xref: /qemu/target/i386/kvm/kvm.c (revision a99c0c66)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright (C) 2006-2008 Qumranet Technologies
5  * Copyright IBM, Corp. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include "qapi/visitor.h"
19 #include <sys/ioctl.h>
20 #include <sys/utsname.h>
21 #include <sys/syscall.h>
22 
23 #include <linux/kvm.h>
24 #include "standard-headers/asm-x86/kvm_para.h"
25 #include "hw/xen/interface/arch-x86/cpuid.h"
26 
27 #include "cpu.h"
28 #include "host-cpu.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/hw_accel.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "kvm_i386.h"
34 #include "sev.h"
35 #include "xen-emu.h"
36 #include "hyperv.h"
37 #include "hyperv-proto.h"
38 
39 #include "exec/gdbstub.h"
40 #include "qemu/host-utils.h"
41 #include "qemu/main-loop.h"
42 #include "qemu/ratelimit.h"
43 #include "qemu/config-file.h"
44 #include "qemu/error-report.h"
45 #include "qemu/memalign.h"
46 #include "hw/i386/x86.h"
47 #include "hw/i386/kvm/xen_evtchn.h"
48 #include "hw/i386/pc.h"
49 #include "hw/i386/apic.h"
50 #include "hw/i386/apic_internal.h"
51 #include "hw/i386/apic-msidef.h"
52 #include "hw/i386/intel_iommu.h"
53 #include "hw/i386/x86-iommu.h"
54 #include "hw/i386/e820_memory_layout.h"
55 
56 #include "hw/xen/xen.h"
57 
58 #include "hw/pci/pci.h"
59 #include "hw/pci/msi.h"
60 #include "hw/pci/msix.h"
61 #include "migration/blocker.h"
62 #include "exec/memattrs.h"
63 #include "trace.h"
64 
65 #include CONFIG_DEVICES
66 
67 //#define DEBUG_KVM
68 
69 #ifdef DEBUG_KVM
70 #define DPRINTF(fmt, ...) \
71     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
72 #else
73 #define DPRINTF(fmt, ...) \
74     do { } while (0)
75 #endif
76 
77 /* From arch/x86/kvm/lapic.h */
78 #define KVM_APIC_BUS_CYCLE_NS       1
79 #define KVM_APIC_BUS_FREQUENCY      (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
80 
81 #define MSR_KVM_WALL_CLOCK  0x11
82 #define MSR_KVM_SYSTEM_TIME 0x12
83 
84 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
85  * 255 kvm_msr_entry structs */
86 #define MSR_BUF_SIZE 4096
87 
88 static void kvm_init_msrs(X86CPU *cpu);
89 
90 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
91     KVM_CAP_INFO(SET_TSS_ADDR),
92     KVM_CAP_INFO(EXT_CPUID),
93     KVM_CAP_INFO(MP_STATE),
94     KVM_CAP_INFO(SIGNAL_MSI),
95     KVM_CAP_INFO(IRQ_ROUTING),
96     KVM_CAP_INFO(DEBUGREGS),
97     KVM_CAP_INFO(XSAVE),
98     KVM_CAP_INFO(VCPU_EVENTS),
99     KVM_CAP_INFO(X86_ROBUST_SINGLESTEP),
100     KVM_CAP_INFO(MCE),
101     KVM_CAP_INFO(ADJUST_CLOCK),
102     KVM_CAP_INFO(SET_IDENTITY_MAP_ADDR),
103     KVM_CAP_LAST_INFO
104 };
105 
106 static bool has_msr_star;
107 static bool has_msr_hsave_pa;
108 static bool has_msr_tsc_aux;
109 static bool has_msr_tsc_adjust;
110 static bool has_msr_tsc_deadline;
111 static bool has_msr_feature_control;
112 static bool has_msr_misc_enable;
113 static bool has_msr_smbase;
114 static bool has_msr_bndcfgs;
115 static int lm_capable_kernel;
116 static bool has_msr_hv_hypercall;
117 static bool has_msr_hv_crash;
118 static bool has_msr_hv_reset;
119 static bool has_msr_hv_vpindex;
120 static bool hv_vpindex_settable;
121 static bool has_msr_hv_runtime;
122 static bool has_msr_hv_synic;
123 static bool has_msr_hv_stimer;
124 static bool has_msr_hv_frequencies;
125 static bool has_msr_hv_reenlightenment;
126 static bool has_msr_hv_syndbg_options;
127 static bool has_msr_xss;
128 static bool has_msr_umwait;
129 static bool has_msr_spec_ctrl;
130 static bool has_tsc_scale_msr;
131 static bool has_msr_tsx_ctrl;
132 static bool has_msr_virt_ssbd;
133 static bool has_msr_smi_count;
134 static bool has_msr_arch_capabs;
135 static bool has_msr_core_capabs;
136 static bool has_msr_vmx_vmfunc;
137 static bool has_msr_ucode_rev;
138 static bool has_msr_vmx_procbased_ctls2;
139 static bool has_msr_perf_capabs;
140 static bool has_msr_pkrs;
141 
142 static uint32_t has_architectural_pmu_version;
143 static uint32_t num_architectural_pmu_gp_counters;
144 static uint32_t num_architectural_pmu_fixed_counters;
145 
146 static int has_xsave2;
147 static int has_xcrs;
148 static int has_sregs2;
149 static int has_exception_payload;
150 static int has_triple_fault_event;
151 
152 static bool has_msr_mcg_ext_ctl;
153 
154 static struct kvm_cpuid2 *cpuid_cache;
155 static struct kvm_cpuid2 *hv_cpuid_cache;
156 static struct kvm_msr_list *kvm_feature_msrs;
157 
158 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES];
159 
160 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
161 static RateLimit bus_lock_ratelimit_ctrl;
162 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
163 
164 bool kvm_has_smm(void)
165 {
166     return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
167 }
168 
169 bool kvm_has_adjust_clock_stable(void)
170 {
171     int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
172 
173     return (ret & KVM_CLOCK_TSC_STABLE);
174 }
175 
176 bool kvm_has_exception_payload(void)
177 {
178     return has_exception_payload;
179 }
180 
181 static bool kvm_x2apic_api_set_flags(uint64_t flags)
182 {
183     KVMState *s = KVM_STATE(current_accel());
184 
185     return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
186 }
187 
188 #define MEMORIZE(fn, _result) \
189     ({ \
190         static bool _memorized; \
191         \
192         if (_memorized) { \
193             return _result; \
194         } \
195         _memorized = true; \
196         _result = fn; \
197     })
198 
199 static bool has_x2apic_api;
200 
201 bool kvm_has_x2apic_api(void)
202 {
203     return has_x2apic_api;
204 }
205 
206 bool kvm_enable_x2apic(void)
207 {
208     return MEMORIZE(
209              kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
210                                       KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
211              has_x2apic_api);
212 }
213 
214 bool kvm_hv_vpindex_settable(void)
215 {
216     return hv_vpindex_settable;
217 }
218 
219 static int kvm_get_tsc(CPUState *cs)
220 {
221     X86CPU *cpu = X86_CPU(cs);
222     CPUX86State *env = &cpu->env;
223     uint64_t value;
224     int ret;
225 
226     if (env->tsc_valid) {
227         return 0;
228     }
229 
230     env->tsc_valid = !runstate_is_running();
231 
232     ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
233     if (ret < 0) {
234         return ret;
235     }
236 
237     env->tsc = value;
238     return 0;
239 }
240 
241 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
242 {
243     kvm_get_tsc(cpu);
244 }
245 
246 void kvm_synchronize_all_tsc(void)
247 {
248     CPUState *cpu;
249 
250     if (kvm_enabled()) {
251         CPU_FOREACH(cpu) {
252             run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
253         }
254     }
255 }
256 
257 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
258 {
259     struct kvm_cpuid2 *cpuid;
260     int r, size;
261 
262     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
263     cpuid = g_malloc0(size);
264     cpuid->nent = max;
265     r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
266     if (r == 0 && cpuid->nent >= max) {
267         r = -E2BIG;
268     }
269     if (r < 0) {
270         if (r == -E2BIG) {
271             g_free(cpuid);
272             return NULL;
273         } else {
274             fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
275                     strerror(-r));
276             exit(1);
277         }
278     }
279     return cpuid;
280 }
281 
282 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
283  * for all entries.
284  */
285 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
286 {
287     struct kvm_cpuid2 *cpuid;
288     int max = 1;
289 
290     if (cpuid_cache != NULL) {
291         return cpuid_cache;
292     }
293     while ((cpuid = try_get_cpuid(s, max)) == NULL) {
294         max *= 2;
295     }
296     cpuid_cache = cpuid;
297     return cpuid;
298 }
299 
300 static bool host_tsx_broken(void)
301 {
302     int family, model, stepping;\
303     char vendor[CPUID_VENDOR_SZ + 1];
304 
305     host_cpu_vendor_fms(vendor, &family, &model, &stepping);
306 
307     /* Check if we are running on a Haswell host known to have broken TSX */
308     return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
309            (family == 6) &&
310            ((model == 63 && stepping < 4) ||
311             model == 60 || model == 69 || model == 70);
312 }
313 
314 /* Returns the value for a specific register on the cpuid entry
315  */
316 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
317 {
318     uint32_t ret = 0;
319     switch (reg) {
320     case R_EAX:
321         ret = entry->eax;
322         break;
323     case R_EBX:
324         ret = entry->ebx;
325         break;
326     case R_ECX:
327         ret = entry->ecx;
328         break;
329     case R_EDX:
330         ret = entry->edx;
331         break;
332     }
333     return ret;
334 }
335 
336 /* Find matching entry for function/index on kvm_cpuid2 struct
337  */
338 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
339                                                  uint32_t function,
340                                                  uint32_t index)
341 {
342     int i;
343     for (i = 0; i < cpuid->nent; ++i) {
344         if (cpuid->entries[i].function == function &&
345             cpuid->entries[i].index == index) {
346             return &cpuid->entries[i];
347         }
348     }
349     /* not found: */
350     return NULL;
351 }
352 
353 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
354                                       uint32_t index, int reg)
355 {
356     struct kvm_cpuid2 *cpuid;
357     uint32_t ret = 0;
358     uint32_t cpuid_1_edx, unused;
359     uint64_t bitmask;
360 
361     cpuid = get_supported_cpuid(s);
362 
363     struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
364     if (entry) {
365         ret = cpuid_entry_get_reg(entry, reg);
366     }
367 
368     /* Fixups for the data returned by KVM, below */
369 
370     if (function == 1 && reg == R_EDX) {
371         /* KVM before 2.6.30 misreports the following features */
372         ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
373         /* KVM never reports CPUID_HT but QEMU can support when vcpus > 1 */
374         ret |= CPUID_HT;
375     } else if (function == 1 && reg == R_ECX) {
376         /* We can set the hypervisor flag, even if KVM does not return it on
377          * GET_SUPPORTED_CPUID
378          */
379         ret |= CPUID_EXT_HYPERVISOR;
380         /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
381          * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
382          * and the irqchip is in the kernel.
383          */
384         if (kvm_irqchip_in_kernel() &&
385                 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
386             ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
387         }
388 
389         /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
390          * without the in-kernel irqchip
391          */
392         if (!kvm_irqchip_in_kernel()) {
393             ret &= ~CPUID_EXT_X2APIC;
394         }
395 
396         if (enable_cpu_pm) {
397             int disable_exits = kvm_check_extension(s,
398                                                     KVM_CAP_X86_DISABLE_EXITS);
399 
400             if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
401                 ret |= CPUID_EXT_MONITOR;
402             }
403         }
404     } else if (function == 6 && reg == R_EAX) {
405         ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
406     } else if (function == 7 && index == 0 && reg == R_EBX) {
407         /* Not new instructions, just an optimization.  */
408         uint32_t ebx;
409         host_cpuid(7, 0, &unused, &ebx, &unused, &unused);
410         ret |= ebx & CPUID_7_0_EBX_ERMS;
411 
412         if (host_tsx_broken()) {
413             ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
414         }
415     } else if (function == 7 && index == 0 && reg == R_EDX) {
416         /* Not new instructions, just an optimization.  */
417         uint32_t edx;
418         host_cpuid(7, 0, &unused, &unused, &unused, &edx);
419         ret |= edx & CPUID_7_0_EDX_FSRM;
420 
421         /*
422          * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
423          * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
424          * returned by KVM_GET_MSR_INDEX_LIST.
425          */
426         if (!has_msr_arch_capabs) {
427             ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
428         }
429     } else if (function == 7 && index == 1 && reg == R_EAX) {
430         /* Not new instructions, just an optimization.  */
431         uint32_t eax;
432         host_cpuid(7, 1, &eax, &unused, &unused, &unused);
433         ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC);
434     } else if (function == 7 && index == 2 && reg == R_EDX) {
435         uint32_t edx;
436         host_cpuid(7, 2, &unused, &unused, &unused, &edx);
437         ret |= edx & CPUID_7_2_EDX_MCDT_NO;
438     } else if (function == 0xd && index == 0 &&
439                (reg == R_EAX || reg == R_EDX)) {
440         /*
441          * The value returned by KVM_GET_SUPPORTED_CPUID does not include
442          * features that still have to be enabled with the arch_prctl
443          * system call.  QEMU needs the full value, which is retrieved
444          * with KVM_GET_DEVICE_ATTR.
445          */
446         struct kvm_device_attr attr = {
447             .group = 0,
448             .attr = KVM_X86_XCOMP_GUEST_SUPP,
449             .addr = (unsigned long) &bitmask
450         };
451 
452         bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
453         if (!sys_attr) {
454             return ret;
455         }
456 
457         int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
458         if (rc < 0) {
459             if (rc != -ENXIO) {
460                 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
461                             "error: %d", rc);
462             }
463             return ret;
464         }
465         ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
466     } else if (function == 0x80000001 && reg == R_ECX) {
467         /*
468          * It's safe to enable TOPOEXT even if it's not returned by
469          * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
470          * us to keep CPU models including TOPOEXT runnable on older kernels.
471          */
472         ret |= CPUID_EXT3_TOPOEXT;
473     } else if (function == 0x80000001 && reg == R_EDX) {
474         /* On Intel, kvm returns cpuid according to the Intel spec,
475          * so add missing bits according to the AMD spec:
476          */
477         cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
478         ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
479     } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
480         /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
481          * be enabled without the in-kernel irqchip
482          */
483         if (!kvm_irqchip_in_kernel()) {
484             ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
485         }
486         if (kvm_irqchip_is_split()) {
487             ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
488         }
489     } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
490         ret |= 1U << KVM_HINTS_REALTIME;
491     }
492 
493     return ret;
494 }
495 
496 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
497 {
498     struct {
499         struct kvm_msrs info;
500         struct kvm_msr_entry entries[1];
501     } msr_data = {};
502     uint64_t value;
503     uint32_t ret, can_be_one, must_be_one;
504 
505     if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
506         return 0;
507     }
508 
509     /* Check if requested MSR is supported feature MSR */
510     int i;
511     for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
512         if (kvm_feature_msrs->indices[i] == index) {
513             break;
514         }
515     if (i == kvm_feature_msrs->nmsrs) {
516         return 0; /* if the feature MSR is not supported, simply return 0 */
517     }
518 
519     msr_data.info.nmsrs = 1;
520     msr_data.entries[0].index = index;
521 
522     ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
523     if (ret != 1) {
524         error_report("KVM get MSR (index=0x%x) feature failed, %s",
525             index, strerror(-ret));
526         exit(1);
527     }
528 
529     value = msr_data.entries[0].data;
530     switch (index) {
531     case MSR_IA32_VMX_PROCBASED_CTLS2:
532         if (!has_msr_vmx_procbased_ctls2) {
533             /* KVM forgot to add these bits for some time, do this ourselves. */
534             if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
535                 CPUID_XSAVE_XSAVES) {
536                 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
537             }
538             if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
539                 CPUID_EXT_RDRAND) {
540                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
541             }
542             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
543                 CPUID_7_0_EBX_INVPCID) {
544                 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
545             }
546             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
547                 CPUID_7_0_EBX_RDSEED) {
548                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
549             }
550             if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
551                 CPUID_EXT2_RDTSCP) {
552                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
553             }
554         }
555         /* fall through */
556     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
557     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
558     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
559     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
560         /*
561          * Return true for bits that can be one, but do not have to be one.
562          * The SDM tells us which bits could have a "must be one" setting,
563          * so we can do the opposite transformation in make_vmx_msr_value.
564          */
565         must_be_one = (uint32_t)value;
566         can_be_one = (uint32_t)(value >> 32);
567         return can_be_one & ~must_be_one;
568 
569     default:
570         return value;
571     }
572 }
573 
574 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
575                                      int *max_banks)
576 {
577     *max_banks = kvm_check_extension(s, KVM_CAP_MCE);
578     return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
579 }
580 
581 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
582 {
583     CPUState *cs = CPU(cpu);
584     CPUX86State *env = &cpu->env;
585     uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
586                       MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
587     uint64_t mcg_status = MCG_STATUS_MCIP;
588     int flags = 0;
589 
590     if (code == BUS_MCEERR_AR) {
591         status |= MCI_STATUS_AR | 0x134;
592         mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV;
593     } else {
594         status |= 0xc0;
595         mcg_status |= MCG_STATUS_RIPV;
596     }
597 
598     flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
599     /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
600      * guest kernel back into env->mcg_ext_ctl.
601      */
602     cpu_synchronize_state(cs);
603     if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
604         mcg_status |= MCG_STATUS_LMCE;
605         flags = 0;
606     }
607 
608     cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
609                        (MCM_ADDR_PHYS << 6) | 0xc, flags);
610 }
611 
612 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
613 {
614     MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
615 
616     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
617                                    &mff);
618 }
619 
620 static void hardware_memory_error(void *host_addr)
621 {
622     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
623     error_report("QEMU got Hardware memory error at addr %p", host_addr);
624     exit(1);
625 }
626 
627 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
628 {
629     X86CPU *cpu = X86_CPU(c);
630     CPUX86State *env = &cpu->env;
631     ram_addr_t ram_addr;
632     hwaddr paddr;
633 
634     /* If we get an action required MCE, it has been injected by KVM
635      * while the VM was running.  An action optional MCE instead should
636      * be coming from the main thread, which qemu_init_sigbus identifies
637      * as the "early kill" thread.
638      */
639     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
640 
641     if ((env->mcg_cap & MCG_SER_P) && addr) {
642         ram_addr = qemu_ram_addr_from_host(addr);
643         if (ram_addr != RAM_ADDR_INVALID &&
644             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
645             kvm_hwpoison_page_add(ram_addr);
646             kvm_mce_inject(cpu, paddr, code);
647 
648             /*
649              * Use different logging severity based on error type.
650              * If there is additional MCE reporting on the hypervisor, QEMU VA
651              * could be another source to identify the PA and MCE details.
652              */
653             if (code == BUS_MCEERR_AR) {
654                 error_report("Guest MCE Memory Error at QEMU addr %p and "
655                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
656                     addr, paddr, "BUS_MCEERR_AR");
657             } else {
658                  warn_report("Guest MCE Memory Error at QEMU addr %p and "
659                      "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
660                      addr, paddr, "BUS_MCEERR_AO");
661             }
662 
663             return;
664         }
665 
666         if (code == BUS_MCEERR_AO) {
667             warn_report("Hardware memory error at addr %p of type %s "
668                 "for memory used by QEMU itself instead of guest system!",
669                  addr, "BUS_MCEERR_AO");
670         }
671     }
672 
673     if (code == BUS_MCEERR_AR) {
674         hardware_memory_error(addr);
675     }
676 
677     /* Hope we are lucky for AO MCE, just notify a event */
678     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
679 }
680 
681 static void kvm_queue_exception(CPUX86State *env,
682                                 int32_t exception_nr,
683                                 uint8_t exception_has_payload,
684                                 uint64_t exception_payload)
685 {
686     assert(env->exception_nr == -1);
687     assert(!env->exception_pending);
688     assert(!env->exception_injected);
689     assert(!env->exception_has_payload);
690 
691     env->exception_nr = exception_nr;
692 
693     if (has_exception_payload) {
694         env->exception_pending = 1;
695 
696         env->exception_has_payload = exception_has_payload;
697         env->exception_payload = exception_payload;
698     } else {
699         env->exception_injected = 1;
700 
701         if (exception_nr == EXCP01_DB) {
702             assert(exception_has_payload);
703             env->dr[6] = exception_payload;
704         } else if (exception_nr == EXCP0E_PAGE) {
705             assert(exception_has_payload);
706             env->cr[2] = exception_payload;
707         } else {
708             assert(!exception_has_payload);
709         }
710     }
711 }
712 
713 static void cpu_update_state(void *opaque, bool running, RunState state)
714 {
715     CPUX86State *env = opaque;
716 
717     if (running) {
718         env->tsc_valid = false;
719     }
720 }
721 
722 unsigned long kvm_arch_vcpu_id(CPUState *cs)
723 {
724     X86CPU *cpu = X86_CPU(cs);
725     return cpu->apic_id;
726 }
727 
728 #ifndef KVM_CPUID_SIGNATURE_NEXT
729 #define KVM_CPUID_SIGNATURE_NEXT                0x40000100
730 #endif
731 
732 static bool hyperv_enabled(X86CPU *cpu)
733 {
734     return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
735         ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
736          cpu->hyperv_features || cpu->hyperv_passthrough);
737 }
738 
739 /*
740  * Check whether target_freq is within conservative
741  * ntp correctable bounds (250ppm) of freq
742  */
743 static inline bool freq_within_bounds(int freq, int target_freq)
744 {
745         int max_freq = freq + (freq * 250 / 1000000);
746         int min_freq = freq - (freq * 250 / 1000000);
747 
748         if (target_freq >= min_freq && target_freq <= max_freq) {
749                 return true;
750         }
751 
752         return false;
753 }
754 
755 static int kvm_arch_set_tsc_khz(CPUState *cs)
756 {
757     X86CPU *cpu = X86_CPU(cs);
758     CPUX86State *env = &cpu->env;
759     int r, cur_freq;
760     bool set_ioctl = false;
761 
762     if (!env->tsc_khz) {
763         return 0;
764     }
765 
766     cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
767                kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
768 
769     /*
770      * If TSC scaling is supported, attempt to set TSC frequency.
