xref: /qemu/target/i386/kvm/kvm.c (revision a7cad953)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright (C) 2006-2008 Qumranet Technologies
5  * Copyright IBM, Corp. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include <sys/ioctl.h>
19 #include <sys/utsname.h>
20 
21 #include <linux/kvm.h>
22 #include "standard-headers/asm-x86/kvm_para.h"
23 
24 #include "cpu.h"
25 #include "host-cpu.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/hw_accel.h"
28 #include "sysemu/kvm_int.h"
29 #include "sysemu/runstate.h"
30 #include "kvm_i386.h"
31 #include "sev.h"
32 #include "hyperv.h"
33 #include "hyperv-proto.h"
34 
35 #include "exec/gdbstub.h"
36 #include "qemu/host-utils.h"
37 #include "qemu/main-loop.h"
38 #include "qemu/config-file.h"
39 #include "qemu/error-report.h"
40 #include "hw/i386/x86.h"
41 #include "hw/i386/apic.h"
42 #include "hw/i386/apic_internal.h"
43 #include "hw/i386/apic-msidef.h"
44 #include "hw/i386/intel_iommu.h"
45 #include "hw/i386/x86-iommu.h"
46 #include "hw/i386/e820_memory_layout.h"
47 
48 #include "hw/pci/pci.h"
49 #include "hw/pci/msi.h"
50 #include "hw/pci/msix.h"
51 #include "migration/blocker.h"
52 #include "exec/memattrs.h"
53 #include "trace.h"
54 
55 //#define DEBUG_KVM
56 
57 #ifdef DEBUG_KVM
58 #define DPRINTF(fmt, ...) \
59     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
60 #else
61 #define DPRINTF(fmt, ...) \
62     do { } while (0)
63 #endif
64 
65 /* From arch/x86/kvm/lapic.h */
66 #define KVM_APIC_BUS_CYCLE_NS       1
67 #define KVM_APIC_BUS_FREQUENCY      (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
68 
69 #define MSR_KVM_WALL_CLOCK  0x11
70 #define MSR_KVM_SYSTEM_TIME 0x12
71 
72 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
73  * 255 kvm_msr_entry structs */
74 #define MSR_BUF_SIZE 4096
75 
76 static void kvm_init_msrs(X86CPU *cpu);
77 
78 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
79     KVM_CAP_INFO(SET_TSS_ADDR),
80     KVM_CAP_INFO(EXT_CPUID),
81     KVM_CAP_INFO(MP_STATE),
82     KVM_CAP_LAST_INFO
83 };
84 
85 static bool has_msr_star;
86 static bool has_msr_hsave_pa;
87 static bool has_msr_tsc_aux;
88 static bool has_msr_tsc_adjust;
89 static bool has_msr_tsc_deadline;
90 static bool has_msr_feature_control;
91 static bool has_msr_misc_enable;
92 static bool has_msr_smbase;
93 static bool has_msr_bndcfgs;
94 static int lm_capable_kernel;
95 static bool has_msr_hv_hypercall;
96 static bool has_msr_hv_crash;
97 static bool has_msr_hv_reset;
98 static bool has_msr_hv_vpindex;
99 static bool hv_vpindex_settable;
100 static bool has_msr_hv_runtime;
101 static bool has_msr_hv_synic;
102 static bool has_msr_hv_stimer;
103 static bool has_msr_hv_frequencies;
104 static bool has_msr_hv_reenlightenment;
105 static bool has_msr_xss;
106 static bool has_msr_umwait;
107 static bool has_msr_spec_ctrl;
108 static bool has_tsc_scale_msr;
109 static bool has_msr_tsx_ctrl;
110 static bool has_msr_virt_ssbd;
111 static bool has_msr_smi_count;
112 static bool has_msr_arch_capabs;
113 static bool has_msr_core_capabs;
114 static bool has_msr_vmx_vmfunc;
115 static bool has_msr_ucode_rev;
116 static bool has_msr_vmx_procbased_ctls2;
117 static bool has_msr_perf_capabs;
118 static bool has_msr_pkrs;
119 
120 static uint32_t has_architectural_pmu_version;
121 static uint32_t num_architectural_pmu_gp_counters;
122 static uint32_t num_architectural_pmu_fixed_counters;
123 
124 static int has_xsave;
125 static int has_xcrs;
126 static int has_pit_state2;
127 static int has_exception_payload;
128 
129 static bool has_msr_mcg_ext_ctl;
130 
131 static struct kvm_cpuid2 *cpuid_cache;
132 static struct kvm_cpuid2 *hv_cpuid_cache;
133 static struct kvm_msr_list *kvm_feature_msrs;
134 
135 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
136 static RateLimit bus_lock_ratelimit_ctrl;
137 
138 int kvm_has_pit_state2(void)
139 {
140     return has_pit_state2;
141 }
142 
143 bool kvm_has_smm(void)
144 {
145     return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
146 }
147 
148 bool kvm_has_adjust_clock_stable(void)
149 {
150     int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
151 
152     return (ret == KVM_CLOCK_TSC_STABLE);
153 }
154 
155 bool kvm_has_adjust_clock(void)
156 {
157     return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
158 }
159 
160 bool kvm_has_exception_payload(void)
161 {
162     return has_exception_payload;
163 }
164 
165 static bool kvm_x2apic_api_set_flags(uint64_t flags)
166 {
167     KVMState *s = KVM_STATE(current_accel());
168 
169     return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
170 }
171 
172 #define MEMORIZE(fn, _result) \
173     ({ \
174         static bool _memorized; \
175         \
176         if (_memorized) { \
177             return _result; \
178         } \
179         _memorized = true; \
180         _result = fn; \
181     })
182 
183 static bool has_x2apic_api;
184 
185 bool kvm_has_x2apic_api(void)
186 {
187     return has_x2apic_api;
188 }
189 
190 bool kvm_enable_x2apic(void)
191 {
192     return MEMORIZE(
193              kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
194                                       KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
195              has_x2apic_api);
196 }
197 
198 bool kvm_hv_vpindex_settable(void)
199 {
200     return hv_vpindex_settable;
201 }
202 
203 static int kvm_get_tsc(CPUState *cs)
204 {
205     X86CPU *cpu = X86_CPU(cs);
206     CPUX86State *env = &cpu->env;
207     struct {
208         struct kvm_msrs info;
209         struct kvm_msr_entry entries[1];
210     } msr_data = {};
211     int ret;
212 
213     if (env->tsc_valid) {
214         return 0;
215     }
216 
217     memset(&msr_data, 0, sizeof(msr_data));
218     msr_data.info.nmsrs = 1;
219     msr_data.entries[0].index = MSR_IA32_TSC;
220     env->tsc_valid = !runstate_is_running();
221 
222     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
223     if (ret < 0) {
224         return ret;
225     }
226 
227     assert(ret == 1);
228     env->tsc = msr_data.entries[0].data;
229     return 0;
230 }
231 
232 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
233 {
234     kvm_get_tsc(cpu);
235 }
236 
237 void kvm_synchronize_all_tsc(void)
238 {
239     CPUState *cpu;
240 
241     if (kvm_enabled()) {
242         CPU_FOREACH(cpu) {
243             run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
244         }
245     }
246 }
247 
248 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
249 {
250     struct kvm_cpuid2 *cpuid;
251     int r, size;
252 
253     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
254     cpuid = g_malloc0(size);
255     cpuid->nent = max;
256     r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
257     if (r == 0 && cpuid->nent >= max) {
258         r = -E2BIG;
259     }
260     if (r < 0) {
261         if (r == -E2BIG) {
262             g_free(cpuid);
263             return NULL;
264         } else {
265             fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
266                     strerror(-r));
267             exit(1);
268         }
269     }
270     return cpuid;
271 }
272 
273 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
274  * for all entries.
275  */
276 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
277 {
278     struct kvm_cpuid2 *cpuid;
279     int max = 1;
280 
281     if (cpuid_cache != NULL) {
282         return cpuid_cache;
283     }
284     while ((cpuid = try_get_cpuid(s, max)) == NULL) {
285         max *= 2;
286     }
287     cpuid_cache = cpuid;
288     return cpuid;
289 }
290 
291 static bool host_tsx_broken(void)
292 {
293     int family, model, stepping;\
294     char vendor[CPUID_VENDOR_SZ + 1];
295 
296     host_cpu_vendor_fms(vendor, &family, &model, &stepping);
297 
298     /* Check if we are running on a Haswell host known to have broken TSX */
299     return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
300            (family == 6) &&
301            ((model == 63 && stepping < 4) ||
302             model == 60 || model == 69 || model == 70);
303 }
304 
305 /* Returns the value for a specific register on the cpuid entry
306  */
307 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
308 {
309     uint32_t ret = 0;
310     switch (reg) {
311     case R_EAX:
312         ret = entry->eax;
313         break;
314     case R_EBX:
315         ret = entry->ebx;
316         break;
317     case R_ECX:
318         ret = entry->ecx;
319         break;
320     case R_EDX:
321         ret = entry->edx;
322         break;
323     }
324     return ret;
325 }
326 
327 /* Find matching entry for function/index on kvm_cpuid2 struct
328  */
329 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
330                                                  uint32_t function,
331                                                  uint32_t index)
332 {
333     int i;
334     for (i = 0; i < cpuid->nent; ++i) {
335         if (cpuid->entries[i].function == function &&
336             cpuid->entries[i].index == index) {
337             return &cpuid->entries[i];
338         }
339     }
340     /* not found: */
341     return NULL;
342 }
343 
344 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
345                                       uint32_t index, int reg)
346 {
347     struct kvm_cpuid2 *cpuid;
348     uint32_t ret = 0;
349     uint32_t cpuid_1_edx;
350 
351     cpuid = get_supported_cpuid(s);
352 
353     struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
354     if (entry) {
355         ret = cpuid_entry_get_reg(entry, reg);
356     }
357 
358     /* Fixups for the data returned by KVM, below */
359 
360     if (function == 1 && reg == R_EDX) {
361         /* KVM before 2.6.30 misreports the following features */
362         ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
363     } else if (function == 1 && reg == R_ECX) {
364         /* We can set the hypervisor flag, even if KVM does not return it on
365          * GET_SUPPORTED_CPUID
366          */
367         ret |= CPUID_EXT_HYPERVISOR;
368         /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
369          * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
370          * and the irqchip is in the kernel.
371          */
372         if (kvm_irqchip_in_kernel() &&
373                 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
374             ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
375         }
376 
377         /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
378          * without the in-kernel irqchip
379          */
380         if (!kvm_irqchip_in_kernel()) {
381             ret &= ~CPUID_EXT_X2APIC;
382         }
383 
384         if (enable_cpu_pm) {
385             int disable_exits = kvm_check_extension(s,
386                                                     KVM_CAP_X86_DISABLE_EXITS);
387 
388             if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
389                 ret |= CPUID_EXT_MONITOR;
390             }
391         }
392     } else if (function == 6 && reg == R_EAX) {
393         ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
394     } else if (function == 7 && index == 0 && reg == R_EBX) {
395         if (host_tsx_broken()) {
396             ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
397         }
398     } else if (function == 7 && index == 0 && reg == R_EDX) {
399         /*
400          * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
401          * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
402          * returned by KVM_GET_MSR_INDEX_LIST.
403          */
404         if (!has_msr_arch_capabs) {
405             ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
406         }
407     } else if (function == 0x80000001 && reg == R_ECX) {
408         /*
409          * It's safe to enable TOPOEXT even if it's not returned by
410          * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
411          * us to keep CPU models including TOPOEXT runnable on older kernels.
412          */
413         ret |= CPUID_EXT3_TOPOEXT;
414     } else if (function == 0x80000001 && reg == R_EDX) {
415         /* On Intel, kvm returns cpuid according to the Intel spec,
416          * so add missing bits according to the AMD spec:
417          */
418         cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
419         ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
420     } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
421         /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
422          * be enabled without the in-kernel irqchip
423          */
424         if (!kvm_irqchip_in_kernel()) {
425             ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
426         }
427         if (kvm_irqchip_is_split()) {
428             ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
429         }
430     } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
431         ret |= 1U << KVM_HINTS_REALTIME;
432     }
433 
434     return ret;
435 }
436 
437 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
438 {
439     struct {
440         struct kvm_msrs info;
441         struct kvm_msr_entry entries[1];
442     } msr_data = {};
443     uint64_t value;
444     uint32_t ret, can_be_one, must_be_one;
445 
446     if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
447         return 0;
448     }
449 
450     /* Check if requested MSR is supported feature MSR */
451     int i;
452     for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
453         if (kvm_feature_msrs->indices[i] == index) {
454             break;
455         }
456     if (i == kvm_feature_msrs->nmsrs) {
457         return 0; /* if the feature MSR is not supported, simply return 0 */
458     }
459 
460     msr_data.info.nmsrs = 1;
461     msr_data.entries[0].index = index;
462 
463     ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
464     if (ret != 1) {
465         error_report("KVM get MSR (index=0x%x) feature failed, %s",
466             index, strerror(-ret));
467         exit(1);
468     }
469 
470     value = msr_data.entries[0].data;
471     switch (index) {
472     case MSR_IA32_VMX_PROCBASED_CTLS2:
473         if (!has_msr_vmx_procbased_ctls2) {
474             /* KVM forgot to add these bits for some time, do this ourselves. */
475             if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
476                 CPUID_XSAVE_XSAVES) {
477                 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
478             }
479             if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
480                 CPUID_EXT_RDRAND) {
481                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
482             }
483             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
484                 CPUID_7_0_EBX_INVPCID) {
485                 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
486             }
487             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
488                 CPUID_7_0_EBX_RDSEED) {
489                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
490             }
491             if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
492                 CPUID_EXT2_RDTSCP) {
493                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
494             }
495         }
496         /* fall through */
497     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
498     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
499     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
500     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
501         /*
502          * Return true for bits that can be one, but do not have to be one.
503          * The SDM tells us which bits could have a "must be one" setting,
504          * so we can do the opposite transformation in make_vmx_msr_value.
505          */
506         must_be_one = (uint32_t)value;
507         can_be_one = (uint32_t)(value >> 32);
508         return can_be_one & ~must_be_one;
509 
510     default:
511         return value;
512     }
513 }
514 
515 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
516                                      int *max_banks)
517 {
518     int r;
519 
520     r = kvm_check_extension(s, KVM_CAP_MCE);
521     if (r > 0) {
522         *max_banks = r;
523         return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
524     }
525     return -ENOSYS;
526 }
527 
528 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
529 {
530     CPUState *cs = CPU(cpu);
531     CPUX86State *env = &cpu->env;
532     uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
533                       MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
534     uint64_t mcg_status = MCG_STATUS_MCIP;
535     int flags = 0;
536 
537     if (code == BUS_MCEERR_AR) {
538         status |= MCI_STATUS_AR | 0x134;
539         mcg_status |= MCG_STATUS_EIPV;
540     } else {
541         status |= 0xc0;
542         mcg_status |= MCG_STATUS_RIPV;
543     }
544 
545     flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
546     /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
547      * guest kernel back into env->mcg_ext_ctl.
548      */
549     cpu_synchronize_state(cs);
550     if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
551         mcg_status |= MCG_STATUS_LMCE;
552         flags = 0;
553     }
554 
555     cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
556                        (MCM_ADDR_PHYS << 6) | 0xc, flags);
557 }
558 
559 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
560 {
561     MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
562 
563     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
564                                    &mff);
565 }
566 
567 static void hardware_memory_error(void *host_addr)
568 {
569     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
570     error_report("QEMU got Hardware memory error at addr %p", host_addr);
571     exit(1);
572 }
573 
574 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
575 {
576     X86CPU *cpu = X86_CPU(c);
577     CPUX86State *env = &cpu->env;
578     ram_addr_t ram_addr;
579     hwaddr paddr;
580 
581     /* If we get an action required MCE, it has been injected by KVM
582      * while the VM was running.  An action optional MCE instead should
583      * be coming from the main thread, which qemu_init_sigbus identifies
584      * as the "early kill" thread.
585      */
586     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
587 
588     if ((env->mcg_cap & MCG_SER_P) && addr) {
589         ram_addr = qemu_ram_addr_from_host(addr);
590         if (ram_addr != RAM_ADDR_INVALID &&
591             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
592             kvm_hwpoison_page_add(ram_addr);
593             kvm_mce_inject(cpu, paddr, code);
594 
595             /*
596              * Use different logging severity based on error type.
597              * If there is additional MCE reporting on the hypervisor, QEMU VA
598              * could be another source to identify the PA and MCE details.
599              */
600             if (code == BUS_MCEERR_AR) {
601                 error_report("Guest MCE Memory Error at QEMU addr %p and "
602                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
603                     addr, paddr, "BUS_MCEERR_AR");
604             } else {
605                  warn_report("Guest MCE Memory Error at QEMU addr %p and "
606                      "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
607                      addr, paddr, "BUS_MCEERR_AO");
608             }
609 
610             return;
611         }
612 
613         if (code == BUS_MCEERR_AO) {
614             warn_report("Hardware memory error at addr %p of type %s "
615                 "for memory used by QEMU itself instead of guest system!",
616                  addr, "BUS_MCEERR_AO");
617         }
618     }
619 
620     if (code == BUS_MCEERR_AR) {
621         hardware_memory_error(addr);
622     }
623 
624     /* Hope we are lucky for AO MCE, just notify a event */
625     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
626 }
627 
628 static void kvm_reset_exception(CPUX86State *env)
629 {
630     env->exception_nr = -1;
631     env->exception_pending = 0;
632     env->exception_injected = 0;
633     env->exception_has_payload = false;
634     env->exception_payload = 0;
635 }
636 
637 static void kvm_queue_exception(CPUX86State *env,
638                                 int32_t exception_nr,
639                                 uint8_t exception_has_payload,
640                                 uint64_t exception_payload)
641 {
642     assert(env->exception_nr == -1);
643     assert(!env->exception_pending);
644     assert(!env->exception_injected);
645     assert(!env->exception_has_payload);
646 
647     env->exception_nr = exception_nr;
648 
649     if (has_exception_payload) {
650         env->exception_pending = 1;
651 
652         env->exception_has_payload = exception_has_payload;
653         env->exception_payload = exception_payload;
654     } else {
655         env->exception_injected = 1;
656 
657         if (exception_nr == EXCP01_DB) {
658             assert(exception_has_payload);
659             env->dr[6] = exception_payload;
660         } else if (exception_nr == EXCP0E_PAGE) {
661             assert(exception_has_payload);
662             env->cr[2] = exception_payload;
663         } else {
664             assert(!exception_has_payload);
665         }
666     }
667 }
668 
669 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
670 {
671     CPUX86State *env = &cpu->env;
672 
673     if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
674         unsigned int bank, bank_num = env->mcg_cap & 0xff;
675         struct kvm_x86_mce mce;
676 
677         kvm_reset_exception(env);
678 
679         /*
680          * There must be at least one bank in use if an MCE is pending.
