618      */
619     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
620 
621     if ((env->mcg_cap & MCG_SER_P) && addr) {
622         ram_addr = qemu_ram_addr_from_host(addr);
623         if (ram_addr != RAM_ADDR_INVALID &&
624             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
625             kvm_hwpoison_page_add(ram_addr);
626             kvm_mce_inject(cpu, paddr, code);
627 
628             /*
629              * Use different logging severity based on error type.
630              * If there is additional MCE reporting on the hypervisor, QEMU VA
631              * could be another source to identify the PA and MCE details.
632              */
633             if (code == BUS_MCEERR_AR) {
634                 error_report("Guest MCE Memory Error at QEMU addr %p and "
635                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
636                     addr, paddr, "BUS_MCEERR_AR");
637             } else {
638                  warn_report("Guest MCE Memory Error at QEMU addr %p and "
639                      "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
640                      addr, paddr, "BUS_MCEERR_AO");
641             }
642 
643             return;
644         }
645 
646         if (code == BUS_MCEERR_AO) {
647             warn_report("Hardware memory error at addr %p of type %s "
648                 "for memory used by QEMU itself instead of guest system!",
649                  addr, "BUS_MCEERR_AO");
650         }
651     }
652 
653     if (code == BUS_MCEERR_AR) {
654         hardware_memory_error(addr);
655     }
656 
657     /* Hope we are lucky for AO MCE, just notify a event */
658     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
659 }
660 
661 static void kvm_reset_exception(CPUX86State *env)
662 {
663     env->exception_nr = -1;
664     env->exception_pending = 0;
665     env->exception_injected = 0;
666     env->exception_has_payload = false;
667     env->exception_payload = 0;
668 }
669 
670 static void kvm_queue_exception(CPUX86State *env,
671                                 int32_t exception_nr,
672                                 uint8_t exception_has_payload,
673                                 uint64_t exception_payload)
674 {
675     assert(env->exception_nr == -1);
676     assert(!env->exception_pending);
677     assert(!env->exception_injected);
678     assert(!env->exception_has_payload);
679 
680     env->exception_nr = exception_nr;
681 
682     if (has_exception_payload) {
683         env->exception_pending = 1;
684 
685         env->exception_has_payload = exception_has_payload;
686         env->exception_payload = exception_payload;
687     } else {
688         env->exception_injected = 1;
689 
690         if (exception_nr == EXCP01_DB) {
691             assert(exception_has_payload);
692             env->dr[6] = exception_payload;
693         } else if (exception_nr == EXCP0E_PAGE) {
694             assert(exception_has_payload);
695             env->cr[2] = exception_payload;
696         } else {
697             assert(!exception_has_payload);
698         }
699     }
700 }
701 
702 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
703 {
704     CPUX86State *env = &cpu->env;
705 
706     if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
707         unsigned int bank, bank_num = env->mcg_cap & 0xff;
708         struct kvm_x86_mce mce;
709 
710         kvm_reset_exception(env);
711 
712         /*
713          * There must be at least one bank in use if an MCE is pending.
714          * Find it and use its values for the event injection.
715          */
716         for (bank = 0; bank < bank_num; bank++) {
717             if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
718                 break;
719             }
720         }
721         assert(bank < bank_num);
722 
723         mce.bank = bank;
724         mce.status = env->mce_banks[bank * 4 + 1];
725         mce.mcg_status = env->mcg_status;
726         mce.addr = env->mce_banks[bank * 4 + 2];
727         mce.misc = env->mce_banks[bank * 4 + 3];
728 
729         return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
730     }
731     return 0;
732 }
733 
734 static void cpu_update_state(void *opaque, bool running, RunState state)
735 {
736     CPUX86State *env = opaque;
737 
738     if (running) {
739         env->tsc_valid = false;
740     }
741 }
742 
743 unsigned long kvm_arch_vcpu_id(CPUState *cs)
744 {
745     X86CPU *cpu = X86_CPU(cs);
746     return cpu->apic_id;
747 }
748 
749 #ifndef KVM_CPUID_SIGNATURE_NEXT
750 #define KVM_CPUID_SIGNATURE_NEXT                0x40000100
751 #endif
752 
753 static bool hyperv_enabled(X86CPU *cpu)
754 {
755     return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
756         ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
757          cpu->hyperv_features || cpu->hyperv_passthrough);
758 }
759 
760 /*
761  * Check whether target_freq is within conservative
762  * ntp correctable bounds (250ppm) of freq
763  */
764 static inline bool freq_within_bounds(int freq, int target_freq)
765 {
766         int max_freq = freq + (freq * 250 / 1000000);
767         int min_freq = freq - (freq * 250 / 1000000);
768 
769         if (target_freq >= min_freq && target_freq <= max_freq) {
770                 return true;
771         }
772 
773         return false;
774 }
775 
776 static int kvm_arch_set_tsc_khz(CPUState *cs)
777 {
778     X86CPU *cpu = X86_CPU(cs);
779     CPUX86State *env = &cpu->env;
780     int r, cur_freq;
781     bool set_ioctl = false;
782 
783     if (!env->tsc_khz) {
784         return 0;
785     }
786 
787     cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
788                kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
789 
790     /*
791      * If TSC scaling is supported, attempt to set TSC frequency.
792      */
793     if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
794         set_ioctl = true;
795     }
796 
797     /*
798      * If desired TSC frequency is within bounds of NTP correction,
799      * attempt to set TSC frequency.
800      */
801     if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
802         set_ioctl = true;
803     }
804 
805     r = set_ioctl ?
806         kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
807         -ENOTSUP;
808 
809     if (r < 0) {
810         /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
811          * TSC frequency doesn't match the one we want.
812          */
813         cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
814                    kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
815                    -ENOTSUP;
816         if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
817             warn_report("TSC frequency mismatch between "
818                         "VM (%" PRId64 " kHz) and host (%d kHz), "
819                         "and TSC scaling unavailable",
820                         env->tsc_khz, cur_freq);
821             return r;
822         }
823     }
824 
825     return 0;
826 }
827 
828 static bool tsc_is_stable_and_known(CPUX86State *env)
829 {
830     if (!env->tsc_khz) {
831         return false;
832     }
833     return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
834         || env->user_tsc_khz;
835 }
836 
837 static struct {
838     const char *desc;
839     struct {
840         uint32_t func;
841         int reg;
842         uint32_t bits;
843     } flags[2];
844     uint64_t dependencies;
845 } kvm_hyperv_properties[] = {
846     [HYPERV_FEAT_RELAXED] = {
847         .desc = "relaxed timing (hv-relaxed)",
848         .flags = {
849             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
850              .bits = HV_RELAXED_TIMING_RECOMMENDED}
851         }
852     },
853     [HYPERV_FEAT_VAPIC] = {
854         .desc = "virtual APIC (hv-vapic)",
855         .flags = {
856             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
857              .bits = HV_APIC_ACCESS_AVAILABLE}
858         }
859     },
860     [HYPERV_FEAT_TIME] = {
861         .desc = "clocksources (hv-time)",
862         .flags = {
863             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
864              .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
865         }
866     },
867     [HYPERV_FEAT_CRASH] = {
868         .desc = "crash MSRs (hv-crash)",
869         .flags = {
870             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
871              .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
872         }
873     },
874     [HYPERV_FEAT_RESET] = {
875         .desc = "reset MSR (hv-reset)",
876         .flags = {
877             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
878              .bits = HV_RESET_AVAILABLE}
879         }
880     },
881     [HYPERV_FEAT_VPINDEX] = {
882         .desc = "VP_INDEX MSR (hv-vpindex)",
883         .flags = {
884             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
885              .bits = HV_VP_INDEX_AVAILABLE}
886         }
887     },
888     [HYPERV_FEAT_RUNTIME] = {
889         .desc = "VP_RUNTIME MSR (hv-runtime)",
890         .flags = {
891             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
892              .bits = HV_VP_RUNTIME_AVAILABLE}
893         }
894     },
895     [HYPERV_FEAT_SYNIC] = {
896         .desc = "synthetic interrupt controller (hv-synic)",
897         .flags = {
898             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
899              .bits = HV_SYNIC_AVAILABLE}
900         }
901     },
902     [HYPERV_FEAT_STIMER] = {
903         .desc = "synthetic timers (hv-stimer)",
904         .flags = {
905             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
906              .bits = HV_SYNTIMERS_AVAILABLE}
907         },
908         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
909     },
910     [HYPERV_FEAT_FREQUENCIES] = {
911         .desc = "frequency MSRs (hv-frequencies)",
912         .flags = {
913             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
914              .bits = HV_ACCESS_FREQUENCY_MSRS},
915             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
916              .bits = HV_FREQUENCY_MSRS_AVAILABLE}
917         }
918     },
919     [HYPERV_FEAT_REENLIGHTENMENT] = {
920         .desc = "reenlightenment MSRs (hv-reenlightenment)",
921         .flags = {
922             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
923              .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
924         }
925     },
926     [HYPERV_FEAT_TLBFLUSH] = {
927         .desc = "paravirtualized TLB flush (hv-tlbflush)",
928         .flags = {
929             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
930              .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
931              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
932         },
933         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
934     },
935     [HYPERV_FEAT_EVMCS] = {
936         .desc = "enlightened VMCS (hv-evmcs)",
937         .flags = {
938             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
939              .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
940         },
941         .dependencies = BIT(HYPERV_FEAT_VAPIC)
942     },
943     [HYPERV_FEAT_IPI] = {
944         .desc = "paravirtualized IPI (hv-ipi)",
945         .flags = {
946             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
947              .bits = HV_CLUSTER_IPI_RECOMMENDED |
948              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
949         },
950         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
951     },
952     [HYPERV_FEAT_STIMER_DIRECT] = {
953         .desc = "direct mode synthetic timers (hv-stimer-direct)",
954         .flags = {
955             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
956              .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
957         },
958         .dependencies = BIT(HYPERV_FEAT_STIMER)
959     },
960     [HYPERV_FEAT_AVIC] = {
961         .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
962         .flags = {
963             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
964              .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
965         }
966     },
967 };
968 
969 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
970                                            bool do_sys_ioctl)
971 {
972     struct kvm_cpuid2 *cpuid;
973     int r, size;
974 
975     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
976     cpuid = g_malloc0(size);
977     cpuid->nent = max;
978 
979     if (do_sys_ioctl) {
980         r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
981     } else {
982         r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
983     }
984     if (r == 0 && cpuid->nent >= max) {
985         r = -E2BIG;
986     }
987     if (r < 0) {
988         if (r == -E2BIG) {
989             g_free(cpuid);
990             return NULL;
991         } else {
992             fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
993                     strerror(-r));
994             exit(1);
995         }
996     }
997     return cpuid;
998 }
999 
1000 /*
1001  * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1002  * for all entries.
1003  */
1004 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1005 {
1006     struct kvm_cpuid2 *cpuid;
1007     /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000080 leaves */
1008     int max = 10;
1009     int i;
1010     bool do_sys_ioctl;
1011 
1012     do_sys_ioctl =
1013         kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1014 
1015     /*
1016      * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1017      * unsupported, kvm_hyperv_expand_features() checks for that.
1018      */
1019     assert(do_sys_ioctl || cs->kvm_state);
1020 
1021     /*
1022      * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1023      * -E2BIG, however, it doesn't report back the right size. Keep increasing
1024      * it and re-trying until we succeed.
1025      */
1026     while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1027         max++;
1028     }
1029 
1030     /*
1031      * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1032      * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1033      * information early, just check for the capability and set the bit
1034      * manually.
1035      */
1036     if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1037                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1038         for (i = 0; i < cpuid->nent; i++) {
1039             if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1040                 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1041             }
1042         }
1043     }
1044 
1045     return cpuid;
1046 }
1047 
1048 /*
1049  * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1050  * leaves from KVM_CAP_HYPERV* and present MSRs data.
1051  */
1052 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1053 {
1054     X86CPU *cpu = X86_CPU(cs);
1055     struct kvm_cpuid2 *cpuid;
1056     struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1057 
1058     /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1059     cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1060     cpuid->nent = 2;
1061 
1062     /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1063     entry_feat = &cpuid->entries[0];
1064     entry_feat->function = HV_CPUID_FEATURES;
1065 
1066     entry_recomm = &cpuid->entries[1];
1067     entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1068     entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1069 
1070     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1071         entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1072         entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1073         entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1074         entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1075         entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1076     }
1077 
1078     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1079         entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1080         entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1081     }
1082 
1083     if (has_msr_hv_frequencies) {
1084         entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1085         entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1086     }
1087 
1088     if (has_msr_hv_crash) {
1089         entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1090     }
1091 
1092     if (has_msr_hv_reenlightenment) {
1093         entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1094     }
1095 
1096     if (has_msr_hv_reset) {
1097         entry_feat->eax |= HV_RESET_AVAILABLE;
1098     }
1099 
1100     if (has_msr_hv_vpindex) {
1101         entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1102     }
1103 
1104     if (has_msr_hv_runtime) {
1105         entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1106     }
1107 
1108     if (has_msr_hv_synic) {
1109         unsigned int cap = cpu->hyperv_synic_kvm_only ?
1110             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1111 
1112         if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1113             entry_feat->eax |= HV_SYNIC_AVAILABLE;
1114         }
1115     }
1116 
1117     if (has_msr_hv_stimer) {
1118         entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1119     }
1120 
1121     if (kvm_check_extension(cs->kvm_state,
1122                             KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1123         entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1124         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1125     }
1126 
1127     if (kvm_check_extension(cs->kvm_state,
1128                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1129         entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1130     }
1131 
1132     if (kvm_check_extension(cs->kvm_state,
1133                             KVM_CAP_HYPERV_SEND_IPI) > 0) {
1134         entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1135         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1136     }
1137 
1138     return cpuid;
1139 }
1140 
1141 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1142 {
1143     struct kvm_cpuid_entry2 *entry;
1144     struct kvm_cpuid2 *cpuid;
1145 
1146     if (hv_cpuid_cache) {
1147         cpuid = hv_cpuid_cache;
1148     } else {
1149         if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1150             cpuid = get_supported_hv_cpuid(cs);
1151         } else {
1152             /*
1153              * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1154              * before KVM context is created but this is only done when
1155              * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1156              * KVM_CAP_HYPERV_CPUID.
1157              */
1158             assert(cs->kvm_state);
1159 
1160             cpuid = get_supported_hv_cpuid_legacy(cs);
1161         }
1162         hv_cpuid_cache = cpuid;
1163     }
1164 
1165     if (!cpuid) {
1166         return 0;
1167     }
1168 
1169     entry = cpuid_find_entry(cpuid, func, 0);
1170     if (!entry) {
1171         return 0;
1172     }
1173 
1174     return cpuid_entry_get_reg(entry, reg);
1175 }
1176 
1177 static bool hyperv_feature_supported(CPUState *cs, int feature)
1178 {
1179     uint32_t func, bits;
1180     int i, reg;
1181 
1182     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1183 
1184         func = kvm_hyperv_properties[feature].flags[i].func;
1185         reg = kvm_hyperv_properties[feature].flags[i].reg;
1186         bits = kvm_hyperv_properties[feature].flags[i].bits;
1187 
1188         if (!func) {
1189             continue;
1190         }
1191 
1192         if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1193             return false;
1194         }
1195     }
1196 
1197     return true;
1198 }
1199 
1200 /* Checks that all feature dependencies are enabled */
1201 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1202 {
1203     uint64_t deps;
1204     int dep_feat;
1205 
1206     deps = kvm_hyperv_properties[feature].dependencies;
1207     while (deps) {
1208         dep_feat = ctz64(deps);
1209         if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1210             error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1211                        kvm_hyperv_properties[feature].desc,
1212                        kvm_hyperv_properties[dep_feat].desc);
1213             return false;
1214         }
1215         deps &= ~(1ull << dep_feat);
1216     }
1217 
1218     return true;
1219 }
1220 
1221 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1222 {
1223     X86CPU *cpu = X86_CPU(cs);
1224     uint32_t r = 0;
1225     int i, j;
1226 
1227     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1228         if (!hyperv_feat_enabled(cpu, i)) {
1229             continue;
1230         }
1231 
1232         for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1233             if (kvm_hyperv_properties[i].flags[j].func != func) {
1234                 continue;
1235             }
1236             if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1237                 continue;
1238             }
1239 
1240             r |= kvm_hyperv_properties[i].flags[j].bits;
1241         }
1242     }
1243 
1244     return r;
1245 }
1246 
1247 /*
1248  * Expand Hyper-V CPU features. In partucular, check that all the requested
1249  * features are supported by the host and the sanity of the configuration
1250  * (that all the required dependencies are included). Also, this takes care
1251  * of 'hv_passthrough' mode and fills the environment with all supported
1252  * Hyper-V features.