771      */
772     if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
773         set_ioctl = true;
774     }
775 
776     /*
777      * If desired TSC frequency is within bounds of NTP correction,
778      * attempt to set TSC frequency.
779      */
780     if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
781         set_ioctl = true;
782     }
783 
784     r = set_ioctl ?
785         kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
786         -ENOTSUP;
787 
788     if (r < 0) {
789         /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
790          * TSC frequency doesn't match the one we want.
791          */
792         cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
793                    kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
794                    -ENOTSUP;
795         if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
796             warn_report("TSC frequency mismatch between "
797                         "VM (%" PRId64 " kHz) and host (%d kHz), "
798                         "and TSC scaling unavailable",
799                         env->tsc_khz, cur_freq);
800             return r;
801         }
802     }
803 
804     return 0;
805 }
806 
807 static bool tsc_is_stable_and_known(CPUX86State *env)
808 {
809     if (!env->tsc_khz) {
810         return false;
811     }
812     return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
813         || env->user_tsc_khz;
814 }
815 
816 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
817 
818 static struct {
819     const char *desc;
820     struct {
821         uint32_t func;
822         int reg;
823         uint32_t bits;
824     } flags[2];
825     uint64_t dependencies;
826 } kvm_hyperv_properties[] = {
827     [HYPERV_FEAT_RELAXED] = {
828         .desc = "relaxed timing (hv-relaxed)",
829         .flags = {
830             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
831              .bits = HV_RELAXED_TIMING_RECOMMENDED}
832         }
833     },
834     [HYPERV_FEAT_VAPIC] = {
835         .desc = "virtual APIC (hv-vapic)",
836         .flags = {
837             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
838              .bits = HV_APIC_ACCESS_AVAILABLE}
839         }
840     },
841     [HYPERV_FEAT_TIME] = {
842         .desc = "clocksources (hv-time)",
843         .flags = {
844             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
845              .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
846         }
847     },
848     [HYPERV_FEAT_CRASH] = {
849         .desc = "crash MSRs (hv-crash)",
850         .flags = {
851             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
852              .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
853         }
854     },
855     [HYPERV_FEAT_RESET] = {
856         .desc = "reset MSR (hv-reset)",
857         .flags = {
858             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
859              .bits = HV_RESET_AVAILABLE}
860         }
861     },
862     [HYPERV_FEAT_VPINDEX] = {
863         .desc = "VP_INDEX MSR (hv-vpindex)",
864         .flags = {
865             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
866              .bits = HV_VP_INDEX_AVAILABLE}
867         }
868     },
869     [HYPERV_FEAT_RUNTIME] = {
870         .desc = "VP_RUNTIME MSR (hv-runtime)",
871         .flags = {
872             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
873              .bits = HV_VP_RUNTIME_AVAILABLE}
874         }
875     },
876     [HYPERV_FEAT_SYNIC] = {
877         .desc = "synthetic interrupt controller (hv-synic)",
878         .flags = {
879             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
880              .bits = HV_SYNIC_AVAILABLE}
881         }
882     },
883     [HYPERV_FEAT_STIMER] = {
884         .desc = "synthetic timers (hv-stimer)",
885         .flags = {
886             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
887              .bits = HV_SYNTIMERS_AVAILABLE}
888         },
889         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
890     },
891     [HYPERV_FEAT_FREQUENCIES] = {
892         .desc = "frequency MSRs (hv-frequencies)",
893         .flags = {
894             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
895              .bits = HV_ACCESS_FREQUENCY_MSRS},
896             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
897              .bits = HV_FREQUENCY_MSRS_AVAILABLE}
898         }
899     },
900     [HYPERV_FEAT_REENLIGHTENMENT] = {
901         .desc = "reenlightenment MSRs (hv-reenlightenment)",
902         .flags = {
903             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
904              .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
905         }
906     },
907     [HYPERV_FEAT_TLBFLUSH] = {
908         .desc = "paravirtualized TLB flush (hv-tlbflush)",
909         .flags = {
910             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
911              .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
912              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
913         },
914         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
915     },
916     [HYPERV_FEAT_EVMCS] = {
917         .desc = "enlightened VMCS (hv-evmcs)",
918         .flags = {
919             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
920              .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
921         },
922         .dependencies = BIT(HYPERV_FEAT_VAPIC)
923     },
924     [HYPERV_FEAT_IPI] = {
925         .desc = "paravirtualized IPI (hv-ipi)",
926         .flags = {
927             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
928              .bits = HV_CLUSTER_IPI_RECOMMENDED |
929              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
930         },
931         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
932     },
933     [HYPERV_FEAT_STIMER_DIRECT] = {
934         .desc = "direct mode synthetic timers (hv-stimer-direct)",
935         .flags = {
936             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
937              .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
938         },
939         .dependencies = BIT(HYPERV_FEAT_STIMER)
940     },
941     [HYPERV_FEAT_AVIC] = {
942         .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
943         .flags = {
944             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
945              .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
946         }
947     },
948 #ifdef CONFIG_SYNDBG
949     [HYPERV_FEAT_SYNDBG] = {
950         .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
951         .flags = {
952             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
953              .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
954         },
955         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED)
956     },
957 #endif
958     [HYPERV_FEAT_MSR_BITMAP] = {
959         .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
960         .flags = {
961             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
962              .bits = HV_NESTED_MSR_BITMAP}
963         }
964     },
965     [HYPERV_FEAT_XMM_INPUT] = {
966         .desc = "XMM fast hypercall input (hv-xmm-input)",
967         .flags = {
968             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
969              .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
970         }
971     },
972     [HYPERV_FEAT_TLBFLUSH_EXT] = {
973         .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
974         .flags = {
975             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
976              .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
977         },
978         .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
979     },
980     [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
981         .desc = "direct TLB flush (hv-tlbflush-direct)",
982         .flags = {
983             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
984              .bits = HV_NESTED_DIRECT_FLUSH}
985         },
986         .dependencies = BIT(HYPERV_FEAT_VAPIC)
987     },
988 };
989 
990 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
991                                            bool do_sys_ioctl)
992 {
993     struct kvm_cpuid2 *cpuid;
994     int r, size;
995 
996     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
997     cpuid = g_malloc0(size);
998     cpuid->nent = max;
999 
1000     if (do_sys_ioctl) {
1001         r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1002     } else {
1003         r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1004     }
1005     if (r == 0 && cpuid->nent >= max) {
1006         r = -E2BIG;
1007     }
1008     if (r < 0) {
1009         if (r == -E2BIG) {
1010             g_free(cpuid);
1011             return NULL;
1012         } else {
1013             fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1014                     strerror(-r));
1015             exit(1);
1016         }
1017     }
1018     return cpuid;
1019 }
1020 
1021 /*
1022  * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1023  * for all entries.
1024  */
1025 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1026 {
1027     struct kvm_cpuid2 *cpuid;
1028     /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1029     int max = 11;
1030     int i;
1031     bool do_sys_ioctl;
1032 
1033     do_sys_ioctl =
1034         kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1035 
1036     /*
1037      * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1038      * unsupported, kvm_hyperv_expand_features() checks for that.
1039      */
1040     assert(do_sys_ioctl || cs->kvm_state);
1041 
1042     /*
1043      * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1044      * -E2BIG, however, it doesn't report back the right size. Keep increasing
1045      * it and re-trying until we succeed.
1046      */
1047     while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1048         max++;
1049     }
1050 
1051     /*
1052      * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1053      * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1054      * information early, just check for the capability and set the bit
1055      * manually.
1056      */
1057     if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1058                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1059         for (i = 0; i < cpuid->nent; i++) {
1060             if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1061                 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1062             }
1063         }
1064     }
1065 
1066     return cpuid;
1067 }
1068 
1069 /*
1070  * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1071  * leaves from KVM_CAP_HYPERV* and present MSRs data.
1072  */
1073 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1074 {
1075     X86CPU *cpu = X86_CPU(cs);
1076     struct kvm_cpuid2 *cpuid;
1077     struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1078 
1079     /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1080     cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1081     cpuid->nent = 2;
1082 
1083     /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1084     entry_feat = &cpuid->entries[0];
1085     entry_feat->function = HV_CPUID_FEATURES;
1086 
1087     entry_recomm = &cpuid->entries[1];
1088     entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1089     entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1090 
1091     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1092         entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1093         entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1094         entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1095         entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1096         entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1097     }
1098 
1099     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1100         entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1101         entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1102     }
1103 
1104     if (has_msr_hv_frequencies) {
1105         entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1106         entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1107     }
1108 
1109     if (has_msr_hv_crash) {
1110         entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1111     }
1112 
1113     if (has_msr_hv_reenlightenment) {
1114         entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1115     }
1116 
1117     if (has_msr_hv_reset) {
1118         entry_feat->eax |= HV_RESET_AVAILABLE;
1119     }
1120 
1121     if (has_msr_hv_vpindex) {
1122         entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1123     }
1124 
1125     if (has_msr_hv_runtime) {
1126         entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1127     }
1128 
1129     if (has_msr_hv_synic) {
1130         unsigned int cap = cpu->hyperv_synic_kvm_only ?
1131             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1132 
1133         if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1134             entry_feat->eax |= HV_SYNIC_AVAILABLE;
1135         }
1136     }
1137 
1138     if (has_msr_hv_stimer) {
1139         entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1140     }
1141 
1142     if (has_msr_hv_syndbg_options) {
1143         entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1144         entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1145         entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1146     }
1147 
1148     if (kvm_check_extension(cs->kvm_state,
1149                             KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1150         entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1151         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1152     }
1153 
1154     if (kvm_check_extension(cs->kvm_state,
1155                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1156         entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1157     }
1158 
1159     if (kvm_check_extension(cs->kvm_state,
1160                             KVM_CAP_HYPERV_SEND_IPI) > 0) {
1161         entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1162         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1163     }
1164 
1165     return cpuid;
1166 }
1167 
1168 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1169 {
1170     struct kvm_cpuid_entry2 *entry;
1171     struct kvm_cpuid2 *cpuid;
1172 
1173     if (hv_cpuid_cache) {
1174         cpuid = hv_cpuid_cache;
1175     } else {
1176         if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1177             cpuid = get_supported_hv_cpuid(cs);
1178         } else {
1179             /*
1180              * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1181              * before KVM context is created but this is only done when
1182              * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1183              * KVM_CAP_HYPERV_CPUID.
1184              */
1185             assert(cs->kvm_state);
1186 
1187             cpuid = get_supported_hv_cpuid_legacy(cs);
1188         }
1189         hv_cpuid_cache = cpuid;
1190     }
1191 
1192     if (!cpuid) {
1193         return 0;
1194     }
1195 
1196     entry = cpuid_find_entry(cpuid, func, 0);
1197     if (!entry) {
1198         return 0;
1199     }
1200 
1201     return cpuid_entry_get_reg(entry, reg);
1202 }
1203 
1204 static bool hyperv_feature_supported(CPUState *cs, int feature)
1205 {
1206     uint32_t func, bits;
1207     int i, reg;
1208 
1209     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1210 
1211         func = kvm_hyperv_properties[feature].flags[i].func;
1212         reg = kvm_hyperv_properties[feature].flags[i].reg;
1213         bits = kvm_hyperv_properties[feature].flags[i].bits;
1214 
1215         if (!func) {
1216             continue;
1217         }
1218 
1219         if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1220             return false;
1221         }
1222     }
1223 
1224     return true;
1225 }
1226 
1227 /* Checks that all feature dependencies are enabled */
1228 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1229 {
1230     uint64_t deps;
1231     int dep_feat;
1232 
1233     deps = kvm_hyperv_properties[feature].dependencies;
1234     while (deps) {
1235         dep_feat = ctz64(deps);
1236         if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1237             error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1238                        kvm_hyperv_properties[feature].desc,
1239                        kvm_hyperv_properties[dep_feat].desc);
1240             return false;
1241         }
1242         deps &= ~(1ull << dep_feat);
1243     }
1244 
1245     return true;
1246 }
1247 
1248 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1249 {
1250     X86CPU *cpu = X86_CPU(cs);
1251     uint32_t r = 0;
1252     int i, j;
1253 
1254     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1255         if (!hyperv_feat_enabled(cpu, i)) {
1256             continue;
1257         }
1258 
1259         for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1260             if (kvm_hyperv_properties[i].flags[j].func != func) {
1261                 continue;
1262             }
1263             if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1264                 continue;
1265             }
1266 
1267             r |= kvm_hyperv_properties[i].flags[j].bits;
1268         }
1269     }
1270 
1271     /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1272     if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1273         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1274             r |= DEFAULT_EVMCS_VERSION;
1275         }
1276     }
1277 
1278     return r;
1279 }
1280 
1281 /*
1282  * Expand Hyper-V CPU features. In partucular, check that all the requested
1283  * features are supported by the host and the sanity of the configuration
1284  * (that all the required dependencies are included). Also, this takes care
1285  * of 'hv_passthrough' mode and fills the environment with all supported
1286  * Hyper-V features.
1287  */
1288 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1289 {
1290     CPUState *cs = CPU(cpu);
1291     Error *local_err = NULL;
1292     int feat;
1293 
1294     if (!hyperv_enabled(cpu))
1295         return true;
1296 
1297     /*
1298      * When kvm_hyperv_expand_features is called at CPU feature expansion
1299      * time per-CPU kvm_state is not available yet so we can only proceed
1300      * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1301      */
1302     if (!cs->kvm_state &&
1303         !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1304         return true;
1305 
1306     if (cpu->hyperv_passthrough) {
1307         cpu->hyperv_vendor_id[0] =
1308             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1309         cpu->hyperv_vendor_id[1] =
1310             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1311         cpu->hyperv_vendor_id[2] =
1312             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1313         cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1314                                        sizeof(cpu->hyperv_vendor_id) + 1);
1315         memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1316                sizeof(cpu->hyperv_vendor_id));
1317         cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1318 
1319         cpu->hyperv_interface_id[0] =
1320             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1321         cpu->hyperv_interface_id[1] =
1322             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1323         cpu->hyperv_interface_id[2] =
1324             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1325         cpu->hyperv_interface_id[3] =
1326             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1327 
1328         cpu->hyperv_ver_id_build =
1329             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1330         cpu->hyperv_ver_id_major =
1331             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1332         cpu->hyperv_ver_id_minor =
1333             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1334         cpu->hyperv_ver_id_sp =
1335             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1336         cpu->hyperv_ver_id_sb =
1337             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1338         cpu->hyperv_ver_id_sn =
1339             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1340 
1341         cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1342                                             R_EAX);
1343         cpu->hyperv_limits[0] =
1344             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1345         cpu->hyperv_limits[1] =
1346             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1347         cpu->hyperv_limits[2] =
1348             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1349 
1350         cpu->hyperv_spinlock_attempts =
1351             hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1352 
1353         /*
1354          * Mark feature as enabled in 'cpu->hyperv_features' as
1355          * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1356          */
1357         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1358             if (hyperv_feature_supported(cs, feat)) {
1359                 cpu->hyperv_features |= BIT(feat);
1360             }
1361         }
1362     } else {
1363         /* Check features availability and dependencies */
1364         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1365             /* If the feature was not requested skip it. */
1366             if (!hyperv_feat_enabled(cpu, feat)) {
1367                 continue;
1368             }
1369 
1370             /* Check if the feature is supported by KVM */
1371             if (!hyperv_feature_supported(cs, feat)) {
1372                 error_setg(errp, "Hyper-V %s is not supported by kernel",
1373                            kvm_hyperv_properties[feat].desc);
1374                 return false;
1375             }
1376 
1377             /* Check dependencies */
1378             if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1379                 error_propagate(errp, local_err);
1380                 return false;
1381             }
1382         }
1383     }
1384 
1385     /* Additional dependencies not covered by kvm_hyperv_properties[] */
1386     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1387         !cpu->hyperv_synic_kvm_only &&
1388         !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1389         error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1390                    kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1391                    kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1392         return false;
1393     }
1394 
1395     return true;
1396 }
1397 
1398 /*
1399  * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1400  */
1401 static int hyperv_fill_cpuids(CPUState *cs,
1402                               struct kvm_cpuid_entry2 *cpuid_ent)
1403 {
1404     X86CPU *cpu = X86_CPU(cs);
1405     struct kvm_cpuid_entry2 *c;
1406     uint32_t signature[3];
1407     uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1408     uint32_t nested_eax =
1409         hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1410 
1411     max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1412         HV_CPUID_IMPLEMENT_LIMITS;
1413 
1414     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1415         max_cpuid_leaf =
1416             MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1417     }
1418 
1419     c = &cpuid_ent[cpuid_i++];
1420     c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1421     c->eax = max_cpuid_leaf;
1422     c->ebx = cpu->hyperv_vendor_id[0];
1423     c->ecx = cpu->hyperv_vendor_id[1];
1424     c->edx = cpu->hyperv_vendor_id[2];
1425 
1426     c = &cpuid_ent[cpuid_i++];
1427     c->function = HV_CPUID_INTERFACE;
1428     c->eax = cpu->hyperv_interface_id[0];
1429     c->ebx = cpu->hyperv_interface_id[1];
1430     c->ecx = cpu->hyperv_interface_id[2];
1431     c->edx = cpu->hyperv_interface_id[3];
1432 
1433     c = &cpuid_ent[cpuid_i++];
1434     c->function = HV_CPUID_VERSION;
1435     c->eax = cpu->hyperv_ver_id_build;
1436     c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1437         cpu->hyperv_ver_id_minor;
1438     c->ecx = cpu->hyperv_ver_id_sp;
1439     c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1440         (cpu->hyperv_ver_id_sn & 0xffffff);
1441 
1442     c = &cpuid_ent[cpuid_i++];
1443     c->function = HV_CPUID_FEATURES;
1444     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1445     c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1446     c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1447 
1448     /* Unconditionally required with any Hyper-V enlightenment */
1449     c->eax |= HV_HYPERCALL_AVAILABLE;
1450 
1451     /* SynIC and Vmbus devices require messages/signals hypercalls */
1452     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1453         !cpu->hyperv_synic_kvm_only) {
1454         c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1455     }
1456 
1457 
1458     /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1459     c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1460 
1461     c = &cpuid_ent[cpuid_i++];
1462     c->function = HV_CPUID_ENLIGHTMENT_INFO;
1463     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1464     c->ebx = cpu->hyperv_spinlock_attempts;
1465 
1466     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1467         !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1468         c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1469     }
1470 
1471     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1472         c->eax |= HV_NO_NONARCH_CORESHARING;
1473     } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1474         c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1475             HV_NO_NONARCH_CORESHARING;
1476     }
1477 
1478     c = &cpuid_ent[cpuid_i++];
1479     c->function = HV_CPUID_IMPLEMENT_LIMITS;
1480     c->eax = cpu->hv_max_vps;
1481     c->ebx = cpu->hyperv_limits[0];
1482     c->ecx = cpu->hyperv_limits[1];
1483     c->edx = cpu->hyperv_limits[2];
1484 
1485     if (nested_eax) {
1486         uint32_t function;
1487 
1488         /* Create zeroed 0x40000006..0x40000009 leaves */
1489         for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1490              function < HV_CPUID_NESTED_FEATURES; function++) {
1491             c = &cpuid_ent[cpuid_i++];
1492             c->function = function;
1493         }
1494 
1495         c = &cpuid_ent[cpuid_i++];
1496         c->function = HV_CPUID_NESTED_FEATURES;
1497         c->eax = nested_eax;
1498     }
1499 
1500     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1501         c = &cpuid_ent[cpuid_i++];
1502         c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1503         c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1504             HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1505         memcpy(signature, "Microsoft VS", 12);
1506         c->eax = 0;
1507         c->ebx = signature[0];
1508         c->ecx = signature[1];
1509         c->edx = signature[2];
1510 
1511         c = &cpuid_ent[cpuid_i++];
1512         c->function = HV_CPUID_SYNDBG_INTERFACE;
1513         memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1514         c->eax = signature[0];
1515         c->ebx = 0;
1516         c->ecx = 0;
1517         c->edx = 0;
1518 
1519         c = &cpuid_ent[cpuid_i++];
1520         c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1521         c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1522         c->ebx = 0;
1523         c->ecx = 0;
1524         c->edx = 0;
1525     }
1526 
1527     return cpuid_i;
1528 }
1529 
1530 static Error *hv_passthrough_mig_blocker;
1531 static Error *hv_no_nonarch_cs_mig_blocker;
1532 
1533 /* Checks that the exposed eVMCS version range is supported by KVM */
1534 static bool evmcs_version_supported(uint16_t evmcs_version,
1535                                     uint16_t supported_evmcs_version)
1536 {
1537     uint8_t min_version = evmcs_version & 0xff;
1538     uint8_t max_version = evmcs_version >> 8;
1539     uint8_t min_supported_version = supported_evmcs_version & 0xff;
1540     uint8_t max_supported_version = supported_evmcs_version >> 8;
1541 
1542     return (min_version >= min_supported_version) &&
1543         (max_version <= max_supported_version);
1544 }
1545 
1546 static int hyperv_init_vcpu(X86CPU *cpu)
1547 {
1548     CPUState *cs = CPU(cpu);
1549     Error *local_err = NULL;
1550     int ret;
1551 
1552     if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1553         error_setg(&hv_passthrough_mig_blocker,
1554                    "'hv-passthrough' CPU flag prevents migration, use explicit"
1555                    " set of hv-* flags instead");
1556         ret = migrate_add_blocker(&hv_passthrough_mig_blocker, &local_err);
1557         if (ret < 0) {
1558             error_report_err(local_err);
1559             return ret;
1560         }
1561     }
1562 
1563     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1564         hv_no_nonarch_cs_mig_blocker == NULL) {
1565         error_setg(&hv_no_nonarch_cs_mig_blocker,
1566                    "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1567                    " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1568                    " make sure SMT is disabled and/or that vCPUs are properly"
1569                    " pinned)");
1570         ret = migrate_add_blocker(&hv_no_nonarch_cs_mig_blocker, &local_err);
1571         if (ret < 0) {
1572             error_report_err(local_err);
1573             return ret;
1574         }
1575     }
1576 
1577     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1578         /*
1579          * the kernel doesn't support setting vp_index; assert that its value
1580          * is in sync
1581          */
1582         uint64_t value;
1583 
1584         ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1585         if (ret < 0) {
1586             return ret;
1587         }
1588 
1589         if (value != hyperv_vp_index(CPU(cpu))) {
1590             error_report("kernel's vp_index != QEMU's vp_index");
1591             return -ENXIO;
1592         }
1593     }
1594 
1595     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1596         uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1597             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1598         ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1599         if (ret < 0) {
1600             error_report("failed to turn on HyperV SynIC in KVM: %s",
1601                          strerror(-ret));
1602             return ret;
1603         }
1604 
1605         if (!cpu->hyperv_synic_kvm_only) {
1606             ret = hyperv_x86_synic_add(cpu);
1607             if (ret < 0) {
1608                 error_report("failed to create HyperV SynIC: %s",
1609                              strerror(-ret));
1610                 return ret;
1611             }
1612         }
1613     }
1614 
1615     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1616         uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1617         uint16_t supported_evmcs_version;
1618 
1619         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1620                                   (uintptr_t)&supported_evmcs_version);
1621 
1622         /*
1623          * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1624          * option sets. Note: we hardcode the maximum supported eVMCS version
1625          * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1626          * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1627          * to be added.