681          * Find it and use its values for the event injection.
682          */
683         for (bank = 0; bank < bank_num; bank++) {
684             if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
685                 break;
686             }
687         }
688         assert(bank < bank_num);
689 
690         mce.bank = bank;
691         mce.status = env->mce_banks[bank * 4 + 1];
692         mce.mcg_status = env->mcg_status;
693         mce.addr = env->mce_banks[bank * 4 + 2];
694         mce.misc = env->mce_banks[bank * 4 + 3];
695 
696         return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
697     }
698     return 0;
699 }
700 
701 static void cpu_update_state(void *opaque, bool running, RunState state)
702 {
703     CPUX86State *env = opaque;
704 
705     if (running) {
706         env->tsc_valid = false;
707     }
708 }
709 
710 unsigned long kvm_arch_vcpu_id(CPUState *cs)
711 {
712     X86CPU *cpu = X86_CPU(cs);
713     return cpu->apic_id;
714 }
715 
716 #ifndef KVM_CPUID_SIGNATURE_NEXT
717 #define KVM_CPUID_SIGNATURE_NEXT                0x40000100
718 #endif
719 
720 static bool hyperv_enabled(X86CPU *cpu)
721 {
722     return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
723         ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
724          cpu->hyperv_features || cpu->hyperv_passthrough);
725 }
726 
727 /*
728  * Check whether target_freq is within conservative
729  * ntp correctable bounds (250ppm) of freq
730  */
731 static inline bool freq_within_bounds(int freq, int target_freq)
732 {
733         int max_freq = freq + (freq * 250 / 1000000);
734         int min_freq = freq - (freq * 250 / 1000000);
735 
736         if (target_freq >= min_freq && target_freq <= max_freq) {
737                 return true;
738         }
739 
740         return false;
741 }
742 
743 static int kvm_arch_set_tsc_khz(CPUState *cs)
744 {
745     X86CPU *cpu = X86_CPU(cs);
746     CPUX86State *env = &cpu->env;
747     int r, cur_freq;
748     bool set_ioctl = false;
749 
750     if (!env->tsc_khz) {
751         return 0;
752     }
753 
754     cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
755                kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
756 
757     /*
758      * If TSC scaling is supported, attempt to set TSC frequency.
759      */
760     if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
761         set_ioctl = true;
762     }
763 
764     /*
765      * If desired TSC frequency is within bounds of NTP correction,
766      * attempt to set TSC frequency.
767      */
768     if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
769         set_ioctl = true;
770     }
771 
772     r = set_ioctl ?
773         kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
774         -ENOTSUP;
775 
776     if (r < 0) {
777         /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
778          * TSC frequency doesn't match the one we want.
779          */
780         cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
781                    kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
782                    -ENOTSUP;
783         if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
784             warn_report("TSC frequency mismatch between "
785                         "VM (%" PRId64 " kHz) and host (%d kHz), "
786                         "and TSC scaling unavailable",
787                         env->tsc_khz, cur_freq);
788             return r;
789         }
790     }
791 
792     return 0;
793 }
794 
795 static bool tsc_is_stable_and_known(CPUX86State *env)
796 {
797     if (!env->tsc_khz) {
798         return false;
799     }
800     return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
801         || env->user_tsc_khz;
802 }
803 
804 static struct {
805     const char *desc;
806     struct {
807         uint32_t func;
808         int reg;
809         uint32_t bits;
810     } flags[2];
811     uint64_t dependencies;
812 } kvm_hyperv_properties[] = {
813     [HYPERV_FEAT_RELAXED] = {
814         .desc = "relaxed timing (hv-relaxed)",
815         .flags = {
816             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
817              .bits = HV_RELAXED_TIMING_RECOMMENDED}
818         }
819     },
820     [HYPERV_FEAT_VAPIC] = {
821         .desc = "virtual APIC (hv-vapic)",
822         .flags = {
823             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
824              .bits = HV_APIC_ACCESS_AVAILABLE}
825         }
826     },
827     [HYPERV_FEAT_TIME] = {
828         .desc = "clocksources (hv-time)",
829         .flags = {
830             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
831              .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
832         }
833     },
834     [HYPERV_FEAT_CRASH] = {
835         .desc = "crash MSRs (hv-crash)",
836         .flags = {
837             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
838              .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
839         }
840     },
841     [HYPERV_FEAT_RESET] = {
842         .desc = "reset MSR (hv-reset)",
843         .flags = {
844             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
845              .bits = HV_RESET_AVAILABLE}
846         }
847     },
848     [HYPERV_FEAT_VPINDEX] = {
849         .desc = "VP_INDEX MSR (hv-vpindex)",
850         .flags = {
851             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
852              .bits = HV_VP_INDEX_AVAILABLE}
853         }
854     },
855     [HYPERV_FEAT_RUNTIME] = {
856         .desc = "VP_RUNTIME MSR (hv-runtime)",
857         .flags = {
858             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
859              .bits = HV_VP_RUNTIME_AVAILABLE}
860         }
861     },
862     [HYPERV_FEAT_SYNIC] = {
863         .desc = "synthetic interrupt controller (hv-synic)",
864         .flags = {
865             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
866              .bits = HV_SYNIC_AVAILABLE}
867         }
868     },
869     [HYPERV_FEAT_STIMER] = {
870         .desc = "synthetic timers (hv-stimer)",
871         .flags = {
872             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
873              .bits = HV_SYNTIMERS_AVAILABLE}
874         },
875         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
876     },
877     [HYPERV_FEAT_FREQUENCIES] = {
878         .desc = "frequency MSRs (hv-frequencies)",
879         .flags = {
880             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
881              .bits = HV_ACCESS_FREQUENCY_MSRS},
882             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
883              .bits = HV_FREQUENCY_MSRS_AVAILABLE}
884         }
885     },
886     [HYPERV_FEAT_REENLIGHTENMENT] = {
887         .desc = "reenlightenment MSRs (hv-reenlightenment)",
888         .flags = {
889             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
890              .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
891         }
892     },
893     [HYPERV_FEAT_TLBFLUSH] = {
894         .desc = "paravirtualized TLB flush (hv-tlbflush)",
895         .flags = {
896             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
897              .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
898              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
899         },
900         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
901     },
902     [HYPERV_FEAT_EVMCS] = {
903         .desc = "enlightened VMCS (hv-evmcs)",
904         .flags = {
905             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
906              .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
907         },
908         .dependencies = BIT(HYPERV_FEAT_VAPIC)
909     },
910     [HYPERV_FEAT_IPI] = {
911         .desc = "paravirtualized IPI (hv-ipi)",
912         .flags = {
913             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
914              .bits = HV_CLUSTER_IPI_RECOMMENDED |
915              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
916         },
917         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
918     },
919     [HYPERV_FEAT_STIMER_DIRECT] = {
920         .desc = "direct mode synthetic timers (hv-stimer-direct)",
921         .flags = {
922             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
923              .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
924         },
925         .dependencies = BIT(HYPERV_FEAT_STIMER)
926     },
927     [HYPERV_FEAT_AVIC] = {
928         .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
929         .flags = {
930             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
931              .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
932         }
933     },
934 };
935 
936 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
937                                            bool do_sys_ioctl)
938 {
939     struct kvm_cpuid2 *cpuid;
940     int r, size;
941 
942     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
943     cpuid = g_malloc0(size);
944     cpuid->nent = max;
945 
946     if (do_sys_ioctl) {
947         r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
948     } else {
949         r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
950     }
951     if (r == 0 && cpuid->nent >= max) {
952         r = -E2BIG;
953     }
954     if (r < 0) {
955         if (r == -E2BIG) {
956             g_free(cpuid);
957             return NULL;
958         } else {
959             fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
960                     strerror(-r));
961             exit(1);
962         }
963     }
964     return cpuid;
965 }
966 
967 /*
968  * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
969  * for all entries.
970  */
971 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
972 {
973     struct kvm_cpuid2 *cpuid;
974     /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000080 leaves */
975     int max = 10;
976     int i;
977     bool do_sys_ioctl;
978 
979     do_sys_ioctl =
980         kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
981 
982     /*
983      * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
984      * unsupported, kvm_hyperv_expand_features() checks for that.
985      */
986     assert(do_sys_ioctl || cs->kvm_state);
987 
988     /*
989      * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
990      * -E2BIG, however, it doesn't report back the right size. Keep increasing
991      * it and re-trying until we succeed.
992      */
993     while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
994         max++;
995     }
996 
997     /*
998      * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
999      * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1000      * information early, just check for the capability and set the bit
1001      * manually.
1002      */
1003     if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1004                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1005         for (i = 0; i < cpuid->nent; i++) {
1006             if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1007                 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1008             }
1009         }
1010     }
1011 
1012     return cpuid;
1013 }
1014 
1015 /*
1016  * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1017  * leaves from KVM_CAP_HYPERV* and present MSRs data.
1018  */
1019 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1020 {
1021     X86CPU *cpu = X86_CPU(cs);
1022     struct kvm_cpuid2 *cpuid;
1023     struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1024 
1025     /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1026     cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1027     cpuid->nent = 2;
1028 
1029     /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1030     entry_feat = &cpuid->entries[0];
1031     entry_feat->function = HV_CPUID_FEATURES;
1032 
1033     entry_recomm = &cpuid->entries[1];
1034     entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1035     entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1036 
1037     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1038         entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1039         entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1040         entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1041         entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1042         entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1043     }
1044 
1045     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1046         entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1047         entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1048     }
1049 
1050     if (has_msr_hv_frequencies) {
1051         entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1052         entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1053     }
1054 
1055     if (has_msr_hv_crash) {
1056         entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1057     }
1058 
1059     if (has_msr_hv_reenlightenment) {
1060         entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1061     }
1062 
1063     if (has_msr_hv_reset) {
1064         entry_feat->eax |= HV_RESET_AVAILABLE;
1065     }
1066 
1067     if (has_msr_hv_vpindex) {
1068         entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1069     }
1070 
1071     if (has_msr_hv_runtime) {
1072         entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1073     }
1074 
1075     if (has_msr_hv_synic) {
1076         unsigned int cap = cpu->hyperv_synic_kvm_only ?
1077             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1078 
1079         if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1080             entry_feat->eax |= HV_SYNIC_AVAILABLE;
1081         }
1082     }
1083 
1084     if (has_msr_hv_stimer) {
1085         entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1086     }
1087 
1088     if (kvm_check_extension(cs->kvm_state,
1089                             KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1090         entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1091         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1092     }
1093 
1094     if (kvm_check_extension(cs->kvm_state,
1095                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1096         entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1097     }
1098 
1099     if (kvm_check_extension(cs->kvm_state,
1100                             KVM_CAP_HYPERV_SEND_IPI) > 0) {
1101         entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1102         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1103     }
1104 
1105     return cpuid;
1106 }
1107 
1108 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1109 {
1110     struct kvm_cpuid_entry2 *entry;
1111     struct kvm_cpuid2 *cpuid;
1112 
1113     if (hv_cpuid_cache) {
1114         cpuid = hv_cpuid_cache;
1115     } else {
1116         if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1117             cpuid = get_supported_hv_cpuid(cs);
1118         } else {
1119             /*
1120              * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1121              * before KVM context is created but this is only done when
1122              * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1123              * KVM_CAP_HYPERV_CPUID.
1124              */
1125             assert(cs->kvm_state);
1126 
1127             cpuid = get_supported_hv_cpuid_legacy(cs);
1128         }
1129         hv_cpuid_cache = cpuid;
1130     }
1131 
1132     if (!cpuid) {
1133         return 0;
1134     }
1135 
1136     entry = cpuid_find_entry(cpuid, func, 0);
1137     if (!entry) {
1138         return 0;
1139     }
1140 
1141     return cpuid_entry_get_reg(entry, reg);
1142 }
1143 
1144 static bool hyperv_feature_supported(CPUState *cs, int feature)
1145 {
1146     uint32_t func, bits;
1147     int i, reg;
1148 
1149     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1150 
1151         func = kvm_hyperv_properties[feature].flags[i].func;
1152         reg = kvm_hyperv_properties[feature].flags[i].reg;
1153         bits = kvm_hyperv_properties[feature].flags[i].bits;
1154 
1155         if (!func) {
1156             continue;
1157         }
1158 
1159         if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1160             return false;
1161         }
1162     }
1163 
1164     return true;
1165 }
1166 
1167 /* Checks that all feature dependencies are enabled */
1168 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1169 {
1170     uint64_t deps;
1171     int dep_feat;
1172 
1173     deps = kvm_hyperv_properties[feature].dependencies;
1174     while (deps) {
1175         dep_feat = ctz64(deps);
1176         if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1177             error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1178                        kvm_hyperv_properties[feature].desc,
1179                        kvm_hyperv_properties[dep_feat].desc);
1180             return false;
1181         }
1182         deps &= ~(1ull << dep_feat);
1183     }
1184 
1185     return true;
1186 }
1187 
1188 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1189 {
1190     X86CPU *cpu = X86_CPU(cs);
1191     uint32_t r = 0;
1192     int i, j;
1193 
1194     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1195         if (!hyperv_feat_enabled(cpu, i)) {
1196             continue;
1197         }
1198 
1199         for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1200             if (kvm_hyperv_properties[i].flags[j].func != func) {
1201                 continue;
1202             }
1203             if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1204                 continue;
1205             }
1206 
1207             r |= kvm_hyperv_properties[i].flags[j].bits;
1208         }
1209     }
1210 
1211     return r;
1212 }
1213 
1214 /*
1215  * Expand Hyper-V CPU features. In partucular, check that all the requested
1216  * features are supported by the host and the sanity of the configuration
1217  * (that all the required dependencies are included). Also, this takes care
1218  * of 'hv_passthrough' mode and fills the environment with all supported
1219  * Hyper-V features.