1253  */
1254 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1255 {
1256     CPUState *cs = CPU(cpu);
1257     Error *local_err = NULL;
1258     int feat;
1259 
1260     if (!hyperv_enabled(cpu))
1261         return true;
1262 
1263     /*
1264      * When kvm_hyperv_expand_features is called at CPU feature expansion
1265      * time per-CPU kvm_state is not available yet so we can only proceed
1266      * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1267      */
1268     if (!cs->kvm_state &&
1269         !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1270         return true;
1271 
1272     if (cpu->hyperv_passthrough) {
1273         cpu->hyperv_vendor_id[0] =
1274             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1275         cpu->hyperv_vendor_id[1] =
1276             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1277         cpu->hyperv_vendor_id[2] =
1278             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1279         cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1280                                        sizeof(cpu->hyperv_vendor_id) + 1);
1281         memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1282                sizeof(cpu->hyperv_vendor_id));
1283         cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1284 
1285         cpu->hyperv_interface_id[0] =
1286             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1287         cpu->hyperv_interface_id[1] =
1288             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1289         cpu->hyperv_interface_id[2] =
1290             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1291         cpu->hyperv_interface_id[3] =
1292             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1293 
1294         cpu->hyperv_ver_id_build =
1295             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1296         cpu->hyperv_ver_id_major =
1297             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1298         cpu->hyperv_ver_id_minor =
1299             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1300         cpu->hyperv_ver_id_sp =
1301             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1302         cpu->hyperv_ver_id_sb =
1303             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1304         cpu->hyperv_ver_id_sn =
1305             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1306 
1307         cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1308                                             R_EAX);
1309         cpu->hyperv_limits[0] =
1310             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1311         cpu->hyperv_limits[1] =
1312             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1313         cpu->hyperv_limits[2] =
1314             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1315 
1316         cpu->hyperv_spinlock_attempts =
1317             hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1318 
1319         /*
1320          * Mark feature as enabled in 'cpu->hyperv_features' as
1321          * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1322          */
1323         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1324             if (hyperv_feature_supported(cs, feat)) {
1325                 cpu->hyperv_features |= BIT(feat);
1326             }
1327         }
1328     } else {
1329         /* Check features availability and dependencies */
1330         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1331             /* If the feature was not requested skip it. */
1332             if (!hyperv_feat_enabled(cpu, feat)) {
1333                 continue;
1334             }
1335 
1336             /* Check if the feature is supported by KVM */
1337             if (!hyperv_feature_supported(cs, feat)) {
1338                 error_setg(errp, "Hyper-V %s is not supported by kernel",
1339                            kvm_hyperv_properties[feat].desc);
1340                 return false;
1341             }
1342 
1343             /* Check dependencies */
1344             if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1345                 error_propagate(errp, local_err);
1346                 return false;
1347             }
1348         }
1349     }
1350 
1351     /* Additional dependencies not covered by kvm_hyperv_properties[] */
1352     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1353         !cpu->hyperv_synic_kvm_only &&
1354         !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1355         error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1356                    kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1357                    kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1358         return false;
1359     }
1360 
1361     return true;
1362 }
1363 
1364 /*
1365  * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1366  */
1367 static int hyperv_fill_cpuids(CPUState *cs,
1368                               struct kvm_cpuid_entry2 *cpuid_ent)
1369 {
1370     X86CPU *cpu = X86_CPU(cs);
1371     struct kvm_cpuid_entry2 *c;
1372     uint32_t cpuid_i = 0;
1373 
1374     c = &cpuid_ent[cpuid_i++];
1375     c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1376     c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1377         HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1378     c->ebx = cpu->hyperv_vendor_id[0];
1379     c->ecx = cpu->hyperv_vendor_id[1];
1380     c->edx = cpu->hyperv_vendor_id[2];
1381 
1382     c = &cpuid_ent[cpuid_i++];
1383     c->function = HV_CPUID_INTERFACE;
1384     c->eax = cpu->hyperv_interface_id[0];
1385     c->ebx = cpu->hyperv_interface_id[1];
1386     c->ecx = cpu->hyperv_interface_id[2];
1387     c->edx = cpu->hyperv_interface_id[3];
1388 
1389     c = &cpuid_ent[cpuid_i++];
1390     c->function = HV_CPUID_VERSION;
1391     c->eax = cpu->hyperv_ver_id_build;
1392     c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1393         cpu->hyperv_ver_id_minor;
1394     c->ecx = cpu->hyperv_ver_id_sp;
1395     c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1396         (cpu->hyperv_ver_id_sn & 0xffffff);
1397 
1398     c = &cpuid_ent[cpuid_i++];
1399     c->function = HV_CPUID_FEATURES;
1400     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1401     c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1402     c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1403 
1404     /* Unconditionally required with any Hyper-V enlightenment */
1405     c->eax |= HV_HYPERCALL_AVAILABLE;
1406 
1407     /* SynIC and Vmbus devices require messages/signals hypercalls */
1408     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1409         !cpu->hyperv_synic_kvm_only) {
1410         c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1411     }
1412 
1413 
1414     /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1415     c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1416 
1417     c = &cpuid_ent[cpuid_i++];
1418     c->function = HV_CPUID_ENLIGHTMENT_INFO;
1419     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1420     c->ebx = cpu->hyperv_spinlock_attempts;
1421 
1422     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1423         !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1424         c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1425     }
1426 
1427     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1428         c->eax |= HV_NO_NONARCH_CORESHARING;
1429     } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1430         c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1431             HV_NO_NONARCH_CORESHARING;
1432     }
1433 
1434     c = &cpuid_ent[cpuid_i++];
1435     c->function = HV_CPUID_IMPLEMENT_LIMITS;
1436     c->eax = cpu->hv_max_vps;
1437     c->ebx = cpu->hyperv_limits[0];
1438     c->ecx = cpu->hyperv_limits[1];
1439     c->edx = cpu->hyperv_limits[2];
1440 
1441     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1442         uint32_t function;
1443 
1444         /* Create zeroed 0x40000006..0x40000009 leaves */
1445         for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1446              function < HV_CPUID_NESTED_FEATURES; function++) {
1447             c = &cpuid_ent[cpuid_i++];
1448             c->function = function;
1449         }
1450 
1451         c = &cpuid_ent[cpuid_i++];
1452         c->function = HV_CPUID_NESTED_FEATURES;
1453         c->eax = cpu->hyperv_nested[0];
1454     }
1455 
1456     return cpuid_i;
1457 }
1458 
1459 static Error *hv_passthrough_mig_blocker;
1460 static Error *hv_no_nonarch_cs_mig_blocker;
1461 
1462 /* Checks that the exposed eVMCS version range is supported by KVM */
1463 static bool evmcs_version_supported(uint16_t evmcs_version,
1464                                     uint16_t supported_evmcs_version)
1465 {
1466     uint8_t min_version = evmcs_version & 0xff;
1467     uint8_t max_version = evmcs_version >> 8;
1468     uint8_t min_supported_version = supported_evmcs_version & 0xff;
1469     uint8_t max_supported_version = supported_evmcs_version >> 8;
1470 
1471     return (min_version >= min_supported_version) &&
1472         (max_version <= max_supported_version);
1473 }
1474 
1475 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
1476 
1477 static int hyperv_init_vcpu(X86CPU *cpu)
1478 {
1479     CPUState *cs = CPU(cpu);
1480     Error *local_err = NULL;
1481     int ret;
1482 
1483     if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1484         error_setg(&hv_passthrough_mig_blocker,
1485                    "'hv-passthrough' CPU flag prevents migration, use explicit"
1486                    " set of hv-* flags instead");
1487         ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1488         if (ret < 0) {
1489             error_report_err(local_err);
1490             return ret;
1491         }
1492     }
1493 
1494     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1495         hv_no_nonarch_cs_mig_blocker == NULL) {
1496         error_setg(&hv_no_nonarch_cs_mig_blocker,
1497                    "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1498                    " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1499                    " make sure SMT is disabled and/or that vCPUs are properly"
1500                    " pinned)");
1501         ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1502         if (ret < 0) {
1503             error_report_err(local_err);
1504             return ret;
1505         }
1506     }
1507 
1508     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1509         /*
1510          * the kernel doesn't support setting vp_index; assert that its value
1511          * is in sync
1512          */
1513         struct {
1514             struct kvm_msrs info;
1515             struct kvm_msr_entry entries[1];
1516         } msr_data = {
1517             .info.nmsrs = 1,
1518             .entries[0].index = HV_X64_MSR_VP_INDEX,
1519         };
1520 
1521         ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
1522         if (ret < 0) {
1523             return ret;
1524         }
1525         assert(ret == 1);
1526 
1527         if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
1528             error_report("kernel's vp_index != QEMU's vp_index");
1529             return -ENXIO;
1530         }
1531     }
1532 
1533     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1534         uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1535             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1536         ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1537         if (ret < 0) {
1538             error_report("failed to turn on HyperV SynIC in KVM: %s",
1539                          strerror(-ret));
1540             return ret;
1541         }
1542 
1543         if (!cpu->hyperv_synic_kvm_only) {
1544             ret = hyperv_x86_synic_add(cpu);
1545             if (ret < 0) {
1546                 error_report("failed to create HyperV SynIC: %s",
1547                              strerror(-ret));
1548                 return ret;
1549             }
1550         }
1551     }
1552 
1553     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1554         uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1555         uint16_t supported_evmcs_version;
1556 
1557         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1558                                   (uintptr_t)&supported_evmcs_version);
1559 
1560         /*
1561          * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1562          * option sets. Note: we hardcode the maximum supported eVMCS version
1563          * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1564          * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1565          * to be added.
1566          */
1567         if (ret < 0) {
1568             error_report("Hyper-V %s is not supported by kernel",
1569                          kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1570             return ret;
1571         }
1572 
1573         if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1574             error_report("eVMCS version range [%d..%d] is not supported by "
1575                          "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1576                          evmcs_version >> 8, supported_evmcs_version & 0xff,
1577                          supported_evmcs_version >> 8);
1578             return -ENOTSUP;
1579         }
1580 
1581         cpu->hyperv_nested[0] = evmcs_version;
1582     }
1583 
1584     if (cpu->hyperv_enforce_cpuid) {
1585         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1586         if (ret < 0) {
1587             error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1588                          strerror(-ret));
1589             return ret;
1590         }
1591     }
1592 
1593     return 0;
1594 }
1595 
1596 static Error *invtsc_mig_blocker;
1597 
1598 #define KVM_MAX_CPUID_ENTRIES  100
1599 
1600 static void kvm_init_xsave(CPUX86State *env)
1601 {
1602     if (has_xsave2) {
1603         env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1604     } else if (has_xsave) {
1605         env->xsave_buf_len = sizeof(struct kvm_xsave);
1606     } else {
1607         return;
1608     }
1609 
1610     env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1611     memset(env->xsave_buf, 0, env->xsave_buf_len);
1612     /*
1613      * The allocated storage must be large enough for all of the
1614      * possible XSAVE state components.
1615      */
1616     assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1617            env->xsave_buf_len);
1618 }
1619 
1620 int kvm_arch_init_vcpu(CPUState *cs)
1621 {
1622     struct {
1623         struct kvm_cpuid2 cpuid;
1624         struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1625     } cpuid_data;
1626     /*
1627      * The kernel defines these structs with padding fields so there
1628      * should be no extra padding in our cpuid_data struct.
1629      */
1630     QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1631                       sizeof(struct kvm_cpuid2) +
1632                       sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1633 
1634     X86CPU *cpu = X86_CPU(cs);
1635     CPUX86State *env = &cpu->env;
1636     uint32_t limit, i, j, cpuid_i;
1637     uint32_t unused;
1638     struct kvm_cpuid_entry2 *c;
1639     uint32_t signature[3];
1640     int kvm_base = KVM_CPUID_SIGNATURE;
1641     int max_nested_state_len;
1642     int r;
1643     Error *local_err = NULL;
1644 
1645     memset(&cpuid_data, 0, sizeof(cpuid_data));
1646 
1647     cpuid_i = 0;
1648 
1649     has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
1650 
1651     r = kvm_arch_set_tsc_khz(cs);
1652     if (r < 0) {
1653         return r;
1654     }
1655 
1656     /* vcpu's TSC frequency is either specified by user, or following
1657      * the value used by KVM if the former is not present. In the
1658      * latter case, we query it from KVM and record in env->tsc_khz,
1659      * so that vcpu's TSC frequency can be migrated later via this field.
1660      */
1661     if (!env->tsc_khz) {
1662         r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1663             kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1664             -ENOTSUP;
1665         if (r > 0) {
1666             env->tsc_khz = r;
1667         }
1668     }
1669 
1670     env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1671 
1672     /*
1673      * kvm_hyperv_expand_features() is called here for the second time in case
1674      * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
1675      * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
1676      * check which Hyper-V enlightenments are supported and which are not, we
1677      * can still proceed and check/expand Hyper-V enlightenments here so legacy
1678      * behavior is preserved.
1679      */
1680     if (!kvm_hyperv_expand_features(cpu, &local_err)) {
1681         error_report_err(local_err);
1682         return -ENOSYS;
1683     }
1684 
1685     if (hyperv_enabled(cpu)) {
1686         r = hyperv_init_vcpu(cpu);
1687         if (r) {
1688             return r;
1689         }
1690 
1691         cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
1692         kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1693         has_msr_hv_hypercall = true;
1694     }
1695 
1696     if (cpu->expose_kvm) {
1697         memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1698         c = &cpuid_data.entries[cpuid_i++];
1699         c->function = KVM_CPUID_SIGNATURE | kvm_base;
1700         c->eax = KVM_CPUID_FEATURES | kvm_base;
1701         c->ebx = signature[0];
1702         c->ecx = signature[1];
1703         c->edx = signature[2];
1704 
1705         c = &cpuid_data.entries[cpuid_i++];
1706         c->function = KVM_CPUID_FEATURES | kvm_base;
1707         c->eax = env->features[FEAT_KVM];
1708         c->edx = env->features[FEAT_KVM_HINTS];
1709     }
1710 
1711     cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1712 
1713     if (cpu->kvm_pv_enforce_cpuid) {
1714         r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
1715         if (r < 0) {
1716             fprintf(stderr,
1717                     "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
1718                     strerror(-r));
1719             abort();
1720         }
1721     }
1722 
1723     for (i = 0; i <= limit; i++) {
1724         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1725             fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1726             abort();
1727         }
1728         c = &cpuid_data.entries[cpuid_i++];
1729 
1730         switch (i) {
1731         case 2: {
1732             /* Keep reading function 2 till all the input is received */
1733             int times;
1734 
1735             c->function = i;
1736             c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1737                        KVM_CPUID_FLAG_STATE_READ_NEXT;
1738             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1739             times = c->eax & 0xff;
1740 
1741             for (j = 1; j < times; ++j) {
1742                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1743                     fprintf(stderr, "cpuid_data is full, no space for "
1744                             "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1745                     abort();
1746                 }
1747                 c = &cpuid_data.entries[cpuid_i++];
1748                 c->function = i;
1749                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1750                 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1751             }
1752             break;
1753         }
1754         case 0x1f:
1755             if (env->nr_dies < 2) {
1756                 break;
1757             }
1758             /* fallthrough */
1759         case 4:
1760         case 0xb:
1761         case 0xd:
1762             for (j = 0; ; j++) {
1763                 if (i == 0xd && j == 64) {
1764                     break;
1765                 }
1766 
1767                 if (i == 0x1f && j == 64) {
1768                     break;
1769                 }
1770 
1771                 c->function = i;
1772                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1773                 c->index = j;
1774                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1775 
1776                 if (i == 4 && c->eax == 0) {
1777                     break;
1778                 }
1779                 if (i == 0xb && !(c->ecx & 0xff00)) {
1780                     break;
1781                 }
1782                 if (i == 0x1f && !(c->ecx & 0xff00)) {
1783                     break;
1784                 }
1785                 if (i == 0xd && c->eax == 0) {
1786                     continue;
1787                 }
1788                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1789                     fprintf(stderr, "cpuid_data is full, no space for "
1790                             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1791                     abort();
1792                 }
1793                 c = &cpuid_data.entries[cpuid_i++];
1794             }
1795             break;
1796         case 0x7:
1797         case 0x12:
1798             for (j = 0; ; j++) {
1799                 c->function = i;
1800                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1801                 c->index = j;
1802                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1803 
1804                 if (j > 1 && (c->eax & 0xf) != 1) {
1805                     break;
1806                 }
1807 
1808                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1809                     fprintf(stderr, "cpuid_data is full, no space for "
1810                                 "cpuid(eax:0x12,ecx:0x%x)\n", j);
1811                     abort();
1812                 }
1813                 c = &cpuid_data.entries[cpuid_i++];
1814             }
1815             break;
1816         case 0x14:
1817         case 0x1d:
1818         case 0x1e: {
1819             uint32_t times;
1820 
1821             c->function = i;
1822             c->index = 0;
1823             c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1824             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1825             times = c->eax;
1826 
1827             for (j = 1; j <= times; ++j) {
1828                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1829                     fprintf(stderr, "cpuid_data is full, no space for "
1830                                 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1831                     abort();
1832                 }
1833                 c = &cpuid_data.entries[cpuid_i++];
1834                 c->function = i;
1835                 c->index = j;
1836                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1837                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1838             }
1839             break;
1840         }
1841         default:
1842             c->function = i;
1843             c->flags = 0;
1844             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1845             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1846                 /*
1847                  * KVM already returns all zeroes if a CPUID entry is missing,
1848                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1849                  */
1850                 cpuid_i--;
1851             }
1852             break;
1853         }
1854     }
1855 
1856     if (limit >= 0x0a) {
1857         uint32_t eax, edx;
1858 
1859         cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1860 
1861         has_architectural_pmu_version = eax & 0xff;
1862         if (has_architectural_pmu_version > 0) {
1863             num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1864 
1865             /* Shouldn't be more than 32, since that's the number of bits
1866              * available in EBX to tell us _which_ counters are available.