1628          */
1629         if (ret < 0) {
1630             error_report("Hyper-V %s is not supported by kernel",
1631                          kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1632             return ret;
1633         }
1634 
1635         if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1636             error_report("eVMCS version range [%d..%d] is not supported by "
1637                          "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1638                          evmcs_version >> 8, supported_evmcs_version & 0xff,
1639                          supported_evmcs_version >> 8);
1640             return -ENOTSUP;
1641         }
1642     }
1643 
1644     if (cpu->hyperv_enforce_cpuid) {
1645         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1646         if (ret < 0) {
1647             error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1648                          strerror(-ret));
1649             return ret;
1650         }
1651     }
1652 
1653     /* Skip SynIC and VP_INDEX since they are hard deps already */
1654     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_STIMER) &&
1655         hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1656         hyperv_feat_enabled(cpu, HYPERV_FEAT_RUNTIME)) {
1657         hyperv_x86_set_vmbus_recommended_features_enabled();
1658     }
1659 
1660     return 0;
1661 }
1662 
1663 static Error *invtsc_mig_blocker;
1664 
1665 #define KVM_MAX_CPUID_ENTRIES  100
1666 
1667 static void kvm_init_xsave(CPUX86State *env)
1668 {
1669     if (has_xsave2) {
1670         env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1671     } else {
1672         env->xsave_buf_len = sizeof(struct kvm_xsave);
1673     }
1674 
1675     env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1676     memset(env->xsave_buf, 0, env->xsave_buf_len);
1677     /*
1678      * The allocated storage must be large enough for all of the
1679      * possible XSAVE state components.
1680      */
1681     assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1682            env->xsave_buf_len);
1683 }
1684 
1685 static void kvm_init_nested_state(CPUX86State *env)
1686 {
1687     struct kvm_vmx_nested_state_hdr *vmx_hdr;
1688     uint32_t size;
1689 
1690     if (!env->nested_state) {
1691         return;
1692     }
1693 
1694     size = env->nested_state->size;
1695 
1696     memset(env->nested_state, 0, size);
1697     env->nested_state->size = size;
1698 
1699     if (cpu_has_vmx(env)) {
1700         env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1701         vmx_hdr = &env->nested_state->hdr.vmx;
1702         vmx_hdr->vmxon_pa = -1ull;
1703         vmx_hdr->vmcs12_pa = -1ull;
1704     } else if (cpu_has_svm(env)) {
1705         env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1706     }
1707 }
1708 
1709 static uint32_t kvm_x86_build_cpuid(CPUX86State *env,
1710                                     struct kvm_cpuid_entry2 *entries,
1711                                     uint32_t cpuid_i)
1712 {
1713     uint32_t limit, i, j;
1714     uint32_t unused;
1715     struct kvm_cpuid_entry2 *c;
1716 
1717     cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1718 
1719     for (i = 0; i <= limit; i++) {
1720         j = 0;
1721         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1722             goto full;
1723         }
1724         c = &entries[cpuid_i++];
1725         switch (i) {
1726         case 2: {
1727             /* Keep reading function 2 till all the input is received */
1728             int times;
1729 
1730             c->function = i;
1731             c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1732                        KVM_CPUID_FLAG_STATE_READ_NEXT;
1733             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1734             times = c->eax & 0xff;
1735 
1736             for (j = 1; j < times; ++j) {
1737                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1738                     goto full;
1739                 }
1740                 c = &entries[cpuid_i++];
1741                 c->function = i;
1742                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1743                 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1744             }
1745             break;
1746         }
1747         case 0x1f:
1748             if (env->nr_dies < 2) {
1749                 cpuid_i--;
1750                 break;
1751             }
1752             /* fallthrough */
1753         case 4:
1754         case 0xb:
1755         case 0xd:
1756             for (j = 0; ; j++) {
1757                 if (i == 0xd && j == 64) {
1758                     break;
1759                 }
1760 
1761                 c->function = i;
1762                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1763                 c->index = j;
1764                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1765 
1766                 if (i == 4 && c->eax == 0) {
1767                     break;
1768                 }
1769                 if (i == 0xb && !(c->ecx & 0xff00)) {
1770                     break;
1771                 }
1772                 if (i == 0x1f && !(c->ecx & 0xff00)) {
1773                     break;
1774                 }
1775                 if (i == 0xd && c->eax == 0) {
1776                     continue;
1777                 }
1778                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1779                     goto full;
1780                 }
1781                 c = &entries[cpuid_i++];
1782             }
1783             break;
1784         case 0x12:
1785             for (j = 0; ; j++) {
1786                 c->function = i;
1787                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1788                 c->index = j;
1789                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1790 
1791                 if (j > 1 && (c->eax & 0xf) != 1) {
1792                     break;
1793                 }
1794 
1795                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1796                     goto full;
1797                 }
1798                 c = &entries[cpuid_i++];
1799             }
1800             break;
1801         case 0x7:
1802         case 0x14:
1803         case 0x1d:
1804         case 0x1e: {
1805             uint32_t times;
1806 
1807             c->function = i;
1808             c->index = 0;
1809             c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1810             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1811             times = c->eax;
1812 
1813             for (j = 1; j <= times; ++j) {
1814                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1815                     goto full;
1816                 }
1817                 c = &entries[cpuid_i++];
1818                 c->function = i;
1819                 c->index = j;
1820                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1821                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1822             }
1823             break;
1824         }
1825         default:
1826             c->function = i;
1827             c->flags = 0;
1828             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1829             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1830                 /*
1831                  * KVM already returns all zeroes if a CPUID entry is missing,
1832                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1833                  */
1834                 cpuid_i--;
1835             }
1836             break;
1837         }
1838     }
1839 
1840     if (limit >= 0x0a) {
1841         uint32_t eax, edx;
1842 
1843         cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1844 
1845         has_architectural_pmu_version = eax & 0xff;
1846         if (has_architectural_pmu_version > 0) {
1847             num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1848 
1849             /* Shouldn't be more than 32, since that's the number of bits
1850              * available in EBX to tell us _which_ counters are available.
1851              * Play it safe.
1852              */
1853             if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1854                 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1855             }
1856 
1857             if (has_architectural_pmu_version > 1) {
1858                 num_architectural_pmu_fixed_counters = edx & 0x1f;
1859 
1860                 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1861                     num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1862                 }
1863             }
1864         }
1865     }
1866 
1867     cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1868 
1869     for (i = 0x80000000; i <= limit; i++) {
1870         j = 0;
1871         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1872             goto full;
1873         }
1874         c = &entries[cpuid_i++];
1875 
1876         switch (i) {
1877         case 0x8000001d:
1878             /* Query for all AMD cache information leaves */
1879             for (j = 0; ; j++) {
1880                 c->function = i;
1881                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1882                 c->index = j;
1883                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1884 
1885                 if (c->eax == 0) {
1886                     break;
1887                 }
1888                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1889                     goto full;
1890                 }
1891                 c = &entries[cpuid_i++];
1892             }
1893             break;
1894         default:
1895             c->function = i;
1896             c->flags = 0;
1897             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1898             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1899                 /*
1900                  * KVM already returns all zeroes if a CPUID entry is missing,
1901                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1902                  */
1903                 cpuid_i--;
1904             }
1905             break;
1906         }
1907     }
1908 
1909     /* Call Centaur's CPUID instructions they are supported. */
1910     if (env->cpuid_xlevel2 > 0) {
1911         cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1912 
1913         for (i = 0xC0000000; i <= limit; i++) {
1914             j = 0;
1915             if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1916                 goto full;
1917             }
1918             c = &entries[cpuid_i++];
1919 
1920             c->function = i;
1921             c->flags = 0;
1922             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1923         }
1924     }
1925 
1926     return cpuid_i;
1927 
1928 full:
1929     fprintf(stderr, "cpuid_data is full, no space for "
1930             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1931     abort();
1932 }
1933 
1934 int kvm_arch_init_vcpu(CPUState *cs)
1935 {
1936     struct {
1937         struct kvm_cpuid2 cpuid;
1938         struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1939     } cpuid_data;
1940     /*
1941      * The kernel defines these structs with padding fields so there
1942      * should be no extra padding in our cpuid_data struct.
1943      */
1944     QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1945                       sizeof(struct kvm_cpuid2) +
1946                       sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1947 
1948     X86CPU *cpu = X86_CPU(cs);
1949     CPUX86State *env = &cpu->env;
1950     uint32_t cpuid_i;
1951     struct kvm_cpuid_entry2 *c;
1952     uint32_t signature[3];
1953     int kvm_base = KVM_CPUID_SIGNATURE;
1954     int max_nested_state_len;
1955     int r;
1956     Error *local_err = NULL;
1957 
1958     memset(&cpuid_data, 0, sizeof(cpuid_data));
1959 
1960     cpuid_i = 0;
1961 
1962     has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
1963 
1964     r = kvm_arch_set_tsc_khz(cs);
1965     if (r < 0) {
1966         return r;
1967     }
1968 
1969     /* vcpu's TSC frequency is either specified by user, or following
1970      * the value used by KVM if the former is not present. In the
1971      * latter case, we query it from KVM and record in env->tsc_khz,
1972      * so that vcpu's TSC frequency can be migrated later via this field.
1973      */
1974     if (!env->tsc_khz) {
1975         r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1976             kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1977             -ENOTSUP;
1978         if (r > 0) {
1979             env->tsc_khz = r;
1980         }
1981     }
1982 
1983     env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1984 
1985     /*
1986      * kvm_hyperv_expand_features() is called here for the second time in case
1987      * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
1988      * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
1989      * check which Hyper-V enlightenments are supported and which are not, we
1990      * can still proceed and check/expand Hyper-V enlightenments here so legacy
1991      * behavior is preserved.
1992      */
1993     if (!kvm_hyperv_expand_features(cpu, &local_err)) {
1994         error_report_err(local_err);
1995         return -ENOSYS;
1996     }
1997 
1998     if (hyperv_enabled(cpu)) {
1999         r = hyperv_init_vcpu(cpu);
2000         if (r) {
2001             return r;
2002         }
2003 
2004         cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
2005         kvm_base = KVM_CPUID_SIGNATURE_NEXT;
2006         has_msr_hv_hypercall = true;
2007     }
2008 
2009     if (cs->kvm_state->xen_version) {
2010 #ifdef CONFIG_XEN_EMU
2011         struct kvm_cpuid_entry2 *xen_max_leaf;
2012 
2013         memcpy(signature, "XenVMMXenVMM", 12);
2014 
2015         xen_max_leaf = c = &cpuid_data.entries[cpuid_i++];
2016         c->function = kvm_base + XEN_CPUID_SIGNATURE;
2017         c->eax = kvm_base + XEN_CPUID_TIME;
2018         c->ebx = signature[0];
2019         c->ecx = signature[1];
2020         c->edx = signature[2];
2021 
2022         c = &cpuid_data.entries[cpuid_i++];
2023         c->function = kvm_base + XEN_CPUID_VENDOR;
2024         c->eax = cs->kvm_state->xen_version;
2025         c->ebx = 0;
2026         c->ecx = 0;
2027         c->edx = 0;
2028 
2029         c = &cpuid_data.entries[cpuid_i++];
2030         c->function = kvm_base + XEN_CPUID_HVM_MSR;
2031         /* Number of hypercall-transfer pages */
2032         c->eax = 1;
2033         /* Hypercall MSR base address */
2034         if (hyperv_enabled(cpu)) {
2035             c->ebx = XEN_HYPERCALL_MSR_HYPERV;
2036             kvm_xen_init(cs->kvm_state, c->ebx);
2037         } else {
2038             c->ebx = XEN_HYPERCALL_MSR;
2039         }
2040         c->ecx = 0;
2041         c->edx = 0;
2042 
2043         c = &cpuid_data.entries[cpuid_i++];
2044         c->function = kvm_base + XEN_CPUID_TIME;
2045         c->eax = ((!!tsc_is_stable_and_known(env) << 1) |
2046             (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2));
2047         /* default=0 (emulate if necessary) */
2048         c->ebx = 0;
2049         /* guest tsc frequency */
2050         c->ecx = env->user_tsc_khz;
2051         /* guest tsc incarnation (migration count) */
2052         c->edx = 0;
2053 
2054         c = &cpuid_data.entries[cpuid_i++];
2055         c->function = kvm_base + XEN_CPUID_HVM;
2056         xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM;
2057         if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) {
2058             c->function = kvm_base + XEN_CPUID_HVM;
2059 
2060             if (cpu->xen_vapic) {
2061                 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT;
2062                 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT;
2063             }
2064 
2065             c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS;
2066 
2067             if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) {
2068                 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT;
2069                 c->ebx = cs->cpu_index;
2070             }
2071 
2072             if (cs->kvm_state->xen_version >= XEN_VERSION(4, 17)) {
2073                 c->eax |= XEN_HVM_CPUID_UPCALL_VECTOR;
2074             }
2075         }
2076 
2077         r = kvm_xen_init_vcpu(cs);
2078         if (r) {
2079             return r;
2080         }
2081 
2082         kvm_base += 0x100;
2083 #else /* CONFIG_XEN_EMU */
2084         /* This should never happen as kvm_arch_init() would have died first. */
2085         fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n");
2086         abort();
2087 #endif
2088     } else if (cpu->expose_kvm) {
2089         memcpy(signature, "KVMKVMKVM\0\0\0", 12);
2090         c = &cpuid_data.entries[cpuid_i++];
2091         c->function = KVM_CPUID_SIGNATURE | kvm_base;
2092         c->eax = KVM_CPUID_FEATURES | kvm_base;
2093         c->ebx = signature[0];
2094         c->ecx = signature[1];
2095         c->edx = signature[2];
2096 
2097         c = &cpuid_data.entries[cpuid_i++];
2098         c->function = KVM_CPUID_FEATURES | kvm_base;
2099         c->eax = env->features[FEAT_KVM];
2100         c->edx = env->features[FEAT_KVM_HINTS];
2101     }
2102 
2103     if (cpu->kvm_pv_enforce_cpuid) {
2104         r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
2105         if (r < 0) {
2106             fprintf(stderr,
2107                     "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
2108                     strerror(-r));
2109             abort();
2110         }
2111     }
2112 
2113     cpuid_i = kvm_x86_build_cpuid(env, cpuid_data.entries, cpuid_i);
2114     cpuid_data.cpuid.nent = cpuid_i;
2115 
2116     if (((env->cpuid_version >> 8)&0xF) >= 6
2117         && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2118            (CPUID_MCE | CPUID_MCA)) {
2119         uint64_t mcg_cap, unsupported_caps;
2120         int banks;
2121         int ret;
2122 
2123         ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2124         if (ret < 0) {
2125             fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2126             return ret;
2127         }
2128 
2129         if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2130             error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2131                          (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2132             return -ENOTSUP;
2133         }
2134 
2135         unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2136         if (unsupported_caps) {
2137             if (unsupported_caps & MCG_LMCE_P) {
2138                 error_report("kvm: LMCE not supported");
2139                 return -ENOTSUP;
2140             }
2141             warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2142                         unsupported_caps);
2143         }
2144 
2145         env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2146         ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2147         if (ret < 0) {
2148             fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2149             return ret;
2150         }
2151     }
2152 
2153     cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2154 
2155     c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2156     if (c) {
2157         has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2158                                   !!(c->ecx & CPUID_EXT_SMX);
2159     }
2160 
2161     c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2162     if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2163         has_msr_feature_control = true;
2164     }
2165 
2166     if (env->mcg_cap & MCG_LMCE_P) {
2167         has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2168     }
2169 
2170     if (!env->user_tsc_khz) {
2171         if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2172             invtsc_mig_blocker == NULL) {
2173             error_setg(&invtsc_mig_blocker,
2174                        "State blocked by non-migratable CPU device"
2175                        " (invtsc flag)");
2176             r = migrate_add_blocker(&invtsc_mig_blocker, &local_err);
2177             if (r < 0) {
2178                 error_report_err(local_err);
2179                 return r;
2180             }
2181         }
2182     }
2183 
2184     if (cpu->vmware_cpuid_freq
2185         /* Guests depend on 0x40000000 to detect this feature, so only expose
2186          * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2187         && cpu->expose_kvm
2188         && kvm_base == KVM_CPUID_SIGNATURE
2189         /* TSC clock must be stable and known for this feature. */
2190         && tsc_is_stable_and_known(env)) {
2191 
2192         c = &cpuid_data.entries[cpuid_i++];
2193         c->function = KVM_CPUID_SIGNATURE | 0x10;
2194         c->eax = env->tsc_khz;
2195         c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2196         c->ecx = c->edx = 0;
2197 
2198         c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2199         c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2200     }
2201 
2202     cpuid_data.cpuid.nent = cpuid_i;
2203 
2204     cpuid_data.cpuid.padding = 0;
2205     r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2206     if (r) {
2207         goto fail;
2208     }
2209     kvm_init_xsave(env);
2210 
2211     max_nested_state_len = kvm_max_nested_state_length();
2212     if (max_nested_state_len > 0) {
2213         assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2214 
2215         if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2216             env->nested_state = g_malloc0(max_nested_state_len);
2217             env->nested_state->size = max_nested_state_len;
2218 
2219             kvm_init_nested_state(env);
2220         }
2221     }
2222 
2223     cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2224 
2225     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2226         has_msr_tsc_aux = false;
2227     }
2228 
2229     kvm_init_msrs(cpu);
2230 
2231     return 0;
2232 
2233  fail:
2234     migrate_del_blocker(&invtsc_mig_blocker);
2235 
2236     return r;
2237 }
2238 
2239 int kvm_arch_destroy_vcpu(CPUState *cs)
2240 {
2241     X86CPU *cpu = X86_CPU(cs);
2242     CPUX86State *env = &cpu->env;
2243 
2244     g_free(env->xsave_buf);
2245 
2246     g_free(cpu->kvm_msr_buf);
2247     cpu->kvm_msr_buf = NULL;
2248 
2249     g_free(env->nested_state);
2250     env->nested_state = NULL;
2251 
2252     qemu_del_vm_change_state_handler(cpu->vmsentry);
2253 
2254     return 0;
2255 }
2256 
2257 void kvm_arch_reset_vcpu(X86CPU *cpu)
2258 {
2259     CPUX86State *env = &cpu->env;
2260 
2261     env->xcr0 = 1;
2262     if (kvm_irqchip_in_kernel()) {
2263         env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2264                                           KVM_MP_STATE_UNINITIALIZED;
2265     } else {
2266         env->mp_state = KVM_MP_STATE_RUNNABLE;
2267     }
2268 
2269     /* enabled by default */
2270     env->poll_control_msr = 1;
2271 
2272     kvm_init_nested_state(env);
2273 
2274     sev_es_set_reset_vector(CPU(cpu));
2275 }
2276 
2277 void kvm_arch_after_reset_vcpu(X86CPU *cpu)
2278 {
2279     CPUX86State *env = &cpu->env;
2280     int i;
2281 
2282     /*
2283      * Reset SynIC after all other devices have been reset to let them remove
2284      * their SINT routes first.