1220  */
1221 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1222 {
1223     CPUState *cs = CPU(cpu);
1224     Error *local_err = NULL;
1225     int feat;
1226 
1227     if (!hyperv_enabled(cpu))
1228         return true;
1229 
1230     /*
1231      * When kvm_hyperv_expand_features is called at CPU feature expansion
1232      * time per-CPU kvm_state is not available yet so we can only proceed
1233      * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1234      */
1235     if (!cs->kvm_state &&
1236         !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1237         return true;
1238 
1239     if (cpu->hyperv_passthrough) {
1240         cpu->hyperv_vendor_id[0] =
1241             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1242         cpu->hyperv_vendor_id[1] =
1243             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1244         cpu->hyperv_vendor_id[2] =
1245             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1246         cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1247                                        sizeof(cpu->hyperv_vendor_id) + 1);
1248         memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1249                sizeof(cpu->hyperv_vendor_id));
1250         cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1251 
1252         cpu->hyperv_interface_id[0] =
1253             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1254         cpu->hyperv_interface_id[1] =
1255             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1256         cpu->hyperv_interface_id[2] =
1257             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1258         cpu->hyperv_interface_id[3] =
1259             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1260 
1261         cpu->hyperv_ver_id_build =
1262             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1263         cpu->hyperv_ver_id_major =
1264             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1265         cpu->hyperv_ver_id_minor =
1266             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1267         cpu->hyperv_ver_id_sp =
1268             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1269         cpu->hyperv_ver_id_sb =
1270             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1271         cpu->hyperv_ver_id_sn =
1272             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1273 
1274         cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1275                                             R_EAX);
1276         cpu->hyperv_limits[0] =
1277             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1278         cpu->hyperv_limits[1] =
1279             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1280         cpu->hyperv_limits[2] =
1281             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1282 
1283         cpu->hyperv_spinlock_attempts =
1284             hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1285 
1286         /*
1287          * Mark feature as enabled in 'cpu->hyperv_features' as
1288          * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1289          */
1290         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1291             if (hyperv_feature_supported(cs, feat)) {
1292                 cpu->hyperv_features |= BIT(feat);
1293             }
1294         }
1295     } else {
1296         /* Check features availability and dependencies */
1297         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1298             /* If the feature was not requested skip it. */
1299             if (!hyperv_feat_enabled(cpu, feat)) {
1300                 continue;
1301             }
1302 
1303             /* Check if the feature is supported by KVM */
1304             if (!hyperv_feature_supported(cs, feat)) {
1305                 error_setg(errp, "Hyper-V %s is not supported by kernel",
1306                            kvm_hyperv_properties[feat].desc);
1307                 return false;
1308             }
1309 
1310             /* Check dependencies */
1311             if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1312                 error_propagate(errp, local_err);
1313                 return false;
1314             }
1315         }
1316     }
1317 
1318     /* Additional dependencies not covered by kvm_hyperv_properties[] */
1319     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1320         !cpu->hyperv_synic_kvm_only &&
1321         !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1322         error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1323                    kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1324                    kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1325         return false;
1326     }
1327 
1328     return true;
1329 }
1330 
1331 /*
1332  * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1333  */
1334 static int hyperv_fill_cpuids(CPUState *cs,
1335                               struct kvm_cpuid_entry2 *cpuid_ent)
1336 {
1337     X86CPU *cpu = X86_CPU(cs);
1338     struct kvm_cpuid_entry2 *c;
1339     uint32_t cpuid_i = 0;
1340 
1341     c = &cpuid_ent[cpuid_i++];
1342     c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1343     c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1344         HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1345     c->ebx = cpu->hyperv_vendor_id[0];
1346     c->ecx = cpu->hyperv_vendor_id[1];
1347     c->edx = cpu->hyperv_vendor_id[2];
1348 
1349     c = &cpuid_ent[cpuid_i++];
1350     c->function = HV_CPUID_INTERFACE;
1351     c->eax = cpu->hyperv_interface_id[0];
1352     c->ebx = cpu->hyperv_interface_id[1];
1353     c->ecx = cpu->hyperv_interface_id[2];
1354     c->edx = cpu->hyperv_interface_id[3];
1355 
1356     c = &cpuid_ent[cpuid_i++];
1357     c->function = HV_CPUID_VERSION;
1358     c->eax = cpu->hyperv_ver_id_build;
1359     c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1360         cpu->hyperv_ver_id_minor;
1361     c->ecx = cpu->hyperv_ver_id_sp;
1362     c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1363         (cpu->hyperv_ver_id_sn & 0xffffff);
1364 
1365     c = &cpuid_ent[cpuid_i++];
1366     c->function = HV_CPUID_FEATURES;
1367     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1368     c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1369     c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1370 
1371     /* Unconditionally required with any Hyper-V enlightenment */
1372     c->eax |= HV_HYPERCALL_AVAILABLE;
1373 
1374     /* SynIC and Vmbus devices require messages/signals hypercalls */
1375     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1376         !cpu->hyperv_synic_kvm_only) {
1377         c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1378     }
1379 
1380 
1381     /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1382     c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1383 
1384     c = &cpuid_ent[cpuid_i++];
1385     c->function = HV_CPUID_ENLIGHTMENT_INFO;
1386     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1387     c->ebx = cpu->hyperv_spinlock_attempts;
1388 
1389     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1390         !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1391         c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1392     }
1393 
1394     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1395         c->eax |= HV_NO_NONARCH_CORESHARING;
1396     } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1397         c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1398             HV_NO_NONARCH_CORESHARING;
1399     }
1400 
1401     c = &cpuid_ent[cpuid_i++];
1402     c->function = HV_CPUID_IMPLEMENT_LIMITS;
1403     c->eax = cpu->hv_max_vps;
1404     c->ebx = cpu->hyperv_limits[0];
1405     c->ecx = cpu->hyperv_limits[1];
1406     c->edx = cpu->hyperv_limits[2];
1407 
1408     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1409         uint32_t function;
1410 
1411         /* Create zeroed 0x40000006..0x40000009 leaves */
1412         for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1413              function < HV_CPUID_NESTED_FEATURES; function++) {
1414             c = &cpuid_ent[cpuid_i++];
1415             c->function = function;
1416         }
1417 
1418         c = &cpuid_ent[cpuid_i++];
1419         c->function = HV_CPUID_NESTED_FEATURES;
1420         c->eax = cpu->hyperv_nested[0];
1421     }
1422 
1423     return cpuid_i;
1424 }
1425 
1426 static Error *hv_passthrough_mig_blocker;
1427 static Error *hv_no_nonarch_cs_mig_blocker;
1428 
1429 /* Checks that the exposed eVMCS version range is supported by KVM */
1430 static bool evmcs_version_supported(uint16_t evmcs_version,
1431                                     uint16_t supported_evmcs_version)
1432 {
1433     uint8_t min_version = evmcs_version & 0xff;
1434     uint8_t max_version = evmcs_version >> 8;
1435     uint8_t min_supported_version = supported_evmcs_version & 0xff;
1436     uint8_t max_supported_version = supported_evmcs_version >> 8;
1437 
1438     return (min_version >= min_supported_version) &&
1439         (max_version <= max_supported_version);
1440 }
1441 
1442 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
1443 
1444 static int hyperv_init_vcpu(X86CPU *cpu)
1445 {
1446     CPUState *cs = CPU(cpu);
1447     Error *local_err = NULL;
1448     int ret;
1449 
1450     if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1451         error_setg(&hv_passthrough_mig_blocker,
1452                    "'hv-passthrough' CPU flag prevents migration, use explicit"
1453                    " set of hv-* flags instead");
1454         ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1455         if (ret < 0) {
1456             error_report_err(local_err);
1457             return ret;
1458         }
1459     }
1460 
1461     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1462         hv_no_nonarch_cs_mig_blocker == NULL) {
1463         error_setg(&hv_no_nonarch_cs_mig_blocker,
1464                    "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1465                    " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1466                    " make sure SMT is disabled and/or that vCPUs are properly"
1467                    " pinned)");
1468         ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1469         if (ret < 0) {
1470             error_report_err(local_err);
1471             return ret;
1472         }
1473     }
1474 
1475     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1476         /*
1477          * the kernel doesn't support setting vp_index; assert that its value
1478          * is in sync
1479          */
1480         struct {
1481             struct kvm_msrs info;
1482             struct kvm_msr_entry entries[1];
1483         } msr_data = {
1484             .info.nmsrs = 1,
1485             .entries[0].index = HV_X64_MSR_VP_INDEX,
1486         };
1487 
1488         ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
1489         if (ret < 0) {
1490             return ret;
1491         }
1492         assert(ret == 1);
1493 
1494         if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
1495             error_report("kernel's vp_index != QEMU's vp_index");
1496             return -ENXIO;
1497         }
1498     }
1499 
1500     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1501         uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1502             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1503         ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1504         if (ret < 0) {
1505             error_report("failed to turn on HyperV SynIC in KVM: %s",
1506                          strerror(-ret));
1507             return ret;
1508         }
1509 
1510         if (!cpu->hyperv_synic_kvm_only) {
1511             ret = hyperv_x86_synic_add(cpu);
1512             if (ret < 0) {
1513                 error_report("failed to create HyperV SynIC: %s",
1514                              strerror(-ret));
1515                 return ret;
1516             }
1517         }
1518     }
1519 
1520     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1521         uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1522         uint16_t supported_evmcs_version;
1523 
1524         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1525                                   (uintptr_t)&supported_evmcs_version);
1526 
1527         /*
1528          * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1529          * option sets. Note: we hardcode the maximum supported eVMCS version
1530          * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1531          * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1532          * to be added.
1533          */
1534         if (ret < 0) {
1535             error_report("Hyper-V %s is not supported by kernel",
1536                          kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1537             return ret;
1538         }
1539 
1540         if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1541             error_report("eVMCS version range [%d..%d] is not supported by "
1542                          "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1543                          evmcs_version >> 8, supported_evmcs_version & 0xff,
1544                          supported_evmcs_version >> 8);
1545             return -ENOTSUP;
1546         }
1547 
1548         cpu->hyperv_nested[0] = evmcs_version;
1549     }
1550 
1551     if (cpu->hyperv_enforce_cpuid) {
1552         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1553         if (ret < 0) {
1554             error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1555                          strerror(-ret));
1556             return ret;
1557         }
1558     }
1559 
1560     return 0;
1561 }
1562 
1563 static Error *invtsc_mig_blocker;
1564 
1565 #define KVM_MAX_CPUID_ENTRIES  100
1566 
1567 int kvm_arch_init_vcpu(CPUState *cs)
1568 {
1569     struct {
1570         struct kvm_cpuid2 cpuid;
1571         struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1572     } cpuid_data;
1573     /*
1574      * The kernel defines these structs with padding fields so there
1575      * should be no extra padding in our cpuid_data struct.
1576      */
1577     QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1578                       sizeof(struct kvm_cpuid2) +
1579                       sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1580 
1581     X86CPU *cpu = X86_CPU(cs);
1582     CPUX86State *env = &cpu->env;
1583     uint32_t limit, i, j, cpuid_i;
1584     uint32_t unused;
1585     struct kvm_cpuid_entry2 *c;
1586     uint32_t signature[3];
1587     int kvm_base = KVM_CPUID_SIGNATURE;
1588     int max_nested_state_len;
1589     int r;
1590     Error *local_err = NULL;
1591 
1592     memset(&cpuid_data, 0, sizeof(cpuid_data));
1593 
1594     cpuid_i = 0;
1595 
1596     r = kvm_arch_set_tsc_khz(cs);
1597     if (r < 0) {
1598         return r;
1599     }
1600 
1601     /* vcpu's TSC frequency is either specified by user, or following
1602      * the value used by KVM if the former is not present. In the
1603      * latter case, we query it from KVM and record in env->tsc_khz,
1604      * so that vcpu's TSC frequency can be migrated later via this field.
1605      */
1606     if (!env->tsc_khz) {
1607         r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1608             kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1609             -ENOTSUP;
1610         if (r > 0) {
1611             env->tsc_khz = r;
1612         }
1613     }
1614 
1615     env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1616 
1617     /*
1618      * kvm_hyperv_expand_features() is called here for the second time in case
1619      * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
1620      * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
1621      * check which Hyper-V enlightenments are supported and which are not, we
1622      * can still proceed and check/expand Hyper-V enlightenments here so legacy
1623      * behavior is preserved.
1624      */
1625     if (!kvm_hyperv_expand_features(cpu, &local_err)) {
1626         error_report_err(local_err);
1627         return -ENOSYS;
1628     }
1629 
1630     if (hyperv_enabled(cpu)) {
1631         r = hyperv_init_vcpu(cpu);
1632         if (r) {
1633             return r;
1634         }
1635 
1636         cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
1637         kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1638         has_msr_hv_hypercall = true;
1639     }
1640 
1641     if (cpu->expose_kvm) {
1642         memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1643         c = &cpuid_data.entries[cpuid_i++];
1644         c->function = KVM_CPUID_SIGNATURE | kvm_base;
1645         c->eax = KVM_CPUID_FEATURES | kvm_base;
1646         c->ebx = signature[0];
1647         c->ecx = signature[1];
1648         c->edx = signature[2];
1649 
1650         c = &cpuid_data.entries[cpuid_i++];
1651         c->function = KVM_CPUID_FEATURES | kvm_base;
1652         c->eax = env->features[FEAT_KVM];
1653         c->edx = env->features[FEAT_KVM_HINTS];
1654     }
1655 
1656     cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1657 
1658     if (cpu->kvm_pv_enforce_cpuid) {
1659         r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
1660         if (r < 0) {
1661             fprintf(stderr,
1662                     "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
1663                     strerror(-r));
1664             abort();
1665         }
1666     }
1667 
1668     for (i = 0; i <= limit; i++) {
1669         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1670             fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1671             abort();
1672         }
1673         c = &cpuid_data.entries[cpuid_i++];
1674 
1675         switch (i) {
1676         case 2: {
1677             /* Keep reading function 2 till all the input is received */
1678             int times;
1679 
1680             c->function = i;
1681             c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1682                        KVM_CPUID_FLAG_STATE_READ_NEXT;
1683             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1684             times = c->eax & 0xff;
1685 
1686             for (j = 1; j < times; ++j) {
1687                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1688                     fprintf(stderr, "cpuid_data is full, no space for "
1689                             "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1690                     abort();
1691                 }
1692                 c = &cpuid_data.entries[cpuid_i++];
1693                 c->function = i;
1694                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1695                 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1696             }
1697             break;
1698         }
1699         case 0x1f:
1700             if (env->nr_dies < 2) {
1701                 break;
1702             }
1703             /* fallthrough */
1704         case 4:
1705         case 0xb:
1706         case 0xd:
1707             for (j = 0; ; j++) {
1708                 if (i == 0xd && j == 64) {
1709                     break;
1710                 }
1711 
1712                 if (i == 0x1f && j == 64) {
1713                     break;
1714                 }
1715 
1716                 c->function = i;
1717                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1718                 c->index = j;
1719                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1720 
1721                 if (i == 4 && c->eax == 0) {
1722                     break;
1723                 }
1724                 if (i == 0xb && !(c->ecx & 0xff00)) {
1725                     break;
1726                 }
1727                 if (i == 0x1f && !(c->ecx & 0xff00)) {
1728                     break;
1729                 }
1730                 if (i == 0xd && c->eax == 0) {
1731                     continue;
1732                 }
1733                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1734                     fprintf(stderr, "cpuid_data is full, no space for "
1735                             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1736                     abort();
1737                 }
1738                 c = &cpuid_data.entries[cpuid_i++];
1739             }
1740             break;
1741         case 0x7:
1742         case 0x12:
1743             for (j = 0; ; j++) {
1744                 c->function = i;
1745                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1746                 c->index = j;
1747                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1748 
1749                 if (j > 1 && (c->eax & 0xf) != 1) {
1750                     break;
1751                 }
1752 
1753                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1754                     fprintf(stderr, "cpuid_data is full, no space for "
1755                                 "cpuid(eax:0x12,ecx:0x%x)\n", j);
1756                     abort();
1757                 }
1758                 c = &cpuid_data.entries[cpuid_i++];
1759             }
1760             break;
1761         case 0x14: {
1762             uint32_t times;
1763 
1764             c->function = i;
1765             c->index = 0;
1766             c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1767             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1768             times = c->eax;
1769 
1770             for (j = 1; j <= times; ++j) {
1771                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1772                     fprintf(stderr, "cpuid_data is full, no space for "
1773                                 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1774                     abort();
1775                 }
1776                 c = &cpuid_data.entries[cpuid_i++];
1777                 c->function = i;
1778                 c->index = j;
1779                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1780                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1781             }
1782             break;
1783         }
1784         default:
1785             c->function = i;
1786             c->flags = 0;
1787             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1788             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1789                 /*
1790                  * KVM already returns all zeroes if a CPUID entry is missing,
1791                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1792                  */
1793                 cpuid_i--;
1794             }
1795             break;
1796         }
1797     }
1798 
1799     if (limit >= 0x0a) {
1800         uint32_t eax, edx;
1801 
1802         cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1803 
1804         has_architectural_pmu_version = eax & 0xff;
1805         if (has_architectural_pmu_version > 0) {
1806             num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1807 
1808             /* Shouldn't be more than 32, since that's the number of bits
1809              * available in EBX to tell us _which_ counters are available.
1810              * Play it safe.
1811              */
1812             if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1813                 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1814             }
1815 
1816             if (has_architectural_pmu_version > 1) {
1817                 num_architectural_pmu_fixed_counters = edx & 0x1f;
1818 
1819                 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1820                     num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1821                 }
1822             }
1823         }
1824     }
1825 
1826     cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1827 
1828     for (i = 0x80000000; i <= limit; i++) {
1829         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1830             fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1831             abort();
1832         }
1833         c = &cpuid_data.entries[cpuid_i++];
1834 
1835         switch (i) {
1836         case 0x8000001d:
1837             /* Query for all AMD cache information leaves */
1838             for (j = 0; ; j++) {
1839                 c->function = i;
1840                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1841                 c->index = j;
1842                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1843 
1844                 if (c->eax == 0) {
1845                     break;
1846                 }
1847                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1848                     fprintf(stderr, "cpuid_data is full, no space for "
1849                             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1850                     abort();
1851                 }
1852                 c = &cpuid_data.entries[cpuid_i++];
1853             }
1854             break;
1855         default:
1856             c->function = i;
1857             c->flags = 0;
1858             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1859             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1860                 /*
1861                  * KVM already returns all zeroes if a CPUID entry is missing,
1862                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1863                  */
1864                 cpuid_i--;
1865             }
1866             break;
1867         }
1868     }
1869 
1870     /* Call Centaur's CPUID instructions they are supported. */
1871     if (env->cpuid_xlevel2 > 0) {
1872         cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1873 
1874         for (i = 0xC0000000; i <= limit; i++) {
1875             if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1876                 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1877                 abort();
1878             }
1879             c = &cpuid_data.entries[cpuid_i++];
1880 
1881             c->function = i;
1882             c->flags = 0;
1883             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1884         }
1885     }
1886 
1887     cpuid_data.cpuid.nent = cpuid_i;
1888 
1889     if (((env->cpuid_version >> 8)&0xF) >= 6
1890         && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1891            (CPUID_MCE | CPUID_MCA)
1892         && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1893         uint64_t mcg_cap, unsupported_caps;
1894         int banks;
1895         int ret;
1896 
1897         ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1898         if (ret < 0) {
1899             fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1900             return ret;
1901         }
1902 
1903         if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1904             error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1905                          (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1906             return -ENOTSUP;
1907         }
1908 
1909         unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1910         if (unsupported_caps) {
1911             if (unsupported_caps & MCG_LMCE_P) {
1912                 error_report("kvm: LMCE not supported");
1913                 return -ENOTSUP;
1914             }
1915             warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1916                         unsupported_caps);
1917         }
1918 
1919         env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1920         ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1921         if (ret < 0) {
1922             fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1923             return ret;
1924         }
1925     }
1926 
1927     cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
1928 
1929     c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1930     if (c) {
1931         has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1932                                   !!(c->ecx & CPUID_EXT_SMX);
1933     }
1934 
1935     c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
1936     if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
1937         has_msr_feature_control = true;
1938     }
1939 
1940     if (env->mcg_cap & MCG_LMCE_P) {
1941         has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1942     }
1943 
1944     if (!env->user_tsc_khz) {
1945         if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1946             invtsc_mig_blocker == NULL) {
1947             error_setg(&invtsc_mig_blocker,
1948                        "State blocked by non-migratable CPU device"
1949                        " (invtsc flag)");
1950             r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1951             if (r < 0) {
1952                 error_report_err(local_err);
1953                 return r;
1954             }
1955         }
1956     }
1957 
1958     if (cpu->vmware_cpuid_freq
1959         /* Guests depend on 0x40000000 to detect this feature, so only expose
1960          * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1961         && cpu->expose_kvm
1962         && kvm_base == KVM_CPUID_SIGNATURE
1963         /* TSC clock must be stable and known for this feature. */
1964         && tsc_is_stable_and_known(env)) {
1965 
1966         c = &cpuid_data.entries[cpuid_i++];
1967         c->function = KVM_CPUID_SIGNATURE | 0x10;
1968         c->eax = env->tsc_khz;
1969         c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
1970         c->ecx = c->edx = 0;
1971 
1972         c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1973         c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1974     }
1975 
1976     cpuid_data.cpuid.nent = cpuid_i;
1977 
1978     cpuid_data.cpuid.padding = 0;
1979     r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1980     if (r) {
1981         goto fail;
1982     }
1983 
1984     if (has_xsave) {
1985         env->xsave_buf_len = sizeof(struct kvm_xsave);
1986         env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1987         memset(env->xsave_buf, 0, env->xsave_buf_len);
1988 
1989         /*
1990          * The allocated storage must be large enough for all of the
1991          * possible XSAVE state components.