1867              * Play it safe.
1868              */
1869             if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1870                 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1871             }
1872 
1873             if (has_architectural_pmu_version > 1) {
1874                 num_architectural_pmu_fixed_counters = edx & 0x1f;
1875 
1876                 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1877                     num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1878                 }
1879             }
1880         }
1881     }
1882 
1883     cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1884 
1885     for (i = 0x80000000; i <= limit; i++) {
1886         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1887             fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1888             abort();
1889         }
1890         c = &cpuid_data.entries[cpuid_i++];
1891 
1892         switch (i) {
1893         case 0x8000001d:
1894             /* Query for all AMD cache information leaves */
1895             for (j = 0; ; j++) {
1896                 c->function = i;
1897                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1898                 c->index = j;
1899                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1900 
1901                 if (c->eax == 0) {
1902                     break;
1903                 }
1904                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1905                     fprintf(stderr, "cpuid_data is full, no space for "
1906                             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1907                     abort();
1908                 }
1909                 c = &cpuid_data.entries[cpuid_i++];
1910             }
1911             break;
1912         default:
1913             c->function = i;
1914             c->flags = 0;
1915             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1916             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1917                 /*
1918                  * KVM already returns all zeroes if a CPUID entry is missing,
1919                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1920                  */
1921                 cpuid_i--;
1922             }
1923             break;
1924         }
1925     }
1926 
1927     /* Call Centaur's CPUID instructions they are supported. */
1928     if (env->cpuid_xlevel2 > 0) {
1929         cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1930 
1931         for (i = 0xC0000000; i <= limit; i++) {
1932             if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1933                 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1934                 abort();
1935             }
1936             c = &cpuid_data.entries[cpuid_i++];
1937 
1938             c->function = i;
1939             c->flags = 0;
1940             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1941         }
1942     }
1943 
1944     cpuid_data.cpuid.nent = cpuid_i;
1945 
1946     if (((env->cpuid_version >> 8)&0xF) >= 6
1947         && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1948            (CPUID_MCE | CPUID_MCA)
1949         && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1950         uint64_t mcg_cap, unsupported_caps;
1951         int banks;
1952         int ret;
1953 
1954         ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1955         if (ret < 0) {
1956             fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1957             return ret;
1958         }
1959 
1960         if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1961             error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1962                          (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1963             return -ENOTSUP;
1964         }
1965 
1966         unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1967         if (unsupported_caps) {
1968             if (unsupported_caps & MCG_LMCE_P) {
1969                 error_report("kvm: LMCE not supported");
1970                 return -ENOTSUP;
1971             }
1972             warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1973                         unsupported_caps);
1974         }
1975 
1976         env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1977         ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1978         if (ret < 0) {
1979             fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1980             return ret;
1981         }
1982     }
1983 
1984     cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
1985 
1986     c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1987     if (c) {
1988         has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1989                                   !!(c->ecx & CPUID_EXT_SMX);
1990     }
1991 
1992     c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
1993     if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
1994         has_msr_feature_control = true;
1995     }
1996 
1997     if (env->mcg_cap & MCG_LMCE_P) {
1998         has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1999     }
2000 
2001     if (!env->user_tsc_khz) {
2002         if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2003             invtsc_mig_blocker == NULL) {
2004             error_setg(&invtsc_mig_blocker,
2005                        "State blocked by non-migratable CPU device"
2006                        " (invtsc flag)");
2007             r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
2008             if (r < 0) {
2009                 error_report_err(local_err);
2010                 return r;
2011             }
2012         }
2013     }
2014 
2015     if (cpu->vmware_cpuid_freq
2016         /* Guests depend on 0x40000000 to detect this feature, so only expose
2017          * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2018         && cpu->expose_kvm
2019         && kvm_base == KVM_CPUID_SIGNATURE
2020         /* TSC clock must be stable and known for this feature. */
2021         && tsc_is_stable_and_known(env)) {
2022 
2023         c = &cpuid_data.entries[cpuid_i++];
2024         c->function = KVM_CPUID_SIGNATURE | 0x10;
2025         c->eax = env->tsc_khz;
2026         c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2027         c->ecx = c->edx = 0;
2028 
2029         c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2030         c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2031     }
2032 
2033     cpuid_data.cpuid.nent = cpuid_i;
2034 
2035     cpuid_data.cpuid.padding = 0;
2036     r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2037     if (r) {
2038         goto fail;
2039     }
2040     kvm_init_xsave(env);
2041 
2042     max_nested_state_len = kvm_max_nested_state_length();
2043     if (max_nested_state_len > 0) {
2044         assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2045 
2046         if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2047             struct kvm_vmx_nested_state_hdr *vmx_hdr;
2048 
2049             env->nested_state = g_malloc0(max_nested_state_len);
2050             env->nested_state->size = max_nested_state_len;
2051 
2052             if (cpu_has_vmx(env)) {
2053                 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
2054                 vmx_hdr = &env->nested_state->hdr.vmx;
2055                 vmx_hdr->vmxon_pa = -1ull;
2056                 vmx_hdr->vmcs12_pa = -1ull;
2057             } else {
2058                 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
2059             }
2060         }
2061     }
2062 
2063     cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2064 
2065     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2066         has_msr_tsc_aux = false;
2067     }
2068 
2069     kvm_init_msrs(cpu);
2070 
2071     return 0;
2072 
2073  fail:
2074     migrate_del_blocker(invtsc_mig_blocker);
2075 
2076     return r;
2077 }
2078 
2079 int kvm_arch_destroy_vcpu(CPUState *cs)
2080 {
2081     X86CPU *cpu = X86_CPU(cs);
2082     CPUX86State *env = &cpu->env;
2083 
2084     if (cpu->kvm_msr_buf) {
2085         g_free(cpu->kvm_msr_buf);
2086         cpu->kvm_msr_buf = NULL;
2087     }
2088 
2089     if (env->nested_state) {
2090         g_free(env->nested_state);
2091         env->nested_state = NULL;
2092     }
2093 
2094     qemu_del_vm_change_state_handler(cpu->vmsentry);
2095 
2096     return 0;
2097 }
2098 
2099 void kvm_arch_reset_vcpu(X86CPU *cpu)
2100 {
2101     CPUX86State *env = &cpu->env;
2102 
2103     env->xcr0 = 1;
2104     if (kvm_irqchip_in_kernel()) {
2105         env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2106                                           KVM_MP_STATE_UNINITIALIZED;
2107     } else {
2108         env->mp_state = KVM_MP_STATE_RUNNABLE;
2109     }
2110 
2111     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2112         int i;
2113         for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2114             env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2115         }
2116 
2117         hyperv_x86_synic_reset(cpu);
2118     }
2119     /* enabled by default */
2120     env->poll_control_msr = 1;
2121 
2122     sev_es_set_reset_vector(CPU(cpu));
2123 }
2124 
2125 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2126 {
2127     CPUX86State *env = &cpu->env;
2128 
2129     /* APs get directly into wait-for-SIPI state.  */
2130     if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2131         env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2132     }
2133 }
2134 
2135 static int kvm_get_supported_feature_msrs(KVMState *s)
2136 {
2137     int ret = 0;
2138 
2139     if (kvm_feature_msrs != NULL) {
2140         return 0;
2141     }
2142 
2143     if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2144         return 0;
2145     }
2146 
2147     struct kvm_msr_list msr_list;
2148 
2149     msr_list.nmsrs = 0;
2150     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2151     if (ret < 0 && ret != -E2BIG) {
2152         error_report("Fetch KVM feature MSR list failed: %s",
2153             strerror(-ret));
2154         return ret;
2155     }
2156 
2157     assert(msr_list.nmsrs > 0);
2158     kvm_feature_msrs = (struct kvm_msr_list *) \
2159         g_malloc0(sizeof(msr_list) +
2160                  msr_list.nmsrs * sizeof(msr_list.indices[0]));
2161 
2162     kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2163     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2164 
2165     if (ret < 0) {
2166         error_report("Fetch KVM feature MSR list failed: %s",
2167             strerror(-ret));
2168         g_free(kvm_feature_msrs);
2169         kvm_feature_msrs = NULL;
2170         return ret;
2171     }
2172 
2173     return 0;
2174 }
2175 
2176 static int kvm_get_supported_msrs(KVMState *s)
2177 {
2178     int ret = 0;
2179     struct kvm_msr_list msr_list, *kvm_msr_list;
2180 
2181     /*
2182      *  Obtain MSR list from KVM.  These are the MSRs that we must
2183      *  save/restore.
2184      */
2185     msr_list.nmsrs = 0;
2186     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2187     if (ret < 0 && ret != -E2BIG) {
2188         return ret;
2189     }
2190     /*
2191      * Old kernel modules had a bug and could write beyond the provided
2192      * memory. Allocate at least a safe amount of 1K.
2193      */
2194     kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2195                                           msr_list.nmsrs *
2196                                           sizeof(msr_list.indices[0])));
2197 
2198     kvm_msr_list->nmsrs = msr_list.nmsrs;
2199     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2200     if (ret >= 0) {
2201         int i;
2202 
2203         for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2204             switch (kvm_msr_list->indices[i]) {
2205             case MSR_STAR:
2206                 has_msr_star = true;
2207                 break;
2208             case MSR_VM_HSAVE_PA:
2209                 has_msr_hsave_pa = true;
2210                 break;
2211             case MSR_TSC_AUX:
2212                 has_msr_tsc_aux = true;
2213                 break;
2214             case MSR_TSC_ADJUST:
2215                 has_msr_tsc_adjust = true;
2216                 break;
2217             case MSR_IA32_TSCDEADLINE:
2218                 has_msr_tsc_deadline = true;
2219                 break;
2220             case MSR_IA32_SMBASE:
2221                 has_msr_smbase = true;
2222                 break;
2223             case MSR_SMI_COUNT:
2224                 has_msr_smi_count = true;
2225                 break;
2226             case MSR_IA32_MISC_ENABLE:
2227                 has_msr_misc_enable = true;
2228                 break;
2229             case MSR_IA32_BNDCFGS:
2230                 has_msr_bndcfgs = true;
2231                 break;
2232             case MSR_IA32_XSS:
2233                 has_msr_xss = true;
2234                 break;
2235             case MSR_IA32_UMWAIT_CONTROL:
2236                 has_msr_umwait = true;
2237                 break;
2238             case HV_X64_MSR_CRASH_CTL:
2239                 has_msr_hv_crash = true;
2240                 break;
2241             case HV_X64_MSR_RESET:
2242                 has_msr_hv_reset = true;
2243                 break;
2244             case HV_X64_MSR_VP_INDEX:
2245                 has_msr_hv_vpindex = true;
2246                 break;
2247             case HV_X64_MSR_VP_RUNTIME:
2248                 has_msr_hv_runtime = true;
2249                 break;
2250             case HV_X64_MSR_SCONTROL:
2251                 has_msr_hv_synic = true;
2252                 break;
2253             case HV_X64_MSR_STIMER0_CONFIG:
2254                 has_msr_hv_stimer = true;
2255                 break;
2256             case HV_X64_MSR_TSC_FREQUENCY:
2257                 has_msr_hv_frequencies = true;
2258                 break;
2259             case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2260                 has_msr_hv_reenlightenment = true;
2261                 break;
2262             case MSR_IA32_SPEC_CTRL:
2263                 has_msr_spec_ctrl = true;
2264                 break;
2265             case MSR_AMD64_TSC_RATIO:
2266                 has_tsc_scale_msr = true;
2267                 break;
2268             case MSR_IA32_TSX_CTRL:
2269                 has_msr_tsx_ctrl = true;
2270                 break;
2271             case MSR_VIRT_SSBD:
2272                 has_msr_virt_ssbd = true;
2273                 break;
2274             case MSR_IA32_ARCH_CAPABILITIES:
2275                 has_msr_arch_capabs = true;
2276                 break;
2277             case MSR_IA32_CORE_CAPABILITY:
2278                 has_msr_core_capabs = true;
2279                 break;
2280             case MSR_IA32_PERF_CAPABILITIES:
2281                 has_msr_perf_capabs = true;
2282                 break;
2283             case MSR_IA32_VMX_VMFUNC:
2284                 has_msr_vmx_vmfunc = true;
2285                 break;
2286             case MSR_IA32_UCODE_REV:
2287                 has_msr_ucode_rev = true;
2288                 break;
2289             case MSR_IA32_VMX_PROCBASED_CTLS2:
2290                 has_msr_vmx_procbased_ctls2 = true;
2291                 break;
2292             case MSR_IA32_PKRS:
2293                 has_msr_pkrs = true;
2294                 break;
2295             }
2296         }
2297     }
2298 
2299     g_free(kvm_msr_list);
2300 
2301     return ret;
2302 }
2303 
2304 static Notifier smram_machine_done;
2305 static KVMMemoryListener smram_listener;
2306 static AddressSpace smram_address_space;
2307 static MemoryRegion smram_as_root;
2308 static MemoryRegion smram_as_mem;
2309 
2310 static void register_smram_listener(Notifier *n, void *unused)
2311 {
2312     MemoryRegion *smram =
2313         (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2314 
2315     /* Outer container... */
2316     memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2317     memory_region_set_enabled(&smram_as_root, true);
2318 
2319     /* ... with two regions inside: normal system memory with low
2320      * priority, and...
2321      */
2322     memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2323                              get_system_memory(), 0, ~0ull);
2324     memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2325     memory_region_set_enabled(&smram_as_mem, true);
2326 
2327     if (smram) {
2328         /* ... SMRAM with higher priority */
2329         memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2330         memory_region_set_enabled(smram, true);
2331     }
2332 
2333     address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2334     kvm_memory_listener_register(kvm_state, &smram_listener,
2335                                  &smram_address_space, 1, "kvm-smram");
2336 }
2337 
2338 int kvm_arch_init(MachineState *ms, KVMState *s)
2339 {
2340     uint64_t identity_base = 0xfffbc000;
2341     uint64_t shadow_mem;
2342     int ret;
2343     struct utsname utsname;
2344     Error *local_err = NULL;
2345 
2346     /*
2347      * Initialize SEV context, if required
2348      *
2349      * If no memory encryption is requested (ms->cgs == NULL) this is
2350      * a no-op.
2351      *
2352      * It's also a no-op if a non-SEV confidential guest support
2353      * mechanism is selected.  SEV is the only mechanism available to
2354      * select on x86 at present, so this doesn't arise, but if new
2355      * mechanisms are supported in future (e.g. TDX), they'll need
2356      * their own initialization either here or elsewhere.