2285      */
2286     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2287         for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2288             env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2289         }
2290 
2291         hyperv_x86_synic_reset(cpu);
2292     }
2293 }
2294 
2295 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2296 {
2297     CPUX86State *env = &cpu->env;
2298 
2299     /* APs get directly into wait-for-SIPI state.  */
2300     if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2301         env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2302     }
2303 }
2304 
2305 static int kvm_get_supported_feature_msrs(KVMState *s)
2306 {
2307     int ret = 0;
2308 
2309     if (kvm_feature_msrs != NULL) {
2310         return 0;
2311     }
2312 
2313     if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2314         return 0;
2315     }
2316 
2317     struct kvm_msr_list msr_list;
2318 
2319     msr_list.nmsrs = 0;
2320     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2321     if (ret < 0 && ret != -E2BIG) {
2322         error_report("Fetch KVM feature MSR list failed: %s",
2323             strerror(-ret));
2324         return ret;
2325     }
2326 
2327     assert(msr_list.nmsrs > 0);
2328     kvm_feature_msrs = g_malloc0(sizeof(msr_list) +
2329                  msr_list.nmsrs * sizeof(msr_list.indices[0]));
2330 
2331     kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2332     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2333 
2334     if (ret < 0) {
2335         error_report("Fetch KVM feature MSR list failed: %s",
2336             strerror(-ret));
2337         g_free(kvm_feature_msrs);
2338         kvm_feature_msrs = NULL;
2339         return ret;
2340     }
2341 
2342     return 0;
2343 }
2344 
2345 static int kvm_get_supported_msrs(KVMState *s)
2346 {
2347     int ret = 0;
2348     struct kvm_msr_list msr_list, *kvm_msr_list;
2349 
2350     /*
2351      *  Obtain MSR list from KVM.  These are the MSRs that we must
2352      *  save/restore.
2353      */
2354     msr_list.nmsrs = 0;
2355     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2356     if (ret < 0 && ret != -E2BIG) {
2357         return ret;
2358     }
2359     /*
2360      * Old kernel modules had a bug and could write beyond the provided
2361      * memory. Allocate at least a safe amount of 1K.
2362      */
2363     kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2364                                           msr_list.nmsrs *
2365                                           sizeof(msr_list.indices[0])));
2366 
2367     kvm_msr_list->nmsrs = msr_list.nmsrs;
2368     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2369     if (ret >= 0) {
2370         int i;
2371 
2372         for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2373             switch (kvm_msr_list->indices[i]) {
2374             case MSR_STAR:
2375                 has_msr_star = true;
2376                 break;
2377             case MSR_VM_HSAVE_PA:
2378                 has_msr_hsave_pa = true;
2379                 break;
2380             case MSR_TSC_AUX:
2381                 has_msr_tsc_aux = true;
2382                 break;
2383             case MSR_TSC_ADJUST:
2384                 has_msr_tsc_adjust = true;
2385                 break;
2386             case MSR_IA32_TSCDEADLINE:
2387                 has_msr_tsc_deadline = true;
2388                 break;
2389             case MSR_IA32_SMBASE:
2390                 has_msr_smbase = true;
2391                 break;
2392             case MSR_SMI_COUNT:
2393                 has_msr_smi_count = true;
2394                 break;
2395             case MSR_IA32_MISC_ENABLE:
2396                 has_msr_misc_enable = true;
2397                 break;
2398             case MSR_IA32_BNDCFGS:
2399                 has_msr_bndcfgs = true;
2400                 break;
2401             case MSR_IA32_XSS:
2402                 has_msr_xss = true;
2403                 break;
2404             case MSR_IA32_UMWAIT_CONTROL:
2405                 has_msr_umwait = true;
2406                 break;
2407             case HV_X64_MSR_CRASH_CTL:
2408                 has_msr_hv_crash = true;
2409                 break;
2410             case HV_X64_MSR_RESET:
2411                 has_msr_hv_reset = true;
2412                 break;
2413             case HV_X64_MSR_VP_INDEX:
2414                 has_msr_hv_vpindex = true;
2415                 break;
2416             case HV_X64_MSR_VP_RUNTIME:
2417                 has_msr_hv_runtime = true;
2418                 break;
2419             case HV_X64_MSR_SCONTROL:
2420                 has_msr_hv_synic = true;
2421                 break;
2422             case HV_X64_MSR_STIMER0_CONFIG:
2423                 has_msr_hv_stimer = true;
2424                 break;
2425             case HV_X64_MSR_TSC_FREQUENCY:
2426                 has_msr_hv_frequencies = true;
2427                 break;
2428             case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2429                 has_msr_hv_reenlightenment = true;
2430                 break;
2431             case HV_X64_MSR_SYNDBG_OPTIONS:
2432                 has_msr_hv_syndbg_options = true;
2433                 break;
2434             case MSR_IA32_SPEC_CTRL:
2435                 has_msr_spec_ctrl = true;
2436                 break;
2437             case MSR_AMD64_TSC_RATIO:
2438                 has_tsc_scale_msr = true;
2439                 break;
2440             case MSR_IA32_TSX_CTRL:
2441                 has_msr_tsx_ctrl = true;
2442                 break;
2443             case MSR_VIRT_SSBD:
2444                 has_msr_virt_ssbd = true;
2445                 break;
2446             case MSR_IA32_ARCH_CAPABILITIES:
2447                 has_msr_arch_capabs = true;
2448                 break;
2449             case MSR_IA32_CORE_CAPABILITY:
2450                 has_msr_core_capabs = true;
2451                 break;
2452             case MSR_IA32_PERF_CAPABILITIES:
2453                 has_msr_perf_capabs = true;
2454                 break;
2455             case MSR_IA32_VMX_VMFUNC:
2456                 has_msr_vmx_vmfunc = true;
2457                 break;
2458             case MSR_IA32_UCODE_REV:
2459                 has_msr_ucode_rev = true;
2460                 break;
2461             case MSR_IA32_VMX_PROCBASED_CTLS2:
2462                 has_msr_vmx_procbased_ctls2 = true;
2463                 break;
2464             case MSR_IA32_PKRS:
2465                 has_msr_pkrs = true;
2466                 break;
2467             }
2468         }
2469     }
2470 
2471     g_free(kvm_msr_list);
2472 
2473     return ret;
2474 }
2475 
2476 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, uint32_t msr,
2477                                         uint64_t *val)
2478 {
2479     CPUState *cs = CPU(cpu);
2480 
2481     *val = cs->nr_threads * cs->nr_cores; /* thread count, bits 15..0 */
2482     *val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */
2483 
2484     return true;
2485 }
2486 
2487 static Notifier smram_machine_done;
2488 static KVMMemoryListener smram_listener;
2489 static AddressSpace smram_address_space;
2490 static MemoryRegion smram_as_root;
2491 static MemoryRegion smram_as_mem;
2492 
2493 static void register_smram_listener(Notifier *n, void *unused)
2494 {
2495     MemoryRegion *smram =
2496         (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2497 
2498     /* Outer container... */
2499     memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2500     memory_region_set_enabled(&smram_as_root, true);
2501 
2502     /* ... with two regions inside: normal system memory with low
2503      * priority, and...
2504      */
2505     memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2506                              get_system_memory(), 0, ~0ull);
2507     memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2508     memory_region_set_enabled(&smram_as_mem, true);
2509 
2510     if (smram) {
2511         /* ... SMRAM with higher priority */
2512         memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2513         memory_region_set_enabled(smram, true);
2514     }
2515 
2516     address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2517     kvm_memory_listener_register(kvm_state, &smram_listener,
2518                                  &smram_address_space, 1, "kvm-smram");
2519 }
2520 
2521 int kvm_arch_get_default_type(MachineState *ms)
2522 {
2523     return 0;
2524 }
2525 
2526 int kvm_arch_init(MachineState *ms, KVMState *s)
2527 {
2528     uint64_t identity_base = 0xfffbc000;
2529     uint64_t shadow_mem;
2530     int ret;
2531     struct utsname utsname;
2532     Error *local_err = NULL;
2533 
2534     /*
2535      * Initialize SEV context, if required
2536      *
2537      * If no memory encryption is requested (ms->cgs == NULL) this is
2538      * a no-op.
2539      *
2540      * It's also a no-op if a non-SEV confidential guest support
2541      * mechanism is selected.  SEV is the only mechanism available to
2542      * select on x86 at present, so this doesn't arise, but if new
2543      * mechanisms are supported in future (e.g. TDX), they'll need
2544      * their own initialization either here or elsewhere.
2545      */
2546     if (ms->cgs) {
2547         ret = confidential_guest_kvm_init(ms->cgs, &local_err);
2548         if (ret < 0) {
2549             error_report_err(local_err);
2550             return ret;
2551         }
2552     }
2553 
2554     has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2555     has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
2556 
2557     hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2558 
2559     has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2560     if (has_exception_payload) {
2561         ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2562         if (ret < 0) {
2563             error_report("kvm: Failed to enable exception payload cap: %s",
2564                          strerror(-ret));
2565             return ret;
2566         }
2567     }
2568 
2569     has_triple_fault_event = kvm_check_extension(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT);
2570     if (has_triple_fault_event) {
2571         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true);
2572         if (ret < 0) {
2573             error_report("kvm: Failed to enable triple fault event cap: %s",
2574                          strerror(-ret));
2575             return ret;
2576         }
2577     }
2578 
2579     if (s->xen_version) {
2580 #ifdef CONFIG_XEN_EMU
2581         if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) {
2582             error_report("kvm: Xen support only available in PC machine");
2583             return -ENOTSUP;
2584         }
2585         /* hyperv_enabled() doesn't work yet. */
2586         uint32_t msr = XEN_HYPERCALL_MSR;
2587         ret = kvm_xen_init(s, msr);
2588         if (ret < 0) {
2589             return ret;
2590         }
2591 #else
2592         error_report("kvm: Xen support not enabled in qemu");
2593         return -ENOTSUP;
2594 #endif
2595     }
2596 
2597     ret = kvm_get_supported_msrs(s);
2598     if (ret < 0) {
2599         return ret;
2600     }
2601 
2602     kvm_get_supported_feature_msrs(s);
2603 
2604     uname(&utsname);
2605     lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2606 
2607     /*
2608      * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2609      * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
2610      * Since these must be part of guest physical memory, we need to allocate
2611      * them, both by setting their start addresses in the kernel and by
2612      * creating a corresponding e820 entry. We need 4 pages before the BIOS,
2613      * so this value allows up to 16M BIOSes.
2614      */
2615     identity_base = 0xfeffc000;
2616     ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2617     if (ret < 0) {
2618         return ret;
2619     }
2620 
2621     /* Set TSS base one page after EPT identity map. */
2622     ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2623     if (ret < 0) {
2624         return ret;
2625     }
2626 
2627     /* Tell fw_cfg to notify the BIOS to reserve the range. */
2628     ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2629     if (ret < 0) {
2630         fprintf(stderr, "e820_add_entry() table is full\n");
2631         return ret;
2632     }
2633 
2634     shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2635     if (shadow_mem != -1) {
2636         shadow_mem /= 4096;
2637         ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2638         if (ret < 0) {
2639             return ret;
2640         }
2641     }
2642 
2643     if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2644         object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2645         x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2646         smram_machine_done.notify = register_smram_listener;
2647         qemu_add_machine_init_done_notifier(&smram_machine_done);
2648     }
2649 
2650     if (enable_cpu_pm) {
2651         int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2652 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2653 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2654 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2655 #endif
2656         if (disable_exits) {
2657             disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2658                               KVM_X86_DISABLE_EXITS_HLT |
2659                               KVM_X86_DISABLE_EXITS_PAUSE |
2660                               KVM_X86_DISABLE_EXITS_CSTATE);
2661         }
2662 
2663         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2664                                 disable_exits);
2665         if (ret < 0) {
2666             error_report("kvm: guest stopping CPU not supported: %s",
2667                          strerror(-ret));
2668         }
2669     }
2670 
2671     if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2672         X86MachineState *x86ms = X86_MACHINE(ms);
2673 
2674         if (x86ms->bus_lock_ratelimit > 0) {
2675             ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2676             if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2677                 error_report("kvm: bus lock detection unsupported");
2678                 return -ENOTSUP;
2679             }
2680             ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2681                                     KVM_BUS_LOCK_DETECTION_EXIT);
2682             if (ret < 0) {
2683                 error_report("kvm: Failed to enable bus lock detection cap: %s",
2684                              strerror(-ret));
2685                 return ret;
2686             }
2687             ratelimit_init(&bus_lock_ratelimit_ctrl);
2688             ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2689                                 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2690         }
2691     }
2692 
2693     if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE &&
2694         kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) {
2695             uint64_t notify_window_flags =
2696                 ((uint64_t)s->notify_window << 32) |
2697                 KVM_X86_NOTIFY_VMEXIT_ENABLED |
2698                 KVM_X86_NOTIFY_VMEXIT_USER;
2699             ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0,
2700                                     notify_window_flags);
2701             if (ret < 0) {
2702                 error_report("kvm: Failed to enable notify vmexit cap: %s",
2703                              strerror(-ret));
2704                 return ret;
2705             }
2706     }
2707     if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) {
2708         bool r;
2709 
2710         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0,
2711                                 KVM_MSR_EXIT_REASON_FILTER);
2712         if (ret) {
2713             error_report("Could not enable user space MSRs: %s",
2714                          strerror(-ret));
2715             exit(1);
2716         }
2717 
2718         r = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT,
2719                            kvm_rdmsr_core_thread_count, NULL);
2720         if (!r) {
2721             error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s",
2722                          strerror(-ret));
2723             exit(1);
2724         }
2725     }
2726 
2727     return 0;
2728 }
2729 
2730 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2731 {
2732     lhs->selector = rhs->selector;
2733     lhs->base = rhs->base;
2734     lhs->limit = rhs->limit;
2735     lhs->type = 3;
2736     lhs->present = 1;
2737     lhs->dpl = 3;
2738     lhs->db = 0;
2739     lhs->s = 1;
2740     lhs->l = 0;
2741     lhs->g = 0;
2742     lhs->avl = 0;
2743     lhs->unusable = 0;
2744 }
2745 
2746 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2747 {
2748     unsigned flags = rhs->flags;
2749     lhs->selector = rhs->selector;
2750     lhs->base = rhs->base;
2751     lhs->limit = rhs->limit;
2752     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2753     lhs->present = (flags & DESC_P_MASK) != 0;
2754     lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2755     lhs->db = (flags >> DESC_B_SHIFT) & 1;
2756     lhs->s = (flags & DESC_S_MASK) != 0;
2757     lhs->l = (flags >> DESC_L_SHIFT) & 1;
2758     lhs->g = (flags & DESC_G_MASK) != 0;
2759     lhs->avl = (flags & DESC_AVL_MASK) != 0;
2760     lhs->unusable = !lhs->present;
2761     lhs->padding = 0;
2762 }
2763 
2764 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2765 {
2766     lhs->selector = rhs->selector;
2767     lhs->base = rhs->base;
2768     lhs->limit = rhs->limit;
2769     lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2770                  ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2771                  (rhs->dpl << DESC_DPL_SHIFT) |
2772                  (rhs->db << DESC_B_SHIFT) |
2773                  (rhs->s * DESC_S_MASK) |
2774                  (rhs->l << DESC_L_SHIFT) |
2775                  (rhs->g * DESC_G_MASK) |
2776                  (rhs->avl * DESC_AVL_MASK);
2777 }
2778 
2779 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2780 {
2781     if (set) {
2782         *kvm_reg = *qemu_reg;
2783     } else {
2784         *qemu_reg = *kvm_reg;
2785     }
2786 }
2787 
2788 static int kvm_getput_regs(X86CPU *cpu, int set)
2789 {
2790     CPUX86State *env = &cpu->env;
2791     struct kvm_regs regs;
2792     int ret = 0;
2793 
2794     if (!set) {
2795         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2796         if (ret < 0) {
2797             return ret;
2798         }
2799     }
2800 
2801     kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2802     kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2803     kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2804     kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2805     kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2806     kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2807     kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2808     kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2809 #ifdef TARGET_X86_64
2810     kvm_getput_reg(&regs.r8, &env->regs[8], set);
2811     kvm_getput_reg(&regs.r9, &env->regs[9], set);
2812     kvm_getput_reg(&regs.r10, &env->regs[10], set);
2813     kvm_getput_reg(&regs.r11, &env->regs[11], set);
2814     kvm_getput_reg(&regs.r12, &env->regs[12], set);
2815     kvm_getput_reg(&regs.r13, &env->regs[13], set);
2816     kvm_getput_reg(&regs.r14, &env->regs[14], set);
2817     kvm_getput_reg(&regs.r15, &env->regs[15], set);
2818 #endif
2819 
2820     kvm_getput_reg(&regs.rflags, &env->eflags, set);
2821     kvm_getput_reg(&regs.rip, &env->eip, set);
2822 
2823     if (set) {
2824         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2825     }
2826 
2827     return ret;
2828 }
2829 
2830 static int kvm_put_xsave(X86CPU *cpu)
2831 {
2832     CPUX86State *env = &cpu->env;
2833     void *xsave = env->xsave_buf;
2834 
2835     x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
2836 
2837     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2838 }
2839 
2840 static int kvm_put_xcrs(X86CPU *cpu)
2841 {
2842     CPUX86State *env = &cpu->env;
2843     struct kvm_xcrs xcrs = {};
2844 
2845     if (!has_xcrs) {
2846         return 0;
2847     }
2848 
2849     xcrs.nr_xcrs = 1;
2850     xcrs.flags = 0;
2851     xcrs.xcrs[0].xcr = 0;
2852     xcrs.xcrs[0].value = env->xcr0;
2853     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2854 }
2855 
2856 static int kvm_put_sregs(X86CPU *cpu)
2857 {
2858     CPUX86State *env = &cpu->env;
2859     struct kvm_sregs sregs;
2860 
2861     /*
2862      * The interrupt_bitmap is ignored because KVM_SET_SREGS is
2863      * always followed by KVM_SET_VCPU_EVENTS.