1992          */
1993         assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX)
1994                <= env->xsave_buf_len);
1995     }
1996 
1997     max_nested_state_len = kvm_max_nested_state_length();
1998     if (max_nested_state_len > 0) {
1999         assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2000 
2001         if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2002             struct kvm_vmx_nested_state_hdr *vmx_hdr;
2003 
2004             env->nested_state = g_malloc0(max_nested_state_len);
2005             env->nested_state->size = max_nested_state_len;
2006 
2007             if (cpu_has_vmx(env)) {
2008                 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
2009                 vmx_hdr = &env->nested_state->hdr.vmx;
2010                 vmx_hdr->vmxon_pa = -1ull;
2011                 vmx_hdr->vmcs12_pa = -1ull;
2012             } else {
2013                 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
2014             }
2015         }
2016     }
2017 
2018     cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2019 
2020     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2021         has_msr_tsc_aux = false;
2022     }
2023 
2024     kvm_init_msrs(cpu);
2025 
2026     return 0;
2027 
2028  fail:
2029     migrate_del_blocker(invtsc_mig_blocker);
2030 
2031     return r;
2032 }
2033 
2034 int kvm_arch_destroy_vcpu(CPUState *cs)
2035 {
2036     X86CPU *cpu = X86_CPU(cs);
2037     CPUX86State *env = &cpu->env;
2038 
2039     if (cpu->kvm_msr_buf) {
2040         g_free(cpu->kvm_msr_buf);
2041         cpu->kvm_msr_buf = NULL;
2042     }
2043 
2044     if (env->nested_state) {
2045         g_free(env->nested_state);
2046         env->nested_state = NULL;
2047     }
2048 
2049     qemu_del_vm_change_state_handler(cpu->vmsentry);
2050 
2051     return 0;
2052 }
2053 
2054 void kvm_arch_reset_vcpu(X86CPU *cpu)
2055 {
2056     CPUX86State *env = &cpu->env;
2057 
2058     env->xcr0 = 1;
2059     if (kvm_irqchip_in_kernel()) {
2060         env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2061                                           KVM_MP_STATE_UNINITIALIZED;
2062     } else {
2063         env->mp_state = KVM_MP_STATE_RUNNABLE;
2064     }
2065 
2066     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2067         int i;
2068         for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2069             env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2070         }
2071 
2072         hyperv_x86_synic_reset(cpu);
2073     }
2074     /* enabled by default */
2075     env->poll_control_msr = 1;
2076 
2077     sev_es_set_reset_vector(CPU(cpu));
2078 }
2079 
2080 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2081 {
2082     CPUX86State *env = &cpu->env;
2083 
2084     /* APs get directly into wait-for-SIPI state.  */
2085     if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2086         env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2087     }
2088 }
2089 
2090 static int kvm_get_supported_feature_msrs(KVMState *s)
2091 {
2092     int ret = 0;
2093 
2094     if (kvm_feature_msrs != NULL) {
2095         return 0;
2096     }
2097 
2098     if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2099         return 0;
2100     }
2101 
2102     struct kvm_msr_list msr_list;
2103 
2104     msr_list.nmsrs = 0;
2105     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2106     if (ret < 0 && ret != -E2BIG) {
2107         error_report("Fetch KVM feature MSR list failed: %s",
2108             strerror(-ret));
2109         return ret;
2110     }
2111 
2112     assert(msr_list.nmsrs > 0);
2113     kvm_feature_msrs = (struct kvm_msr_list *) \
2114         g_malloc0(sizeof(msr_list) +
2115                  msr_list.nmsrs * sizeof(msr_list.indices[0]));
2116 
2117     kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2118     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2119 
2120     if (ret < 0) {
2121         error_report("Fetch KVM feature MSR list failed: %s",
2122             strerror(-ret));
2123         g_free(kvm_feature_msrs);
2124         kvm_feature_msrs = NULL;
2125         return ret;
2126     }
2127 
2128     return 0;
2129 }
2130 
2131 static int kvm_get_supported_msrs(KVMState *s)
2132 {
2133     int ret = 0;
2134     struct kvm_msr_list msr_list, *kvm_msr_list;
2135 
2136     /*
2137      *  Obtain MSR list from KVM.  These are the MSRs that we must
2138      *  save/restore.
2139      */
2140     msr_list.nmsrs = 0;
2141     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2142     if (ret < 0 && ret != -E2BIG) {
2143         return ret;
2144     }
2145     /*
2146      * Old kernel modules had a bug and could write beyond the provided
2147      * memory. Allocate at least a safe amount of 1K.
2148      */
2149     kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2150                                           msr_list.nmsrs *
2151                                           sizeof(msr_list.indices[0])));
2152 
2153     kvm_msr_list->nmsrs = msr_list.nmsrs;
2154     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2155     if (ret >= 0) {
2156         int i;
2157 
2158         for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2159             switch (kvm_msr_list->indices[i]) {
2160             case MSR_STAR:
2161                 has_msr_star = true;
2162                 break;
2163             case MSR_VM_HSAVE_PA:
2164                 has_msr_hsave_pa = true;
2165                 break;
2166             case MSR_TSC_AUX:
2167                 has_msr_tsc_aux = true;
2168                 break;
2169             case MSR_TSC_ADJUST:
2170                 has_msr_tsc_adjust = true;
2171                 break;
2172             case MSR_IA32_TSCDEADLINE:
2173                 has_msr_tsc_deadline = true;
2174                 break;
2175             case MSR_IA32_SMBASE:
2176                 has_msr_smbase = true;
2177                 break;
2178             case MSR_SMI_COUNT:
2179                 has_msr_smi_count = true;
2180                 break;
2181             case MSR_IA32_MISC_ENABLE:
2182                 has_msr_misc_enable = true;
2183                 break;
2184             case MSR_IA32_BNDCFGS:
2185                 has_msr_bndcfgs = true;
2186                 break;
2187             case MSR_IA32_XSS:
2188                 has_msr_xss = true;
2189                 break;
2190             case MSR_IA32_UMWAIT_CONTROL:
2191                 has_msr_umwait = true;
2192                 break;
2193             case HV_X64_MSR_CRASH_CTL:
2194                 has_msr_hv_crash = true;
2195                 break;
2196             case HV_X64_MSR_RESET:
2197                 has_msr_hv_reset = true;
2198                 break;
2199             case HV_X64_MSR_VP_INDEX:
2200                 has_msr_hv_vpindex = true;
2201                 break;
2202             case HV_X64_MSR_VP_RUNTIME:
2203                 has_msr_hv_runtime = true;
2204                 break;
2205             case HV_X64_MSR_SCONTROL:
2206                 has_msr_hv_synic = true;
2207                 break;
2208             case HV_X64_MSR_STIMER0_CONFIG:
2209                 has_msr_hv_stimer = true;
2210                 break;
2211             case HV_X64_MSR_TSC_FREQUENCY:
2212                 has_msr_hv_frequencies = true;
2213                 break;
2214             case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2215                 has_msr_hv_reenlightenment = true;
2216                 break;
2217             case MSR_IA32_SPEC_CTRL:
2218                 has_msr_spec_ctrl = true;
2219                 break;
2220             case MSR_AMD64_TSC_RATIO:
2221                 has_tsc_scale_msr = true;
2222                 break;
2223             case MSR_IA32_TSX_CTRL:
2224                 has_msr_tsx_ctrl = true;
2225                 break;
2226             case MSR_VIRT_SSBD:
2227                 has_msr_virt_ssbd = true;
2228                 break;
2229             case MSR_IA32_ARCH_CAPABILITIES:
2230                 has_msr_arch_capabs = true;
2231                 break;
2232             case MSR_IA32_CORE_CAPABILITY:
2233                 has_msr_core_capabs = true;
2234                 break;
2235             case MSR_IA32_PERF_CAPABILITIES:
2236                 has_msr_perf_capabs = true;
2237                 break;
2238             case MSR_IA32_VMX_VMFUNC:
2239                 has_msr_vmx_vmfunc = true;
2240                 break;
2241             case MSR_IA32_UCODE_REV:
2242                 has_msr_ucode_rev = true;
2243                 break;
2244             case MSR_IA32_VMX_PROCBASED_CTLS2:
2245                 has_msr_vmx_procbased_ctls2 = true;
2246                 break;
2247             case MSR_IA32_PKRS:
2248                 has_msr_pkrs = true;
2249                 break;
2250             }
2251         }
2252     }
2253 
2254     g_free(kvm_msr_list);
2255 
2256     return ret;
2257 }
2258 
2259 static Notifier smram_machine_done;
2260 static KVMMemoryListener smram_listener;
2261 static AddressSpace smram_address_space;
2262 static MemoryRegion smram_as_root;
2263 static MemoryRegion smram_as_mem;
2264 
2265 static void register_smram_listener(Notifier *n, void *unused)
2266 {
2267     MemoryRegion *smram =
2268         (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2269 
2270     /* Outer container... */
2271     memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2272     memory_region_set_enabled(&smram_as_root, true);
2273 
2274     /* ... with two regions inside: normal system memory with low
2275      * priority, and...
2276      */
2277     memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2278                              get_system_memory(), 0, ~0ull);
2279     memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2280     memory_region_set_enabled(&smram_as_mem, true);
2281 
2282     if (smram) {
2283         /* ... SMRAM with higher priority */
2284         memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2285         memory_region_set_enabled(smram, true);
2286     }
2287 
2288     address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2289     kvm_memory_listener_register(kvm_state, &smram_listener,
2290                                  &smram_address_space, 1, "kvm-smram");
2291 }
2292 
2293 int kvm_arch_init(MachineState *ms, KVMState *s)
2294 {
2295     uint64_t identity_base = 0xfffbc000;
2296     uint64_t shadow_mem;
2297     int ret;
2298     struct utsname utsname;
2299     Error *local_err = NULL;
2300 
2301     /*
2302      * Initialize SEV context, if required
2303      *
2304      * If no memory encryption is requested (ms->cgs == NULL) this is
2305      * a no-op.
2306      *
2307      * It's also a no-op if a non-SEV confidential guest support
2308      * mechanism is selected.  SEV is the only mechanism available to
2309      * select on x86 at present, so this doesn't arise, but if new
2310      * mechanisms are supported in future (e.g. TDX), they'll need
2311      * their own initialization either here or elsewhere.
2312      */
2313     ret = sev_kvm_init(ms->cgs, &local_err);
2314     if (ret < 0) {
2315         error_report_err(local_err);
2316         return ret;
2317     }
2318 
2319     if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2320         error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2321         return -ENOTSUP;
2322     }
2323 
2324     has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2325     has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2326     has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2327 
2328     hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2329 
2330     has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2331     if (has_exception_payload) {
2332         ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2333         if (ret < 0) {
2334             error_report("kvm: Failed to enable exception payload cap: %s",
2335                          strerror(-ret));
2336             return ret;
2337         }
2338     }
2339 
2340     ret = kvm_get_supported_msrs(s);
2341     if (ret < 0) {
2342         return ret;
2343     }
2344 
2345     kvm_get_supported_feature_msrs(s);
2346 
2347     uname(&utsname);
2348     lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2349 
2350     /*
2351      * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2352      * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
2353      * Since these must be part of guest physical memory, we need to allocate
2354      * them, both by setting their start addresses in the kernel and by
2355      * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2356      *
2357      * Older KVM versions may not support setting the identity map base. In
2358      * that case we need to stick with the default, i.e. a 256K maximum BIOS
2359      * size.
2360      */
2361     if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2362         /* Allows up to 16M BIOSes. */
2363         identity_base = 0xfeffc000;
2364 
2365         ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2366         if (ret < 0) {
2367             return ret;
2368         }
2369     }
2370 
2371     /* Set TSS base one page after EPT identity map. */
2372     ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2373     if (ret < 0) {
2374         return ret;
2375     }
2376 
2377     /* Tell fw_cfg to notify the BIOS to reserve the range. */
2378     ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2379     if (ret < 0) {
2380         fprintf(stderr, "e820_add_entry() table is full\n");
2381         return ret;
2382     }
2383 
2384     shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2385     if (shadow_mem != -1) {
2386         shadow_mem /= 4096;
2387         ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2388         if (ret < 0) {
2389             return ret;
2390         }
2391     }
2392 
2393     if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2394         object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2395         x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2396         smram_machine_done.notify = register_smram_listener;
2397         qemu_add_machine_init_done_notifier(&smram_machine_done);
2398     }
2399 
2400     if (enable_cpu_pm) {
2401         int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2402         int ret;
2403 
2404 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2405 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2406 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2407 #endif
2408         if (disable_exits) {
2409             disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2410                               KVM_X86_DISABLE_EXITS_HLT |
2411                               KVM_X86_DISABLE_EXITS_PAUSE |
2412                               KVM_X86_DISABLE_EXITS_CSTATE);
2413         }
2414 
2415         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2416                                 disable_exits);
2417         if (ret < 0) {
2418             error_report("kvm: guest stopping CPU not supported: %s",
2419                          strerror(-ret));
2420         }
2421     }
2422 
2423     if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2424         X86MachineState *x86ms = X86_MACHINE(ms);
2425 
2426         if (x86ms->bus_lock_ratelimit > 0) {
2427             ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2428             if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2429                 error_report("kvm: bus lock detection unsupported");
2430                 return -ENOTSUP;
2431             }
2432             ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2433                                     KVM_BUS_LOCK_DETECTION_EXIT);
2434             if (ret < 0) {
2435                 error_report("kvm: Failed to enable bus lock detection cap: %s",
2436                              strerror(-ret));
2437                 return ret;
2438             }
2439             ratelimit_init(&bus_lock_ratelimit_ctrl);
2440             ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2441                                 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2442         }
2443     }
2444 
2445     return 0;
2446 }
2447 
2448 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2449 {
2450     lhs->selector = rhs->selector;
2451     lhs->base = rhs->base;
2452     lhs->limit = rhs->limit;
2453     lhs->type = 3;
2454     lhs->present = 1;
2455     lhs->dpl = 3;
2456     lhs->db = 0;
2457     lhs->s = 1;
2458     lhs->l = 0;
2459     lhs->g = 0;
2460     lhs->avl = 0;
2461     lhs->unusable = 0;
2462 }
2463 
2464 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2465 {
2466     unsigned flags = rhs->flags;
2467     lhs->selector = rhs->selector;
2468     lhs->base = rhs->base;
2469     lhs->limit = rhs->limit;
2470     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2471     lhs->present = (flags & DESC_P_MASK) != 0;
2472     lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2473     lhs->db = (flags >> DESC_B_SHIFT) & 1;
2474     lhs->s = (flags & DESC_S_MASK) != 0;
2475     lhs->l = (flags >> DESC_L_SHIFT) & 1;
2476     lhs->g = (flags & DESC_G_MASK) != 0;
2477     lhs->avl = (flags & DESC_AVL_MASK) != 0;
2478     lhs->unusable = !lhs->present;
2479     lhs->padding = 0;
2480 }
2481 
2482 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2483 {
2484     lhs->selector = rhs->selector;
2485     lhs->base = rhs->base;
2486     lhs->limit = rhs->limit;
2487     lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2488                  ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2489                  (rhs->dpl << DESC_DPL_SHIFT) |
2490                  (rhs->db << DESC_B_SHIFT) |
2491                  (rhs->s * DESC_S_MASK) |
2492                  (rhs->l << DESC_L_SHIFT) |
2493                  (rhs->g * DESC_G_MASK) |
2494                  (rhs->avl * DESC_AVL_MASK);
2495 }
2496 
2497 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2498 {
2499     if (set) {
2500         *kvm_reg = *qemu_reg;
2501     } else {
2502         *qemu_reg = *kvm_reg;
2503     }
2504 }
2505 
2506 static int kvm_getput_regs(X86CPU *cpu, int set)
2507 {
2508     CPUX86State *env = &cpu->env;
2509     struct kvm_regs regs;
2510     int ret = 0;
2511 
2512     if (!set) {
2513         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2514         if (ret < 0) {
2515             return ret;
2516         }
2517     }
2518 
2519     kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2520     kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2521     kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2522     kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2523     kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2524     kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2525     kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2526     kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2527 #ifdef TARGET_X86_64
2528     kvm_getput_reg(&regs.r8, &env->regs[8], set);
2529     kvm_getput_reg(&regs.r9, &env->regs[9], set);
2530     kvm_getput_reg(&regs.r10, &env->regs[10], set);
2531     kvm_getput_reg(&regs.r11, &env->regs[11], set);
2532     kvm_getput_reg(&regs.r12, &env->regs[12], set);
2533     kvm_getput_reg(&regs.r13, &env->regs[13], set);
2534     kvm_getput_reg(&regs.r14, &env->regs[14], set);
2535     kvm_getput_reg(&regs.r15, &env->regs[15], set);
2536 #endif
2537 
2538     kvm_getput_reg(&regs.rflags, &env->eflags, set);
2539     kvm_getput_reg(&regs.rip, &env->eip, set);
2540 
2541     if (set) {
2542         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2543     }
2544 
2545     return ret;
2546 }
2547 
2548 static int kvm_put_fpu(X86CPU *cpu)
2549 {
2550     CPUX86State *env = &cpu->env;
2551     struct kvm_fpu fpu;
2552     int i;
2553 
2554     memset(&fpu, 0, sizeof fpu);
2555     fpu.fsw = env->fpus & ~(7 << 11);
2556     fpu.fsw |= (env->fpstt & 7) << 11;
2557     fpu.fcw = env->fpuc;
2558     fpu.last_opcode = env->fpop;
2559     fpu.last_ip = env->fpip;
2560     fpu.last_dp = env->fpdp;
2561     for (i = 0; i < 8; ++i) {
2562         fpu.ftwx |= (!env->fptags[i]) << i;
2563     }
2564     memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2565     for (i = 0; i < CPU_NB_REGS; i++) {
2566         stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2567         stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2568     }
2569     fpu.mxcsr = env->mxcsr;
2570 
2571     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2572 }
2573 
2574 static int kvm_put_xsave(X86CPU *cpu)
2575 {
2576     CPUX86State *env = &cpu->env;
2577     void *xsave = env->xsave_buf;
2578 
2579     if (!has_xsave) {
2580         return kvm_put_fpu(cpu);
2581     }
2582     x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
2583 
2584     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2585 }
2586 
2587 static int kvm_put_xcrs(X86CPU *cpu)
2588 {
2589     CPUX86State *env = &cpu->env;
2590     struct kvm_xcrs xcrs = {};
2591 
2592     if (!has_xcrs) {
2593         return 0;
2594     }
2595 
2596     xcrs.nr_xcrs = 1;
2597     xcrs.flags = 0;
2598     xcrs.xcrs[0].xcr = 0;
2599     xcrs.xcrs[0].value = env->xcr0;
2600     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2601 }
2602 
2603 static int kvm_put_sregs(X86CPU *cpu)
2604 {
2605     CPUX86State *env = &cpu->env;
2606     struct kvm_sregs sregs;
2607 
2608     memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2609     if (env->interrupt_injected >= 0) {
2610         sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2611                 (uint64_t)1 << (env->interrupt_injected % 64);
2612     }
2613 
2614     if ((env->eflags & VM_MASK)) {
2615         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2616         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2617         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2618         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2619         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2620         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2621     } else {
2622         set_seg(&sregs.cs, &env->segs[R_CS]);
2623         set_seg(&sregs.ds, &env->segs[R_DS]);
2624         set_seg(&sregs.es, &env->segs[R_ES]);
2625         set_seg(&sregs.fs, &env->segs[R_FS]);
2626         set_seg(&sregs.gs, &env->segs[R_GS]);
2627         set_seg(&sregs.ss, &env->segs[R_SS]);
2628     }
2629 
2630     set_seg(&sregs.tr, &env->tr);
2631     set_seg(&sregs.ldt, &env->ldt);
2632 
2633     sregs.idt.limit = env->idt.limit;
2634     sregs.idt.base = env->idt.base;
2635     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2636     sregs.gdt.limit = env->gdt.limit;
2637     sregs.gdt.base = env->gdt.base;
2638     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2639 
2640     sregs.cr0 = env->cr[0];
2641     sregs.cr2 = env->cr[2];
2642     sregs.cr3 = env->cr[3];
2643     sregs.cr4 = env->cr[4];
2644 
2645     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2646     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2647 
2648     sregs.efer = env->efer;
2649 
2650     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2651 }
2652 
2653 static void kvm_msr_buf_reset(X86CPU *cpu)
2654 {
2655     memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2656 }
2657 
2658 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2659 {
2660     struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2661     void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2662     struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2663 
2664     assert((void *)(entry + 1) <= limit);
2665 
2666     entry->index = index;
2667     entry->reserved = 0;
2668     entry->data = value;
2669     msrs->nmsrs++;
2670 }
2671 
2672 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2673 {
2674     kvm_msr_buf_reset(cpu);
2675     kvm_msr_entry_add(cpu, index, value);
2676 
2677     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2678 }
2679 
2680 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2681 {
2682     int ret;
2683 
2684     ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2685     assert(ret == 1);
2686 }
2687 
2688 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2689 {
2690     CPUX86State *env = &cpu->env;
2691     int ret;
2692 
2693     if (!has_msr_tsc_deadline) {
2694         return 0;
2695     }
2696 
2697     ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2698     if (ret < 0) {
2699         return ret;
2700     }
2701 
2702     assert(ret == 1);
2703     return 0;
2704 }
2705 
2706 /*
2707  * Provide a separate write service for the feature control MSR in order to
2708  * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2709  * before writing any other state because forcibly leaving nested mode
2710  * invalidates the VCPU state.