2357      */
2358     ret = sev_kvm_init(ms->cgs, &local_err);
2359     if (ret < 0) {
2360         error_report_err(local_err);
2361         return ret;
2362     }
2363 
2364     if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2365         error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2366         return -ENOTSUP;
2367     }
2368 
2369     has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2370     has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2371     has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2372     has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
2373 
2374     hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2375 
2376     has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2377     if (has_exception_payload) {
2378         ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2379         if (ret < 0) {
2380             error_report("kvm: Failed to enable exception payload cap: %s",
2381                          strerror(-ret));
2382             return ret;
2383         }
2384     }
2385 
2386     ret = kvm_get_supported_msrs(s);
2387     if (ret < 0) {
2388         return ret;
2389     }
2390 
2391     kvm_get_supported_feature_msrs(s);
2392 
2393     uname(&utsname);
2394     lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2395 
2396     /*
2397      * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2398      * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
2399      * Since these must be part of guest physical memory, we need to allocate
2400      * them, both by setting their start addresses in the kernel and by
2401      * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2402      *
2403      * Older KVM versions may not support setting the identity map base. In
2404      * that case we need to stick with the default, i.e. a 256K maximum BIOS
2405      * size.
2406      */
2407     if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2408         /* Allows up to 16M BIOSes. */
2409         identity_base = 0xfeffc000;
2410 
2411         ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2412         if (ret < 0) {
2413             return ret;
2414         }
2415     }
2416 
2417     /* Set TSS base one page after EPT identity map. */
2418     ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2419     if (ret < 0) {
2420         return ret;
2421     }
2422 
2423     /* Tell fw_cfg to notify the BIOS to reserve the range. */
2424     ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2425     if (ret < 0) {
2426         fprintf(stderr, "e820_add_entry() table is full\n");
2427         return ret;
2428     }
2429 
2430     shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2431     if (shadow_mem != -1) {
2432         shadow_mem /= 4096;
2433         ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2434         if (ret < 0) {
2435             return ret;
2436         }
2437     }
2438 
2439     if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2440         object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2441         x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2442         smram_machine_done.notify = register_smram_listener;
2443         qemu_add_machine_init_done_notifier(&smram_machine_done);
2444     }
2445 
2446     if (enable_cpu_pm) {
2447         int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2448         int ret;
2449 
2450 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2451 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2452 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2453 #endif
2454         if (disable_exits) {
2455             disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2456                               KVM_X86_DISABLE_EXITS_HLT |
2457                               KVM_X86_DISABLE_EXITS_PAUSE |
2458                               KVM_X86_DISABLE_EXITS_CSTATE);
2459         }
2460 
2461         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2462                                 disable_exits);
2463         if (ret < 0) {
2464             error_report("kvm: guest stopping CPU not supported: %s",
2465                          strerror(-ret));
2466         }
2467     }
2468 
2469     if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2470         X86MachineState *x86ms = X86_MACHINE(ms);
2471 
2472         if (x86ms->bus_lock_ratelimit > 0) {
2473             ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2474             if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2475                 error_report("kvm: bus lock detection unsupported");
2476                 return -ENOTSUP;
2477             }
2478             ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2479                                     KVM_BUS_LOCK_DETECTION_EXIT);
2480             if (ret < 0) {
2481                 error_report("kvm: Failed to enable bus lock detection cap: %s",
2482                              strerror(-ret));
2483                 return ret;
2484             }
2485             ratelimit_init(&bus_lock_ratelimit_ctrl);
2486             ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2487                                 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2488         }
2489     }
2490 
2491     return 0;
2492 }
2493 
2494 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2495 {
2496     lhs->selector = rhs->selector;
2497     lhs->base = rhs->base;
2498     lhs->limit = rhs->limit;
2499     lhs->type = 3;
2500     lhs->present = 1;
2501     lhs->dpl = 3;
2502     lhs->db = 0;
2503     lhs->s = 1;
2504     lhs->l = 0;
2505     lhs->g = 0;
2506     lhs->avl = 0;
2507     lhs->unusable = 0;
2508 }
2509 
2510 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2511 {
2512     unsigned flags = rhs->flags;
2513     lhs->selector = rhs->selector;
2514     lhs->base = rhs->base;
2515     lhs->limit = rhs->limit;
2516     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2517     lhs->present = (flags & DESC_P_MASK) != 0;
2518     lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2519     lhs->db = (flags >> DESC_B_SHIFT) & 1;
2520     lhs->s = (flags & DESC_S_MASK) != 0;
2521     lhs->l = (flags >> DESC_L_SHIFT) & 1;
2522     lhs->g = (flags & DESC_G_MASK) != 0;
2523     lhs->avl = (flags & DESC_AVL_MASK) != 0;
2524     lhs->unusable = !lhs->present;
2525     lhs->padding = 0;
2526 }
2527 
2528 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2529 {
2530     lhs->selector = rhs->selector;
2531     lhs->base = rhs->base;
2532     lhs->limit = rhs->limit;
2533     lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2534                  ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2535                  (rhs->dpl << DESC_DPL_SHIFT) |
2536                  (rhs->db << DESC_B_SHIFT) |
2537                  (rhs->s * DESC_S_MASK) |
2538                  (rhs->l << DESC_L_SHIFT) |
2539                  (rhs->g * DESC_G_MASK) |
2540                  (rhs->avl * DESC_AVL_MASK);
2541 }
2542 
2543 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2544 {
2545     if (set) {
2546         *kvm_reg = *qemu_reg;
2547     } else {
2548         *qemu_reg = *kvm_reg;
2549     }
2550 }
2551 
2552 static int kvm_getput_regs(X86CPU *cpu, int set)
2553 {
2554     CPUX86State *env = &cpu->env;
2555     struct kvm_regs regs;
2556     int ret = 0;
2557 
2558     if (!set) {
2559         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2560         if (ret < 0) {
2561             return ret;
2562         }
2563     }
2564 
2565     kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2566     kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2567     kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2568     kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2569     kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2570     kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2571     kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2572     kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2573 #ifdef TARGET_X86_64
2574     kvm_getput_reg(&regs.r8, &env->regs[8], set);
2575     kvm_getput_reg(&regs.r9, &env->regs[9], set);
2576     kvm_getput_reg(&regs.r10, &env->regs[10], set);
2577     kvm_getput_reg(&regs.r11, &env->regs[11], set);
2578     kvm_getput_reg(&regs.r12, &env->regs[12], set);
2579     kvm_getput_reg(&regs.r13, &env->regs[13], set);
2580     kvm_getput_reg(&regs.r14, &env->regs[14], set);
2581     kvm_getput_reg(&regs.r15, &env->regs[15], set);
2582 #endif
2583 
2584     kvm_getput_reg(&regs.rflags, &env->eflags, set);
2585     kvm_getput_reg(&regs.rip, &env->eip, set);
2586 
2587     if (set) {
2588         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2589     }
2590 
2591     return ret;
2592 }
2593 
2594 static int kvm_put_fpu(X86CPU *cpu)
2595 {
2596     CPUX86State *env = &cpu->env;
2597     struct kvm_fpu fpu;
2598     int i;
2599 
2600     memset(&fpu, 0, sizeof fpu);
2601     fpu.fsw = env->fpus & ~(7 << 11);
2602     fpu.fsw |= (env->fpstt & 7) << 11;
2603     fpu.fcw = env->fpuc;
2604     fpu.last_opcode = env->fpop;
2605     fpu.last_ip = env->fpip;
2606     fpu.last_dp = env->fpdp;
2607     for (i = 0; i < 8; ++i) {
2608         fpu.ftwx |= (!env->fptags[i]) << i;
2609     }
2610     memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2611     for (i = 0; i < CPU_NB_REGS; i++) {
2612         stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2613         stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2614     }
2615     fpu.mxcsr = env->mxcsr;
2616 
2617     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2618 }
2619 
2620 static int kvm_put_xsave(X86CPU *cpu)
2621 {
2622     CPUX86State *env = &cpu->env;
2623     void *xsave = env->xsave_buf;
2624 
2625     if (!has_xsave) {
2626         return kvm_put_fpu(cpu);
2627     }
2628     x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
2629 
2630     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2631 }
2632 
2633 static int kvm_put_xcrs(X86CPU *cpu)
2634 {
2635     CPUX86State *env = &cpu->env;
2636     struct kvm_xcrs xcrs = {};
2637 
2638     if (!has_xcrs) {
2639         return 0;
2640     }
2641 
2642     xcrs.nr_xcrs = 1;
2643     xcrs.flags = 0;
2644     xcrs.xcrs[0].xcr = 0;
2645     xcrs.xcrs[0].value = env->xcr0;
2646     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2647 }
2648 
2649 static int kvm_put_sregs(X86CPU *cpu)
2650 {
2651     CPUX86State *env = &cpu->env;
2652     struct kvm_sregs sregs;
2653 
2654     /*
2655      * The interrupt_bitmap is ignored because KVM_SET_SREGS is
2656      * always followed by KVM_SET_VCPU_EVENTS.
2657      */
2658     memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2659 
2660     if ((env->eflags & VM_MASK)) {
2661         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2662         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2663         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2664         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2665         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2666         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2667     } else {
2668         set_seg(&sregs.cs, &env->segs[R_CS]);
2669         set_seg(&sregs.ds, &env->segs[R_DS]);
2670         set_seg(&sregs.es, &env->segs[R_ES]);
2671         set_seg(&sregs.fs, &env->segs[R_FS]);
2672         set_seg(&sregs.gs, &env->segs[R_GS]);
2673         set_seg(&sregs.ss, &env->segs[R_SS]);
2674     }
2675 
2676     set_seg(&sregs.tr, &env->tr);
2677     set_seg(&sregs.ldt, &env->ldt);
2678 
2679     sregs.idt.limit = env->idt.limit;
2680     sregs.idt.base = env->idt.base;
2681     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2682     sregs.gdt.limit = env->gdt.limit;
2683     sregs.gdt.base = env->gdt.base;
2684     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2685 
2686     sregs.cr0 = env->cr[0];
2687     sregs.cr2 = env->cr[2];
2688     sregs.cr3 = env->cr[3];
2689     sregs.cr4 = env->cr[4];
2690 
2691     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2692     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2693 
2694     sregs.efer = env->efer;
2695 
2696     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2697 }
2698 
2699 static int kvm_put_sregs2(X86CPU *cpu)
2700 {
2701     CPUX86State *env = &cpu->env;
2702     struct kvm_sregs2 sregs;
2703     int i;
2704 
2705     sregs.flags = 0;
2706 
2707     if ((env->eflags & VM_MASK)) {
2708         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2709         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2710         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2711         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2712         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2713         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2714     } else {
2715         set_seg(&sregs.cs, &env->segs[R_CS]);
2716         set_seg(&sregs.ds, &env->segs[R_DS]);
2717         set_seg(&sregs.es, &env->segs[R_ES]);
2718         set_seg(&sregs.fs, &env->segs[R_FS]);
2719         set_seg(&sregs.gs, &env->segs[R_GS]);
2720         set_seg(&sregs.ss, &env->segs[R_SS]);
2721     }
2722 
2723     set_seg(&sregs.tr, &env->tr);
2724     set_seg(&sregs.ldt, &env->ldt);
2725 
2726     sregs.idt.limit = env->idt.limit;
2727     sregs.idt.base = env->idt.base;
2728     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2729     sregs.gdt.limit = env->gdt.limit;
2730     sregs.gdt.base = env->gdt.base;
2731     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2732 
2733     sregs.cr0 = env->cr[0];
2734     sregs.cr2 = env->cr[2];
2735     sregs.cr3 = env->cr[3];
2736     sregs.cr4 = env->cr[4];
2737 
2738     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2739     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2740 
2741     sregs.efer = env->efer;
2742 
2743     if (env->pdptrs_valid) {
2744         for (i = 0; i < 4; i++) {
2745             sregs.pdptrs[i] = env->pdptrs[i];
2746         }
2747         sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
2748     }
2749 
2750     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
2751 }
2752 
2753 
2754 static void kvm_msr_buf_reset(X86CPU *cpu)
2755 {
2756     memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2757 }
2758 
2759 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2760 {
2761     struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2762     void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2763     struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2764 
2765     assert((void *)(entry + 1) <= limit);
2766 
2767     entry->index = index;
2768     entry->reserved = 0;
2769     entry->data = value;
2770     msrs->nmsrs++;
2771 }
2772 
2773 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2774 {
2775     kvm_msr_buf_reset(cpu);
2776     kvm_msr_entry_add(cpu, index, value);
2777 
2778     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2779 }
2780 
2781 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2782 {
2783     int ret;
2784 
2785     ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2786     assert(ret == 1);
2787 }
2788 
2789 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2790 {
2791     CPUX86State *env = &cpu->env;
2792     int ret;
2793 
2794     if (!has_msr_tsc_deadline) {
2795         return 0;
2796     }
2797 
2798     ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2799     if (ret < 0) {
2800         return ret;
2801     }
2802 
2803     assert(ret == 1);
2804     return 0;
2805 }
2806 
2807 /*
2808  * Provide a separate write service for the feature control MSR in order to
2809  * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2810  * before writing any other state because forcibly leaving nested mode
2811  * invalidates the VCPU state.
2812  */
2813 static int kvm_put_msr_feature_control(X86CPU *cpu)
2814 {
2815     int ret;
2816 
2817     if (!has_msr_feature_control) {
2818         return 0;
2819     }
2820 
2821     ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2822                           cpu->env.msr_ia32_feature_control);
2823     if (ret < 0) {
2824         return ret;
2825     }
2826 
2827     assert(ret == 1);
2828     return 0;
2829 }
2830 
2831 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2832 {
2833     uint32_t default1, can_be_one, can_be_zero;
2834     uint32_t must_be_one;
2835 
2836     switch (index) {
2837     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2838         default1 = 0x00000016;
2839         break;
2840     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2841         default1 = 0x0401e172;
2842         break;
2843     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2844         default1 = 0x000011ff;
2845         break;
2846     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2847         default1 = 0x00036dff;
2848         break;
2849     case MSR_IA32_VMX_PROCBASED_CTLS2:
2850         default1 = 0;
2851         break;
2852     default:
2853         abort();
2854     }
2855 
2856     /* If a feature bit is set, the control can be either set or clear.
2857      * Otherwise the value is limited to either 0 or 1 by default1.
2858      */
2859     can_be_one = features | default1;
2860     can_be_zero = features | ~default1;
2861     must_be_one = ~can_be_zero;
2862 
2863     /*
2864      * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2865      * Bit 32:63 -> 1 if the control bit can be one.
2866      */
2867     return must_be_one | (((uint64_t)can_be_one) << 32);
2868 }
2869 
2870 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2871 {
2872     uint64_t kvm_vmx_basic =
2873         kvm_arch_get_supported_msr_feature(kvm_state,
2874                                            MSR_IA32_VMX_BASIC);
2875 
2876     if (!kvm_vmx_basic) {
2877         /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2878          * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2879          */
2880         return;
2881     }
2882 
2883     uint64_t kvm_vmx_misc =
2884         kvm_arch_get_supported_msr_feature(kvm_state,
2885                                            MSR_IA32_VMX_MISC);
2886     uint64_t kvm_vmx_ept_vpid =
2887         kvm_arch_get_supported_msr_feature(kvm_state,
2888                                            MSR_IA32_VMX_EPT_VPID_CAP);
2889 
2890     /*
2891      * If the guest is 64-bit, a value of 1 is allowed for the host address
2892      * space size vmexit control.
2893      */
2894     uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2895         ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2896 
2897     /*
2898      * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
2899      * not change them for backwards compatibility.
2900      */
2901     uint64_t fixed_vmx_basic = kvm_vmx_basic &
2902         (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2903          MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2904          MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2905 
2906     /*
2907      * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
2908      * change in the future but are always zero for now, clear them to be
2909      * future proof.  Bits 32-63 in theory could change, though KVM does
2910      * not support dual-monitor treatment and probably never will; mask
2911      * them out as well.
2912      */
2913     uint64_t fixed_vmx_misc = kvm_vmx_misc &
2914         (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2915          MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2916 
2917     /*
2918      * EPT memory types should not change either, so we do not bother
2919      * adding features for them.
2920      */
2921     uint64_t fixed_vmx_ept_mask =
2922             (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2923              MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2924     uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2925 
2926     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2927                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2928                                          f[FEAT_VMX_PROCBASED_CTLS]));
2929     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2930                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2931                                          f[FEAT_VMX_PINBASED_CTLS]));
2932     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2933                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2934                                          f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2935     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2936                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2937                                          f[FEAT_VMX_ENTRY_CTLS]));
2938     kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2939                       make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2940                                          f[FEAT_VMX_SECONDARY_CTLS]));
2941     kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2942                       f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2943     kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2944                       f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2945     kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2946                       f[FEAT_VMX_MISC] | fixed_vmx_misc);
2947     if (has_msr_vmx_vmfunc) {
2948         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2949     }
2950 
2951     /*
2952      * Just to be safe, write these with constant values.  The CRn_FIXED1
2953      * MSRs are generated by KVM based on the vCPU's CPUID.