2864      */
2865     memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2866 
2867     if ((env->eflags & VM_MASK)) {
2868         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2869         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2870         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2871         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2872         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2873         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2874     } else {
2875         set_seg(&sregs.cs, &env->segs[R_CS]);
2876         set_seg(&sregs.ds, &env->segs[R_DS]);
2877         set_seg(&sregs.es, &env->segs[R_ES]);
2878         set_seg(&sregs.fs, &env->segs[R_FS]);
2879         set_seg(&sregs.gs, &env->segs[R_GS]);
2880         set_seg(&sregs.ss, &env->segs[R_SS]);
2881     }
2882 
2883     set_seg(&sregs.tr, &env->tr);
2884     set_seg(&sregs.ldt, &env->ldt);
2885 
2886     sregs.idt.limit = env->idt.limit;
2887     sregs.idt.base = env->idt.base;
2888     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2889     sregs.gdt.limit = env->gdt.limit;
2890     sregs.gdt.base = env->gdt.base;
2891     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2892 
2893     sregs.cr0 = env->cr[0];
2894     sregs.cr2 = env->cr[2];
2895     sregs.cr3 = env->cr[3];
2896     sregs.cr4 = env->cr[4];
2897 
2898     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2899     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2900 
2901     sregs.efer = env->efer;
2902 
2903     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2904 }
2905 
2906 static int kvm_put_sregs2(X86CPU *cpu)
2907 {
2908     CPUX86State *env = &cpu->env;
2909     struct kvm_sregs2 sregs;
2910     int i;
2911 
2912     sregs.flags = 0;
2913 
2914     if ((env->eflags & VM_MASK)) {
2915         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2916         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2917         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2918         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2919         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2920         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2921     } else {
2922         set_seg(&sregs.cs, &env->segs[R_CS]);
2923         set_seg(&sregs.ds, &env->segs[R_DS]);
2924         set_seg(&sregs.es, &env->segs[R_ES]);
2925         set_seg(&sregs.fs, &env->segs[R_FS]);
2926         set_seg(&sregs.gs, &env->segs[R_GS]);
2927         set_seg(&sregs.ss, &env->segs[R_SS]);
2928     }
2929 
2930     set_seg(&sregs.tr, &env->tr);
2931     set_seg(&sregs.ldt, &env->ldt);
2932 
2933     sregs.idt.limit = env->idt.limit;
2934     sregs.idt.base = env->idt.base;
2935     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2936     sregs.gdt.limit = env->gdt.limit;
2937     sregs.gdt.base = env->gdt.base;
2938     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2939 
2940     sregs.cr0 = env->cr[0];
2941     sregs.cr2 = env->cr[2];
2942     sregs.cr3 = env->cr[3];
2943     sregs.cr4 = env->cr[4];
2944 
2945     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2946     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2947 
2948     sregs.efer = env->efer;
2949 
2950     if (env->pdptrs_valid) {
2951         for (i = 0; i < 4; i++) {
2952             sregs.pdptrs[i] = env->pdptrs[i];
2953         }
2954         sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
2955     }
2956 
2957     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
2958 }
2959 
2960 
2961 static void kvm_msr_buf_reset(X86CPU *cpu)
2962 {
2963     memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2964 }
2965 
2966 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2967 {
2968     struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2969     void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2970     struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2971 
2972     assert((void *)(entry + 1) <= limit);
2973 
2974     entry->index = index;
2975     entry->reserved = 0;
2976     entry->data = value;
2977     msrs->nmsrs++;
2978 }
2979 
2980 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2981 {
2982     kvm_msr_buf_reset(cpu);
2983     kvm_msr_entry_add(cpu, index, value);
2984 
2985     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2986 }
2987 
2988 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
2989 {
2990     int ret;
2991     struct {
2992         struct kvm_msrs info;
2993         struct kvm_msr_entry entries[1];
2994     } msr_data = {
2995         .info.nmsrs = 1,
2996         .entries[0].index = index,
2997     };
2998 
2999     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
3000     if (ret < 0) {
3001         return ret;
3002     }
3003     assert(ret == 1);
3004     *value = msr_data.entries[0].data;
3005     return ret;
3006 }
3007 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
3008 {
3009     int ret;
3010 
3011     ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
3012     assert(ret == 1);
3013 }
3014 
3015 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
3016 {
3017     CPUX86State *env = &cpu->env;
3018     int ret;
3019 
3020     if (!has_msr_tsc_deadline) {
3021         return 0;
3022     }
3023 
3024     ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
3025     if (ret < 0) {
3026         return ret;
3027     }
3028 
3029     assert(ret == 1);
3030     return 0;
3031 }
3032 
3033 /*
3034  * Provide a separate write service for the feature control MSR in order to
3035  * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
3036  * before writing any other state because forcibly leaving nested mode
3037  * invalidates the VCPU state.
3038  */
3039 static int kvm_put_msr_feature_control(X86CPU *cpu)
3040 {
3041     int ret;
3042 
3043     if (!has_msr_feature_control) {
3044         return 0;
3045     }
3046 
3047     ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
3048                           cpu->env.msr_ia32_feature_control);
3049     if (ret < 0) {
3050         return ret;
3051     }
3052 
3053     assert(ret == 1);
3054     return 0;
3055 }
3056 
3057 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
3058 {
3059     uint32_t default1, can_be_one, can_be_zero;
3060     uint32_t must_be_one;
3061 
3062     switch (index) {
3063     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3064         default1 = 0x00000016;
3065         break;
3066     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3067         default1 = 0x0401e172;
3068         break;
3069     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3070         default1 = 0x000011ff;
3071         break;
3072     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3073         default1 = 0x00036dff;
3074         break;
3075     case MSR_IA32_VMX_PROCBASED_CTLS2:
3076         default1 = 0;
3077         break;
3078     default:
3079         abort();
3080     }
3081 
3082     /* If a feature bit is set, the control can be either set or clear.
3083      * Otherwise the value is limited to either 0 or 1 by default1.
3084      */
3085     can_be_one = features | default1;
3086     can_be_zero = features | ~default1;
3087     must_be_one = ~can_be_zero;
3088 
3089     /*
3090      * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
3091      * Bit 32:63 -> 1 if the control bit can be one.
3092      */
3093     return must_be_one | (((uint64_t)can_be_one) << 32);
3094 }
3095 
3096 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
3097 {
3098     uint64_t kvm_vmx_basic =
3099         kvm_arch_get_supported_msr_feature(kvm_state,
3100                                            MSR_IA32_VMX_BASIC);
3101 
3102     if (!kvm_vmx_basic) {
3103         /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
3104          * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
3105          */
3106         return;
3107     }
3108 
3109     uint64_t kvm_vmx_misc =
3110         kvm_arch_get_supported_msr_feature(kvm_state,
3111                                            MSR_IA32_VMX_MISC);
3112     uint64_t kvm_vmx_ept_vpid =
3113         kvm_arch_get_supported_msr_feature(kvm_state,
3114                                            MSR_IA32_VMX_EPT_VPID_CAP);
3115 
3116     /*
3117      * If the guest is 64-bit, a value of 1 is allowed for the host address
3118      * space size vmexit control.
3119      */
3120     uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
3121         ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3122 
3123     /*
3124      * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
3125      * not change them for backwards compatibility.
3126      */
3127     uint64_t fixed_vmx_basic = kvm_vmx_basic &
3128         (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3129          MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3130          MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3131 
3132     /*
3133      * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
3134      * change in the future but are always zero for now, clear them to be
3135      * future proof.  Bits 32-63 in theory could change, though KVM does
3136      * not support dual-monitor treatment and probably never will; mask
3137      * them out as well.
3138      */
3139     uint64_t fixed_vmx_misc = kvm_vmx_misc &
3140         (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3141          MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3142 
3143     /*
3144      * EPT memory types should not change either, so we do not bother
3145      * adding features for them.
3146      */
3147     uint64_t fixed_vmx_ept_mask =
3148             (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3149              MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3150     uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3151 
3152     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3153                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3154                                          f[FEAT_VMX_PROCBASED_CTLS]));
3155     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3156                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3157                                          f[FEAT_VMX_PINBASED_CTLS]));
3158     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3159                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3160                                          f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3161     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3162                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3163                                          f[FEAT_VMX_ENTRY_CTLS]));
3164     kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3165                       make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3166                                          f[FEAT_VMX_SECONDARY_CTLS]));
3167     kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3168                       f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3169     kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3170                       f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3171     kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3172                       f[FEAT_VMX_MISC] | fixed_vmx_misc);
3173     if (has_msr_vmx_vmfunc) {
3174         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3175     }
3176 
3177     /*
3178      * Just to be safe, write these with constant values.  The CRn_FIXED1
3179      * MSRs are generated by KVM based on the vCPU's CPUID.
3180      */
3181     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3182                       CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3183     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3184                       CR4_VMXE_MASK);
3185 
3186     if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3187         /* TSC multiplier (0x2032).  */
3188         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3189     } else {
3190         /* Preemption timer (0x482E).  */
3191         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3192     }
3193 }
3194 
3195 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3196 {
3197     uint64_t kvm_perf_cap =
3198         kvm_arch_get_supported_msr_feature(kvm_state,
3199                                            MSR_IA32_PERF_CAPABILITIES);
3200 
3201     if (kvm_perf_cap) {
3202         kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3203                         kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3204     }
3205 }
3206 
3207 static int kvm_buf_set_msrs(X86CPU *cpu)
3208 {
3209     int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3210     if (ret < 0) {
3211         return ret;
3212     }
3213 
3214     if (ret < cpu->kvm_msr_buf->nmsrs) {
3215         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3216         error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3217                      (uint32_t)e->index, (uint64_t)e->data);
3218     }
3219 
3220     assert(ret == cpu->kvm_msr_buf->nmsrs);
3221     return 0;
3222 }
3223 
3224 static void kvm_init_msrs(X86CPU *cpu)
3225 {
3226     CPUX86State *env = &cpu->env;
3227 
3228     kvm_msr_buf_reset(cpu);
3229     if (has_msr_arch_capabs) {
3230         kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3231                           env->features[FEAT_ARCH_CAPABILITIES]);
3232     }
3233 
3234     if (has_msr_core_capabs) {
3235         kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3236                           env->features[FEAT_CORE_CAPABILITY]);
3237     }
3238 
3239     if (has_msr_perf_capabs && cpu->enable_pmu) {
3240         kvm_msr_entry_add_perf(cpu, env->features);
3241     }
3242 
3243     if (has_msr_ucode_rev) {
3244         kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3245     }
3246 
3247     /*
3248      * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3249      * all kernels with MSR features should have them.
3250      */
3251     if (kvm_feature_msrs && cpu_has_vmx(env)) {
3252         kvm_msr_entry_add_vmx(cpu, env->features);
3253     }
3254 
3255     assert(kvm_buf_set_msrs(cpu) == 0);
3256 }
3257 
3258 static int kvm_put_msrs(X86CPU *cpu, int level)
3259 {
3260     CPUX86State *env = &cpu->env;
3261     int i;
3262 
3263     kvm_msr_buf_reset(cpu);
3264 
3265     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3266     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3267     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3268     kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3269     if (has_msr_star) {
3270         kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3271     }
3272     if (has_msr_hsave_pa) {
3273         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3274     }
3275     if (has_msr_tsc_aux) {
3276         kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3277     }
3278     if (has_msr_tsc_adjust) {
3279         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3280     }
3281     if (has_msr_misc_enable) {
3282         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3283                           env->msr_ia32_misc_enable);
3284     }
3285     if (has_msr_smbase) {
3286         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3287     }
3288     if (has_msr_smi_count) {
3289         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3290     }
3291     if (has_msr_pkrs) {
3292         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3293     }
3294     if (has_msr_bndcfgs) {
3295         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3296     }
3297     if (has_msr_xss) {
3298         kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3299     }
3300     if (has_msr_umwait) {
3301         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3302     }
3303     if (has_msr_spec_ctrl) {
3304         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3305     }
3306     if (has_tsc_scale_msr) {
3307         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3308     }
3309 
3310     if (has_msr_tsx_ctrl) {
3311         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3312     }
3313     if (has_msr_virt_ssbd) {
3314         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3315     }
3316 
3317 #ifdef TARGET_X86_64
3318     if (lm_capable_kernel) {
3319         kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3320         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3321         kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3322         kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3323     }
3324 #endif
3325 
3326     /*
3327      * The following MSRs have side effects on the guest or are too heavy
3328      * for normal writeback. Limit them to reset or full state updates.
3329      */
3330     if (level >= KVM_PUT_RESET_STATE) {
3331         kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3332         kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3333         kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3334         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3335             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3336         }
3337         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3338             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3339         }
3340         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3341             kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3342         }
3343         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3344             kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3345         }
3346 
3347         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3348             kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3349         }
3350 
3351         if (has_architectural_pmu_version > 0) {
3352             if (has_architectural_pmu_version > 1) {
3353                 /* Stop the counter.  */
3354                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3355                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3356             }
3357 
3358             /* Set the counter values.  */
3359             for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3360                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
3361                                   env->msr_fixed_counters[i]);
3362             }
3363             for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3364                 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
3365                                   env->msr_gp_counters[i]);
3366                 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
3367                                   env->msr_gp_evtsel[i]);
3368             }
3369             if (has_architectural_pmu_version > 1) {
3370                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3371                                   env->msr_global_status);
3372                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3373                                   env->msr_global_ovf_ctrl);
3374 
3375                 /* Now start the PMU.  */
3376                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3377                                   env->msr_fixed_ctr_ctrl);
3378                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3379                                   env->msr_global_ctrl);
3380             }
3381         }
3382         /*
3383          * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3384          * only sync them to KVM on the first cpu
3385          */
3386         if (current_cpu == first_cpu) {
3387             if (has_msr_hv_hypercall) {
3388                 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3389                                   env->msr_hv_guest_os_id);
3390                 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3391                                   env->msr_hv_hypercall);
3392             }
3393             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3394                 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3395                                   env->msr_hv_tsc);
3396             }
3397             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3398                 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3399                                   env->msr_hv_reenlightenment_control);
3400                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3401                                   env->msr_hv_tsc_emulation_control);
3402                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3403                                   env->msr_hv_tsc_emulation_status);
3404             }
3405 #ifdef CONFIG_SYNDBG
3406             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
3407                 has_msr_hv_syndbg_options) {
3408                 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
3409                                   hyperv_syndbg_query_options());
3410             }
3411 #endif
3412         }
3413         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3414             kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
3415                               env->msr_hv_vapic);
3416         }
3417         if (has_msr_hv_crash) {
3418             int j;
3419 
3420             for (j = 0; j < HV_CRASH_PARAMS; j++)
3421                 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
3422                                   env->msr_hv_crash_params[j]);
3423 
3424             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
3425         }
3426         if (has_msr_hv_runtime) {
3427             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
3428         }
3429         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3430             && hv_vpindex_settable) {
3431             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3432                               hyperv_vp_index(CPU(cpu)));
3433         }
3434         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3435             int j;
3436 
3437             kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3438 
3439             kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
3440                               env->msr_hv_synic_control);
3441             kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
3442                               env->msr_hv_synic_evt_page);
3443             kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
3444                               env->msr_hv_synic_msg_page);
3445 
3446             for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
3447                 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
3448                                   env->msr_hv_synic_sint[j]);
3449             }
3450         }
3451         if (has_msr_hv_stimer) {
3452             int j;
3453 
3454             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
3455                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
3456                                 env->msr_hv_stimer_config[j]);
3457             }
3458 
3459             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
3460                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
3461                                 env->msr_hv_stimer_count[j]);
3462             }
3463         }
3464         if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3465             uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3466 
3467             kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3468             kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3469             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3470             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3471             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3472             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3473             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3474             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3475             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3476             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3477             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3478             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
3479             for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3480                 /* The CPU GPs if we write to a bit above the physical limit of
3481                  * the host CPU (and KVM emulates that)
3482                  */
3483                 uint64_t mask = env->mtrr_var[i].mask;
3484                 mask &= phys_mask;
3485 
3486                 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3487                                   env->mtrr_var[i].base);
3488                 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3489             }
3490         }
3491         if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3492             int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3493                                                     0x14, 1, R_EAX) & 0x7;
3494 
3495             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3496                             env->msr_rtit_ctrl);
3497             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3498                             env->msr_rtit_status);
3499             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3500                             env->msr_rtit_output_base);
3501             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3502                             env->msr_rtit_output_mask);
3503             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3504                             env->msr_rtit_cr3_match);
3505             for (i = 0; i < addr_num; i++) {
3506                 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3507                             env->msr_rtit_addrs[i]);
3508             }
3509         }
3510 
3511         if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3512             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3513                               env->msr_ia32_sgxlepubkeyhash[0]);
3514             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3515                               env->msr_ia32_sgxlepubkeyhash[1]);
3516             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3517                               env->msr_ia32_sgxlepubkeyhash[2]);
3518             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3519                               env->msr_ia32_sgxlepubkeyhash[3]);
3520         }
3521 
3522         if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3523             kvm_msr_entry_add(cpu, MSR_IA32_XFD,
3524                               env->msr_xfd);
3525             kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
3526                               env->msr_xfd_err);
3527         }
3528 
3529         if (kvm_enabled() && cpu->enable_pmu &&
3530             (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3531             uint64_t depth;
3532             int ret;
3533 
3534             /*
3535              * Only migrate Arch LBR states when the host Arch LBR depth
3536              * equals that of source guest's, this is to avoid mismatch
3537              * of guest/host config for the msr hence avoid unexpected
3538              * misbehavior.
3539              */
3540             ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3541 
3542             if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
3543                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
3544                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
3545 
3546                 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3547                     if (!env->lbr_records[i].from) {
3548                         continue;
3549                     }
3550                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
3551                                       env->lbr_records[i].from);
3552                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
3553                                       env->lbr_records[i].to);
3554                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
3555                                       env->lbr_records[i].info);
3556                 }
3557             }
3558         }
3559 
3560         /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3561          *       kvm_put_msr_feature_control. */
3562     }
3563 
3564     if (env->mcg_cap) {
3565         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3566         kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3567         if (has_msr_mcg_ext_ctl) {
3568             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3569         }
3570         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3571             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3572         }
3573     }
3574 
3575     return kvm_buf_set_msrs(cpu);
3576 }
3577 
3578 
3579 static int kvm_get_xsave(X86CPU *cpu)
3580 {
3581     CPUX86State *env = &cpu->env;
3582     void *xsave = env->xsave_buf;
3583     int type, ret;
3584 
3585     type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
3586     ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
3587     if (ret < 0) {
3588         return ret;
3589     }
3590     x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
3591 
3592     return 0;
3593 }
3594 
3595 static int kvm_get_xcrs(X86CPU *cpu)
3596 {
3597     CPUX86State *env = &cpu->env;
3598     int i, ret;
3599     struct kvm_xcrs xcrs;
3600 
3601     if (!has_xcrs) {
3602         return 0;
3603     }
3604 
3605     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3606     if (ret < 0) {
3607         return ret;
3608     }
3609 
3610     for (i = 0; i < xcrs.nr_xcrs; i++) {
3611         /* Only support xcr0 now */
3612         if (xcrs.xcrs[i].xcr == 0) {
3613             env->xcr0 = xcrs.xcrs[i].value;
3614             break;
3615         }
3616     }
3617     return 0;
3618 }
3619 
3620 static int kvm_get_sregs(X86CPU *cpu)
3621 {
3622     CPUX86State *env = &cpu->env;
3623     struct kvm_sregs sregs;
3624     int ret;
3625 
3626     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3627     if (ret < 0) {
3628         return ret;
3629     }
3630 
3631     /*
3632      * The interrupt_bitmap is ignored because KVM_GET_SREGS is
3633      * always preceded by KVM_GET_VCPU_EVENTS.