2711  */
2712 static int kvm_put_msr_feature_control(X86CPU *cpu)
2713 {
2714     int ret;
2715 
2716     if (!has_msr_feature_control) {
2717         return 0;
2718     }
2719 
2720     ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2721                           cpu->env.msr_ia32_feature_control);
2722     if (ret < 0) {
2723         return ret;
2724     }
2725 
2726     assert(ret == 1);
2727     return 0;
2728 }
2729 
2730 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2731 {
2732     uint32_t default1, can_be_one, can_be_zero;
2733     uint32_t must_be_one;
2734 
2735     switch (index) {
2736     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2737         default1 = 0x00000016;
2738         break;
2739     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2740         default1 = 0x0401e172;
2741         break;
2742     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2743         default1 = 0x000011ff;
2744         break;
2745     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2746         default1 = 0x00036dff;
2747         break;
2748     case MSR_IA32_VMX_PROCBASED_CTLS2:
2749         default1 = 0;
2750         break;
2751     default:
2752         abort();
2753     }
2754 
2755     /* If a feature bit is set, the control can be either set or clear.
2756      * Otherwise the value is limited to either 0 or 1 by default1.
2757      */
2758     can_be_one = features | default1;
2759     can_be_zero = features | ~default1;
2760     must_be_one = ~can_be_zero;
2761 
2762     /*
2763      * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2764      * Bit 32:63 -> 1 if the control bit can be one.
2765      */
2766     return must_be_one | (((uint64_t)can_be_one) << 32);
2767 }
2768 
2769 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2770 {
2771     uint64_t kvm_vmx_basic =
2772         kvm_arch_get_supported_msr_feature(kvm_state,
2773                                            MSR_IA32_VMX_BASIC);
2774 
2775     if (!kvm_vmx_basic) {
2776         /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2777          * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2778          */
2779         return;
2780     }
2781 
2782     uint64_t kvm_vmx_misc =
2783         kvm_arch_get_supported_msr_feature(kvm_state,
2784                                            MSR_IA32_VMX_MISC);
2785     uint64_t kvm_vmx_ept_vpid =
2786         kvm_arch_get_supported_msr_feature(kvm_state,
2787                                            MSR_IA32_VMX_EPT_VPID_CAP);
2788 
2789     /*
2790      * If the guest is 64-bit, a value of 1 is allowed for the host address
2791      * space size vmexit control.
2792      */
2793     uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2794         ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2795 
2796     /*
2797      * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
2798      * not change them for backwards compatibility.
2799      */
2800     uint64_t fixed_vmx_basic = kvm_vmx_basic &
2801         (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2802          MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2803          MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2804 
2805     /*
2806      * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
2807      * change in the future but are always zero for now, clear them to be
2808      * future proof.  Bits 32-63 in theory could change, though KVM does
2809      * not support dual-monitor treatment and probably never will; mask
2810      * them out as well.
2811      */
2812     uint64_t fixed_vmx_misc = kvm_vmx_misc &
2813         (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2814          MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2815 
2816     /*
2817      * EPT memory types should not change either, so we do not bother
2818      * adding features for them.
2819      */
2820     uint64_t fixed_vmx_ept_mask =
2821             (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2822              MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2823     uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2824 
2825     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2826                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2827                                          f[FEAT_VMX_PROCBASED_CTLS]));
2828     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2829                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2830                                          f[FEAT_VMX_PINBASED_CTLS]));
2831     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2832                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2833                                          f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2834     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2835                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2836                                          f[FEAT_VMX_ENTRY_CTLS]));
2837     kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2838                       make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2839                                          f[FEAT_VMX_SECONDARY_CTLS]));
2840     kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2841                       f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2842     kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2843                       f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2844     kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2845                       f[FEAT_VMX_MISC] | fixed_vmx_misc);
2846     if (has_msr_vmx_vmfunc) {
2847         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2848     }
2849 
2850     /*
2851      * Just to be safe, write these with constant values.  The CRn_FIXED1
2852      * MSRs are generated by KVM based on the vCPU's CPUID.
2853      */
2854     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2855                       CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2856     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2857                       CR4_VMXE_MASK);
2858 
2859     if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
2860         /* TSC multiplier (0x2032).  */
2861         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
2862     } else {
2863         /* Preemption timer (0x482E).  */
2864         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
2865     }
2866 }
2867 
2868 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
2869 {
2870     uint64_t kvm_perf_cap =
2871         kvm_arch_get_supported_msr_feature(kvm_state,
2872                                            MSR_IA32_PERF_CAPABILITIES);
2873 
2874     if (kvm_perf_cap) {
2875         kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
2876                         kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
2877     }
2878 }
2879 
2880 static int kvm_buf_set_msrs(X86CPU *cpu)
2881 {
2882     int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2883     if (ret < 0) {
2884         return ret;
2885     }
2886 
2887     if (ret < cpu->kvm_msr_buf->nmsrs) {
2888         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2889         error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2890                      (uint32_t)e->index, (uint64_t)e->data);
2891     }
2892 
2893     assert(ret == cpu->kvm_msr_buf->nmsrs);
2894     return 0;
2895 }
2896 
2897 static void kvm_init_msrs(X86CPU *cpu)
2898 {
2899     CPUX86State *env = &cpu->env;
2900 
2901     kvm_msr_buf_reset(cpu);
2902     if (has_msr_arch_capabs) {
2903         kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2904                           env->features[FEAT_ARCH_CAPABILITIES]);
2905     }
2906 
2907     if (has_msr_core_capabs) {
2908         kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2909                           env->features[FEAT_CORE_CAPABILITY]);
2910     }
2911 
2912     if (has_msr_perf_capabs && cpu->enable_pmu) {
2913         kvm_msr_entry_add_perf(cpu, env->features);
2914     }
2915 
2916     if (has_msr_ucode_rev) {
2917         kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
2918     }
2919 
2920     /*
2921      * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
2922      * all kernels with MSR features should have them.
2923      */
2924     if (kvm_feature_msrs && cpu_has_vmx(env)) {
2925         kvm_msr_entry_add_vmx(cpu, env->features);
2926     }
2927 
2928     assert(kvm_buf_set_msrs(cpu) == 0);
2929 }
2930 
2931 static int kvm_put_msrs(X86CPU *cpu, int level)
2932 {
2933     CPUX86State *env = &cpu->env;
2934     int i;
2935 
2936     kvm_msr_buf_reset(cpu);
2937 
2938     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2939     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2940     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2941     kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
2942     if (has_msr_star) {
2943         kvm_msr_entry_add(cpu, MSR_STAR, env->star);
2944     }
2945     if (has_msr_hsave_pa) {
2946         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
2947     }
2948     if (has_msr_tsc_aux) {
2949         kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
2950     }
2951     if (has_msr_tsc_adjust) {
2952         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
2953     }
2954     if (has_msr_misc_enable) {
2955         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
2956                           env->msr_ia32_misc_enable);
2957     }
2958     if (has_msr_smbase) {
2959         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
2960     }
2961     if (has_msr_smi_count) {
2962         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2963     }
2964     if (has_msr_pkrs) {
2965         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
2966     }
2967     if (has_msr_bndcfgs) {
2968         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
2969     }
2970     if (has_msr_xss) {
2971         kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
2972     }
2973     if (has_msr_umwait) {
2974         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
2975     }
2976     if (has_msr_spec_ctrl) {
2977         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2978     }
2979     if (has_tsc_scale_msr) {
2980         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
2981     }
2982 
2983     if (has_msr_tsx_ctrl) {
2984         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
2985     }
2986     if (has_msr_virt_ssbd) {
2987         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2988     }
2989 
2990 #ifdef TARGET_X86_64
2991     if (lm_capable_kernel) {
2992         kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2993         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2994         kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2995         kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
2996     }
2997 #endif
2998 
2999     /*
3000      * The following MSRs have side effects on the guest or are too heavy
3001      * for normal writeback. Limit them to reset or full state updates.
3002      */
3003     if (level >= KVM_PUT_RESET_STATE) {
3004         kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3005         kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3006         kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3007         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3008             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3009         }
3010         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3011             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3012         }
3013         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3014             kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3015         }
3016         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3017             kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3018         }
3019 
3020         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3021             kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3022         }
3023 
3024         if (has_architectural_pmu_version > 0) {
3025             if (has_architectural_pmu_version > 1) {
3026                 /* Stop the counter.  */
3027                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3028                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3029             }
3030 
3031             /* Set the counter values.  */
3032             for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3033                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
3034                                   env->msr_fixed_counters[i]);
3035             }
3036             for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3037                 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
3038                                   env->msr_gp_counters[i]);
3039                 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
3040                                   env->msr_gp_evtsel[i]);
3041             }
3042             if (has_architectural_pmu_version > 1) {
3043                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3044                                   env->msr_global_status);
3045                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3046                                   env->msr_global_ovf_ctrl);
3047 
3048                 /* Now start the PMU.  */
3049                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3050                                   env->msr_fixed_ctr_ctrl);
3051                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3052                                   env->msr_global_ctrl);
3053             }
3054         }
3055         /*
3056          * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3057          * only sync them to KVM on the first cpu
3058          */
3059         if (current_cpu == first_cpu) {
3060             if (has_msr_hv_hypercall) {
3061                 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3062                                   env->msr_hv_guest_os_id);
3063                 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3064                                   env->msr_hv_hypercall);
3065             }
3066             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3067                 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3068                                   env->msr_hv_tsc);
3069             }
3070             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3071                 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3072                                   env->msr_hv_reenlightenment_control);
3073                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3074                                   env->msr_hv_tsc_emulation_control);
3075                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3076                                   env->msr_hv_tsc_emulation_status);
3077             }
3078         }
3079         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3080             kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
3081                               env->msr_hv_vapic);
3082         }
3083         if (has_msr_hv_crash) {
3084             int j;
3085 
3086             for (j = 0; j < HV_CRASH_PARAMS; j++)
3087                 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
3088                                   env->msr_hv_crash_params[j]);
3089 
3090             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
3091         }
3092         if (has_msr_hv_runtime) {
3093             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
3094         }
3095         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3096             && hv_vpindex_settable) {
3097             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3098                               hyperv_vp_index(CPU(cpu)));
3099         }
3100         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3101             int j;
3102 
3103             kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3104 
3105             kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
3106                               env->msr_hv_synic_control);
3107             kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
3108                               env->msr_hv_synic_evt_page);
3109             kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
3110                               env->msr_hv_synic_msg_page);
3111 
3112             for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
3113                 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
3114                                   env->msr_hv_synic_sint[j]);
3115             }
3116         }
3117         if (has_msr_hv_stimer) {
3118             int j;
3119 
3120             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
3121                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
3122                                 env->msr_hv_stimer_config[j]);
3123             }
3124 
3125             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
3126                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
3127                                 env->msr_hv_stimer_count[j]);
3128             }
3129         }
3130         if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3131             uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3132 
3133             kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3134             kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3135             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3136             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3137             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3138             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3139             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3140             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3141             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3142             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3143             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3144             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
3145             for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3146                 /* The CPU GPs if we write to a bit above the physical limit of
3147                  * the host CPU (and KVM emulates that)
3148                  */
3149                 uint64_t mask = env->mtrr_var[i].mask;
3150                 mask &= phys_mask;
3151 
3152                 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3153                                   env->mtrr_var[i].base);
3154                 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3155             }
3156         }
3157         if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3158             int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3159                                                     0x14, 1, R_EAX) & 0x7;
3160 
3161             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3162                             env->msr_rtit_ctrl);
3163             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3164                             env->msr_rtit_status);
3165             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3166                             env->msr_rtit_output_base);
3167             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3168                             env->msr_rtit_output_mask);
3169             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3170                             env->msr_rtit_cr3_match);
3171             for (i = 0; i < addr_num; i++) {
3172                 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3173                             env->msr_rtit_addrs[i]);
3174             }
3175         }
3176 
3177         if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3178             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3179                               env->msr_ia32_sgxlepubkeyhash[0]);
3180             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3181                               env->msr_ia32_sgxlepubkeyhash[1]);
3182             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3183                               env->msr_ia32_sgxlepubkeyhash[2]);
3184             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3185                               env->msr_ia32_sgxlepubkeyhash[3]);
3186         }
3187 
3188         /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3189          *       kvm_put_msr_feature_control. */
3190     }
3191 
3192     if (env->mcg_cap) {
3193         int i;
3194 
3195         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3196         kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3197         if (has_msr_mcg_ext_ctl) {
3198             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3199         }
3200         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3201             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3202         }
3203     }
3204 
3205     return kvm_buf_set_msrs(cpu);
3206 }
3207 
3208 
3209 static int kvm_get_fpu(X86CPU *cpu)
3210 {
3211     CPUX86State *env = &cpu->env;
3212     struct kvm_fpu fpu;
3213     int i, ret;
3214 
3215     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
3216     if (ret < 0) {
3217         return ret;
3218     }
3219 
3220     env->fpstt = (fpu.fsw >> 11) & 7;
3221     env->fpus = fpu.fsw;
3222     env->fpuc = fpu.fcw;
3223     env->fpop = fpu.last_opcode;
3224     env->fpip = fpu.last_ip;
3225     env->fpdp = fpu.last_dp;
3226     for (i = 0; i < 8; ++i) {
3227         env->fptags[i] = !((fpu.ftwx >> i) & 1);
3228     }
3229     memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3230     for (i = 0; i < CPU_NB_REGS; i++) {
3231         env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3232         env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3233     }
3234     env->mxcsr = fpu.mxcsr;
3235 
3236     return 0;
3237 }
3238 
3239 static int kvm_get_xsave(X86CPU *cpu)
3240 {
3241     CPUX86State *env = &cpu->env;
3242     void *xsave = env->xsave_buf;
3243     int ret;
3244 
3245     if (!has_xsave) {
3246         return kvm_get_fpu(cpu);
3247     }
3248 
3249     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
3250     if (ret < 0) {
3251         return ret;
3252     }
3253     x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
3254 
3255     return 0;
3256 }
3257 
3258 static int kvm_get_xcrs(X86CPU *cpu)
3259 {
3260     CPUX86State *env = &cpu->env;
3261     int i, ret;
3262     struct kvm_xcrs xcrs;
3263 
3264     if (!has_xcrs) {
3265         return 0;
3266     }
3267 
3268     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3269     if (ret < 0) {
3270         return ret;
3271     }
3272 
3273     for (i = 0; i < xcrs.nr_xcrs; i++) {
3274         /* Only support xcr0 now */
3275         if (xcrs.xcrs[i].xcr == 0) {
3276             env->xcr0 = xcrs.xcrs[i].value;
3277             break;
3278         }
3279     }
3280     return 0;
3281 }
3282 
3283 static int kvm_get_sregs(X86CPU *cpu)
3284 {
3285     CPUX86State *env = &cpu->env;
3286     struct kvm_sregs sregs;
3287     int bit, i, ret;
3288 
3289     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3290     if (ret < 0) {
3291         return ret;
3292     }
3293 
3294     /* There can only be one pending IRQ set in the bitmap at a time, so try
3295        to find it and save its number instead (-1 for none). */
3296     env->interrupt_injected = -1;
3297     for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
3298         if (sregs.interrupt_bitmap[i]) {
3299             bit = ctz64(sregs.interrupt_bitmap[i]);
3300             env->interrupt_injected = i * 64 + bit;
3301             break;
3302         }
3303     }
3304 
3305     get_seg(&env->segs[R_CS], &sregs.cs);