2954      */
2955     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2956                       CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2957     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2958                       CR4_VMXE_MASK);
2959 
2960     if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
2961         /* TSC multiplier (0x2032).  */
2962         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
2963     } else {
2964         /* Preemption timer (0x482E).  */
2965         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
2966     }
2967 }
2968 
2969 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
2970 {
2971     uint64_t kvm_perf_cap =
2972         kvm_arch_get_supported_msr_feature(kvm_state,
2973                                            MSR_IA32_PERF_CAPABILITIES);
2974 
2975     if (kvm_perf_cap) {
2976         kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
2977                         kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
2978     }
2979 }
2980 
2981 static int kvm_buf_set_msrs(X86CPU *cpu)
2982 {
2983     int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2984     if (ret < 0) {
2985         return ret;
2986     }
2987 
2988     if (ret < cpu->kvm_msr_buf->nmsrs) {
2989         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2990         error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2991                      (uint32_t)e->index, (uint64_t)e->data);
2992     }
2993 
2994     assert(ret == cpu->kvm_msr_buf->nmsrs);
2995     return 0;
2996 }
2997 
2998 static void kvm_init_msrs(X86CPU *cpu)
2999 {
3000     CPUX86State *env = &cpu->env;
3001 
3002     kvm_msr_buf_reset(cpu);
3003     if (has_msr_arch_capabs) {
3004         kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3005                           env->features[FEAT_ARCH_CAPABILITIES]);
3006     }
3007 
3008     if (has_msr_core_capabs) {
3009         kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3010                           env->features[FEAT_CORE_CAPABILITY]);
3011     }
3012 
3013     if (has_msr_perf_capabs && cpu->enable_pmu) {
3014         kvm_msr_entry_add_perf(cpu, env->features);
3015     }
3016 
3017     if (has_msr_ucode_rev) {
3018         kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3019     }
3020 
3021     /*
3022      * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3023      * all kernels with MSR features should have them.
3024      */
3025     if (kvm_feature_msrs && cpu_has_vmx(env)) {
3026         kvm_msr_entry_add_vmx(cpu, env->features);
3027     }
3028 
3029     assert(kvm_buf_set_msrs(cpu) == 0);
3030 }
3031 
3032 static int kvm_put_msrs(X86CPU *cpu, int level)
3033 {
3034     CPUX86State *env = &cpu->env;
3035     int i;
3036 
3037     kvm_msr_buf_reset(cpu);
3038 
3039     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3040     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3041     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3042     kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3043     if (has_msr_star) {
3044         kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3045     }
3046     if (has_msr_hsave_pa) {
3047         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3048     }
3049     if (has_msr_tsc_aux) {
3050         kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3051     }
3052     if (has_msr_tsc_adjust) {
3053         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3054     }
3055     if (has_msr_misc_enable) {
3056         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3057                           env->msr_ia32_misc_enable);
3058     }
3059     if (has_msr_smbase) {
3060         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3061     }
3062     if (has_msr_smi_count) {
3063         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3064     }
3065     if (has_msr_pkrs) {
3066         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3067     }
3068     if (has_msr_bndcfgs) {
3069         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3070     }
3071     if (has_msr_xss) {
3072         kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3073     }
3074     if (has_msr_umwait) {
3075         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3076     }
3077     if (has_msr_spec_ctrl) {
3078         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3079     }
3080     if (has_tsc_scale_msr) {
3081         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3082     }
3083 
3084     if (has_msr_tsx_ctrl) {
3085         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3086     }
3087     if (has_msr_virt_ssbd) {
3088         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3089     }
3090 
3091 #ifdef TARGET_X86_64
3092     if (lm_capable_kernel) {
3093         kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3094         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3095         kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3096         kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3097     }
3098 #endif
3099 
3100     /*
3101      * The following MSRs have side effects on the guest or are too heavy
3102      * for normal writeback. Limit them to reset or full state updates.
3103      */
3104     if (level >= KVM_PUT_RESET_STATE) {
3105         kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3106         kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3107         kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3108         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3109             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3110         }
3111         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3112             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3113         }
3114         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3115             kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3116         }
3117         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3118             kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3119         }
3120 
3121         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3122             kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3123         }
3124 
3125         if (has_architectural_pmu_version > 0) {
3126             if (has_architectural_pmu_version > 1) {
3127                 /* Stop the counter.  */
3128                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3129                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3130             }
3131 
3132             /* Set the counter values.  */
3133             for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3134                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
3135                                   env->msr_fixed_counters[i]);
3136             }
3137             for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3138                 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
3139                                   env->msr_gp_counters[i]);
3140                 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
3141                                   env->msr_gp_evtsel[i]);
3142             }
3143             if (has_architectural_pmu_version > 1) {
3144                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3145                                   env->msr_global_status);
3146                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3147                                   env->msr_global_ovf_ctrl);
3148 
3149                 /* Now start the PMU.  */
3150                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3151                                   env->msr_fixed_ctr_ctrl);
3152                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3153                                   env->msr_global_ctrl);
3154             }
3155         }
3156         /*
3157          * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3158          * only sync them to KVM on the first cpu
3159          */
3160         if (current_cpu == first_cpu) {
3161             if (has_msr_hv_hypercall) {
3162                 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3163                                   env->msr_hv_guest_os_id);
3164                 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3165                                   env->msr_hv_hypercall);
3166             }
3167             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3168                 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3169                                   env->msr_hv_tsc);
3170             }
3171             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3172                 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3173                                   env->msr_hv_reenlightenment_control);
3174                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3175                                   env->msr_hv_tsc_emulation_control);
3176                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3177                                   env->msr_hv_tsc_emulation_status);
3178             }
3179         }
3180         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3181             kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
3182                               env->msr_hv_vapic);
3183         }
3184         if (has_msr_hv_crash) {
3185             int j;
3186 
3187             for (j = 0; j < HV_CRASH_PARAMS; j++)
3188                 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
3189                                   env->msr_hv_crash_params[j]);
3190 
3191             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
3192         }
3193         if (has_msr_hv_runtime) {
3194             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
3195         }
3196         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3197             && hv_vpindex_settable) {
3198             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3199                               hyperv_vp_index(CPU(cpu)));
3200         }
3201         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3202             int j;
3203 
3204             kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3205 
3206             kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
3207                               env->msr_hv_synic_control);
3208             kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
3209                               env->msr_hv_synic_evt_page);
3210             kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
3211                               env->msr_hv_synic_msg_page);
3212 
3213             for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
3214                 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
3215                                   env->msr_hv_synic_sint[j]);
3216             }
3217         }
3218         if (has_msr_hv_stimer) {
3219             int j;
3220 
3221             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
3222                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
3223                                 env->msr_hv_stimer_config[j]);
3224             }
3225 
3226             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
3227                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
3228                                 env->msr_hv_stimer_count[j]);
3229             }
3230         }
3231         if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3232             uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3233 
3234             kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3235             kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3236             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3237             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3238             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3239             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3240             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3241             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3242             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3243             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3244             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3245             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
3246             for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3247                 /* The CPU GPs if we write to a bit above the physical limit of
3248                  * the host CPU (and KVM emulates that)
3249                  */
3250                 uint64_t mask = env->mtrr_var[i].mask;
3251                 mask &= phys_mask;
3252 
3253                 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3254                                   env->mtrr_var[i].base);
3255                 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3256             }
3257         }
3258         if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3259             int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3260                                                     0x14, 1, R_EAX) & 0x7;
3261 
3262             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3263                             env->msr_rtit_ctrl);
3264             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3265                             env->msr_rtit_status);
3266             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3267                             env->msr_rtit_output_base);
3268             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3269                             env->msr_rtit_output_mask);
3270             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3271                             env->msr_rtit_cr3_match);
3272             for (i = 0; i < addr_num; i++) {
3273                 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3274                             env->msr_rtit_addrs[i]);
3275             }
3276         }
3277 
3278         if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3279             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3280                               env->msr_ia32_sgxlepubkeyhash[0]);
3281             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3282                               env->msr_ia32_sgxlepubkeyhash[1]);
3283             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3284                               env->msr_ia32_sgxlepubkeyhash[2]);
3285             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3286                               env->msr_ia32_sgxlepubkeyhash[3]);
3287         }
3288 
3289         if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3290             kvm_msr_entry_add(cpu, MSR_IA32_XFD,
3291                               env->msr_xfd);
3292             kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
3293                               env->msr_xfd_err);
3294         }
3295 
3296         /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3297          *       kvm_put_msr_feature_control. */
3298     }
3299 
3300     if (env->mcg_cap) {
3301         int i;
3302 
3303         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3304         kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3305         if (has_msr_mcg_ext_ctl) {
3306             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3307         }
3308         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3309             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3310         }
3311     }
3312 
3313     return kvm_buf_set_msrs(cpu);
3314 }
3315 
3316 
3317 static int kvm_get_fpu(X86CPU *cpu)
3318 {
3319     CPUX86State *env = &cpu->env;
3320     struct kvm_fpu fpu;
3321     int i, ret;
3322 
3323     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
3324     if (ret < 0) {
3325         return ret;
3326     }
3327 
3328     env->fpstt = (fpu.fsw >> 11) & 7;
3329     env->fpus = fpu.fsw;
3330     env->fpuc = fpu.fcw;
3331     env->fpop = fpu.last_opcode;
3332     env->fpip = fpu.last_ip;
3333     env->fpdp = fpu.last_dp;
3334     for (i = 0; i < 8; ++i) {
3335         env->fptags[i] = !((fpu.ftwx >> i) & 1);
3336     }
3337     memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3338     for (i = 0; i < CPU_NB_REGS; i++) {
3339         env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3340         env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3341     }
3342     env->mxcsr = fpu.mxcsr;
3343 
3344     return 0;
3345 }
3346 
3347 static int kvm_get_xsave(X86CPU *cpu)
3348 {
3349     CPUX86State *env = &cpu->env;
3350     void *xsave = env->xsave_buf;
3351     int type, ret;
3352 
3353     if (!has_xsave) {
3354         return kvm_get_fpu(cpu);
3355     }
3356 
3357     type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
3358     ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
3359     if (ret < 0) {
3360         return ret;
3361     }
3362     x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
3363 
3364     return 0;
3365 }
3366 
3367 static int kvm_get_xcrs(X86CPU *cpu)
3368 {
3369     CPUX86State *env = &cpu->env;
3370     int i, ret;
3371     struct kvm_xcrs xcrs;
3372 
3373     if (!has_xcrs) {
3374         return 0;
3375     }
3376 
3377     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3378     if (ret < 0) {
3379         return ret;
3380     }
3381 
3382     for (i = 0; i < xcrs.nr_xcrs; i++) {
3383         /* Only support xcr0 now */
3384         if (xcrs.xcrs[i].xcr == 0) {
3385             env->xcr0 = xcrs.xcrs[i].value;
3386             break;
3387         }
3388     }
3389     return 0;
3390 }
3391 
3392 static int kvm_get_sregs(X86CPU *cpu)
3393 {
3394     CPUX86State *env = &cpu->env;
3395     struct kvm_sregs sregs;
3396     int ret;
3397 
3398     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3399     if (ret < 0) {
3400         return ret;
3401     }
3402 
3403     /*
3404      * The interrupt_bitmap is ignored because KVM_GET_SREGS is
3405      * always preceded by KVM_GET_VCPU_EVENTS.
3406      */
3407 
3408     get_seg(&env->segs[R_CS], &sregs.cs);
3409     get_seg(&env->segs[R_DS], &sregs.ds);
3410     get_seg(&env->segs[R_ES], &sregs.es);
3411     get_seg(&env->segs[R_FS], &sregs.fs);
3412     get_seg(&env->segs[R_GS], &sregs.gs);
3413     get_seg(&env->segs[R_SS], &sregs.ss);
3414 
3415     get_seg(&env->tr, &sregs.tr);
3416     get_seg(&env->ldt, &sregs.ldt);
3417 
3418     env->idt.limit = sregs.idt.limit;
3419     env->idt.base = sregs.idt.base;
3420     env->gdt.limit = sregs.gdt.limit;
3421     env->gdt.base = sregs.gdt.base;
3422 
3423     env->cr[0] = sregs.cr0;
3424     env->cr[2] = sregs.cr2;
3425     env->cr[3] = sregs.cr3;
3426     env->cr[4] = sregs.cr4;
3427 
3428     env->efer = sregs.efer;
3429 
3430     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3431     x86_update_hflags(env);
3432 
3433     return 0;
3434 }
3435 
3436 static int kvm_get_sregs2(X86CPU *cpu)
3437 {
3438     CPUX86State *env = &cpu->env;
3439     struct kvm_sregs2 sregs;
3440     int i, ret;
3441 
3442     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
3443     if (ret < 0) {
3444         return ret;
3445     }
3446 
3447     get_seg(&env->segs[R_CS], &sregs.cs);
3448     get_seg(&env->segs[R_DS], &sregs.ds);
3449     get_seg(&env->segs[R_ES], &sregs.es);
3450     get_seg(&env->segs[R_FS], &sregs.fs);
3451     get_seg(&env->segs[R_GS], &sregs.gs);
3452     get_seg(&env->segs[R_SS], &sregs.ss);
3453 
3454     get_seg(&env->tr, &sregs.tr);
3455     get_seg(&env->ldt, &sregs.ldt);
3456 
3457     env->idt.limit = sregs.idt.limit;
3458     env->idt.base = sregs.idt.base;
3459     env->gdt.limit = sregs.gdt.limit;
3460     env->gdt.base = sregs.gdt.base;
3461 
3462     env->cr[0] = sregs.cr0;
3463     env->cr[2] = sregs.cr2;
3464     env->cr[3] = sregs.cr3;
3465     env->cr[4] = sregs.cr4;
3466 
3467     env->efer = sregs.efer;
3468 
3469     env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
3470 
3471     if (env->pdptrs_valid) {
3472         for (i = 0; i < 4; i++) {
3473             env->pdptrs[i] = sregs.pdptrs[i];
3474         }
3475     }
3476 
3477     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3478     x86_update_hflags(env);
3479 
3480     return 0;
3481 }
3482 
3483 static int kvm_get_msrs(X86CPU *cpu)
3484 {
3485     CPUX86State *env = &cpu->env;
3486     struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3487     int ret, i;
3488     uint64_t mtrr_top_bits;
3489 
3490     kvm_msr_buf_reset(cpu);
3491 
3492     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3493     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3494     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3495     kvm_msr_entry_add(cpu, MSR_PAT, 0);
3496     if (has_msr_star) {
3497         kvm_msr_entry_add(cpu, MSR_STAR, 0);
3498     }
3499     if (has_msr_hsave_pa) {
3500         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3501     }
3502     if (has_msr_tsc_aux) {
3503         kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3504     }
3505     if (has_msr_tsc_adjust) {
3506         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3507     }
3508     if (has_msr_tsc_deadline) {
3509         kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3510     }
3511     if (has_msr_misc_enable) {
3512         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3513     }
3514     if (has_msr_smbase) {
3515         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3516     }
3517     if (has_msr_smi_count) {
3518         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3519     }
3520     if (has_msr_feature_control) {
3521         kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3522     }
3523     if (has_msr_pkrs) {
3524         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3525     }
3526     if (has_msr_bndcfgs) {
3527         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3528     }
3529     if (has_msr_xss) {
3530         kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3531     }
3532     if (has_msr_umwait) {
3533         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3534     }
3535     if (has_msr_spec_ctrl) {
3536         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3537     }
3538     if (has_tsc_scale_msr) {
3539         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3540     }
3541 
3542     if (has_msr_tsx_ctrl) {
3543         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3544     }
3545     if (has_msr_virt_ssbd) {
3546         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3547     }
3548     if (!env->tsc_valid) {
3549         kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3550         env->tsc_valid = !runstate_is_running();
3551     }
3552 
3553 #ifdef TARGET_X86_64
3554     if (lm_capable_kernel) {
3555         kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3556         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3557         kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3558         kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3559     }
3560 #endif
3561     kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3562     kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3563     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3564         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3565     }
3566     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3567         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3568     }
3569     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3570         kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3571     }
3572     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3573         kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3574     }
3575     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3576         kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3577     }
3578     if (has_architectural_pmu_version > 0) {
3579         if (has_architectural_pmu_version > 1) {
3580             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3581             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3582             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3583             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3584         }
3585         for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3586             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3587         }
3588         for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3589             kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3590             kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3591         }
3592     }
3593 
3594     if (env->mcg_cap) {
3595         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3596         kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3597         if (has_msr_mcg_ext_ctl) {
3598             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3599         }
3600         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3601             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3602         }
3603     }
3604 
3605     if (has_msr_hv_hypercall) {
3606         kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3607         kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3608     }
3609     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3610         kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3611     }
3612     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3613         kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3614     }
3615     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3616         kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3617         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3618         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3619     }
3620     if (has_msr_hv_crash) {
3621         int j;
3622 
3623         for (j = 0; j < HV_CRASH_PARAMS; j++) {
3624             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3625         }
3626     }
3627     if (has_msr_hv_runtime) {
3628         kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3629     }
3630     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3631         uint32_t msr;
3632 
3633         kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3634         kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3635         kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3636         for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3637             kvm_msr_entry_add(cpu, msr, 0);
3638         }
3639     }
3640     if (has_msr_hv_stimer) {
3641         uint32_t msr;
3642 
3643         for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3644              msr++) {
3645             kvm_msr_entry_add(cpu, msr, 0);
3646         }
3647     }
3648     if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3649         kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3650         kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3651         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3652         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3653         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3654         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3655         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3656         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3657         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3658         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3659         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3660         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3661         for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3662             kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3663             kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3664         }
3665     }
3666 
3667     if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3668         int addr_num =
3669             kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3670 
3671         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3672         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3673         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3674         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3675         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3676         for (i = 0; i < addr_num; i++) {
3677             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3678         }
3679     }
3680 
3681     if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3682         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
3683         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
3684         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
3685         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
3686     }
3687 
3688     if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3689         kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
3690         kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
3691     }
3692 
3693     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3694     if (ret < 0) {
3695         return ret;
3696     }
3697 
3698     if (ret < cpu->kvm_msr_buf->nmsrs) {
3699         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3700         error_report("error: failed to get MSR 0x%" PRIx32,
3701                      (uint32_t)e->index);
3702     }
3703 
3704     assert(ret == cpu->kvm_msr_buf->nmsrs);
3705     /*
3706      * MTRR masks: Each mask consists of 5 parts
3707      * a  10..0: must be zero
3708      * b  11   : valid bit
3709      * c n-1.12: actual mask bits
3710      * d  51..n: reserved must be zero
3711      * e  63.52: reserved must be zero
3712      *
3713      * 'n' is the number of physical bits supported by the CPU and is
3714      * apparently always <= 52.   We know our 'n' but don't know what
3715      * the destinations 'n' is; it might be smaller, in which case
3716      * it masks (c) on loading. It might be larger, in which case
3717      * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3718      * we're migrating to.