3634      */
3635 
3636     get_seg(&env->segs[R_CS], &sregs.cs);
3637     get_seg(&env->segs[R_DS], &sregs.ds);
3638     get_seg(&env->segs[R_ES], &sregs.es);
3639     get_seg(&env->segs[R_FS], &sregs.fs);
3640     get_seg(&env->segs[R_GS], &sregs.gs);
3641     get_seg(&env->segs[R_SS], &sregs.ss);
3642 
3643     get_seg(&env->tr, &sregs.tr);
3644     get_seg(&env->ldt, &sregs.ldt);
3645 
3646     env->idt.limit = sregs.idt.limit;
3647     env->idt.base = sregs.idt.base;
3648     env->gdt.limit = sregs.gdt.limit;
3649     env->gdt.base = sregs.gdt.base;
3650 
3651     env->cr[0] = sregs.cr0;
3652     env->cr[2] = sregs.cr2;
3653     env->cr[3] = sregs.cr3;
3654     env->cr[4] = sregs.cr4;
3655 
3656     env->efer = sregs.efer;
3657     if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
3658         env->cr[0] & CR0_PG_MASK) {
3659         env->efer |= MSR_EFER_LMA;
3660     }
3661 
3662     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3663     x86_update_hflags(env);
3664 
3665     return 0;
3666 }
3667 
3668 static int kvm_get_sregs2(X86CPU *cpu)
3669 {
3670     CPUX86State *env = &cpu->env;
3671     struct kvm_sregs2 sregs;
3672     int i, ret;
3673 
3674     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
3675     if (ret < 0) {
3676         return ret;
3677     }
3678 
3679     get_seg(&env->segs[R_CS], &sregs.cs);
3680     get_seg(&env->segs[R_DS], &sregs.ds);
3681     get_seg(&env->segs[R_ES], &sregs.es);
3682     get_seg(&env->segs[R_FS], &sregs.fs);
3683     get_seg(&env->segs[R_GS], &sregs.gs);
3684     get_seg(&env->segs[R_SS], &sregs.ss);
3685 
3686     get_seg(&env->tr, &sregs.tr);
3687     get_seg(&env->ldt, &sregs.ldt);
3688 
3689     env->idt.limit = sregs.idt.limit;
3690     env->idt.base = sregs.idt.base;
3691     env->gdt.limit = sregs.gdt.limit;
3692     env->gdt.base = sregs.gdt.base;
3693 
3694     env->cr[0] = sregs.cr0;
3695     env->cr[2] = sregs.cr2;
3696     env->cr[3] = sregs.cr3;
3697     env->cr[4] = sregs.cr4;
3698 
3699     env->efer = sregs.efer;
3700     if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
3701         env->cr[0] & CR0_PG_MASK) {
3702         env->efer |= MSR_EFER_LMA;
3703     }
3704 
3705     env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
3706 
3707     if (env->pdptrs_valid) {
3708         for (i = 0; i < 4; i++) {
3709             env->pdptrs[i] = sregs.pdptrs[i];
3710         }
3711     }
3712 
3713     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3714     x86_update_hflags(env);
3715 
3716     return 0;
3717 }
3718 
3719 static int kvm_get_msrs(X86CPU *cpu)
3720 {
3721     CPUX86State *env = &cpu->env;
3722     struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3723     int ret, i;
3724     uint64_t mtrr_top_bits;
3725 
3726     kvm_msr_buf_reset(cpu);
3727 
3728     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3729     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3730     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3731     kvm_msr_entry_add(cpu, MSR_PAT, 0);
3732     if (has_msr_star) {
3733         kvm_msr_entry_add(cpu, MSR_STAR, 0);
3734     }
3735     if (has_msr_hsave_pa) {
3736         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3737     }
3738     if (has_msr_tsc_aux) {
3739         kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3740     }
3741     if (has_msr_tsc_adjust) {
3742         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3743     }
3744     if (has_msr_tsc_deadline) {
3745         kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3746     }
3747     if (has_msr_misc_enable) {
3748         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3749     }
3750     if (has_msr_smbase) {
3751         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3752     }
3753     if (has_msr_smi_count) {
3754         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3755     }
3756     if (has_msr_feature_control) {
3757         kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3758     }
3759     if (has_msr_pkrs) {
3760         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3761     }
3762     if (has_msr_bndcfgs) {
3763         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3764     }
3765     if (has_msr_xss) {
3766         kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3767     }
3768     if (has_msr_umwait) {
3769         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3770     }
3771     if (has_msr_spec_ctrl) {
3772         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3773     }
3774     if (has_tsc_scale_msr) {
3775         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3776     }
3777 
3778     if (has_msr_tsx_ctrl) {
3779         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3780     }
3781     if (has_msr_virt_ssbd) {
3782         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3783     }
3784     if (!env->tsc_valid) {
3785         kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3786         env->tsc_valid = !runstate_is_running();
3787     }
3788 
3789 #ifdef TARGET_X86_64
3790     if (lm_capable_kernel) {
3791         kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3792         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3793         kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3794         kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3795     }
3796 #endif
3797     kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3798     kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3799     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3800         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3801     }
3802     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3803         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3804     }
3805     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3806         kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3807     }
3808     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3809         kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3810     }
3811     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3812         kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3813     }
3814     if (has_architectural_pmu_version > 0) {
3815         if (has_architectural_pmu_version > 1) {
3816             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3817             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3818             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3819             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3820         }
3821         for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3822             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3823         }
3824         for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3825             kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3826             kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3827         }
3828     }
3829 
3830     if (env->mcg_cap) {
3831         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3832         kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3833         if (has_msr_mcg_ext_ctl) {
3834             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3835         }
3836         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3837             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3838         }
3839     }
3840 
3841     if (has_msr_hv_hypercall) {
3842         kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3843         kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3844     }
3845     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3846         kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3847     }
3848     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3849         kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3850     }
3851     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3852         kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3853         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3854         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3855     }
3856     if (has_msr_hv_syndbg_options) {
3857         kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
3858     }
3859     if (has_msr_hv_crash) {
3860         int j;
3861 
3862         for (j = 0; j < HV_CRASH_PARAMS; j++) {
3863             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3864         }
3865     }
3866     if (has_msr_hv_runtime) {
3867         kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3868     }
3869     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3870         uint32_t msr;
3871 
3872         kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3873         kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3874         kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3875         for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3876             kvm_msr_entry_add(cpu, msr, 0);
3877         }
3878     }
3879     if (has_msr_hv_stimer) {
3880         uint32_t msr;
3881 
3882         for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3883              msr++) {
3884             kvm_msr_entry_add(cpu, msr, 0);
3885         }
3886     }
3887     if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3888         kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3889         kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3890         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3891         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3892         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3893         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3894         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3895         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3896         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3897         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3898         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3899         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3900         for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3901             kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3902             kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3903         }
3904     }
3905 
3906     if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3907         int addr_num =
3908             kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3909 
3910         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3911         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3912         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3913         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3914         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3915         for (i = 0; i < addr_num; i++) {
3916             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3917         }
3918     }
3919 
3920     if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3921         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
3922         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
3923         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
3924         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
3925     }
3926 
3927     if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3928         kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
3929         kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
3930     }
3931 
3932     if (kvm_enabled() && cpu->enable_pmu &&
3933         (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3934         uint64_t depth;
3935 
3936         ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3937         if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
3938             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
3939             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
3940 
3941             for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3942                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
3943                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
3944                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
3945             }
3946         }
3947     }
3948 
3949     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3950     if (ret < 0) {
3951         return ret;
3952     }
3953 
3954     if (ret < cpu->kvm_msr_buf->nmsrs) {
3955         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3956         error_report("error: failed to get MSR 0x%" PRIx32,
3957                      (uint32_t)e->index);
3958     }
3959 
3960     assert(ret == cpu->kvm_msr_buf->nmsrs);
3961     /*
3962      * MTRR masks: Each mask consists of 5 parts
3963      * a  10..0: must be zero
3964      * b  11   : valid bit
3965      * c n-1.12: actual mask bits
3966      * d  51..n: reserved must be zero
3967      * e  63.52: reserved must be zero
3968      *
3969      * 'n' is the number of physical bits supported by the CPU and is
3970      * apparently always <= 52.   We know our 'n' but don't know what
3971      * the destinations 'n' is; it might be smaller, in which case
3972      * it masks (c) on loading. It might be larger, in which case
3973      * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3974      * we're migrating to.
3975      */
3976 
3977     if (cpu->fill_mtrr_mask) {
3978         QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3979         assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3980         mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3981     } else {
3982         mtrr_top_bits = 0;
3983     }
3984 
3985     for (i = 0; i < ret; i++) {
3986         uint32_t index = msrs[i].index;
3987         switch (index) {
3988         case MSR_IA32_SYSENTER_CS:
3989             env->sysenter_cs = msrs[i].data;
3990             break;
3991         case MSR_IA32_SYSENTER_ESP:
3992             env->sysenter_esp = msrs[i].data;
3993             break;
3994         case MSR_IA32_SYSENTER_EIP:
3995             env->sysenter_eip = msrs[i].data;
3996             break;
3997         case MSR_PAT:
3998             env->pat = msrs[i].data;
3999             break;
4000         case MSR_STAR:
4001             env->star = msrs[i].data;
4002             break;
4003 #ifdef TARGET_X86_64
4004         case MSR_CSTAR:
4005             env->cstar = msrs[i].data;
4006             break;
4007         case MSR_KERNELGSBASE:
4008             env->kernelgsbase = msrs[i].data;
4009             break;
4010         case MSR_FMASK:
4011             env->fmask = msrs[i].data;
4012             break;
4013         case MSR_LSTAR:
4014             env->lstar = msrs[i].data;
4015             break;
4016 #endif
4017         case MSR_IA32_TSC:
4018             env->tsc = msrs[i].data;
4019             break;
4020         case MSR_TSC_AUX:
4021             env->tsc_aux = msrs[i].data;
4022             break;
4023         case MSR_TSC_ADJUST:
4024             env->tsc_adjust = msrs[i].data;
4025             break;
4026         case MSR_IA32_TSCDEADLINE:
4027             env->tsc_deadline = msrs[i].data;
4028             break;
4029         case MSR_VM_HSAVE_PA:
4030             env->vm_hsave = msrs[i].data;
4031             break;
4032         case MSR_KVM_SYSTEM_TIME:
4033             env->system_time_msr = msrs[i].data;
4034             break;
4035         case MSR_KVM_WALL_CLOCK:
4036             env->wall_clock_msr = msrs[i].data;
4037             break;
4038         case MSR_MCG_STATUS:
4039             env->mcg_status = msrs[i].data;
4040             break;
4041         case MSR_MCG_CTL:
4042             env->mcg_ctl = msrs[i].data;
4043             break;
4044         case MSR_MCG_EXT_CTL:
4045             env->mcg_ext_ctl = msrs[i].data;
4046             break;
4047         case MSR_IA32_MISC_ENABLE:
4048             env->msr_ia32_misc_enable = msrs[i].data;
4049             break;
4050         case MSR_IA32_SMBASE:
4051             env->smbase = msrs[i].data;
4052             break;
4053         case MSR_SMI_COUNT:
4054             env->msr_smi_count = msrs[i].data;
4055             break;
4056         case MSR_IA32_FEATURE_CONTROL:
4057             env->msr_ia32_feature_control = msrs[i].data;
4058             break;
4059         case MSR_IA32_BNDCFGS:
4060             env->msr_bndcfgs = msrs[i].data;
4061             break;
4062         case MSR_IA32_XSS:
4063             env->xss = msrs[i].data;
4064             break;
4065         case MSR_IA32_UMWAIT_CONTROL:
4066             env->umwait = msrs[i].data;
4067             break;
4068         case MSR_IA32_PKRS:
4069             env->pkrs = msrs[i].data;
4070             break;
4071         default:
4072             if (msrs[i].index >= MSR_MC0_CTL &&
4073                 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
4074                 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
4075             }
4076             break;
4077         case MSR_KVM_ASYNC_PF_EN:
4078             env->async_pf_en_msr = msrs[i].data;
4079             break;
4080         case MSR_KVM_ASYNC_PF_INT:
4081             env->async_pf_int_msr = msrs[i].data;
4082             break;
4083         case MSR_KVM_PV_EOI_EN:
4084             env->pv_eoi_en_msr = msrs[i].data;
4085             break;
4086         case MSR_KVM_STEAL_TIME:
4087             env->steal_time_msr = msrs[i].data;
4088             break;
4089         case MSR_KVM_POLL_CONTROL: {
4090             env->poll_control_msr = msrs[i].data;
4091             break;
4092         }
4093         case MSR_CORE_PERF_FIXED_CTR_CTRL:
4094             env->msr_fixed_ctr_ctrl = msrs[i].data;
4095             break;
4096         case MSR_CORE_PERF_GLOBAL_CTRL:
4097             env->msr_global_ctrl = msrs[i].data;
4098             break;
4099         case MSR_CORE_PERF_GLOBAL_STATUS:
4100             env->msr_global_status = msrs[i].data;
4101             break;
4102         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4103             env->msr_global_ovf_ctrl = msrs[i].data;
4104             break;
4105         case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4106             env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4107             break;
4108         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4109             env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4110             break;
4111         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4112             env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4113             break;
4114         case HV_X64_MSR_HYPERCALL:
4115             env->msr_hv_hypercall = msrs[i].data;
4116             break;
4117         case HV_X64_MSR_GUEST_OS_ID:
4118             env->msr_hv_guest_os_id = msrs[i].data;
4119             break;
4120         case HV_X64_MSR_APIC_ASSIST_PAGE:
4121             env->msr_hv_vapic = msrs[i].data;
4122             break;
4123         case HV_X64_MSR_REFERENCE_TSC:
4124             env->msr_hv_tsc = msrs[i].data;
4125             break;
4126         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4127             env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4128             break;
4129         case HV_X64_MSR_VP_RUNTIME:
4130             env->msr_hv_runtime = msrs[i].data;
4131             break;
4132         case HV_X64_MSR_SCONTROL:
4133             env->msr_hv_synic_control = msrs[i].data;
4134             break;
4135         case HV_X64_MSR_SIEFP:
4136             env->msr_hv_synic_evt_page = msrs[i].data;
4137             break;
4138         case HV_X64_MSR_SIMP:
4139             env->msr_hv_synic_msg_page = msrs[i].data;
4140             break;
4141         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4142             env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4143             break;
4144         case HV_X64_MSR_STIMER0_CONFIG:
4145         case HV_X64_MSR_STIMER1_CONFIG:
4146         case HV_X64_MSR_STIMER2_CONFIG:
4147         case HV_X64_MSR_STIMER3_CONFIG:
4148             env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4149                                 msrs[i].data;
4150             break;
4151         case HV_X64_MSR_STIMER0_COUNT:
4152         case HV_X64_MSR_STIMER1_COUNT:
4153         case HV_X64_MSR_STIMER2_COUNT:
4154         case HV_X64_MSR_STIMER3_COUNT:
4155             env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4156                                 msrs[i].data;
4157             break;
4158         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4159             env->msr_hv_reenlightenment_control = msrs[i].data;
4160             break;
4161         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4162             env->msr_hv_tsc_emulation_control = msrs[i].data;
4163             break;
4164         case HV_X64_MSR_TSC_EMULATION_STATUS:
4165             env->msr_hv_tsc_emulation_status = msrs[i].data;
4166             break;
4167         case HV_X64_MSR_SYNDBG_OPTIONS:
4168             env->msr_hv_syndbg_options = msrs[i].data;
4169             break;
4170         case MSR_MTRRdefType:
4171             env->mtrr_deftype = msrs[i].data;
4172             break;
4173         case MSR_MTRRfix64K_00000:
4174             env->mtrr_fixed[0] = msrs[i].data;
4175             break;
4176         case MSR_MTRRfix16K_80000:
4177             env->mtrr_fixed[1] = msrs[i].data;
4178             break;
4179         case MSR_MTRRfix16K_A0000:
4180             env->mtrr_fixed[2] = msrs[i].data;
4181             break;
4182         case MSR_MTRRfix4K_C0000:
4183             env->mtrr_fixed[3] = msrs[i].data;
4184             break;
4185         case MSR_MTRRfix4K_C8000:
4186             env->mtrr_fixed[4] = msrs[i].data;
4187             break;
4188         case MSR_MTRRfix4K_D0000:
4189             env->mtrr_fixed[5] = msrs[i].data;
4190             break;
4191         case MSR_MTRRfix4K_D8000:
4192             env->mtrr_fixed[6] = msrs[i].data;
4193             break;
4194         case MSR_MTRRfix4K_E0000:
4195             env->mtrr_fixed[7] = msrs[i].data;
4196             break;
4197         case MSR_MTRRfix4K_E8000:
4198             env->mtrr_fixed[8] = msrs[i].data;
4199             break;
4200         case MSR_MTRRfix4K_F0000:
4201             env->mtrr_fixed[9] = msrs[i].data;
4202             break;
4203         case MSR_MTRRfix4K_F8000:
4204             env->mtrr_fixed[10] = msrs[i].data;
4205             break;
4206         case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4207             if (index & 1) {
4208                 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4209                                                                mtrr_top_bits;
4210             } else {
4211                 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4212             }
4213             break;
4214         case MSR_IA32_SPEC_CTRL:
4215             env->spec_ctrl = msrs[i].data;
4216             break;
4217         case MSR_AMD64_TSC_RATIO:
4218             env->amd_tsc_scale_msr = msrs[i].data;
4219             break;
4220         case MSR_IA32_TSX_CTRL:
4221             env->tsx_ctrl = msrs[i].data;
4222             break;
4223         case MSR_VIRT_SSBD:
4224             env->virt_ssbd = msrs[i].data;
4225             break;
4226         case MSR_IA32_RTIT_CTL:
4227             env->msr_rtit_ctrl = msrs[i].data;
4228             break;
4229         case MSR_IA32_RTIT_STATUS:
4230             env->msr_rtit_status = msrs[i].data;
4231             break;
4232         case MSR_IA32_RTIT_OUTPUT_BASE:
4233             env->msr_rtit_output_base = msrs[i].data;
4234             break;
4235         case MSR_IA32_RTIT_OUTPUT_MASK:
4236             env->msr_rtit_output_mask = msrs[i].data;
4237             break;
4238         case MSR_IA32_RTIT_CR3_MATCH:
4239             env->msr_rtit_cr3_match = msrs[i].data;
4240             break;
4241         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4242             env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4243             break;
4244         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4245             env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4246                            msrs[i].data;
4247             break;
4248         case MSR_IA32_XFD:
4249             env->msr_xfd = msrs[i].data;
4250             break;
4251         case MSR_IA32_XFD_ERR:
4252             env->msr_xfd_err = msrs[i].data;
4253             break;
4254         case MSR_ARCH_LBR_CTL:
4255             env->msr_lbr_ctl = msrs[i].data;
4256             break;
4257         case MSR_ARCH_LBR_DEPTH:
4258             env->msr_lbr_depth = msrs[i].data;
4259             break;
4260         case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4261             env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4262             break;
4263         case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4264             env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4265             break;
4266         case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4267             env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4268             break;
4269         }
4270     }
4271 
4272     return 0;
4273 }
4274 
4275 static int kvm_put_mp_state(X86CPU *cpu)
4276 {
4277     struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4278 
4279     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4280 }
4281 
4282 static int kvm_get_mp_state(X86CPU *cpu)
4283 {
4284     CPUState *cs = CPU(cpu);
4285     CPUX86State *env = &cpu->env;
4286     struct kvm_mp_state mp_state;
4287     int ret;
4288 
4289     ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4290     if (ret < 0) {
4291         return ret;
4292     }
4293     env->mp_state = mp_state.mp_state;
4294     if (kvm_irqchip_in_kernel()) {
4295         cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4296     }
4297     return 0;
4298 }
4299 
4300 static int kvm_get_apic(X86CPU *cpu)
4301 {
4302     DeviceState *apic = cpu->apic_state;
4303     struct kvm_lapic_state kapic;
4304     int ret;
4305 
4306     if (apic && kvm_irqchip_in_kernel()) {
4307         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
4308         if (ret < 0) {
4309             return ret;
4310         }
4311 
4312         kvm_get_apic_state(apic, &kapic);
4313     }
4314     return 0;
4315 }
4316 
4317 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
4318 {
4319     CPUState *cs = CPU(cpu);
4320     CPUX86State *env = &cpu->env;
4321     struct kvm_vcpu_events events = {};
4322 
4323     events.flags = 0;
4324 
4325     if (has_exception_payload) {
4326         events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4327         events.exception.pending = env->exception_pending;
4328         events.exception_has_payload = env->exception_has_payload;
4329         events.exception_payload = env->exception_payload;
4330     }
4331     events.exception.nr = env->exception_nr;
4332     events.exception.injected = env->exception_injected;
4333     events.exception.has_error_code = env->has_error_code;
4334     events.exception.error_code = env->error_code;
4335 
4336     events.interrupt.injected = (env->interrupt_injected >= 0);
4337     events.interrupt.nr = env->interrupt_injected;
4338     events.interrupt.soft = env->soft_interrupt;
4339 
4340     events.nmi.injected = env->nmi_injected;
4341     events.nmi.pending = env->nmi_pending;
4342     events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4343 
4344     events.sipi_vector = env->sipi_vector;
4345 
4346     if (has_msr_smbase) {
4347         events.smi.smm = !!(env->hflags & HF_SMM_MASK);
4348         events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
4349         if (kvm_irqchip_in_kernel()) {
4350             /* As soon as these are moved to the kernel, remove them
4351              * from cs->interrupt_request.
4352              */
4353             events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
4354             events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
4355             cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
4356         } else {
4357             /* Keep these in cs->interrupt_request.  */
4358             events.smi.pending = 0;
4359             events.smi.latched_init = 0;
4360         }
4361         /* Stop SMI delivery on old machine types to avoid a reboot
4362          * on an inward migration of an old VM.
4363          */
4364         if (!cpu->kvm_no_smi_migration) {
4365             events.flags |= KVM_VCPUEVENT_VALID_SMM;
4366         }
4367     }
4368 
4369     if (level >= KVM_PUT_RESET_STATE) {
4370         events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
4371         if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
4372             events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
4373         }
4374     }
4375 
4376     if (has_triple_fault_event) {
4377         events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
4378         events.triple_fault.pending = env->triple_fault_pending;
4379     }
4380 
4381     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
4382 }
4383 
4384 static int kvm_get_vcpu_events(X86CPU *cpu)
4385 {
4386     CPUX86State *env = &cpu->env;
4387     struct kvm_vcpu_events events;
4388     int ret;
4389 
4390     memset(&events, 0, sizeof(events));
4391     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
4392     if (ret < 0) {
4393        return ret;
4394     }
4395 
4396     if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4397         env->exception_pending = events.exception.pending;
4398         env->exception_has_payload = events.exception_has_payload;
4399         env->exception_payload = events.exception_payload;
4400     } else {
4401         env->exception_pending = 0;
4402         env->exception_has_payload = false;
4403     }
4404     env->exception_injected = events.exception.injected;
4405     env->exception_nr =
4406         (env->exception_pending || env->exception_injected) ?