3306     get_seg(&env->segs[R_DS], &sregs.ds);
3307     get_seg(&env->segs[R_ES], &sregs.es);
3308     get_seg(&env->segs[R_FS], &sregs.fs);
3309     get_seg(&env->segs[R_GS], &sregs.gs);
3310     get_seg(&env->segs[R_SS], &sregs.ss);
3311 
3312     get_seg(&env->tr, &sregs.tr);
3313     get_seg(&env->ldt, &sregs.ldt);
3314 
3315     env->idt.limit = sregs.idt.limit;
3316     env->idt.base = sregs.idt.base;
3317     env->gdt.limit = sregs.gdt.limit;
3318     env->gdt.base = sregs.gdt.base;
3319 
3320     env->cr[0] = sregs.cr0;
3321     env->cr[2] = sregs.cr2;
3322     env->cr[3] = sregs.cr3;
3323     env->cr[4] = sregs.cr4;
3324 
3325     env->efer = sregs.efer;
3326 
3327     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3328     x86_update_hflags(env);
3329 
3330     return 0;
3331 }
3332 
3333 static int kvm_get_msrs(X86CPU *cpu)
3334 {
3335     CPUX86State *env = &cpu->env;
3336     struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3337     int ret, i;
3338     uint64_t mtrr_top_bits;
3339 
3340     kvm_msr_buf_reset(cpu);
3341 
3342     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3343     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3344     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3345     kvm_msr_entry_add(cpu, MSR_PAT, 0);
3346     if (has_msr_star) {
3347         kvm_msr_entry_add(cpu, MSR_STAR, 0);
3348     }
3349     if (has_msr_hsave_pa) {
3350         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3351     }
3352     if (has_msr_tsc_aux) {
3353         kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3354     }
3355     if (has_msr_tsc_adjust) {
3356         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3357     }
3358     if (has_msr_tsc_deadline) {
3359         kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3360     }
3361     if (has_msr_misc_enable) {
3362         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3363     }
3364     if (has_msr_smbase) {
3365         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3366     }
3367     if (has_msr_smi_count) {
3368         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3369     }
3370     if (has_msr_feature_control) {
3371         kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3372     }
3373     if (has_msr_pkrs) {
3374         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3375     }
3376     if (has_msr_bndcfgs) {
3377         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3378     }
3379     if (has_msr_xss) {
3380         kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3381     }
3382     if (has_msr_umwait) {
3383         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3384     }
3385     if (has_msr_spec_ctrl) {
3386         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3387     }
3388     if (has_tsc_scale_msr) {
3389         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3390     }
3391 
3392     if (has_msr_tsx_ctrl) {
3393         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3394     }
3395     if (has_msr_virt_ssbd) {
3396         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3397     }
3398     if (!env->tsc_valid) {
3399         kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3400         env->tsc_valid = !runstate_is_running();
3401     }
3402 
3403 #ifdef TARGET_X86_64
3404     if (lm_capable_kernel) {
3405         kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3406         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3407         kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3408         kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3409     }
3410 #endif
3411     kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3412     kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3413     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3414         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3415     }
3416     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3417         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3418     }
3419     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3420         kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3421     }
3422     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3423         kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3424     }
3425     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3426         kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3427     }
3428     if (has_architectural_pmu_version > 0) {
3429         if (has_architectural_pmu_version > 1) {
3430             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3431             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3432             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3433             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3434         }
3435         for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3436             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3437         }
3438         for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3439             kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3440             kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3441         }
3442     }
3443 
3444     if (env->mcg_cap) {
3445         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3446         kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3447         if (has_msr_mcg_ext_ctl) {
3448             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3449         }
3450         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3451             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3452         }
3453     }
3454 
3455     if (has_msr_hv_hypercall) {
3456         kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3457         kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3458     }
3459     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3460         kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3461     }
3462     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3463         kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3464     }
3465     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3466         kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3467         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3468         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3469     }
3470     if (has_msr_hv_crash) {
3471         int j;
3472 
3473         for (j = 0; j < HV_CRASH_PARAMS; j++) {
3474             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3475         }
3476     }
3477     if (has_msr_hv_runtime) {
3478         kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3479     }
3480     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3481         uint32_t msr;
3482 
3483         kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3484         kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3485         kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3486         for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3487             kvm_msr_entry_add(cpu, msr, 0);
3488         }
3489     }
3490     if (has_msr_hv_stimer) {
3491         uint32_t msr;
3492 
3493         for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3494              msr++) {
3495             kvm_msr_entry_add(cpu, msr, 0);
3496         }
3497     }
3498     if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3499         kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3500         kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3501         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3502         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3503         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3504         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3505         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3506         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3507         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3508         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3509         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3510         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3511         for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3512             kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3513             kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3514         }
3515     }
3516 
3517     if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3518         int addr_num =
3519             kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3520 
3521         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3522         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3523         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3524         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3525         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3526         for (i = 0; i < addr_num; i++) {
3527             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3528         }
3529     }
3530 
3531     if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3532         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
3533         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
3534         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
3535         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
3536     }
3537 
3538     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3539     if (ret < 0) {
3540         return ret;
3541     }
3542 
3543     if (ret < cpu->kvm_msr_buf->nmsrs) {
3544         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3545         error_report("error: failed to get MSR 0x%" PRIx32,
3546                      (uint32_t)e->index);
3547     }
3548 
3549     assert(ret == cpu->kvm_msr_buf->nmsrs);
3550     /*
3551      * MTRR masks: Each mask consists of 5 parts
3552      * a  10..0: must be zero
3553      * b  11   : valid bit
3554      * c n-1.12: actual mask bits
3555      * d  51..n: reserved must be zero
3556      * e  63.52: reserved must be zero
3557      *
3558      * 'n' is the number of physical bits supported by the CPU and is
3559      * apparently always <= 52.   We know our 'n' but don't know what
3560      * the destinations 'n' is; it might be smaller, in which case
3561      * it masks (c) on loading. It might be larger, in which case
3562      * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3563      * we're migrating to.
3564      */
3565 
3566     if (cpu->fill_mtrr_mask) {
3567         QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3568         assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3569         mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3570     } else {
3571         mtrr_top_bits = 0;
3572     }
3573 
3574     for (i = 0; i < ret; i++) {
3575         uint32_t index = msrs[i].index;
3576         switch (index) {
3577         case MSR_IA32_SYSENTER_CS:
3578             env->sysenter_cs = msrs[i].data;
3579             break;
3580         case MSR_IA32_SYSENTER_ESP:
3581             env->sysenter_esp = msrs[i].data;
3582             break;
3583         case MSR_IA32_SYSENTER_EIP:
3584             env->sysenter_eip = msrs[i].data;
3585             break;
3586         case MSR_PAT:
3587             env->pat = msrs[i].data;
3588             break;
3589         case MSR_STAR:
3590             env->star = msrs[i].data;
3591             break;
3592 #ifdef TARGET_X86_64
3593         case MSR_CSTAR:
3594             env->cstar = msrs[i].data;
3595             break;
3596         case MSR_KERNELGSBASE:
3597             env->kernelgsbase = msrs[i].data;
3598             break;
3599         case MSR_FMASK:
3600             env->fmask = msrs[i].data;
3601             break;
3602         case MSR_LSTAR:
3603             env->lstar = msrs[i].data;
3604             break;
3605 #endif
3606         case MSR_IA32_TSC:
3607             env->tsc = msrs[i].data;
3608             break;
3609         case MSR_TSC_AUX:
3610             env->tsc_aux = msrs[i].data;
3611             break;
3612         case MSR_TSC_ADJUST:
3613             env->tsc_adjust = msrs[i].data;
3614             break;
3615         case MSR_IA32_TSCDEADLINE:
3616             env->tsc_deadline = msrs[i].data;
3617             break;
3618         case MSR_VM_HSAVE_PA:
3619             env->vm_hsave = msrs[i].data;
3620             break;
3621         case MSR_KVM_SYSTEM_TIME:
3622             env->system_time_msr = msrs[i].data;
3623             break;
3624         case MSR_KVM_WALL_CLOCK:
3625             env->wall_clock_msr = msrs[i].data;
3626             break;
3627         case MSR_MCG_STATUS:
3628             env->mcg_status = msrs[i].data;
3629             break;
3630         case MSR_MCG_CTL:
3631             env->mcg_ctl = msrs[i].data;
3632             break;
3633         case MSR_MCG_EXT_CTL:
3634             env->mcg_ext_ctl = msrs[i].data;
3635             break;
3636         case MSR_IA32_MISC_ENABLE:
3637             env->msr_ia32_misc_enable = msrs[i].data;
3638             break;
3639         case MSR_IA32_SMBASE:
3640             env->smbase = msrs[i].data;
3641             break;
3642         case MSR_SMI_COUNT:
3643             env->msr_smi_count = msrs[i].data;
3644             break;
3645         case MSR_IA32_FEATURE_CONTROL:
3646             env->msr_ia32_feature_control = msrs[i].data;
3647             break;
3648         case MSR_IA32_BNDCFGS:
3649             env->msr_bndcfgs = msrs[i].data;
3650             break;
3651         case MSR_IA32_XSS:
3652             env->xss = msrs[i].data;
3653             break;
3654         case MSR_IA32_UMWAIT_CONTROL:
3655             env->umwait = msrs[i].data;
3656             break;
3657         case MSR_IA32_PKRS:
3658             env->pkrs = msrs[i].data;
3659             break;
3660         default:
3661             if (msrs[i].index >= MSR_MC0_CTL &&
3662                 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3663                 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
3664             }
3665             break;
3666         case MSR_KVM_ASYNC_PF_EN:
3667             env->async_pf_en_msr = msrs[i].data;
3668             break;
3669         case MSR_KVM_ASYNC_PF_INT:
3670             env->async_pf_int_msr = msrs[i].data;
3671             break;
3672         case MSR_KVM_PV_EOI_EN:
3673             env->pv_eoi_en_msr = msrs[i].data;
3674             break;
3675         case MSR_KVM_STEAL_TIME:
3676             env->steal_time_msr = msrs[i].data;
3677             break;
3678         case MSR_KVM_POLL_CONTROL: {
3679             env->poll_control_msr = msrs[i].data;
3680             break;
3681         }
3682         case MSR_CORE_PERF_FIXED_CTR_CTRL:
3683             env->msr_fixed_ctr_ctrl = msrs[i].data;
3684             break;
3685         case MSR_CORE_PERF_GLOBAL_CTRL:
3686             env->msr_global_ctrl = msrs[i].data;
3687             break;
3688         case MSR_CORE_PERF_GLOBAL_STATUS:
3689             env->msr_global_status = msrs[i].data;
3690             break;
3691         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3692             env->msr_global_ovf_ctrl = msrs[i].data;
3693             break;
3694         case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3695             env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3696             break;
3697         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3698             env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3699             break;
3700         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3701             env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3702             break;
3703         case HV_X64_MSR_HYPERCALL:
3704             env->msr_hv_hypercall = msrs[i].data;
3705             break;
3706         case HV_X64_MSR_GUEST_OS_ID:
3707             env->msr_hv_guest_os_id = msrs[i].data;
3708             break;
3709         case HV_X64_MSR_APIC_ASSIST_PAGE:
3710             env->msr_hv_vapic = msrs[i].data;
3711             break;
3712         case HV_X64_MSR_REFERENCE_TSC:
3713             env->msr_hv_tsc = msrs[i].data;
3714             break;
3715         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3716             env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3717             break;
3718         case HV_X64_MSR_VP_RUNTIME:
3719             env->msr_hv_runtime = msrs[i].data;
3720             break;
3721         case HV_X64_MSR_SCONTROL:
3722             env->msr_hv_synic_control = msrs[i].data;
3723             break;
3724         case HV_X64_MSR_SIEFP:
3725             env->msr_hv_synic_evt_page = msrs[i].data;
3726             break;
3727         case HV_X64_MSR_SIMP:
3728             env->msr_hv_synic_msg_page = msrs[i].data;
3729             break;
3730         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3731             env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
3732             break;
3733         case HV_X64_MSR_STIMER0_CONFIG:
3734         case HV_X64_MSR_STIMER1_CONFIG:
3735         case HV_X64_MSR_STIMER2_CONFIG:
3736         case HV_X64_MSR_STIMER3_CONFIG:
3737             env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3738                                 msrs[i].data;
3739             break;
3740         case HV_X64_MSR_STIMER0_COUNT:
3741         case HV_X64_MSR_STIMER1_COUNT:
3742         case HV_X64_MSR_STIMER2_COUNT:
3743         case HV_X64_MSR_STIMER3_COUNT:
3744             env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3745                                 msrs[i].data;
3746             break;
3747         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3748             env->msr_hv_reenlightenment_control = msrs[i].data;
3749             break;
3750         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3751             env->msr_hv_tsc_emulation_control = msrs[i].data;
3752             break;
3753         case HV_X64_MSR_TSC_EMULATION_STATUS:
3754             env->msr_hv_tsc_emulation_status = msrs[i].data;
3755             break;
3756         case MSR_MTRRdefType:
3757             env->mtrr_deftype = msrs[i].data;
3758             break;
3759         case MSR_MTRRfix64K_00000:
3760             env->mtrr_fixed[0] = msrs[i].data;
3761             break;
3762         case MSR_MTRRfix16K_80000:
3763             env->mtrr_fixed[1] = msrs[i].data;
3764             break;
3765         case MSR_MTRRfix16K_A0000:
3766             env->mtrr_fixed[2] = msrs[i].data;
3767             break;
3768         case MSR_MTRRfix4K_C0000:
3769             env->mtrr_fixed[3] = msrs[i].data;
3770             break;
3771         case MSR_MTRRfix4K_C8000:
3772             env->mtrr_fixed[4] = msrs[i].data;
3773             break;
3774         case MSR_MTRRfix4K_D0000:
3775             env->mtrr_fixed[5] = msrs[i].data;
3776             break;
3777         case MSR_MTRRfix4K_D8000:
3778             env->mtrr_fixed[6] = msrs[i].data;
3779             break;
3780         case MSR_MTRRfix4K_E0000:
3781             env->mtrr_fixed[7] = msrs[i].data;
3782             break;
3783         case MSR_MTRRfix4K_E8000:
3784             env->mtrr_fixed[8] = msrs[i].data;
3785             break;
3786         case MSR_MTRRfix4K_F0000:
3787             env->mtrr_fixed[9] = msrs[i].data;
3788             break;
3789         case MSR_MTRRfix4K_F8000:
3790             env->mtrr_fixed[10] = msrs[i].data;
3791             break;
3792         case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3793             if (index & 1) {
3794                 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3795                                                                mtrr_top_bits;
3796             } else {
3797                 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3798             }
3799             break;
3800         case MSR_IA32_SPEC_CTRL:
3801             env->spec_ctrl = msrs[i].data;
3802             break;
3803         case MSR_AMD64_TSC_RATIO:
3804             env->amd_tsc_scale_msr = msrs[i].data;
3805             break;
3806         case MSR_IA32_TSX_CTRL:
3807             env->tsx_ctrl = msrs[i].data;
3808             break;
3809         case MSR_VIRT_SSBD:
3810             env->virt_ssbd = msrs[i].data;
3811             break;
3812         case MSR_IA32_RTIT_CTL:
3813             env->msr_rtit_ctrl = msrs[i].data;
3814             break;
3815         case MSR_IA32_RTIT_STATUS:
3816             env->msr_rtit_status = msrs[i].data;
3817             break;
3818         case MSR_IA32_RTIT_OUTPUT_BASE:
3819             env->msr_rtit_output_base = msrs[i].data;
3820             break;
3821         case MSR_IA32_RTIT_OUTPUT_MASK:
3822             env->msr_rtit_output_mask = msrs[i].data;
3823             break;
3824         case MSR_IA32_RTIT_CR3_MATCH:
3825             env->msr_rtit_cr3_match = msrs[i].data;
3826             break;
3827         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3828             env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3829             break;
3830         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
3831             env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
3832                            msrs[i].data;
3833             break;
3834         }
3835     }
3836 
3837     return 0;
3838 }
3839 
3840 static int kvm_put_mp_state(X86CPU *cpu)
3841 {
3842     struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
3843 
3844     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
3845 }
3846 
3847 static int kvm_get_mp_state(X86CPU *cpu)
3848 {
3849     CPUState *cs = CPU(cpu);
3850     CPUX86State *env = &cpu->env;
3851     struct kvm_mp_state mp_state;
3852     int ret;
3853 
3854     ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
3855     if (ret < 0) {
3856         return ret;
3857     }
3858     env->mp_state = mp_state.mp_state;
3859     if (kvm_irqchip_in_kernel()) {
3860         cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
3861     }
3862     return 0;
3863 }
3864 
3865 static int kvm_get_apic(X86CPU *cpu)
3866 {
3867     DeviceState *apic = cpu->apic_state;
3868     struct kvm_lapic_state kapic;
3869     int ret;
3870 
3871     if (apic && kvm_irqchip_in_kernel()) {
3872         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
3873         if (ret < 0) {
3874             return ret;
3875         }
3876 
3877         kvm_get_apic_state(apic, &kapic);
3878     }
3879     return 0;
3880 }
3881 
3882 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
3883 {
3884     CPUState *cs = CPU(cpu);
3885     CPUX86State *env = &cpu->env;
3886     struct kvm_vcpu_events events = {};
3887 
3888     if (!kvm_has_vcpu_events()) {
3889         return 0;
3890     }
3891 
3892     events.flags = 0;
3893 
3894     if (has_exception_payload) {
3895         events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3896         events.exception.pending = env->exception_pending;
3897         events.exception_has_payload = env->exception_has_payload;
3898         events.exception_payload = env->exception_payload;
3899     }
3900     events.exception.nr = env->exception_nr;
3901     events.exception.injected = env->exception_injected;
3902     events.exception.has_error_code = env->has_error_code;
3903     events.exception.error_code = env->error_code;
3904 
3905     events.interrupt.injected = (env->interrupt_injected >= 0);
3906     events.interrupt.nr = env->interrupt_injected;
3907     events.interrupt.soft = env->soft_interrupt;
3908 
3909     events.nmi.injected = env->nmi_injected;
3910     events.nmi.pending = env->nmi_pending;
3911     events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3912 
3913     events.sipi_vector = env->sipi_vector;
3914 
3915     if (has_msr_smbase) {
3916         events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3917         events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3918         if (kvm_irqchip_in_kernel()) {
3919             /* As soon as these are moved to the kernel, remove them
3920              * from cs->interrupt_request.