3719      */
3720 
3721     if (cpu->fill_mtrr_mask) {
3722         QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3723         assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3724         mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3725     } else {
3726         mtrr_top_bits = 0;
3727     }
3728 
3729     for (i = 0; i < ret; i++) {
3730         uint32_t index = msrs[i].index;
3731         switch (index) {
3732         case MSR_IA32_SYSENTER_CS:
3733             env->sysenter_cs = msrs[i].data;
3734             break;
3735         case MSR_IA32_SYSENTER_ESP:
3736             env->sysenter_esp = msrs[i].data;
3737             break;
3738         case MSR_IA32_SYSENTER_EIP:
3739             env->sysenter_eip = msrs[i].data;
3740             break;
3741         case MSR_PAT:
3742             env->pat = msrs[i].data;
3743             break;
3744         case MSR_STAR:
3745             env->star = msrs[i].data;
3746             break;
3747 #ifdef TARGET_X86_64
3748         case MSR_CSTAR:
3749             env->cstar = msrs[i].data;
3750             break;
3751         case MSR_KERNELGSBASE:
3752             env->kernelgsbase = msrs[i].data;
3753             break;
3754         case MSR_FMASK:
3755             env->fmask = msrs[i].data;
3756             break;
3757         case MSR_LSTAR:
3758             env->lstar = msrs[i].data;
3759             break;
3760 #endif
3761         case MSR_IA32_TSC:
3762             env->tsc = msrs[i].data;
3763             break;
3764         case MSR_TSC_AUX:
3765             env->tsc_aux = msrs[i].data;
3766             break;
3767         case MSR_TSC_ADJUST:
3768             env->tsc_adjust = msrs[i].data;
3769             break;
3770         case MSR_IA32_TSCDEADLINE:
3771             env->tsc_deadline = msrs[i].data;
3772             break;
3773         case MSR_VM_HSAVE_PA:
3774             env->vm_hsave = msrs[i].data;
3775             break;
3776         case MSR_KVM_SYSTEM_TIME:
3777             env->system_time_msr = msrs[i].data;
3778             break;
3779         case MSR_KVM_WALL_CLOCK:
3780             env->wall_clock_msr = msrs[i].data;
3781             break;
3782         case MSR_MCG_STATUS:
3783             env->mcg_status = msrs[i].data;
3784             break;
3785         case MSR_MCG_CTL:
3786             env->mcg_ctl = msrs[i].data;
3787             break;
3788         case MSR_MCG_EXT_CTL:
3789             env->mcg_ext_ctl = msrs[i].data;
3790             break;
3791         case MSR_IA32_MISC_ENABLE:
3792             env->msr_ia32_misc_enable = msrs[i].data;
3793             break;
3794         case MSR_IA32_SMBASE:
3795             env->smbase = msrs[i].data;
3796             break;
3797         case MSR_SMI_COUNT:
3798             env->msr_smi_count = msrs[i].data;
3799             break;
3800         case MSR_IA32_FEATURE_CONTROL:
3801             env->msr_ia32_feature_control = msrs[i].data;
3802             break;
3803         case MSR_IA32_BNDCFGS:
3804             env->msr_bndcfgs = msrs[i].data;
3805             break;
3806         case MSR_IA32_XSS:
3807             env->xss = msrs[i].data;
3808             break;
3809         case MSR_IA32_UMWAIT_CONTROL:
3810             env->umwait = msrs[i].data;
3811             break;
3812         case MSR_IA32_PKRS:
3813             env->pkrs = msrs[i].data;
3814             break;
3815         default:
3816             if (msrs[i].index >= MSR_MC0_CTL &&
3817                 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3818                 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
3819             }
3820             break;
3821         case MSR_KVM_ASYNC_PF_EN:
3822             env->async_pf_en_msr = msrs[i].data;
3823             break;
3824         case MSR_KVM_ASYNC_PF_INT:
3825             env->async_pf_int_msr = msrs[i].data;
3826             break;
3827         case MSR_KVM_PV_EOI_EN:
3828             env->pv_eoi_en_msr = msrs[i].data;
3829             break;
3830         case MSR_KVM_STEAL_TIME:
3831             env->steal_time_msr = msrs[i].data;
3832             break;
3833         case MSR_KVM_POLL_CONTROL: {
3834             env->poll_control_msr = msrs[i].data;
3835             break;
3836         }
3837         case MSR_CORE_PERF_FIXED_CTR_CTRL:
3838             env->msr_fixed_ctr_ctrl = msrs[i].data;
3839             break;
3840         case MSR_CORE_PERF_GLOBAL_CTRL:
3841             env->msr_global_ctrl = msrs[i].data;
3842             break;
3843         case MSR_CORE_PERF_GLOBAL_STATUS:
3844             env->msr_global_status = msrs[i].data;
3845             break;
3846         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3847             env->msr_global_ovf_ctrl = msrs[i].data;
3848             break;
3849         case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3850             env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3851             break;
3852         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3853             env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3854             break;
3855         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3856             env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3857             break;
3858         case HV_X64_MSR_HYPERCALL:
3859             env->msr_hv_hypercall = msrs[i].data;
3860             break;
3861         case HV_X64_MSR_GUEST_OS_ID:
3862             env->msr_hv_guest_os_id = msrs[i].data;
3863             break;
3864         case HV_X64_MSR_APIC_ASSIST_PAGE:
3865             env->msr_hv_vapic = msrs[i].data;
3866             break;
3867         case HV_X64_MSR_REFERENCE_TSC:
3868             env->msr_hv_tsc = msrs[i].data;
3869             break;
3870         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3871             env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3872             break;
3873         case HV_X64_MSR_VP_RUNTIME:
3874             env->msr_hv_runtime = msrs[i].data;
3875             break;
3876         case HV_X64_MSR_SCONTROL:
3877             env->msr_hv_synic_control = msrs[i].data;
3878             break;
3879         case HV_X64_MSR_SIEFP:
3880             env->msr_hv_synic_evt_page = msrs[i].data;
3881             break;
3882         case HV_X64_MSR_SIMP:
3883             env->msr_hv_synic_msg_page = msrs[i].data;
3884             break;
3885         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3886             env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
3887             break;
3888         case HV_X64_MSR_STIMER0_CONFIG:
3889         case HV_X64_MSR_STIMER1_CONFIG:
3890         case HV_X64_MSR_STIMER2_CONFIG:
3891         case HV_X64_MSR_STIMER3_CONFIG:
3892             env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3893                                 msrs[i].data;
3894             break;
3895         case HV_X64_MSR_STIMER0_COUNT:
3896         case HV_X64_MSR_STIMER1_COUNT:
3897         case HV_X64_MSR_STIMER2_COUNT:
3898         case HV_X64_MSR_STIMER3_COUNT:
3899             env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3900                                 msrs[i].data;
3901             break;
3902         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3903             env->msr_hv_reenlightenment_control = msrs[i].data;
3904             break;
3905         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3906             env->msr_hv_tsc_emulation_control = msrs[i].data;
3907             break;
3908         case HV_X64_MSR_TSC_EMULATION_STATUS:
3909             env->msr_hv_tsc_emulation_status = msrs[i].data;
3910             break;
3911         case MSR_MTRRdefType:
3912             env->mtrr_deftype = msrs[i].data;
3913             break;
3914         case MSR_MTRRfix64K_00000:
3915             env->mtrr_fixed[0] = msrs[i].data;
3916             break;
3917         case MSR_MTRRfix16K_80000:
3918             env->mtrr_fixed[1] = msrs[i].data;
3919             break;
3920         case MSR_MTRRfix16K_A0000:
3921             env->mtrr_fixed[2] = msrs[i].data;
3922             break;
3923         case MSR_MTRRfix4K_C0000:
3924             env->mtrr_fixed[3] = msrs[i].data;
3925             break;
3926         case MSR_MTRRfix4K_C8000:
3927             env->mtrr_fixed[4] = msrs[i].data;
3928             break;
3929         case MSR_MTRRfix4K_D0000:
3930             env->mtrr_fixed[5] = msrs[i].data;
3931             break;
3932         case MSR_MTRRfix4K_D8000:
3933             env->mtrr_fixed[6] = msrs[i].data;
3934             break;
3935         case MSR_MTRRfix4K_E0000:
3936             env->mtrr_fixed[7] = msrs[i].data;
3937             break;
3938         case MSR_MTRRfix4K_E8000:
3939             env->mtrr_fixed[8] = msrs[i].data;
3940             break;
3941         case MSR_MTRRfix4K_F0000:
3942             env->mtrr_fixed[9] = msrs[i].data;
3943             break;
3944         case MSR_MTRRfix4K_F8000:
3945             env->mtrr_fixed[10] = msrs[i].data;
3946             break;
3947         case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3948             if (index & 1) {
3949                 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3950                                                                mtrr_top_bits;
3951             } else {
3952                 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3953             }
3954             break;
3955         case MSR_IA32_SPEC_CTRL:
3956             env->spec_ctrl = msrs[i].data;
3957             break;
3958         case MSR_AMD64_TSC_RATIO:
3959             env->amd_tsc_scale_msr = msrs[i].data;
3960             break;
3961         case MSR_IA32_TSX_CTRL:
3962             env->tsx_ctrl = msrs[i].data;
3963             break;
3964         case MSR_VIRT_SSBD:
3965             env->virt_ssbd = msrs[i].data;
3966             break;
3967         case MSR_IA32_RTIT_CTL:
3968             env->msr_rtit_ctrl = msrs[i].data;
3969             break;
3970         case MSR_IA32_RTIT_STATUS:
3971             env->msr_rtit_status = msrs[i].data;
3972             break;
3973         case MSR_IA32_RTIT_OUTPUT_BASE:
3974             env->msr_rtit_output_base = msrs[i].data;
3975             break;
3976         case MSR_IA32_RTIT_OUTPUT_MASK:
3977             env->msr_rtit_output_mask = msrs[i].data;
3978             break;
3979         case MSR_IA32_RTIT_CR3_MATCH:
3980             env->msr_rtit_cr3_match = msrs[i].data;
3981             break;
3982         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3983             env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3984             break;
3985         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
3986             env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
3987                            msrs[i].data;
3988             break;
3989         case MSR_IA32_XFD:
3990             env->msr_xfd = msrs[i].data;
3991             break;
3992         case MSR_IA32_XFD_ERR:
3993             env->msr_xfd_err = msrs[i].data;
3994             break;
3995         }
3996     }
3997 
3998     return 0;
3999 }
4000 
4001 static int kvm_put_mp_state(X86CPU *cpu)
4002 {
4003     struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4004 
4005     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4006 }
4007 
4008 static int kvm_get_mp_state(X86CPU *cpu)
4009 {
4010     CPUState *cs = CPU(cpu);
4011     CPUX86State *env = &cpu->env;
4012     struct kvm_mp_state mp_state;
4013     int ret;
4014 
4015     ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4016     if (ret < 0) {
4017         return ret;
4018     }
4019     env->mp_state = mp_state.mp_state;
4020     if (kvm_irqchip_in_kernel()) {
4021         cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4022     }
4023     return 0;
4024 }
4025 
4026 static int kvm_get_apic(X86CPU *cpu)
4027 {
4028     DeviceState *apic = cpu->apic_state;
4029     struct kvm_lapic_state kapic;
4030     int ret;
4031 
4032     if (apic && kvm_irqchip_in_kernel()) {
4033         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
4034         if (ret < 0) {
4035             return ret;
4036         }
4037 
4038         kvm_get_apic_state(apic, &kapic);
4039     }
4040     return 0;
4041 }
4042 
4043 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
4044 {
4045     CPUState *cs = CPU(cpu);
4046     CPUX86State *env = &cpu->env;
4047     struct kvm_vcpu_events events = {};
4048 
4049     if (!kvm_has_vcpu_events()) {
4050         return 0;
4051     }
4052 
4053     events.flags = 0;
4054 
4055     if (has_exception_payload) {
4056         events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4057         events.exception.pending = env->exception_pending;
4058         events.exception_has_payload = env->exception_has_payload;
4059         events.exception_payload = env->exception_payload;
4060     }
4061     events.exception.nr = env->exception_nr;
4062     events.exception.injected = env->exception_injected;
4063     events.exception.has_error_code = env->has_error_code;
4064     events.exception.error_code = env->error_code;
4065 
4066     events.interrupt.injected = (env->interrupt_injected >= 0);
4067     events.interrupt.nr = env->interrupt_injected;
4068     events.interrupt.soft = env->soft_interrupt;
4069 
4070     events.nmi.injected = env->nmi_injected;
4071     events.nmi.pending = env->nmi_pending;
4072     events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4073 
4074     events.sipi_vector = env->sipi_vector;
4075 
4076     if (has_msr_smbase) {
4077         events.smi.smm = !!(env->hflags & HF_SMM_MASK);
4078         events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
4079         if (kvm_irqchip_in_kernel()) {
4080             /* As soon as these are moved to the kernel, remove them
4081              * from cs->interrupt_request.
4082              */
4083             events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
4084             events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
4085             cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
4086         } else {
4087             /* Keep these in cs->interrupt_request.  */
4088             events.smi.pending = 0;
4089             events.smi.latched_init = 0;
4090         }
4091         /* Stop SMI delivery on old machine types to avoid a reboot
4092          * on an inward migration of an old VM.
4093          */
4094         if (!cpu->kvm_no_smi_migration) {
4095             events.flags |= KVM_VCPUEVENT_VALID_SMM;
4096         }
4097     }
4098 
4099     if (level >= KVM_PUT_RESET_STATE) {
4100         events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
4101         if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
4102             events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
4103         }
4104     }
4105 
4106     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
4107 }
4108 
4109 static int kvm_get_vcpu_events(X86CPU *cpu)
4110 {
4111     CPUX86State *env = &cpu->env;
4112     struct kvm_vcpu_events events;
4113     int ret;
4114 
4115     if (!kvm_has_vcpu_events()) {
4116         return 0;
4117     }
4118 
4119     memset(&events, 0, sizeof(events));
4120     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
4121     if (ret < 0) {
4122        return ret;
4123     }
4124 
4125     if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4126         env->exception_pending = events.exception.pending;
4127         env->exception_has_payload = events.exception_has_payload;
4128         env->exception_payload = events.exception_payload;
4129     } else {
4130         env->exception_pending = 0;
4131         env->exception_has_payload = false;
4132     }
4133     env->exception_injected = events.exception.injected;
4134     env->exception_nr =
4135         (env->exception_pending || env->exception_injected) ?