4407         events.exception.nr : -1;
4408     env->has_error_code = events.exception.has_error_code;
4409     env->error_code = events.exception.error_code;
4410 
4411     env->interrupt_injected =
4412         events.interrupt.injected ? events.interrupt.nr : -1;
4413     env->soft_interrupt = events.interrupt.soft;
4414 
4415     env->nmi_injected = events.nmi.injected;
4416     env->nmi_pending = events.nmi.pending;
4417     if (events.nmi.masked) {
4418         env->hflags2 |= HF2_NMI_MASK;
4419     } else {
4420         env->hflags2 &= ~HF2_NMI_MASK;
4421     }
4422 
4423     if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
4424         if (events.smi.smm) {
4425             env->hflags |= HF_SMM_MASK;
4426         } else {
4427             env->hflags &= ~HF_SMM_MASK;
4428         }
4429         if (events.smi.pending) {
4430             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4431         } else {
4432             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4433         }
4434         if (events.smi.smm_inside_nmi) {
4435             env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4436         } else {
4437             env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4438         }
4439         if (events.smi.latched_init) {
4440             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4441         } else {
4442             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4443         }
4444     }
4445 
4446     if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
4447         env->triple_fault_pending = events.triple_fault.pending;
4448     }
4449 
4450     env->sipi_vector = events.sipi_vector;
4451 
4452     return 0;
4453 }
4454 
4455 static int kvm_put_debugregs(X86CPU *cpu)
4456 {
4457     CPUX86State *env = &cpu->env;
4458     struct kvm_debugregs dbgregs;
4459     int i;
4460 
4461     memset(&dbgregs, 0, sizeof(dbgregs));
4462     for (i = 0; i < 4; i++) {
4463         dbgregs.db[i] = env->dr[i];
4464     }
4465     dbgregs.dr6 = env->dr[6];
4466     dbgregs.dr7 = env->dr[7];
4467     dbgregs.flags = 0;
4468 
4469     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
4470 }
4471 
4472 static int kvm_get_debugregs(X86CPU *cpu)
4473 {
4474     CPUX86State *env = &cpu->env;
4475     struct kvm_debugregs dbgregs;
4476     int i, ret;
4477 
4478     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
4479     if (ret < 0) {
4480         return ret;
4481     }
4482     for (i = 0; i < 4; i++) {
4483         env->dr[i] = dbgregs.db[i];
4484     }
4485     env->dr[4] = env->dr[6] = dbgregs.dr6;
4486     env->dr[5] = env->dr[7] = dbgregs.dr7;
4487 
4488     return 0;
4489 }
4490 
4491 static int kvm_put_nested_state(X86CPU *cpu)
4492 {
4493     CPUX86State *env = &cpu->env;
4494     int max_nested_state_len = kvm_max_nested_state_length();
4495 
4496     if (!env->nested_state) {
4497         return 0;
4498     }
4499 
4500     /*
4501      * Copy flags that are affected by reset from env->hflags and env->hflags2.
4502      */
4503     if (env->hflags & HF_GUEST_MASK) {
4504         env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4505     } else {
4506         env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4507     }
4508 
4509     /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4510     if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
4511         env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4512     } else {
4513         env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4514     }
4515 
4516     assert(env->nested_state->size <= max_nested_state_len);
4517     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4518 }
4519 
4520 static int kvm_get_nested_state(X86CPU *cpu)
4521 {
4522     CPUX86State *env = &cpu->env;
4523     int max_nested_state_len = kvm_max_nested_state_length();
4524     int ret;
4525 
4526     if (!env->nested_state) {
4527         return 0;
4528     }
4529 
4530     /*
4531      * It is possible that migration restored a smaller size into
4532      * nested_state->hdr.size than what our kernel support.
4533      * We preserve migration origin nested_state->hdr.size for
4534      * call to KVM_SET_NESTED_STATE but wish that our next call
4535      * to KVM_GET_NESTED_STATE will use max size our kernel support.
4536      */
4537     env->nested_state->size = max_nested_state_len;
4538 
4539     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4540     if (ret < 0) {
4541         return ret;
4542     }
4543 
4544     /*
4545      * Copy flags that are affected by reset to env->hflags and env->hflags2.
4546      */
4547     if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4548         env->hflags |= HF_GUEST_MASK;
4549     } else {
4550         env->hflags &= ~HF_GUEST_MASK;
4551     }
4552 
4553     /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4554     if (cpu_has_svm(env)) {
4555         if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4556             env->hflags2 |= HF2_GIF_MASK;
4557         } else {
4558             env->hflags2 &= ~HF2_GIF_MASK;
4559         }
4560     }
4561 
4562     return ret;
4563 }
4564 
4565 int kvm_arch_put_registers(CPUState *cpu, int level)
4566 {
4567     X86CPU *x86_cpu = X86_CPU(cpu);
4568     int ret;
4569 
4570     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
4571 
4572     /*
4573      * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX
4574      * root operation upon vCPU reset. kvm_put_msr_feature_control() should also
4575      * precede kvm_put_nested_state() when 'real' nested state is set.
4576      */
4577     if (level >= KVM_PUT_RESET_STATE) {
4578         ret = kvm_put_msr_feature_control(x86_cpu);
4579         if (ret < 0) {
4580             return ret;
4581         }
4582     }
4583 
4584     /* must be before kvm_put_nested_state so that EFER.SVME is set */
4585     ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
4586     if (ret < 0) {
4587         return ret;
4588     }
4589 
4590     if (level >= KVM_PUT_RESET_STATE) {
4591         ret = kvm_put_nested_state(x86_cpu);
4592         if (ret < 0) {
4593             return ret;
4594         }
4595     }
4596 
4597     if (level == KVM_PUT_FULL_STATE) {
4598         /* We don't check for kvm_arch_set_tsc_khz() errors here,
4599          * because TSC frequency mismatch shouldn't abort migration,
4600          * unless the user explicitly asked for a more strict TSC
4601          * setting (e.g. using an explicit "tsc-freq" option).
4602          */
4603         kvm_arch_set_tsc_khz(cpu);
4604     }
4605 
4606 #ifdef CONFIG_XEN_EMU
4607     if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) {
4608         ret = kvm_put_xen_state(cpu);
4609         if (ret < 0) {
4610             return ret;
4611         }
4612     }
4613 #endif
4614 
4615     ret = kvm_getput_regs(x86_cpu, 1);
4616     if (ret < 0) {
4617         return ret;
4618     }
4619     ret = kvm_put_xsave(x86_cpu);
4620     if (ret < 0) {
4621         return ret;
4622     }
4623     ret = kvm_put_xcrs(x86_cpu);
4624     if (ret < 0) {
4625         return ret;
4626     }
4627     ret = kvm_put_msrs(x86_cpu, level);
4628     if (ret < 0) {
4629         return ret;
4630     }
4631     ret = kvm_put_vcpu_events(x86_cpu, level);
4632     if (ret < 0) {
4633         return ret;
4634     }
4635     if (level >= KVM_PUT_RESET_STATE) {
4636         ret = kvm_put_mp_state(x86_cpu);
4637         if (ret < 0) {
4638             return ret;
4639         }
4640     }
4641 
4642     ret = kvm_put_tscdeadline_msr(x86_cpu);
4643     if (ret < 0) {
4644         return ret;
4645     }
4646     ret = kvm_put_debugregs(x86_cpu);
4647     if (ret < 0) {
4648         return ret;
4649     }
4650     return 0;
4651 }
4652 
4653 int kvm_arch_get_registers(CPUState *cs)
4654 {
4655     X86CPU *cpu = X86_CPU(cs);
4656     int ret;
4657 
4658     assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4659 
4660     ret = kvm_get_vcpu_events(cpu);
4661     if (ret < 0) {
4662         goto out;
4663     }
4664     /*
4665      * KVM_GET_MPSTATE can modify CS and RIP, call it before
4666      * KVM_GET_REGS and KVM_GET_SREGS.
4667      */
4668     ret = kvm_get_mp_state(cpu);
4669     if (ret < 0) {
4670         goto out;
4671     }
4672     ret = kvm_getput_regs(cpu, 0);
4673     if (ret < 0) {
4674         goto out;
4675     }
4676     ret = kvm_get_xsave(cpu);
4677     if (ret < 0) {
4678         goto out;
4679     }
4680     ret = kvm_get_xcrs(cpu);
4681     if (ret < 0) {
4682         goto out;
4683     }
4684     ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
4685     if (ret < 0) {
4686         goto out;
4687     }
4688     ret = kvm_get_msrs(cpu);
4689     if (ret < 0) {
4690         goto out;
4691     }
4692     ret = kvm_get_apic(cpu);
4693     if (ret < 0) {
4694         goto out;
4695     }
4696     ret = kvm_get_debugregs(cpu);
4697     if (ret < 0) {
4698         goto out;
4699     }
4700     ret = kvm_get_nested_state(cpu);
4701     if (ret < 0) {
4702         goto out;
4703     }
4704 #ifdef CONFIG_XEN_EMU
4705     if (xen_mode == XEN_EMULATE) {
4706         ret = kvm_get_xen_state(cs);
4707         if (ret < 0) {
4708             goto out;
4709         }
4710     }
4711 #endif
4712     ret = 0;
4713  out:
4714     cpu_sync_bndcs_hflags(&cpu->env);
4715     return ret;
4716 }
4717 
4718 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4719 {
4720     X86CPU *x86_cpu = X86_CPU(cpu);
4721     CPUX86State *env = &x86_cpu->env;
4722     int ret;
4723 
4724     /* Inject NMI */
4725     if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4726         if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4727             bql_lock();
4728             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4729             bql_unlock();
4730             DPRINTF("injected NMI\n");
4731             ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4732             if (ret < 0) {
4733                 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4734                         strerror(-ret));
4735             }
4736         }
4737         if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4738             bql_lock();
4739             cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4740             bql_unlock();
4741             DPRINTF("injected SMI\n");
4742             ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4743             if (ret < 0) {
4744                 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4745                         strerror(-ret));
4746             }
4747         }
4748     }
4749 
4750     if (!kvm_pic_in_kernel()) {
4751         bql_lock();
4752     }
4753 
4754     /* Force the VCPU out of its inner loop to process any INIT requests
4755      * or (for userspace APIC, but it is cheap to combine the checks here)
4756      * pending TPR access reports.
4757      */
4758     if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4759         if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4760             !(env->hflags & HF_SMM_MASK)) {
4761             cpu->exit_request = 1;
4762         }
4763         if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4764             cpu->exit_request = 1;
4765         }
4766     }
4767 
4768     if (!kvm_pic_in_kernel()) {
4769         /* Try to inject an interrupt if the guest can accept it */
4770         if (run->ready_for_interrupt_injection &&
4771             (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4772             (env->eflags & IF_MASK)) {
4773             int irq;
4774 
4775             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4776             irq = cpu_get_pic_interrupt(env);
4777             if (irq >= 0) {
4778                 struct kvm_interrupt intr;
4779 
4780                 intr.irq = irq;
4781                 DPRINTF("injected interrupt %d\n", irq);
4782                 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4783                 if (ret < 0) {
4784                     fprintf(stderr,
4785                             "KVM: injection failed, interrupt lost (%s)\n",
4786                             strerror(-ret));
4787                 }
4788             }
4789         }
4790 
4791         /* If we have an interrupt but the guest is not ready to receive an
4792          * interrupt, request an interrupt window exit.  This will
4793          * cause a return to userspace as soon as the guest is ready to
4794          * receive interrupts. */
4795         if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4796             run->request_interrupt_window = 1;
4797         } else {
4798             run->request_interrupt_window = 0;
4799         }
4800 
4801         DPRINTF("setting tpr\n");
4802         run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4803 
4804         bql_unlock();
4805     }
4806 }
4807 
4808 static void kvm_rate_limit_on_bus_lock(void)
4809 {
4810     uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4811 
4812     if (delay_ns) {
4813         g_usleep(delay_ns / SCALE_US);
4814     }
4815 }
4816 
4817 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4818 {
4819     X86CPU *x86_cpu = X86_CPU(cpu);
4820     CPUX86State *env = &x86_cpu->env;
4821 
4822     if (run->flags & KVM_RUN_X86_SMM) {
4823         env->hflags |= HF_SMM_MASK;
4824     } else {
4825         env->hflags &= ~HF_SMM_MASK;
4826     }
4827     if (run->if_flag) {
4828         env->eflags |= IF_MASK;
4829     } else {
4830         env->eflags &= ~IF_MASK;
4831     }
4832     if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4833         kvm_rate_limit_on_bus_lock();
4834     }
4835 
4836 #ifdef CONFIG_XEN_EMU
4837     /*
4838      * If the callback is asserted as a GSI (or PCI INTx) then check if
4839      * vcpu_info->evtchn_upcall_pending has been cleared, and deassert
4840      * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC
4841      * EOI and only resample then, exactly how the VFIO eventfd pairs
4842      * are designed to work for level triggered interrupts.
4843      */
4844     if (x86_cpu->env.xen_callback_asserted) {
4845         kvm_xen_maybe_deassert_callback(cpu);
4846     }
4847 #endif
4848 
4849     /* We need to protect the apic state against concurrent accesses from
4850      * different threads in case the userspace irqchip is used. */
4851     if (!kvm_irqchip_in_kernel()) {
4852         bql_lock();
4853     }
4854     cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4855     cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4856     if (!kvm_irqchip_in_kernel()) {
4857         bql_unlock();
4858     }
4859     return cpu_get_mem_attrs(env);
4860 }
4861 
4862 int kvm_arch_process_async_events(CPUState *cs)
4863 {
4864     X86CPU *cpu = X86_CPU(cs);
4865     CPUX86State *env = &cpu->env;
4866 
4867     if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4868         /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4869         assert(env->mcg_cap);
4870 
4871         cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4872 
4873         kvm_cpu_synchronize_state(cs);
4874 
4875         if (env->exception_nr == EXCP08_DBLE) {
4876             /* this means triple fault */
4877             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4878             cs->exit_request = 1;
4879             return 0;
4880         }
4881         kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4882         env->has_error_code = 0;
4883 
4884         cs->halted = 0;
4885         if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4886             env->mp_state = KVM_MP_STATE_RUNNABLE;
4887         }
4888     }
4889 
4890     if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4891         !(env->hflags & HF_SMM_MASK)) {
4892         kvm_cpu_synchronize_state(cs);
4893         do_cpu_init(cpu);
4894     }
4895 
4896     if (kvm_irqchip_in_kernel()) {
4897         return 0;
4898     }
4899 
4900     if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4901         cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4902         apic_poll_irq(cpu->apic_state);
4903     }
4904     if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4905          (env->eflags & IF_MASK)) ||
4906         (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4907         cs->halted = 0;
4908     }
4909     if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4910         kvm_cpu_synchronize_state(cs);
4911         do_cpu_sipi(cpu);
4912     }
4913     if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4914         cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4915         kvm_cpu_synchronize_state(cs);
4916         apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4917                                       env->tpr_access_type);
4918     }
4919 
4920     return cs->halted;
4921 }
4922 
4923 static int kvm_handle_halt(X86CPU *cpu)
4924 {
4925     CPUState *cs = CPU(cpu);
4926     CPUX86State *env = &cpu->env;
4927 
4928     if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4929           (env->eflags & IF_MASK)) &&
4930         !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4931         cs->halted = 1;
4932         return EXCP_HLT;
4933     }
4934 
4935     return 0;
4936 }
4937 
4938 static int kvm_handle_tpr_access(X86CPU *cpu)
4939 {
4940     CPUState *cs = CPU(cpu);
4941     struct kvm_run *run = cs->kvm_run;
4942 
4943     apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4944                                   run->tpr_access.is_write ? TPR_ACCESS_WRITE
4945                                                            : TPR_ACCESS_READ);
4946     return 1;
4947 }
4948 
4949 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4950 {
4951     static const uint8_t int3 = 0xcc;
4952 
4953     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4954         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4955         return -EINVAL;
4956     }
4957     return 0;
4958 }
4959 
4960 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4961 {
4962     uint8_t int3;
4963 
4964     if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
4965         return -EINVAL;
4966     }
4967     if (int3 != 0xcc) {
4968         return 0;
4969     }
4970     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4971         return -EINVAL;
4972     }
4973     return 0;
4974 }
4975 
4976 static struct {
4977     target_ulong addr;
4978     int len;
4979     int type;
4980 } hw_breakpoint[4];
4981 
4982 static int nb_hw_breakpoint;
4983 
4984 static int find_hw_breakpoint(target_ulong addr, int len, int type)
4985 {
4986     int n;
4987 
4988     for (n = 0; n < nb_hw_breakpoint; n++) {
4989         if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
4990             (hw_breakpoint[n].len == len || len == -1)) {
4991             return n;
4992         }
4993     }
4994     return -1;
4995 }
4996 
4997 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
4998 {
4999     switch (type) {
5000     case GDB_BREAKPOINT_HW:
5001         len = 1;
5002         break;
5003     case GDB_WATCHPOINT_WRITE:
5004     case GDB_WATCHPOINT_ACCESS:
5005         switch (len) {
5006         case 1:
5007             break;
5008         case 2:
5009         case 4:
5010         case 8:
5011             if (addr & (len - 1)) {
5012                 return -EINVAL;
5013             }
5014             break;
5015         default:
5016             return -EINVAL;
5017         }
5018         break;
5019     default:
5020         return -ENOSYS;
5021     }
5022 
5023     if (nb_hw_breakpoint == 4) {
5024         return -ENOBUFS;
5025     }
5026     if (find_hw_breakpoint(addr, len, type) >= 0) {
5027         return -EEXIST;
5028     }
5029     hw_breakpoint[nb_hw_breakpoint].addr = addr;
5030     hw_breakpoint[nb_hw_breakpoint].len = len;
5031     hw_breakpoint[nb_hw_breakpoint].type = type;
5032     nb_hw_breakpoint++;
5033 
5034     return 0;
5035 }
5036 
5037 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
5038 {
5039     int n;
5040 
5041     n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
5042     if (n < 0) {
5043         return -ENOENT;
5044     }
5045     nb_hw_breakpoint--;
5046     hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
5047 
5048     return 0;
5049 }
5050 
5051 void kvm_arch_remove_all_hw_breakpoints(void)
5052 {
5053     nb_hw_breakpoint = 0;
5054 }
5055 
5056 static CPUWatchpoint hw_watchpoint;
5057 
5058 static int kvm_handle_debug(X86CPU *cpu,
5059                             struct kvm_debug_exit_arch *arch_info)
5060 {
5061     CPUState *cs = CPU(cpu);
5062     CPUX86State *env = &cpu->env;
5063     int ret = 0;
5064     int n;
5065 
5066     if (arch_info->exception == EXCP01_DB) {
5067         if (arch_info->dr6 & DR6_BS) {
5068             if (cs->singlestep_enabled) {
5069                 ret = EXCP_DEBUG;
5070             }
5071         } else {
5072             for (n = 0; n < 4; n++) {
5073                 if (arch_info->dr6 & (1 << n)) {
5074                     switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
5075                     case 0x0:
5076                         ret = EXCP_DEBUG;
5077                         break;
5078                     case 0x1:
5079                         ret = EXCP_DEBUG;
5080                         cs->watchpoint_hit = &hw_watchpoint;
5081                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5082                         hw_watchpoint.flags = BP_MEM_WRITE;
5083                         break;
5084                     case 0x3:
5085                         ret = EXCP_DEBUG;
5086                         cs->watchpoint_hit = &hw_watchpoint;
5087                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5088                         hw_watchpoint.flags = BP_MEM_ACCESS;
5089                         break;
5090                     }
5091                 }
5092             }
5093         }
5094     } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5095         ret = EXCP_DEBUG;
5096     }
5097     if (ret == 0) {
5098         cpu_synchronize_state(cs);
5099         assert(env->exception_nr == -1);
5100 
5101         /* pass to guest */
5102         kvm_queue_exception(env, arch_info->exception,
5103                             arch_info->exception == EXCP01_DB,
5104                             arch_info->dr6);
5105         env->has_error_code = 0;
5106     }
5107 
5108     return ret;
5109 }
5110 
5111 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5112 {
5113     const uint8_t type_code[] = {
5114         [GDB_BREAKPOINT_HW] = 0x0,
5115         [GDB_WATCHPOINT_WRITE] = 0x1,
5116         [GDB_WATCHPOINT_ACCESS] = 0x3
5117     };
5118     const uint8_t len_code[] = {
5119         [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5120     };
5121     int n;
5122 
5123     if (kvm_sw_breakpoints_active(cpu)) {
5124         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5125     }
5126     if (nb_hw_breakpoint > 0) {
5127         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5128         dbg->arch.debugreg[7] = 0x0600;
5129         for (n = 0; n < nb_hw_breakpoint; n++) {
5130             dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5131             dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5132                 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5133                 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5134         }
5135     }
5136 }
5137 
5138 static bool kvm_install_msr_filters(KVMState *s)
5139 {
5140     uint64_t zero = 0;
5141     struct kvm_msr_filter filter = {
5142         .flags = KVM_MSR_FILTER_DEFAULT_ALLOW,
5143     };
5144     int r, i, j = 0;
5145 
5146     for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) {
5147         KVMMSRHandlers *handler = &msr_handlers[i];
5148         if (handler->msr) {
5149             struct kvm_msr_filter_range *range = &filter.ranges[j++];
5150 
5151             *range = (struct kvm_msr_filter_range) {
5152                 .flags = 0,
5153                 .nmsrs = 1,
5154                 .base = handler->msr,
5155                 .bitmap = (__u8 *)&zero,
5156             };
5157 
5158             if (handler->rdmsr) {
5159                 range->flags |= KVM_MSR_FILTER_READ;
5160             }
5161 
5162             if (handler->wrmsr) {
5163                 range->flags |= KVM_MSR_FILTER_WRITE;
5164             }
5165         }
5166     }
5167 
5168     r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter);
5169     if (r) {
5170         return false;
5171     }
5172 
5173     return true;
5174 }
5175 
5176 bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
5177                     QEMUWRMSRHandler *wrmsr)
5178 {
5179     int i;
5180 
5181     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5182         if (!msr_handlers[i].msr) {
5183             msr_handlers[i] = (KVMMSRHandlers) {
5184                 .msr = msr,
5185                 .rdmsr = rdmsr,
5186                 .wrmsr = wrmsr,
5187             };
5188 
5189             if (!kvm_install_msr_filters(s)) {
5190                 msr_handlers[i] = (KVMMSRHandlers) { };
5191                 return false;
5192             }
5193 
5194             return true;
5195         }
5196     }
5197 
5198     return false;
5199 }
5200 
5201 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run)
5202 {
5203     int i;
5204     bool r;
5205 
5206     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5207         KVMMSRHandlers *handler = &msr_handlers[i];
5208         if (run->msr.index == handler->msr) {
5209             if (handler->rdmsr) {
5210                 r = handler->rdmsr(cpu, handler->msr,
5211                                    (uint64_t *)&run->msr.data);
5212                 run->msr.error = r ? 0 : 1;
5213                 return 0;
5214             }
5215         }
5216     }
5217 
5218     assert(false);
5219 }
5220 
5221 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run)
5222 {
5223     int i;
5224     bool r;
5225 
5226     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5227         KVMMSRHandlers *handler = &msr_handlers[i];
5228         if (run->msr.index == handler->msr) {
5229             if (handler->wrmsr) {
5230                 r = handler->wrmsr(cpu, handler->msr, run->msr.data);
5231                 run->msr.error = r ? 0 : 1;
5232                 return 0;
5233             }
5234         }
5235     }
5236 
5237     assert(false);
5238 }
5239 
5240 static bool has_sgx_provisioning;
5241 
5242 static bool __kvm_enable_sgx_provisioning(KVMState *s)
5243 {
5244     int fd, ret;
5245 
5246     if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5247         return false;
5248     }
5249 
5250     fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5251     if (fd < 0) {
5252         return false;
5253     }
5254 
5255     ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5256     if (ret) {
5257         error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5258         exit(1);
5259     }
5260     close(fd);
5261     return true;
5262 }
5263 
5264 bool kvm_enable_sgx_provisioning(KVMState *s)
5265 {
5266     return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5267 }
5268 
5269 static bool host_supports_vmx(void)
5270 {
5271     uint32_t ecx, unused;
5272 
5273     host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5274     return ecx & CPUID_EXT_VMX;
5275 }
5276 
5277 #define VMX_INVALID_GUEST_STATE 0x80000021
5278 
5279 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
5280 {
5281     X86CPU *cpu = X86_CPU(cs);
5282     uint64_t code;
5283     int ret;
5284     bool ctx_invalid;
5285     char str[256];
5286     KVMState *state;
5287 
5288     switch (run->exit_reason) {
5289     case KVM_EXIT_HLT:
5290         DPRINTF("handle_hlt\n");
5291         bql_lock();
5292         ret = kvm_handle_halt(cpu);
5293         bql_unlock();
5294         break;
5295     case KVM_EXIT_SET_TPR:
5296         ret = 0;
5297         break;
5298     case KVM_EXIT_TPR_ACCESS:
5299         bql_lock();
5300         ret = kvm_handle_tpr_access(cpu);
5301         bql_unlock();
5302         break;
5303     case KVM_EXIT_FAIL_ENTRY:
5304         code = run->fail_entry.hardware_entry_failure_reason;
5305         fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
5306                 code);
5307         if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
5308             fprintf(stderr,
5309                     "\nIf you're running a guest on an Intel machine without "
5310                         "unrestricted mode\n"
5311                     "support, the failure can be most likely due to the guest "
5312                         "entering an invalid\n"
5313                     "state for Intel VT. For example, the guest maybe running "
5314                         "in big real mode\n"
5315                     "which is not supported on less recent Intel processors."