3921              */
3922             events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3923             events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3924             cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3925         } else {
3926             /* Keep these in cs->interrupt_request.  */
3927             events.smi.pending = 0;
3928             events.smi.latched_init = 0;
3929         }
3930         /* Stop SMI delivery on old machine types to avoid a reboot
3931          * on an inward migration of an old VM.
3932          */
3933         if (!cpu->kvm_no_smi_migration) {
3934             events.flags |= KVM_VCPUEVENT_VALID_SMM;
3935         }
3936     }
3937 
3938     if (level >= KVM_PUT_RESET_STATE) {
3939         events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3940         if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3941             events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3942         }
3943     }
3944 
3945     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
3946 }
3947 
3948 static int kvm_get_vcpu_events(X86CPU *cpu)
3949 {
3950     CPUX86State *env = &cpu->env;
3951     struct kvm_vcpu_events events;
3952     int ret;
3953 
3954     if (!kvm_has_vcpu_events()) {
3955         return 0;
3956     }
3957 
3958     memset(&events, 0, sizeof(events));
3959     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
3960     if (ret < 0) {
3961        return ret;
3962     }
3963 
3964     if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3965         env->exception_pending = events.exception.pending;
3966         env->exception_has_payload = events.exception_has_payload;
3967         env->exception_payload = events.exception_payload;
3968     } else {
3969         env->exception_pending = 0;
3970         env->exception_has_payload = false;
3971     }
3972     env->exception_injected = events.exception.injected;
3973     env->exception_nr =
3974         (env->exception_pending || env->exception_injected) ?
3975         events.exception.nr : -1;
3976     env->has_error_code = events.exception.has_error_code;
3977     env->error_code = events.exception.error_code;
3978 
3979     env->interrupt_injected =
3980         events.interrupt.injected ? events.interrupt.nr : -1;
3981     env->soft_interrupt = events.interrupt.soft;
3982 
3983     env->nmi_injected = events.nmi.injected;
3984     env->nmi_pending = events.nmi.pending;
3985     if (events.nmi.masked) {
3986         env->hflags2 |= HF2_NMI_MASK;
3987     } else {
3988         env->hflags2 &= ~HF2_NMI_MASK;
3989     }
3990 
3991     if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3992         if (events.smi.smm) {
3993             env->hflags |= HF_SMM_MASK;
3994         } else {
3995             env->hflags &= ~HF_SMM_MASK;
3996         }
3997         if (events.smi.pending) {
3998             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3999         } else {
4000             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4001         }
4002         if (events.smi.smm_inside_nmi) {
4003             env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4004         } else {
4005             env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4006         }
4007         if (events.smi.latched_init) {
4008             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4009         } else {
4010             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4011         }
4012     }
4013 
4014     env->sipi_vector = events.sipi_vector;
4015 
4016     return 0;
4017 }
4018 
4019 static int kvm_guest_debug_workarounds(X86CPU *cpu)
4020 {
4021     CPUState *cs = CPU(cpu);
4022     CPUX86State *env = &cpu->env;
4023     int ret = 0;
4024     unsigned long reinject_trap = 0;
4025 
4026     if (!kvm_has_vcpu_events()) {
4027         if (env->exception_nr == EXCP01_DB) {
4028             reinject_trap = KVM_GUESTDBG_INJECT_DB;
4029         } else if (env->exception_injected == EXCP03_INT3) {
4030             reinject_trap = KVM_GUESTDBG_INJECT_BP;
4031         }
4032         kvm_reset_exception(env);
4033     }
4034 
4035     /*
4036      * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
4037      * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
4038      * by updating the debug state once again if single-stepping is on.
4039      * Another reason to call kvm_update_guest_debug here is a pending debug
4040      * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
4041      * reinject them via SET_GUEST_DEBUG.
4042      */
4043     if (reinject_trap ||
4044         (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
4045         ret = kvm_update_guest_debug(cs, reinject_trap);
4046     }
4047     return ret;
4048 }
4049 
4050 static int kvm_put_debugregs(X86CPU *cpu)
4051 {
4052     CPUX86State *env = &cpu->env;
4053     struct kvm_debugregs dbgregs;
4054     int i;
4055 
4056     if (!kvm_has_debugregs()) {
4057         return 0;
4058     }
4059 
4060     memset(&dbgregs, 0, sizeof(dbgregs));
4061     for (i = 0; i < 4; i++) {
4062         dbgregs.db[i] = env->dr[i];
4063     }
4064     dbgregs.dr6 = env->dr[6];
4065     dbgregs.dr7 = env->dr[7];
4066     dbgregs.flags = 0;
4067 
4068     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
4069 }
4070 
4071 static int kvm_get_debugregs(X86CPU *cpu)
4072 {
4073     CPUX86State *env = &cpu->env;
4074     struct kvm_debugregs dbgregs;
4075     int i, ret;
4076 
4077     if (!kvm_has_debugregs()) {
4078         return 0;
4079     }
4080 
4081     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
4082     if (ret < 0) {
4083         return ret;
4084     }
4085     for (i = 0; i < 4; i++) {
4086         env->dr[i] = dbgregs.db[i];
4087     }
4088     env->dr[4] = env->dr[6] = dbgregs.dr6;
4089     env->dr[5] = env->dr[7] = dbgregs.dr7;
4090 
4091     return 0;
4092 }
4093 
4094 static int kvm_put_nested_state(X86CPU *cpu)
4095 {
4096     CPUX86State *env = &cpu->env;
4097     int max_nested_state_len = kvm_max_nested_state_length();
4098 
4099     if (!env->nested_state) {
4100         return 0;
4101     }
4102 
4103     /*
4104      * Copy flags that are affected by reset from env->hflags and env->hflags2.
4105      */
4106     if (env->hflags & HF_GUEST_MASK) {
4107         env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4108     } else {
4109         env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4110     }
4111 
4112     /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4113     if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
4114         env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4115     } else {
4116         env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4117     }
4118 
4119     assert(env->nested_state->size <= max_nested_state_len);
4120     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4121 }
4122 
4123 static int kvm_get_nested_state(X86CPU *cpu)
4124 {
4125     CPUX86State *env = &cpu->env;
4126     int max_nested_state_len = kvm_max_nested_state_length();
4127     int ret;
4128 
4129     if (!env->nested_state) {
4130         return 0;
4131     }
4132 
4133     /*
4134      * It is possible that migration restored a smaller size into
4135      * nested_state->hdr.size than what our kernel support.
4136      * We preserve migration origin nested_state->hdr.size for
4137      * call to KVM_SET_NESTED_STATE but wish that our next call
4138      * to KVM_GET_NESTED_STATE will use max size our kernel support.
4139      */
4140     env->nested_state->size = max_nested_state_len;
4141 
4142     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4143     if (ret < 0) {
4144         return ret;
4145     }
4146 
4147     /*
4148      * Copy flags that are affected by reset to env->hflags and env->hflags2.
4149      */
4150     if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4151         env->hflags |= HF_GUEST_MASK;
4152     } else {
4153         env->hflags &= ~HF_GUEST_MASK;
4154     }
4155 
4156     /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4157     if (cpu_has_svm(env)) {
4158         if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4159             env->hflags2 |= HF2_GIF_MASK;
4160         } else {
4161             env->hflags2 &= ~HF2_GIF_MASK;
4162         }
4163     }
4164 
4165     return ret;
4166 }
4167 
4168 int kvm_arch_put_registers(CPUState *cpu, int level)
4169 {
4170     X86CPU *x86_cpu = X86_CPU(cpu);
4171     int ret;
4172 
4173     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
4174 
4175     /* must be before kvm_put_nested_state so that EFER.SVME is set */
4176     ret = kvm_put_sregs(x86_cpu);
4177     if (ret < 0) {
4178         return ret;
4179     }
4180 
4181     if (level >= KVM_PUT_RESET_STATE) {
4182         ret = kvm_put_nested_state(x86_cpu);
4183         if (ret < 0) {
4184             return ret;
4185         }
4186 
4187         ret = kvm_put_msr_feature_control(x86_cpu);
4188         if (ret < 0) {
4189             return ret;
4190         }
4191     }
4192 
4193     if (level == KVM_PUT_FULL_STATE) {
4194         /* We don't check for kvm_arch_set_tsc_khz() errors here,
4195          * because TSC frequency mismatch shouldn't abort migration,
4196          * unless the user explicitly asked for a more strict TSC
4197          * setting (e.g. using an explicit "tsc-freq" option).
4198          */
4199         kvm_arch_set_tsc_khz(cpu);
4200     }
4201 
4202     ret = kvm_getput_regs(x86_cpu, 1);
4203     if (ret < 0) {
4204         return ret;
4205     }
4206     ret = kvm_put_xsave(x86_cpu);
4207     if (ret < 0) {
4208         return ret;
4209     }
4210     ret = kvm_put_xcrs(x86_cpu);
4211     if (ret < 0) {
4212         return ret;
4213     }
4214     /* must be before kvm_put_msrs */
4215     ret = kvm_inject_mce_oldstyle(x86_cpu);
4216     if (ret < 0) {
4217         return ret;
4218     }
4219     ret = kvm_put_msrs(x86_cpu, level);
4220     if (ret < 0) {
4221         return ret;
4222     }
4223     ret = kvm_put_vcpu_events(x86_cpu, level);
4224     if (ret < 0) {
4225         return ret;
4226     }
4227     if (level >= KVM_PUT_RESET_STATE) {
4228         ret = kvm_put_mp_state(x86_cpu);
4229         if (ret < 0) {
4230             return ret;
4231         }
4232     }
4233 
4234     ret = kvm_put_tscdeadline_msr(x86_cpu);
4235     if (ret < 0) {
4236         return ret;
4237     }
4238     ret = kvm_put_debugregs(x86_cpu);
4239     if (ret < 0) {
4240         return ret;
4241     }
4242     /* must be last */
4243     ret = kvm_guest_debug_workarounds(x86_cpu);
4244     if (ret < 0) {
4245         return ret;
4246     }
4247     return 0;
4248 }
4249 
4250 int kvm_arch_get_registers(CPUState *cs)
4251 {
4252     X86CPU *cpu = X86_CPU(cs);
4253     int ret;
4254 
4255     assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4256 
4257     ret = kvm_get_vcpu_events(cpu);
4258     if (ret < 0) {
4259         goto out;
4260     }
4261     /*
4262      * KVM_GET_MPSTATE can modify CS and RIP, call it before
4263      * KVM_GET_REGS and KVM_GET_SREGS.
4264      */
4265     ret = kvm_get_mp_state(cpu);
4266     if (ret < 0) {
4267         goto out;
4268     }
4269     ret = kvm_getput_regs(cpu, 0);
4270     if (ret < 0) {
4271         goto out;
4272     }
4273     ret = kvm_get_xsave(cpu);
4274     if (ret < 0) {
4275         goto out;
4276     }
4277     ret = kvm_get_xcrs(cpu);
4278     if (ret < 0) {
4279         goto out;
4280     }
4281     ret = kvm_get_sregs(cpu);
4282     if (ret < 0) {
4283         goto out;
4284     }
4285     ret = kvm_get_msrs(cpu);
4286     if (ret < 0) {
4287         goto out;
4288     }
4289     ret = kvm_get_apic(cpu);
4290     if (ret < 0) {
4291         goto out;
4292     }
4293     ret = kvm_get_debugregs(cpu);
4294     if (ret < 0) {
4295         goto out;
4296     }
4297     ret = kvm_get_nested_state(cpu);
4298     if (ret < 0) {
4299         goto out;
4300     }
4301     ret = 0;
4302  out:
4303     cpu_sync_bndcs_hflags(&cpu->env);
4304     return ret;
4305 }
4306 
4307 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4308 {
4309     X86CPU *x86_cpu = X86_CPU(cpu);
4310     CPUX86State *env = &x86_cpu->env;
4311     int ret;
4312 
4313     /* Inject NMI */
4314     if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4315         if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4316             qemu_mutex_lock_iothread();
4317             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4318             qemu_mutex_unlock_iothread();
4319             DPRINTF("injected NMI\n");
4320             ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4321             if (ret < 0) {
4322                 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4323                         strerror(-ret));
4324             }
4325         }
4326         if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4327             qemu_mutex_lock_iothread();
4328             cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4329             qemu_mutex_unlock_iothread();
4330             DPRINTF("injected SMI\n");
4331             ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4332             if (ret < 0) {
4333                 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4334                         strerror(-ret));
4335             }
4336         }
4337     }
4338 
4339     if (!kvm_pic_in_kernel()) {
4340         qemu_mutex_lock_iothread();
4341     }
4342 
4343     /* Force the VCPU out of its inner loop to process any INIT requests
4344      * or (for userspace APIC, but it is cheap to combine the checks here)
4345      * pending TPR access reports.