4136         events.exception.nr : -1;
4137     env->has_error_code = events.exception.has_error_code;
4138     env->error_code = events.exception.error_code;
4139 
4140     env->interrupt_injected =
4141         events.interrupt.injected ? events.interrupt.nr : -1;
4142     env->soft_interrupt = events.interrupt.soft;
4143 
4144     env->nmi_injected = events.nmi.injected;
4145     env->nmi_pending = events.nmi.pending;
4146     if (events.nmi.masked) {
4147         env->hflags2 |= HF2_NMI_MASK;
4148     } else {
4149         env->hflags2 &= ~HF2_NMI_MASK;
4150     }
4151 
4152     if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
4153         if (events.smi.smm) {
4154             env->hflags |= HF_SMM_MASK;
4155         } else {
4156             env->hflags &= ~HF_SMM_MASK;
4157         }
4158         if (events.smi.pending) {
4159             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4160         } else {
4161             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4162         }
4163         if (events.smi.smm_inside_nmi) {
4164             env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4165         } else {
4166             env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4167         }
4168         if (events.smi.latched_init) {
4169             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4170         } else {
4171             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4172         }
4173     }
4174 
4175     env->sipi_vector = events.sipi_vector;
4176 
4177     return 0;
4178 }
4179 
4180 static int kvm_guest_debug_workarounds(X86CPU *cpu)
4181 {
4182     CPUState *cs = CPU(cpu);
4183     CPUX86State *env = &cpu->env;
4184     int ret = 0;
4185     unsigned long reinject_trap = 0;
4186 
4187     if (!kvm_has_vcpu_events()) {
4188         if (env->exception_nr == EXCP01_DB) {
4189             reinject_trap = KVM_GUESTDBG_INJECT_DB;
4190         } else if (env->exception_injected == EXCP03_INT3) {
4191             reinject_trap = KVM_GUESTDBG_INJECT_BP;
4192         }
4193         kvm_reset_exception(env);
4194     }
4195 
4196     /*
4197      * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
4198      * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
4199      * by updating the debug state once again if single-stepping is on.
4200      * Another reason to call kvm_update_guest_debug here is a pending debug
4201      * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
4202      * reinject them via SET_GUEST_DEBUG.
4203      */
4204     if (reinject_trap ||
4205         (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
4206         ret = kvm_update_guest_debug(cs, reinject_trap);
4207     }
4208     return ret;
4209 }
4210 
4211 static int kvm_put_debugregs(X86CPU *cpu)
4212 {
4213     CPUX86State *env = &cpu->env;
4214     struct kvm_debugregs dbgregs;
4215     int i;
4216 
4217     if (!kvm_has_debugregs()) {
4218         return 0;
4219     }
4220 
4221     memset(&dbgregs, 0, sizeof(dbgregs));
4222     for (i = 0; i < 4; i++) {
4223         dbgregs.db[i] = env->dr[i];
4224     }
4225     dbgregs.dr6 = env->dr[6];
4226     dbgregs.dr7 = env->dr[7];
4227     dbgregs.flags = 0;
4228 
4229     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
4230 }
4231 
4232 static int kvm_get_debugregs(X86CPU *cpu)
4233 {
4234     CPUX86State *env = &cpu->env;
4235     struct kvm_debugregs dbgregs;
4236     int i, ret;
4237 
4238     if (!kvm_has_debugregs()) {
4239         return 0;
4240     }
4241 
4242     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
4243     if (ret < 0) {
4244         return ret;
4245     }
4246     for (i = 0; i < 4; i++) {
4247         env->dr[i] = dbgregs.db[i];
4248     }
4249     env->dr[4] = env->dr[6] = dbgregs.dr6;
4250     env->dr[5] = env->dr[7] = dbgregs.dr7;
4251 
4252     return 0;
4253 }
4254 
4255 static int kvm_put_nested_state(X86CPU *cpu)
4256 {
4257     CPUX86State *env = &cpu->env;
4258     int max_nested_state_len = kvm_max_nested_state_length();
4259 
4260     if (!env->nested_state) {
4261         return 0;
4262     }
4263 
4264     /*
4265      * Copy flags that are affected by reset from env->hflags and env->hflags2.
4266      */
4267     if (env->hflags & HF_GUEST_MASK) {
4268         env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4269     } else {
4270         env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4271     }
4272 
4273     /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4274     if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
4275         env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4276     } else {
4277         env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4278     }
4279 
4280     assert(env->nested_state->size <= max_nested_state_len);
4281     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4282 }
4283 
4284 static int kvm_get_nested_state(X86CPU *cpu)
4285 {
4286     CPUX86State *env = &cpu->env;
4287     int max_nested_state_len = kvm_max_nested_state_length();
4288     int ret;
4289 
4290     if (!env->nested_state) {
4291         return 0;
4292     }
4293 
4294     /*
4295      * It is possible that migration restored a smaller size into
4296      * nested_state->hdr.size than what our kernel support.
4297      * We preserve migration origin nested_state->hdr.size for
4298      * call to KVM_SET_NESTED_STATE but wish that our next call
4299      * to KVM_GET_NESTED_STATE will use max size our kernel support.
4300      */
4301     env->nested_state->size = max_nested_state_len;
4302 
4303     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4304     if (ret < 0) {
4305         return ret;
4306     }
4307 
4308     /*
4309      * Copy flags that are affected by reset to env->hflags and env->hflags2.
4310      */
4311     if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4312         env->hflags |= HF_GUEST_MASK;
4313     } else {
4314         env->hflags &= ~HF_GUEST_MASK;
4315     }
4316 
4317     /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4318     if (cpu_has_svm(env)) {
4319         if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4320             env->hflags2 |= HF2_GIF_MASK;
4321         } else {
4322             env->hflags2 &= ~HF2_GIF_MASK;
4323         }
4324     }
4325 
4326     return ret;
4327 }
4328 
4329 int kvm_arch_put_registers(CPUState *cpu, int level)
4330 {
4331     X86CPU *x86_cpu = X86_CPU(cpu);
4332     int ret;
4333 
4334     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
4335 
4336     /* must be before kvm_put_nested_state so that EFER.SVME is set */
4337     ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
4338     if (ret < 0) {
4339         return ret;
4340     }
4341 
4342     if (level >= KVM_PUT_RESET_STATE) {
4343         ret = kvm_put_nested_state(x86_cpu);
4344         if (ret < 0) {
4345             return ret;
4346         }
4347 
4348         ret = kvm_put_msr_feature_control(x86_cpu);
4349         if (ret < 0) {
4350             return ret;
4351         }
4352     }
4353 
4354     if (level == KVM_PUT_FULL_STATE) {
4355         /* We don't check for kvm_arch_set_tsc_khz() errors here,
4356          * because TSC frequency mismatch shouldn't abort migration,
4357          * unless the user explicitly asked for a more strict TSC
4358          * setting (e.g. using an explicit "tsc-freq" option).
4359          */
4360         kvm_arch_set_tsc_khz(cpu);
4361     }
4362 
4363     ret = kvm_getput_regs(x86_cpu, 1);
4364     if (ret < 0) {
4365         return ret;
4366     }
4367     ret = kvm_put_xsave(x86_cpu);
4368     if (ret < 0) {
4369         return ret;
4370     }
4371     ret = kvm_put_xcrs(x86_cpu);
4372     if (ret < 0) {
4373         return ret;
4374     }
4375     /* must be before kvm_put_msrs */
4376     ret = kvm_inject_mce_oldstyle(x86_cpu);
4377     if (ret < 0) {
4378         return ret;
4379     }
4380     ret = kvm_put_msrs(x86_cpu, level);
4381     if (ret < 0) {
4382         return ret;
4383     }
4384     ret = kvm_put_vcpu_events(x86_cpu, level);
4385     if (ret < 0) {
4386         return ret;
4387     }
4388     if (level >= KVM_PUT_RESET_STATE) {
4389         ret = kvm_put_mp_state(x86_cpu);
4390         if (ret < 0) {
4391             return ret;
4392         }
4393     }
4394 
4395     ret = kvm_put_tscdeadline_msr(x86_cpu);
4396     if (ret < 0) {
4397         return ret;
4398     }
4399     ret = kvm_put_debugregs(x86_cpu);
4400     if (ret < 0) {
4401         return ret;
4402     }
4403     /* must be last */
4404     ret = kvm_guest_debug_workarounds(x86_cpu);
4405     if (ret < 0) {
4406         return ret;
4407     }
4408     return 0;
4409 }
4410 
4411 int kvm_arch_get_registers(CPUState *cs)
4412 {
4413     X86CPU *cpu = X86_CPU(cs);
4414     int ret;
4415 
4416     assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4417 
4418     ret = kvm_get_vcpu_events(cpu);
4419     if (ret < 0) {
4420         goto out;
4421     }
4422     /*
4423      * KVM_GET_MPSTATE can modify CS and RIP, call it before
4424      * KVM_GET_REGS and KVM_GET_SREGS.
4425      */
4426     ret = kvm_get_mp_state(cpu);
4427     if (ret < 0) {
4428         goto out;
4429     }
4430     ret = kvm_getput_regs(cpu, 0);
4431     if (ret < 0) {
4432         goto out;
4433     }
4434     ret = kvm_get_xsave(cpu);
4435     if (ret < 0) {
4436         goto out;
4437     }
4438     ret = kvm_get_xcrs(cpu);
4439     if (ret < 0) {
4440         goto out;
4441     }
4442     ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
4443     if (ret < 0) {
4444         goto out;
4445     }
4446     ret = kvm_get_msrs(cpu);
4447     if (ret < 0) {
4448         goto out;
4449     }
4450     ret = kvm_get_apic(cpu);
4451     if (ret < 0) {
4452         goto out;
4453     }
4454     ret = kvm_get_debugregs(cpu);
4455     if (ret < 0) {
4456         goto out;
4457     }
4458     ret = kvm_get_nested_state(cpu);
4459     if (ret < 0) {
4460         goto out;
4461     }
4462     ret = 0;
4463  out:
4464     cpu_sync_bndcs_hflags(&cpu->env);
4465     return ret;
4466 }
4467 
4468 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4469 {
4470     X86CPU *x86_cpu = X86_CPU(cpu);
4471     CPUX86State *env = &x86_cpu->env;
4472     int ret;
4473 
4474     /* Inject NMI */
4475     if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4476         if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4477             qemu_mutex_lock_iothread();
4478             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4479             qemu_mutex_unlock_iothread();
4480             DPRINTF("injected NMI\n");
4481             ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4482             if (ret < 0) {
4483                 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4484                         strerror(-ret));
4485             }
4486         }
4487         if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4488             qemu_mutex_lock_iothread();
4489             cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4490             qemu_mutex_unlock_iothread();
4491             DPRINTF("injected SMI\n");
4492             ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4493             if (ret < 0) {
4494                 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4495                         strerror(-ret));
4496             }
4497         }
4498     }
4499 
4500     if (!kvm_pic_in_kernel()) {
4501         qemu_mutex_lock_iothread();
4502     }
4503 
4504     /* Force the VCPU out of its inner loop to process any INIT requests
4505      * or (for userspace APIC, but it is cheap to combine the checks here)
4506      * pending TPR access reports.