5316                         "\n\n");
5317         }
5318         ret = -1;
5319         break;
5320     case KVM_EXIT_EXCEPTION:
5321         fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
5322                 run->ex.exception, run->ex.error_code);
5323         ret = -1;
5324         break;
5325     case KVM_EXIT_DEBUG:
5326         DPRINTF("kvm_exit_debug\n");
5327         bql_lock();
5328         ret = kvm_handle_debug(cpu, &run->debug.arch);
5329         bql_unlock();
5330         break;
5331     case KVM_EXIT_HYPERV:
5332         ret = kvm_hv_handle_exit(cpu, &run->hyperv);
5333         break;
5334     case KVM_EXIT_IOAPIC_EOI:
5335         ioapic_eoi_broadcast(run->eoi.vector);
5336         ret = 0;
5337         break;
5338     case KVM_EXIT_X86_BUS_LOCK:
5339         /* already handled in kvm_arch_post_run */
5340         ret = 0;
5341         break;
5342     case KVM_EXIT_NOTIFY:
5343         ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID);
5344         state = KVM_STATE(current_accel());
5345         sprintf(str, "Encounter a notify exit with %svalid context in"
5346                      " guest. There can be possible misbehaves in guest."
5347                      " Please have a look.", ctx_invalid ? "in" : "");
5348         if (ctx_invalid ||
5349             state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) {
5350             warn_report("KVM internal error: %s", str);
5351             ret = -1;
5352         } else {
5353             warn_report_once("KVM: %s", str);
5354             ret = 0;
5355         }
5356         break;
5357     case KVM_EXIT_X86_RDMSR:
5358         /* We only enable MSR filtering, any other exit is bogus */
5359         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5360         ret = kvm_handle_rdmsr(cpu, run);
5361         break;
5362     case KVM_EXIT_X86_WRMSR:
5363         /* We only enable MSR filtering, any other exit is bogus */
5364         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5365         ret = kvm_handle_wrmsr(cpu, run);
5366         break;
5367 #ifdef CONFIG_XEN_EMU
5368     case KVM_EXIT_XEN:
5369         ret = kvm_xen_handle_exit(cpu, &run->xen);
5370         break;
5371 #endif
5372     default:
5373         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
5374         ret = -1;
5375         break;
5376     }
5377 
5378     return ret;
5379 }
5380 
5381 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
5382 {
5383     X86CPU *cpu = X86_CPU(cs);
5384     CPUX86State *env = &cpu->env;
5385 
5386     kvm_cpu_synchronize_state(cs);
5387     return !(env->cr[0] & CR0_PE_MASK) ||
5388            ((env->segs[R_CS].selector  & 3) != 3);
5389 }
5390 
5391 void kvm_arch_init_irq_routing(KVMState *s)
5392 {
5393     /* We know at this point that we're using the in-kernel
5394      * irqchip, so we can use irqfds, and on x86 we know
5395      * we can use msi via irqfd and GSI routing.
5396      */
5397     kvm_msi_via_irqfd_allowed = true;
5398     kvm_gsi_routing_allowed = true;
5399 
5400     if (kvm_irqchip_is_split()) {
5401         KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
5402         int i;
5403 
5404         /* If the ioapic is in QEMU and the lapics are in KVM, reserve
5405            MSI routes for signaling interrupts to the local apics. */
5406         for (i = 0; i < IOAPIC_NUM_PINS; i++) {
5407             if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
5408                 error_report("Could not enable split IRQ mode.");
5409                 exit(1);
5410             }
5411         }
5412         kvm_irqchip_commit_route_changes(&c);
5413     }
5414 }
5415 
5416 int kvm_arch_irqchip_create(KVMState *s)
5417 {
5418     int ret;
5419     if (kvm_kernel_irqchip_split()) {
5420         ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
5421         if (ret) {
5422             error_report("Could not enable split irqchip mode: %s",
5423                          strerror(-ret));
5424             exit(1);
5425         } else {
5426             DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
5427             kvm_split_irqchip = true;
5428             return 1;
5429         }
5430     } else {
5431         return 0;
5432     }
5433 }
5434 
5435 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
5436 {
5437     CPUX86State *env;
5438     uint64_t ext_id;
5439 
5440     if (!first_cpu) {
5441         return address;
5442     }
5443     env = &X86_CPU(first_cpu)->env;
5444     if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
5445         return address;
5446     }
5447 
5448     /*
5449      * If the remappable format bit is set, or the upper bits are
5450      * already set in address_hi, or the low extended bits aren't
5451      * there anyway, do nothing.
5452      */
5453     ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
5454     if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
5455         return address;
5456     }
5457 
5458     address &= ~ext_id;
5459     address |= ext_id << 35;
5460     return address;
5461 }
5462 
5463 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
5464                              uint64_t address, uint32_t data, PCIDevice *dev)
5465 {
5466     X86IOMMUState *iommu = x86_iommu_get_default();
5467 
5468     if (iommu) {
5469         X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
5470 
5471         if (class->int_remap) {
5472             int ret;
5473             MSIMessage src, dst;
5474 
5475             src.address = route->u.msi.address_hi;
5476             src.address <<= VTD_MSI_ADDR_HI_SHIFT;
5477             src.address |= route->u.msi.address_lo;
5478             src.data = route->u.msi.data;
5479 
5480             ret = class->int_remap(iommu, &src, &dst, dev ?     \
5481                                    pci_requester_id(dev) :      \
5482                                    X86_IOMMU_SID_INVALID);
5483             if (ret) {
5484                 trace_kvm_x86_fixup_msi_error(route->gsi);
5485                 return 1;
5486             }
5487 
5488             /*
5489              * Handled untranslated compatibility format interrupt with
5490              * extended destination ID in the low bits 11-5. */
5491             dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
5492 
5493             route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
5494             route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
5495             route->u.msi.data = dst.data;
5496             return 0;
5497         }
5498     }
5499 
5500 #ifdef CONFIG_XEN_EMU
5501     if (xen_mode == XEN_EMULATE) {
5502         int handled = xen_evtchn_translate_pirq_msi(route, address, data);
5503 
5504         /*
5505          * If it was a PIRQ and successfully routed (handled == 0) or it was
5506          * an error (handled < 0), return. If it wasn't a PIRQ, keep going.
5507          */
5508         if (handled <= 0) {
5509             return handled;
5510         }
5511     }
5512 #endif
5513 
5514     address = kvm_swizzle_msi_ext_dest_id(address);
5515     route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
5516     route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
5517     return 0;
5518 }
5519 
5520 typedef struct MSIRouteEntry MSIRouteEntry;
5521 
5522 struct MSIRouteEntry {
5523     PCIDevice *dev;             /* Device pointer */
5524     int vector;                 /* MSI/MSIX vector index */
5525     int virq;                   /* Virtual IRQ index */
5526     QLIST_ENTRY(MSIRouteEntry) list;
5527 };
5528 
5529 /* List of used GSI routes */
5530 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
5531     QLIST_HEAD_INITIALIZER(msi_route_list);
5532 
5533 void kvm_update_msi_routes_all(void *private, bool global,
5534                                uint32_t index, uint32_t mask)
5535 {
5536     int cnt = 0, vector;
5537     MSIRouteEntry *entry;
5538     MSIMessage msg;
5539     PCIDevice *dev;
5540 
5541     /* TODO: explicit route update */
5542     QLIST_FOREACH(entry, &msi_route_list, list) {
5543         cnt++;
5544         vector = entry->vector;
5545         dev = entry->dev;
5546         if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
5547             msg = msix_get_message(dev, vector);
5548         } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
5549             msg = msi_get_message(dev, vector);
5550         } else {
5551             /*
5552              * Either MSI/MSIX is disabled for the device, or the
5553              * specific message was masked out.  Skip this one.
5554              */
5555             continue;
5556         }
5557         kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
5558     }
5559     kvm_irqchip_commit_routes(kvm_state);
5560     trace_kvm_x86_update_msi_routes(cnt);
5561 }
5562 
5563 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
5564                                 int vector, PCIDevice *dev)
5565 {
5566     static bool notify_list_inited = false;
5567     MSIRouteEntry *entry;
5568 
5569     if (!dev) {
5570         /* These are (possibly) IOAPIC routes only used for split
5571          * kernel irqchip mode, while what we are housekeeping are
5572          * PCI devices only. */
5573         return 0;
5574     }
5575 
5576     entry = g_new0(MSIRouteEntry, 1);
5577     entry->dev = dev;
5578     entry->vector = vector;
5579     entry->virq = route->gsi;
5580     QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5581 
5582     trace_kvm_x86_add_msi_route(route->gsi);
5583 
5584     if (!notify_list_inited) {
5585         /* For the first time we do add route, add ourselves into
5586          * IOMMU's IEC notify list if needed. */
5587         X86IOMMUState *iommu = x86_iommu_get_default();
5588         if (iommu) {
5589             x86_iommu_iec_register_notifier(iommu,
5590                                             kvm_update_msi_routes_all,
5591                                             NULL);
5592         }
5593         notify_list_inited = true;
5594     }
5595     return 0;
5596 }
5597 
5598 int kvm_arch_release_virq_post(int virq)
5599 {
5600     MSIRouteEntry *entry, *next;
5601     QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5602         if (entry->virq == virq) {
5603             trace_kvm_x86_remove_msi_route(virq);
5604             QLIST_REMOVE(entry, list);
5605             g_free(entry);
5606             break;
5607         }
5608     }
5609     return 0;
5610 }
5611 
5612 int kvm_arch_msi_data_to_gsi(uint32_t data)
5613 {
5614     abort();
5615 }
5616 
5617 bool kvm_has_waitpkg(void)
5618 {
5619     return has_msr_umwait;
5620 }
5621 
5622 #define ARCH_REQ_XCOMP_GUEST_PERM       0x1025
5623 
5624 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
5625 {
5626     KVMState *s = kvm_state;
5627     uint64_t supported;
5628 
5629     mask &= XSTATE_DYNAMIC_MASK;
5630     if (!mask) {
5631         return;
5632     }
5633     /*
5634      * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
5635      * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
5636      * about them already because they are not supported features.
5637      */
5638     supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
5639     supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
5640     mask &= supported;
5641 
5642     while (mask) {
5643         int bit = ctz64(mask);
5644         int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
5645         if (rc) {
5646             /*
5647              * Older kernel version (<5.17) do not support
5648              * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
5649              * any dynamic feature from kvm_arch_get_supported_cpuid.
5650              */
5651             warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
5652                         "for feature bit %d", bit);
5653         }
5654         mask &= ~BIT_ULL(bit);
5655     }
5656 }
5657 
5658 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp)
5659 {
5660     KVMState *s = KVM_STATE(obj);
5661     return s->notify_vmexit;
5662 }
5663 
5664 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp)
5665 {
5666     KVMState *s = KVM_STATE(obj);
5667 
5668     if (s->fd != -1) {
5669         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5670         return;
5671     }
5672 
5673     s->notify_vmexit = value;
5674 }
5675 
5676 static void kvm_arch_get_notify_window(Object *obj, Visitor *v,
5677                                        const char *name, void *opaque,
5678                                        Error **errp)
5679 {
5680     KVMState *s = KVM_STATE(obj);
5681     uint32_t value = s->notify_window;
5682 
5683     visit_type_uint32(v, name, &value, errp);
5684 }
5685 
5686 static void kvm_arch_set_notify_window(Object *obj, Visitor *v,
5687                                        const char *name, void *opaque,
5688                                        Error **errp)
5689 {
5690     KVMState *s = KVM_STATE(obj);
5691     uint32_t value;
5692 
5693     if (s->fd != -1) {
5694         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5695         return;
5696     }
5697 
5698     if (!visit_type_uint32(v, name, &value, errp)) {
5699         return;
5700     }
5701 
5702     s->notify_window = value;
5703 }
5704 
5705 static void kvm_arch_get_xen_version(Object *obj, Visitor *v,
5706                                      const char *name, void *opaque,
5707                                      Error **errp)
5708 {
5709     KVMState *s = KVM_STATE(obj);
5710     uint32_t value = s->xen_version;
5711 
5712     visit_type_uint32(v, name, &value, errp);
5713 }
5714 
5715 static void kvm_arch_set_xen_version(Object *obj, Visitor *v,
5716                                      const char *name, void *opaque,
5717                                      Error **errp)
5718 {
5719     KVMState *s = KVM_STATE(obj);
5720     Error *error = NULL;
5721     uint32_t value;
5722 
5723     visit_type_uint32(v, name, &value, &error);
5724     if (error) {
5725         error_propagate(errp, error);
5726         return;
5727     }
5728 
5729     s->xen_version = value;
5730     if (value && xen_mode == XEN_DISABLED) {
5731         xen_mode = XEN_EMULATE;
5732     }
5733 }
5734 
5735 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v,
5736                                                const char *name, void *opaque,
5737                                                Error **errp)
5738 {
5739     KVMState *s = KVM_STATE(obj);
5740     uint16_t value = s->xen_gnttab_max_frames;
5741 
5742     visit_type_uint16(v, name, &value, errp);
5743 }
5744 
5745 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v,
5746                                                const char *name, void *opaque,
5747                                                Error **errp)
5748 {
5749     KVMState *s = KVM_STATE(obj);
5750     Error *error = NULL;
5751     uint16_t value;
5752 
5753     visit_type_uint16(v, name, &value, &error);
5754     if (error) {
5755         error_propagate(errp, error);
5756         return;
5757     }
5758 
5759     s->xen_gnttab_max_frames = value;
5760 }
5761 
5762 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v,
5763                                              const char *name, void *opaque,
5764                                              Error **errp)
5765 {
5766     KVMState *s = KVM_STATE(obj);
5767     uint16_t value = s->xen_evtchn_max_pirq;
5768 
5769     visit_type_uint16(v, name, &value, errp);
5770 }
5771 
5772 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v,
5773                                              const char *name, void *opaque,
5774                                              Error **errp)
5775 {
5776     KVMState *s = KVM_STATE(obj);
5777     Error *error = NULL;
5778     uint16_t value;
5779 
5780     visit_type_uint16(v, name, &value, &error);
5781     if (error) {
5782         error_propagate(errp, error);
5783         return;
5784     }
5785 
5786     s->xen_evtchn_max_pirq = value;
5787 }
5788 
5789 void kvm_arch_accel_class_init(ObjectClass *oc)
5790 {
5791     object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption",
5792                                    &NotifyVmexitOption_lookup,
5793                                    kvm_arch_get_notify_vmexit,
5794                                    kvm_arch_set_notify_vmexit);
5795     object_class_property_set_description(oc, "notify-vmexit",
5796                                           "Enable notify VM exit");
5797 
5798     object_class_property_add(oc, "notify-window", "uint32",
5799                               kvm_arch_get_notify_window,
5800                               kvm_arch_set_notify_window,
5801                               NULL, NULL);
5802     object_class_property_set_description(oc, "notify-window",
5803                                           "Clock cycles without an event window "
5804                                           "after which a notification VM exit occurs");
5805 
5806     object_class_property_add(oc, "xen-version", "uint32",
5807                               kvm_arch_get_xen_version,
5808                               kvm_arch_set_xen_version,
5809                               NULL, NULL);
5810     object_class_property_set_description(oc, "xen-version",
5811                                           "Xen version to be emulated "
5812                                           "(in XENVER_version form "
5813                                           "e.g. 0x4000a for 4.10)");
5814 
5815     object_class_property_add(oc, "xen-gnttab-max-frames", "uint16",
5816                               kvm_arch_get_xen_gnttab_max_frames,
5817                               kvm_arch_set_xen_gnttab_max_frames,
5818                               NULL, NULL);
5819     object_class_property_set_description(oc, "xen-gnttab-max-frames",
5820                                           "Maximum number of grant table frames");
5821 
5822     object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16",
5823                               kvm_arch_get_xen_evtchn_max_pirq,
5824                               kvm_arch_set_xen_evtchn_max_pirq,
5825                               NULL, NULL);
5826     object_class_property_set_description(oc, "xen-evtchn-max-pirq",
5827                                           "Maximum number of Xen PIRQs");
5828 }
5829 
5830 void kvm_set_max_apic_id(uint32_t max_apic_id)
5831 {
5832     kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id);
5833 }
5834