4346      */
4347     if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4348         if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4349             !(env->hflags & HF_SMM_MASK)) {
4350             cpu->exit_request = 1;
4351         }
4352         if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4353             cpu->exit_request = 1;
4354         }
4355     }
4356 
4357     if (!kvm_pic_in_kernel()) {
4358         /* Try to inject an interrupt if the guest can accept it */
4359         if (run->ready_for_interrupt_injection &&
4360             (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4361             (env->eflags & IF_MASK)) {
4362             int irq;
4363 
4364             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4365             irq = cpu_get_pic_interrupt(env);
4366             if (irq >= 0) {
4367                 struct kvm_interrupt intr;
4368 
4369                 intr.irq = irq;
4370                 DPRINTF("injected interrupt %d\n", irq);
4371                 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4372                 if (ret < 0) {
4373                     fprintf(stderr,
4374                             "KVM: injection failed, interrupt lost (%s)\n",
4375                             strerror(-ret));
4376                 }
4377             }
4378         }
4379 
4380         /* If we have an interrupt but the guest is not ready to receive an
4381          * interrupt, request an interrupt window exit.  This will
4382          * cause a return to userspace as soon as the guest is ready to
4383          * receive interrupts. */
4384         if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4385             run->request_interrupt_window = 1;
4386         } else {
4387             run->request_interrupt_window = 0;
4388         }
4389 
4390         DPRINTF("setting tpr\n");
4391         run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4392 
4393         qemu_mutex_unlock_iothread();
4394     }
4395 }
4396 
4397 static void kvm_rate_limit_on_bus_lock(void)
4398 {
4399     uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4400 
4401     if (delay_ns) {
4402         g_usleep(delay_ns / SCALE_US);
4403     }
4404 }
4405 
4406 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4407 {
4408     X86CPU *x86_cpu = X86_CPU(cpu);
4409     CPUX86State *env = &x86_cpu->env;
4410 
4411     if (run->flags & KVM_RUN_X86_SMM) {
4412         env->hflags |= HF_SMM_MASK;
4413     } else {
4414         env->hflags &= ~HF_SMM_MASK;
4415     }
4416     if (run->if_flag) {
4417         env->eflags |= IF_MASK;
4418     } else {
4419         env->eflags &= ~IF_MASK;
4420     }
4421     if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4422         kvm_rate_limit_on_bus_lock();
4423     }
4424 
4425     /* We need to protect the apic state against concurrent accesses from
4426      * different threads in case the userspace irqchip is used. */
4427     if (!kvm_irqchip_in_kernel()) {
4428         qemu_mutex_lock_iothread();
4429     }
4430     cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4431     cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4432     if (!kvm_irqchip_in_kernel()) {
4433         qemu_mutex_unlock_iothread();
4434     }
4435     return cpu_get_mem_attrs(env);
4436 }
4437 
4438 int kvm_arch_process_async_events(CPUState *cs)
4439 {
4440     X86CPU *cpu = X86_CPU(cs);
4441     CPUX86State *env = &cpu->env;
4442 
4443     if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4444         /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4445         assert(env->mcg_cap);
4446 
4447         cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4448 
4449         kvm_cpu_synchronize_state(cs);
4450 
4451         if (env->exception_nr == EXCP08_DBLE) {
4452             /* this means triple fault */
4453             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4454             cs->exit_request = 1;
4455             return 0;
4456         }
4457         kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4458         env->has_error_code = 0;
4459 
4460         cs->halted = 0;
4461         if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4462             env->mp_state = KVM_MP_STATE_RUNNABLE;
4463         }
4464     }
4465 
4466     if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4467         !(env->hflags & HF_SMM_MASK)) {
4468         kvm_cpu_synchronize_state(cs);
4469         do_cpu_init(cpu);
4470     }
4471 
4472     if (kvm_irqchip_in_kernel()) {
4473         return 0;
4474     }
4475 
4476     if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4477         cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4478         apic_poll_irq(cpu->apic_state);
4479     }
4480     if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4481          (env->eflags & IF_MASK)) ||
4482         (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4483         cs->halted = 0;
4484     }
4485     if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4486         kvm_cpu_synchronize_state(cs);
4487         do_cpu_sipi(cpu);
4488     }
4489     if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4490         cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4491         kvm_cpu_synchronize_state(cs);
4492         apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4493                                       env->tpr_access_type);
4494     }
4495 
4496     return cs->halted;
4497 }
4498 
4499 static int kvm_handle_halt(X86CPU *cpu)
4500 {
4501     CPUState *cs = CPU(cpu);
4502     CPUX86State *env = &cpu->env;
4503 
4504     if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4505           (env->eflags & IF_MASK)) &&
4506         !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4507         cs->halted = 1;
4508         return EXCP_HLT;
4509     }
4510 
4511     return 0;
4512 }
4513 
4514 static int kvm_handle_tpr_access(X86CPU *cpu)
4515 {
4516     CPUState *cs = CPU(cpu);
4517     struct kvm_run *run = cs->kvm_run;
4518 
4519     apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4520                                   run->tpr_access.is_write ? TPR_ACCESS_WRITE
4521                                                            : TPR_ACCESS_READ);
4522     return 1;
4523 }
4524 
4525 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4526 {
4527     static const uint8_t int3 = 0xcc;
4528 
4529     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4530         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4531         return -EINVAL;
4532     }
4533     return 0;
4534 }
4535 
4536 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4537 {
4538     uint8_t int3;
4539 
4540     if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
4541         return -EINVAL;
4542     }
4543     if (int3 != 0xcc) {
4544         return 0;
4545     }
4546     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4547         return -EINVAL;
4548     }
4549     return 0;
4550 }
4551 
4552 static struct {
4553     target_ulong addr;
4554     int len;
4555     int type;
4556 } hw_breakpoint[4];
4557 
4558 static int nb_hw_breakpoint;
4559 
4560 static int find_hw_breakpoint(target_ulong addr, int len, int type)
4561 {
4562     int n;
4563 
4564     for (n = 0; n < nb_hw_breakpoint; n++) {
4565         if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
4566             (hw_breakpoint[n].len == len || len == -1)) {
4567             return n;
4568         }
4569     }
4570     return -1;
4571 }
4572 
4573 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4574                                   target_ulong len, int type)
4575 {
4576     switch (type) {
4577     case GDB_BREAKPOINT_HW:
4578         len = 1;
4579         break;
4580     case GDB_WATCHPOINT_WRITE:
4581     case GDB_WATCHPOINT_ACCESS:
4582         switch (len) {
4583         case 1:
4584             break;
4585         case 2:
4586         case 4:
4587         case 8:
4588             if (addr & (len - 1)) {
4589                 return -EINVAL;
4590             }
4591             break;
4592         default:
4593             return -EINVAL;
4594         }
4595         break;
4596     default:
4597         return -ENOSYS;
4598     }
4599 
4600     if (nb_hw_breakpoint == 4) {
4601         return -ENOBUFS;
4602     }
4603     if (find_hw_breakpoint(addr, len, type) >= 0) {
4604         return -EEXIST;
4605     }
4606     hw_breakpoint[nb_hw_breakpoint].addr = addr;
4607     hw_breakpoint[nb_hw_breakpoint].len = len;
4608     hw_breakpoint[nb_hw_breakpoint].type = type;
4609     nb_hw_breakpoint++;
4610 
4611     return 0;
4612 }
4613 
4614 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4615                                   target_ulong len, int type)
4616 {
4617     int n;
4618 
4619     n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
4620     if (n < 0) {
4621         return -ENOENT;
4622     }
4623     nb_hw_breakpoint--;
4624     hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4625 
4626     return 0;
4627 }
4628 
4629 void kvm_arch_remove_all_hw_breakpoints(void)
4630 {
4631     nb_hw_breakpoint = 0;
4632 }
4633 
4634 static CPUWatchpoint hw_watchpoint;
4635 
4636 static int kvm_handle_debug(X86CPU *cpu,
4637                             struct kvm_debug_exit_arch *arch_info)
4638 {
4639     CPUState *cs = CPU(cpu);
4640     CPUX86State *env = &cpu->env;
4641     int ret = 0;
4642     int n;
4643 
4644     if (arch_info->exception == EXCP01_DB) {
4645         if (arch_info->dr6 & DR6_BS) {
4646             if (cs->singlestep_enabled) {
4647                 ret = EXCP_DEBUG;
4648             }
4649         } else {
4650             for (n = 0; n < 4; n++) {
4651                 if (arch_info->dr6 & (1 << n)) {
4652                     switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4653                     case 0x0:
4654                         ret = EXCP_DEBUG;
4655                         break;
4656                     case 0x1:
4657                         ret = EXCP_DEBUG;
4658                         cs->watchpoint_hit = &hw_watchpoint;
4659                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4660                         hw_watchpoint.flags = BP_MEM_WRITE;
4661                         break;
4662                     case 0x3:
4663                         ret = EXCP_DEBUG;
4664                         cs->watchpoint_hit = &hw_watchpoint;
4665                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4666                         hw_watchpoint.flags = BP_MEM_ACCESS;
4667                         break;
4668                     }
4669                 }
4670             }
4671         }
4672     } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
4673         ret = EXCP_DEBUG;
4674     }
4675     if (ret == 0) {
4676         cpu_synchronize_state(cs);
4677         assert(env->exception_nr == -1);
4678 
4679         /* pass to guest */
4680         kvm_queue_exception(env, arch_info->exception,
4681                             arch_info->exception == EXCP01_DB,
4682                             arch_info->dr6);
4683         env->has_error_code = 0;
4684     }
4685 
4686     return ret;
4687 }
4688 
4689 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
4690 {
4691     const uint8_t type_code[] = {
4692         [GDB_BREAKPOINT_HW] = 0x0,
4693         [GDB_WATCHPOINT_WRITE] = 0x1,
4694         [GDB_WATCHPOINT_ACCESS] = 0x3
4695     };
4696     const uint8_t len_code[] = {
4697         [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4698     };
4699     int n;
4700 
4701     if (kvm_sw_breakpoints_active(cpu)) {
4702         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
4703     }
4704     if (nb_hw_breakpoint > 0) {
4705         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4706         dbg->arch.debugreg[7] = 0x0600;
4707         for (n = 0; n < nb_hw_breakpoint; n++) {
4708             dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4709             dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4710                 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
4711                 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
4712         }
4713     }
4714 }
4715 
4716 static bool has_sgx_provisioning;
4717 
4718 static bool __kvm_enable_sgx_provisioning(KVMState *s)
4719 {
4720     int fd, ret;
4721 
4722     if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
4723         return false;
4724     }
4725 
4726     fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
4727     if (fd < 0) {
4728         return false;
4729     }
4730 
4731     ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
4732     if (ret) {
4733         error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
4734         exit(1);
4735     }
4736     close(fd);
4737     return true;
4738 }
4739 
4740 bool kvm_enable_sgx_provisioning(KVMState *s)
4741 {
4742     return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
4743 }
4744 
4745 static bool host_supports_vmx(void)
4746 {
4747     uint32_t ecx, unused;
4748 
4749     host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4750     return ecx & CPUID_EXT_VMX;
4751 }
4752 
4753 #define VMX_INVALID_GUEST_STATE 0x80000021
4754 
4755 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
4756 {
4757     X86CPU *cpu = X86_CPU(cs);
4758     uint64_t code;
4759     int ret;
4760 
4761     switch (run->exit_reason) {
4762     case KVM_EXIT_HLT:
4763         DPRINTF("handle_hlt\n");
4764         qemu_mutex_lock_iothread();
4765         ret = kvm_handle_halt(cpu);
4766         qemu_mutex_unlock_iothread();
4767         break;
4768     case KVM_EXIT_SET_TPR:
4769         ret = 0;
4770         break;
4771     case KVM_EXIT_TPR_ACCESS:
4772         qemu_mutex_lock_iothread();
4773         ret = kvm_handle_tpr_access(cpu);
4774         qemu_mutex_unlock_iothread();
4775         break;
4776     case KVM_EXIT_FAIL_ENTRY:
4777         code = run->fail_entry.hardware_entry_failure_reason;
4778         fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4779                 code);
4780         if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4781             fprintf(stderr,
4782                     "\nIf you're running a guest on an Intel machine without "
4783                         "unrestricted mode\n"
4784                     "support, the failure can be most likely due to the guest "
4785                         "entering an invalid\n"
4786                     "state for Intel VT. For example, the guest maybe running "
4787                         "in big real mode\n"
4788                     "which is not supported on less recent Intel processors."
4789                         "\n\n");
4790         }
4791         ret = -1;
4792         break;
4793     case KVM_EXIT_EXCEPTION:
4794         fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4795                 run->ex.exception, run->ex.error_code);
4796         ret = -1;
4797         break;
4798     case KVM_EXIT_DEBUG:
4799         DPRINTF("kvm_exit_debug\n");
4800         qemu_mutex_lock_iothread();
4801         ret = kvm_handle_debug(cpu, &run->debug.arch);
4802         qemu_mutex_unlock_iothread();
4803         break;
4804     case KVM_EXIT_HYPERV:
4805         ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4806         break;
4807     case KVM_EXIT_IOAPIC_EOI:
4808         ioapic_eoi_broadcast(run->eoi.vector);
4809         ret = 0;
4810         break;
4811     case KVM_EXIT_X86_BUS_LOCK:
4812         /* already handled in kvm_arch_post_run */
4813         ret = 0;
4814         break;
4815     default:
4816         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4817         ret = -1;
4818         break;
4819     }
4820 
4821     return ret;
4822 }
4823 
4824 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4825 {
4826     X86CPU *cpu = X86_CPU(cs);
4827     CPUX86State *env = &cpu->env;
4828 
4829     kvm_cpu_synchronize_state(cs);
4830     return !(env->cr[0] & CR0_PE_MASK) ||
4831            ((env->segs[R_CS].selector  & 3) != 3);
4832 }
4833 
4834 void kvm_arch_init_irq_routing(KVMState *s)
4835 {
4836     /* We know at this point that we're using the in-kernel
4837      * irqchip, so we can use irqfds, and on x86 we know
4838      * we can use msi via irqfd and GSI routing.
4839      */
4840     kvm_msi_via_irqfd_allowed = true;
4841     kvm_gsi_routing_allowed = true;
4842 
4843     if (kvm_irqchip_is_split()) {
4844         int i;
4845 
4846         /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4847            MSI routes for signaling interrupts to the local apics. */
4848         for (i = 0; i < IOAPIC_NUM_PINS; i++) {
4849             if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
4850                 error_report("Could not enable split IRQ mode.");
4851                 exit(1);
4852             }
4853         }
4854     }
4855 }
4856 
4857 int kvm_arch_irqchip_create(KVMState *s)
4858 {
4859     int ret;
4860     if (kvm_kernel_irqchip_split()) {
4861         ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4862         if (ret) {
4863             error_report("Could not enable split irqchip mode: %s",
4864                          strerror(-ret));
4865             exit(1);
4866         } else {
4867             DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4868             kvm_split_irqchip = true;
4869             return 1;
4870         }
4871     } else {
4872         return 0;
4873     }
4874 }
4875 
4876 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
4877 {
4878     CPUX86State *env;
4879     uint64_t ext_id;
4880 
4881     if (!first_cpu) {
4882         return address;
4883     }
4884     env = &X86_CPU(first_cpu)->env;
4885     if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
4886         return address;
4887     }
4888 
4889     /*
4890      * If the remappable format bit is set, or the upper bits are
4891      * already set in address_hi, or the low extended bits aren't
4892      * there anyway, do nothing.
4893      */
4894     ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
4895     if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
4896         return address;
4897     }
4898 
4899     address &= ~ext_id;
4900     address |= ext_id << 35;
4901     return address;
4902 }
4903 
4904 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
4905                              uint64_t address, uint32_t data, PCIDevice *dev)
4906 {
4907     X86IOMMUState *iommu = x86_iommu_get_default();
4908 
4909     if (iommu) {
4910         X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
4911 
4912         if (class->int_remap) {
4913             int ret;
4914             MSIMessage src, dst;
4915 
4916             src.address = route->u.msi.address_hi;
4917             src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4918             src.address |= route->u.msi.address_lo;
4919             src.data = route->u.msi.data;
4920 
4921             ret = class->int_remap(iommu, &src, &dst, dev ?     \
4922                                    pci_requester_id(dev) :      \
4923                                    X86_IOMMU_SID_INVALID);
4924             if (ret) {
4925                 trace_kvm_x86_fixup_msi_error(route->gsi);
4926                 return 1;
4927             }
4928 
4929             /*
4930              * Handled untranslated compatibilty format interrupt with
4931              * extended destination ID in the low bits 11-5. */
4932             dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
4933 
4934             route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4935             route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4936             route->u.msi.data = dst.data;
4937             return 0;
4938         }
4939     }
4940 
4941     address = kvm_swizzle_msi_ext_dest_id(address);
4942     route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
4943     route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
4944     return 0;
4945 }
4946 
4947 typedef struct MSIRouteEntry MSIRouteEntry;
4948 
4949 struct MSIRouteEntry {
4950     PCIDevice *dev;             /* Device pointer */
4951     int vector;                 /* MSI/MSIX vector index */
4952     int virq;                   /* Virtual IRQ index */
4953     QLIST_ENTRY(MSIRouteEntry) list;
4954 };
4955 
4956 /* List of used GSI routes */
4957 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4958     QLIST_HEAD_INITIALIZER(msi_route_list);
4959 
4960 static void kvm_update_msi_routes_all(void *private, bool global,
4961                                       uint32_t index, uint32_t mask)
4962 {
4963     int cnt = 0, vector;
4964     MSIRouteEntry *entry;
4965     MSIMessage msg;
4966     PCIDevice *dev;
4967 
4968     /* TODO: explicit route update */
4969     QLIST_FOREACH(entry, &msi_route_list, list) {
4970         cnt++;
4971         vector = entry->vector;
4972         dev = entry->dev;
4973         if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4974             msg = msix_get_message(dev, vector);
4975         } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4976             msg = msi_get_message(dev, vector);
4977         } else {
4978             /*
4979              * Either MSI/MSIX is disabled for the device, or the
4980              * specific message was masked out.  Skip this one.
4981              */
4982             continue;
4983         }
4984         kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
4985     }
4986     kvm_irqchip_commit_routes(kvm_state);
4987     trace_kvm_x86_update_msi_routes(cnt);
4988 }
4989 
4990 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4991                                 int vector, PCIDevice *dev)
4992 {
4993     static bool notify_list_inited = false;
4994     MSIRouteEntry *entry;
4995 
4996     if (!dev) {
4997         /* These are (possibly) IOAPIC routes only used for split
4998          * kernel irqchip mode, while what we are housekeeping are
4999          * PCI devices only. */
5000         return 0;
5001     }
5002 
5003     entry = g_new0(MSIRouteEntry, 1);
5004     entry->dev = dev;
5005     entry->vector = vector;
5006     entry->virq = route->gsi;
5007     QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5008 
5009     trace_kvm_x86_add_msi_route(route->gsi);
5010 
5011     if (!notify_list_inited) {
5012         /* For the first time we do add route, add ourselves into
5013          * IOMMU's IEC notify list if needed. */
5014         X86IOMMUState *iommu = x86_iommu_get_default();
5015         if (iommu) {
5016             x86_iommu_iec_register_notifier(iommu,
5017                                             kvm_update_msi_routes_all,
5018                                             NULL);
5019         }
5020         notify_list_inited = true;
5021     }
5022     return 0;
5023 }
5024 
5025 int kvm_arch_release_virq_post(int virq)
5026 {
5027     MSIRouteEntry *entry, *next;
5028     QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5029         if (entry->virq == virq) {
5030             trace_kvm_x86_remove_msi_route(virq);
5031             QLIST_REMOVE(entry, list);
5032             g_free(entry);
5033             break;
5034         }
5035     }
5036     return 0;
5037 }
5038 
5039 int kvm_arch_msi_data_to_gsi(uint32_t data)
5040 {
5041     abort();
5042 }
5043 
5044 bool kvm_has_waitpkg(void)
5045 {
5046     return has_msr_umwait;
5047 }
5048 
5049 bool kvm_arch_cpu_check_are_resettable(void)
5050 {
5051     return !sev_es_enabled();
5052 }
5053