4507      */
4508     if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4509         if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4510             !(env->hflags & HF_SMM_MASK)) {
4511             cpu->exit_request = 1;
4512         }
4513         if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4514             cpu->exit_request = 1;
4515         }
4516     }
4517 
4518     if (!kvm_pic_in_kernel()) {
4519         /* Try to inject an interrupt if the guest can accept it */
4520         if (run->ready_for_interrupt_injection &&
4521             (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4522             (env->eflags & IF_MASK)) {
4523             int irq;
4524 
4525             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4526             irq = cpu_get_pic_interrupt(env);
4527             if (irq >= 0) {
4528                 struct kvm_interrupt intr;
4529 
4530                 intr.irq = irq;
4531                 DPRINTF("injected interrupt %d\n", irq);
4532                 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4533                 if (ret < 0) {
4534                     fprintf(stderr,
4535                             "KVM: injection failed, interrupt lost (%s)\n",
4536                             strerror(-ret));
4537                 }
4538             }
4539         }
4540 
4541         /* If we have an interrupt but the guest is not ready to receive an
4542          * interrupt, request an interrupt window exit.  This will
4543          * cause a return to userspace as soon as the guest is ready to
4544          * receive interrupts. */
4545         if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4546             run->request_interrupt_window = 1;
4547         } else {
4548             run->request_interrupt_window = 0;
4549         }
4550 
4551         DPRINTF("setting tpr\n");
4552         run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4553 
4554         qemu_mutex_unlock_iothread();
4555     }
4556 }
4557 
4558 static void kvm_rate_limit_on_bus_lock(void)
4559 {
4560     uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4561 
4562     if (delay_ns) {
4563         g_usleep(delay_ns / SCALE_US);
4564     }
4565 }
4566 
4567 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4568 {
4569     X86CPU *x86_cpu = X86_CPU(cpu);
4570     CPUX86State *env = &x86_cpu->env;
4571 
4572     if (run->flags & KVM_RUN_X86_SMM) {
4573         env->hflags |= HF_SMM_MASK;
4574     } else {
4575         env->hflags &= ~HF_SMM_MASK;
4576     }
4577     if (run->if_flag) {
4578         env->eflags |= IF_MASK;
4579     } else {
4580         env->eflags &= ~IF_MASK;
4581     }
4582     if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4583         kvm_rate_limit_on_bus_lock();
4584     }
4585 
4586     /* We need to protect the apic state against concurrent accesses from
4587      * different threads in case the userspace irqchip is used. */
4588     if (!kvm_irqchip_in_kernel()) {
4589         qemu_mutex_lock_iothread();
4590     }
4591     cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4592     cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4593     if (!kvm_irqchip_in_kernel()) {
4594         qemu_mutex_unlock_iothread();
4595     }
4596     return cpu_get_mem_attrs(env);
4597 }
4598 
4599 int kvm_arch_process_async_events(CPUState *cs)
4600 {
4601     X86CPU *cpu = X86_CPU(cs);
4602     CPUX86State *env = &cpu->env;
4603 
4604     if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4605         /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4606         assert(env->mcg_cap);
4607 
4608         cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4609 
4610         kvm_cpu_synchronize_state(cs);
4611 
4612         if (env->exception_nr == EXCP08_DBLE) {
4613             /* this means triple fault */
4614             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4615             cs->exit_request = 1;
4616             return 0;
4617         }
4618         kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4619         env->has_error_code = 0;
4620 
4621         cs->halted = 0;
4622         if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4623             env->mp_state = KVM_MP_STATE_RUNNABLE;
4624         }
4625     }
4626 
4627     if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4628         !(env->hflags & HF_SMM_MASK)) {
4629         kvm_cpu_synchronize_state(cs);
4630         do_cpu_init(cpu);
4631     }
4632 
4633     if (kvm_irqchip_in_kernel()) {
4634         return 0;
4635     }
4636 
4637     if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4638         cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4639         apic_poll_irq(cpu->apic_state);
4640     }
4641     if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4642          (env->eflags & IF_MASK)) ||
4643         (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4644         cs->halted = 0;
4645     }
4646     if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4647         kvm_cpu_synchronize_state(cs);
4648         do_cpu_sipi(cpu);
4649     }
4650     if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4651         cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4652         kvm_cpu_synchronize_state(cs);
4653         apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4654                                       env->tpr_access_type);
4655     }
4656 
4657     return cs->halted;
4658 }
4659 
4660 static int kvm_handle_halt(X86CPU *cpu)
4661 {
4662     CPUState *cs = CPU(cpu);
4663     CPUX86State *env = &cpu->env;
4664 
4665     if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4666           (env->eflags & IF_MASK)) &&
4667         !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4668         cs->halted = 1;
4669         return EXCP_HLT;
4670     }
4671 
4672     return 0;
4673 }
4674 
4675 static int kvm_handle_tpr_access(X86CPU *cpu)
4676 {
4677     CPUState *cs = CPU(cpu);
4678     struct kvm_run *run = cs->kvm_run;
4679 
4680     apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4681                                   run->tpr_access.is_write ? TPR_ACCESS_WRITE
4682                                                            : TPR_ACCESS_READ);
4683     return 1;
4684 }
4685 
4686 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4687 {
4688     static const uint8_t int3 = 0xcc;
4689 
4690     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4691         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4692         return -EINVAL;
4693     }
4694     return 0;
4695 }
4696 
4697 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4698 {
4699     uint8_t int3;
4700 
4701     if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
4702         return -EINVAL;
4703     }
4704     if (int3 != 0xcc) {
4705         return 0;
4706     }
4707     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4708         return -EINVAL;
4709     }
4710     return 0;
4711 }
4712 
4713 static struct {
4714     target_ulong addr;
4715     int len;
4716     int type;
4717 } hw_breakpoint[4];
4718 
4719 static int nb_hw_breakpoint;
4720 
4721 static int find_hw_breakpoint(target_ulong addr, int len, int type)
4722 {
4723     int n;
4724 
4725     for (n = 0; n < nb_hw_breakpoint; n++) {
4726         if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
4727             (hw_breakpoint[n].len == len || len == -1)) {
4728             return n;
4729         }
4730     }
4731     return -1;
4732 }
4733 
4734 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4735                                   target_ulong len, int type)
4736 {
4737     switch (type) {
4738     case GDB_BREAKPOINT_HW:
4739         len = 1;
4740         break;
4741     case GDB_WATCHPOINT_WRITE:
4742     case GDB_WATCHPOINT_ACCESS:
4743         switch (len) {
4744         case 1:
4745             break;
4746         case 2:
4747         case 4:
4748         case 8:
4749             if (addr & (len - 1)) {
4750                 return -EINVAL;
4751             }
4752             break;
4753         default:
4754             return -EINVAL;
4755         }
4756         break;
4757     default:
4758         return -ENOSYS;
4759     }
4760 
4761     if (nb_hw_breakpoint == 4) {
4762         return -ENOBUFS;
4763     }
4764     if (find_hw_breakpoint(addr, len, type) >= 0) {
4765         return -EEXIST;
4766     }
4767     hw_breakpoint[nb_hw_breakpoint].addr = addr;
4768     hw_breakpoint[nb_hw_breakpoint].len = len;
4769     hw_breakpoint[nb_hw_breakpoint].type = type;
4770     nb_hw_breakpoint++;
4771 
4772     return 0;
4773 }
4774 
4775 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4776                                   target_ulong len, int type)
4777 {
4778     int n;
4779 
4780     n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
4781     if (n < 0) {
4782         return -ENOENT;
4783     }
4784     nb_hw_breakpoint--;
4785     hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4786 
4787     return 0;
4788 }
4789 
4790 void kvm_arch_remove_all_hw_breakpoints(void)
4791 {
4792     nb_hw_breakpoint = 0;
4793 }
4794 
4795 static CPUWatchpoint hw_watchpoint;
4796 
4797 static int kvm_handle_debug(X86CPU *cpu,
4798                             struct kvm_debug_exit_arch *arch_info)
4799 {
4800     CPUState *cs = CPU(cpu);
4801     CPUX86State *env = &cpu->env;
4802     int ret = 0;
4803     int n;
4804 
4805     if (arch_info->exception == EXCP01_DB) {
4806         if (arch_info->dr6 & DR6_BS) {
4807             if (cs->singlestep_enabled) {
4808                 ret = EXCP_DEBUG;
4809             }
4810         } else {
4811             for (n = 0; n < 4; n++) {
4812                 if (arch_info->dr6 & (1 << n)) {
4813                     switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4814                     case 0x0:
4815                         ret = EXCP_DEBUG;
4816                         break;
4817                     case 0x1:
4818                         ret = EXCP_DEBUG;
4819                         cs->watchpoint_hit = &hw_watchpoint;
4820                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4821                         hw_watchpoint.flags = BP_MEM_WRITE;
4822                         break;
4823                     case 0x3:
4824                         ret = EXCP_DEBUG;
4825                         cs->watchpoint_hit = &hw_watchpoint;
4826                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4827                         hw_watchpoint.flags = BP_MEM_ACCESS;
4828                         break;
4829                     }
4830                 }
4831             }
4832         }
4833     } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
4834         ret = EXCP_DEBUG;
4835     }
4836     if (ret == 0) {
4837         cpu_synchronize_state(cs);
4838         assert(env->exception_nr == -1);
4839 
4840         /* pass to guest */
4841         kvm_queue_exception(env, arch_info->exception,
4842                             arch_info->exception == EXCP01_DB,
4843                             arch_info->dr6);
4844         env->has_error_code = 0;
4845     }
4846 
4847     return ret;
4848 }
4849 
4850 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
4851 {
4852     const uint8_t type_code[] = {
4853         [GDB_BREAKPOINT_HW] = 0x0,
4854         [GDB_WATCHPOINT_WRITE] = 0x1,
4855         [GDB_WATCHPOINT_ACCESS] = 0x3
4856     };
4857     const uint8_t len_code[] = {
4858         [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4859     };
4860     int n;
4861 
4862     if (kvm_sw_breakpoints_active(cpu)) {
4863         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
4864     }
4865     if (nb_hw_breakpoint > 0) {
4866         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4867         dbg->arch.debugreg[7] = 0x0600;
4868         for (n = 0; n < nb_hw_breakpoint; n++) {
4869             dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4870             dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4871                 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
4872                 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
4873         }
4874     }
4875 }
4876 
4877 static bool has_sgx_provisioning;
4878 
4879 static bool __kvm_enable_sgx_provisioning(KVMState *s)
4880 {
4881     int fd, ret;
4882 
4883     if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
4884         return false;
4885     }
4886 
4887     fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
4888     if (fd < 0) {
4889         return false;
4890     }
4891 
4892     ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
4893     if (ret) {
4894         error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
4895         exit(1);
4896     }
4897     close(fd);
4898     return true;
4899 }
4900 
4901 bool kvm_enable_sgx_provisioning(KVMState *s)
4902 {
4903     return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
4904 }
4905 
4906 static bool host_supports_vmx(void)
4907 {
4908     uint32_t ecx, unused;
4909 
4910     host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4911     return ecx & CPUID_EXT_VMX;
4912 }
4913 
4914 #define VMX_INVALID_GUEST_STATE 0x80000021
4915 
4916 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
4917 {
4918     X86CPU *cpu = X86_CPU(cs);
4919     uint64_t code;
4920     int ret;
4921 
4922     switch (run->exit_reason) {
4923     case KVM_EXIT_HLT:
4924         DPRINTF("handle_hlt\n");
4925         qemu_mutex_lock_iothread();
4926         ret = kvm_handle_halt(cpu);
4927         qemu_mutex_unlock_iothread();
4928         break;
4929     case KVM_EXIT_SET_TPR:
4930         ret = 0;
4931         break;
4932     case KVM_EXIT_TPR_ACCESS:
4933         qemu_mutex_lock_iothread();
4934         ret = kvm_handle_tpr_access(cpu);
4935         qemu_mutex_unlock_iothread();
4936         break;
4937     case KVM_EXIT_FAIL_ENTRY:
4938         code = run->fail_entry.hardware_entry_failure_reason;
4939         fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4940                 code);
4941         if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4942             fprintf(stderr,
4943                     "\nIf you're running a guest on an Intel machine without "
4944                         "unrestricted mode\n"
4945                     "support, the failure can be most likely due to the guest "
4946                         "entering an invalid\n"
4947                     "state for Intel VT. For example, the guest maybe running "
4948                         "in big real mode\n"
4949                     "which is not supported on less recent Intel processors."
4950                         "\n\n");
4951         }
4952         ret = -1;
4953         break;
4954     case KVM_EXIT_EXCEPTION:
4955         fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4956                 run->ex.exception, run->ex.error_code);
4957         ret = -1;
4958         break;
4959     case KVM_EXIT_DEBUG:
4960         DPRINTF("kvm_exit_debug\n");
4961         qemu_mutex_lock_iothread();
4962         ret = kvm_handle_debug(cpu, &run->debug.arch);
4963         qemu_mutex_unlock_iothread();
4964         break;
4965     case KVM_EXIT_HYPERV:
4966         ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4967         break;
4968     case KVM_EXIT_IOAPIC_EOI:
4969         ioapic_eoi_broadcast(run->eoi.vector);
4970         ret = 0;
4971         break;
4972     case KVM_EXIT_X86_BUS_LOCK:
4973         /* already handled in kvm_arch_post_run */
4974         ret = 0;
4975         break;
4976     default:
4977         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4978         ret = -1;
4979         break;
4980     }
4981 
4982     return ret;
4983 }
4984 
4985 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4986 {
4987     X86CPU *cpu = X86_CPU(cs);
4988     CPUX86State *env = &cpu->env;
4989 
4990     kvm_cpu_synchronize_state(cs);
4991     return !(env->cr[0] & CR0_PE_MASK) ||
4992            ((env->segs[R_CS].selector  & 3) != 3);
4993 }
4994 
4995 void kvm_arch_init_irq_routing(KVMState *s)
4996 {
4997     /* We know at this point that we're using the in-kernel
4998      * irqchip, so we can use irqfds, and on x86 we know
4999      * we can use msi via irqfd and GSI routing.
5000      */
5001     kvm_msi_via_irqfd_allowed = true;
5002     kvm_gsi_routing_allowed = true;
5003 
5004     if (kvm_irqchip_is_split()) {
5005         KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
5006         int i;
5007 
5008         /* If the ioapic is in QEMU and the lapics are in KVM, reserve
5009            MSI routes for signaling interrupts to the local apics. */
5010         for (i = 0; i < IOAPIC_NUM_PINS; i++) {
5011             if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
5012                 error_report("Could not enable split IRQ mode.");
5013                 exit(1);
5014             }
5015         }
5016         kvm_irqchip_commit_route_changes(&c);
5017     }
5018 }
5019 
5020 int kvm_arch_irqchip_create(KVMState *s)
5021 {
5022     int ret;
5023     if (kvm_kernel_irqchip_split()) {
5024         ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
5025         if (ret) {
5026             error_report("Could not enable split irqchip mode: %s",
5027                          strerror(-ret));
5028             exit(1);
5029         } else {
5030             DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
5031             kvm_split_irqchip = true;
5032             return 1;
5033         }
5034     } else {
5035         return 0;
5036     }
5037 }
5038 
5039 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
5040 {
5041     CPUX86State *env;
5042     uint64_t ext_id;
5043 
5044     if (!first_cpu) {
5045         return address;
5046     }
5047     env = &X86_CPU(first_cpu)->env;
5048     if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
5049         return address;
5050     }
5051 
5052     /*
5053      * If the remappable format bit is set, or the upper bits are
5054      * already set in address_hi, or the low extended bits aren't
5055      * there anyway, do nothing.
5056      */
5057     ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
5058     if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
5059         return address;
5060     }
5061 
5062     address &= ~ext_id;
5063     address |= ext_id << 35;
5064     return address;
5065 }
5066 
5067 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
5068                              uint64_t address, uint32_t data, PCIDevice *dev)
5069 {
5070     X86IOMMUState *iommu = x86_iommu_get_default();
5071 
5072     if (iommu) {
5073         X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
5074 
5075         if (class->int_remap) {
5076             int ret;
5077             MSIMessage src, dst;
5078 
5079             src.address = route->u.msi.address_hi;
5080             src.address <<= VTD_MSI_ADDR_HI_SHIFT;
5081             src.address |= route->u.msi.address_lo;
5082             src.data = route->u.msi.data;
5083 
5084             ret = class->int_remap(iommu, &src, &dst, dev ?     \
5085                                    pci_requester_id(dev) :      \
5086                                    X86_IOMMU_SID_INVALID);
5087             if (ret) {
5088                 trace_kvm_x86_fixup_msi_error(route->gsi);
5089                 return 1;
5090             }
5091 
5092             /*
5093              * Handled untranslated compatibilty format interrupt with
5094              * extended destination ID in the low bits 11-5. */
5095             dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
5096 
5097             route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
5098             route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
5099             route->u.msi.data = dst.data;
5100             return 0;
5101         }
5102     }
5103 
5104     address = kvm_swizzle_msi_ext_dest_id(address);
5105     route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
5106     route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
5107     return 0;
5108 }
5109 
5110 typedef struct MSIRouteEntry MSIRouteEntry;
5111 
5112 struct MSIRouteEntry {
5113     PCIDevice *dev;             /* Device pointer */
5114     int vector;                 /* MSI/MSIX vector index */
5115     int virq;                   /* Virtual IRQ index */
5116     QLIST_ENTRY(MSIRouteEntry) list;
5117 };
5118 
5119 /* List of used GSI routes */
5120 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
5121     QLIST_HEAD_INITIALIZER(msi_route_list);
5122 
5123 static void kvm_update_msi_routes_all(void *private, bool global,
5124                                       uint32_t index, uint32_t mask)
5125 {
5126     int cnt = 0, vector;
5127     MSIRouteEntry *entry;
5128     MSIMessage msg;
5129     PCIDevice *dev;
5130 
5131     /* TODO: explicit route update */
5132     QLIST_FOREACH(entry, &msi_route_list, list) {
5133         cnt++;
5134         vector = entry->vector;
5135         dev = entry->dev;
5136         if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
5137             msg = msix_get_message(dev, vector);
5138         } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
5139             msg = msi_get_message(dev, vector);
5140         } else {
5141             /*
5142              * Either MSI/MSIX is disabled for the device, or the
5143              * specific message was masked out.  Skip this one.
5144              */
5145             continue;
5146         }
5147         kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
5148     }
5149     kvm_irqchip_commit_routes(kvm_state);
5150     trace_kvm_x86_update_msi_routes(cnt);
5151 }
5152 
5153 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
5154                                 int vector, PCIDevice *dev)
5155 {
5156     static bool notify_list_inited = false;
5157     MSIRouteEntry *entry;
5158 
5159     if (!dev) {
5160         /* These are (possibly) IOAPIC routes only used for split
5161          * kernel irqchip mode, while what we are housekeeping are
5162          * PCI devices only. */
5163         return 0;
5164     }
5165 
5166     entry = g_new0(MSIRouteEntry, 1);
5167     entry->dev = dev;
5168     entry->vector = vector;
5169     entry->virq = route->gsi;
5170     QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5171 
5172     trace_kvm_x86_add_msi_route(route->gsi);
5173 
5174     if (!notify_list_inited) {
5175         /* For the first time we do add route, add ourselves into
5176          * IOMMU's IEC notify list if needed. */
5177         X86IOMMUState *iommu = x86_iommu_get_default();
5178         if (iommu) {
5179             x86_iommu_iec_register_notifier(iommu,
5180                                             kvm_update_msi_routes_all,
5181                                             NULL);
5182         }
5183         notify_list_inited = true;
5184     }
5185     return 0;
5186 }
5187 
5188 int kvm_arch_release_virq_post(int virq)
5189 {
5190     MSIRouteEntry *entry, *next;
5191     QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5192         if (entry->virq == virq) {
5193             trace_kvm_x86_remove_msi_route(virq);
5194             QLIST_REMOVE(entry, list);
5195             g_free(entry);
5196             break;
5197         }
5198     }
5199     return 0;
5200 }
5201 
5202 int kvm_arch_msi_data_to_gsi(uint32_t data)
5203 {
5204     abort();
5205 }
5206 
5207 bool kvm_has_waitpkg(void)
5208 {
5209     return has_msr_umwait;
5210 }
5211 
5212 bool kvm_arch_cpu_check_are_resettable(void)
5213 {
5214     return !sev_es_enabled();
5215 }
5216 
5217 #define ARCH_REQ_XCOMP_GUEST_PERM       0x1025
5218 
5219 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
5220 {
5221     KVMState *s = kvm_state;
5222     uint64_t supported;
5223 
5224     mask &= XSTATE_DYNAMIC_MASK;
5225     if (!mask) {
5226         return;
5227     }
5228     /*
5229      * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
5230      * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
5231      * about them already because they are not supported features.
5232      */
5233     supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
5234     supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
5235     mask &= supported;
5236 
5237     while (mask) {
5238         int bit = ctz64(mask);
5239         int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
5240         if (rc) {
5241             /*
5242              * Older kernel version (<5.17) do not support
5243              * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
5244              * any dynamic feature from kvm_arch_get_supported_cpuid.
5245              */
5246             warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
5247                         "for feature bit %d", bit);
5248         }
5249         mask &= ~BIT_ULL(bit);
5250     }
5251 }
5252