xref: /qemu/target/i386/kvm/kvm.c (revision b21e2380)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright (C) 2006-2008 Qumranet Technologies
5  * Copyright IBM, Corp. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include <sys/ioctl.h>
19 #include <sys/utsname.h>
20 #include <sys/syscall.h>
21 
22 #include <linux/kvm.h>
23 #include "standard-headers/asm-x86/kvm_para.h"
24 
25 #include "cpu.h"
26 #include "host-cpu.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/hw_accel.h"
29 #include "sysemu/kvm_int.h"
30 #include "sysemu/runstate.h"
31 #include "kvm_i386.h"
32 #include "sev.h"
33 #include "hyperv.h"
34 #include "hyperv-proto.h"
35 
36 #include "exec/gdbstub.h"
37 #include "qemu/host-utils.h"
38 #include "qemu/main-loop.h"
39 #include "qemu/config-file.h"
40 #include "qemu/error-report.h"
41 #include "qemu/memalign.h"
42 #include "hw/i386/x86.h"
43 #include "hw/i386/apic.h"
44 #include "hw/i386/apic_internal.h"
45 #include "hw/i386/apic-msidef.h"
46 #include "hw/i386/intel_iommu.h"
47 #include "hw/i386/x86-iommu.h"
48 #include "hw/i386/e820_memory_layout.h"
49 
50 #include "hw/pci/pci.h"
51 #include "hw/pci/msi.h"
52 #include "hw/pci/msix.h"
53 #include "migration/blocker.h"
54 #include "exec/memattrs.h"
55 #include "trace.h"
56 
57 //#define DEBUG_KVM
58 
59 #ifdef DEBUG_KVM
60 #define DPRINTF(fmt, ...) \
61     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
62 #else
63 #define DPRINTF(fmt, ...) \
64     do { } while (0)
65 #endif
66 
67 /* From arch/x86/kvm/lapic.h */
68 #define KVM_APIC_BUS_CYCLE_NS       1
69 #define KVM_APIC_BUS_FREQUENCY      (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
70 
71 #define MSR_KVM_WALL_CLOCK  0x11
72 #define MSR_KVM_SYSTEM_TIME 0x12
73 
74 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
75  * 255 kvm_msr_entry structs */
76 #define MSR_BUF_SIZE 4096
77 
78 static void kvm_init_msrs(X86CPU *cpu);
79 
80 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
81     KVM_CAP_INFO(SET_TSS_ADDR),
82     KVM_CAP_INFO(EXT_CPUID),
83     KVM_CAP_INFO(MP_STATE),
84     KVM_CAP_LAST_INFO
85 };
86 
87 static bool has_msr_star;
88 static bool has_msr_hsave_pa;
89 static bool has_msr_tsc_aux;
90 static bool has_msr_tsc_adjust;
91 static bool has_msr_tsc_deadline;
92 static bool has_msr_feature_control;
93 static bool has_msr_misc_enable;
94 static bool has_msr_smbase;
95 static bool has_msr_bndcfgs;
96 static int lm_capable_kernel;
97 static bool has_msr_hv_hypercall;
98 static bool has_msr_hv_crash;
99 static bool has_msr_hv_reset;
100 static bool has_msr_hv_vpindex;
101 static bool hv_vpindex_settable;
102 static bool has_msr_hv_runtime;
103 static bool has_msr_hv_synic;
104 static bool has_msr_hv_stimer;
105 static bool has_msr_hv_frequencies;
106 static bool has_msr_hv_reenlightenment;
107 static bool has_msr_xss;
108 static bool has_msr_umwait;
109 static bool has_msr_spec_ctrl;
110 static bool has_tsc_scale_msr;
111 static bool has_msr_tsx_ctrl;
112 static bool has_msr_virt_ssbd;
113 static bool has_msr_smi_count;
114 static bool has_msr_arch_capabs;
115 static bool has_msr_core_capabs;
116 static bool has_msr_vmx_vmfunc;
117 static bool has_msr_ucode_rev;
118 static bool has_msr_vmx_procbased_ctls2;
119 static bool has_msr_perf_capabs;
120 static bool has_msr_pkrs;
121 
122 static uint32_t has_architectural_pmu_version;
123 static uint32_t num_architectural_pmu_gp_counters;
124 static uint32_t num_architectural_pmu_fixed_counters;
125 
126 static int has_xsave;
127 static int has_xsave2;
128 static int has_xcrs;
129 static int has_pit_state2;
130 static int has_sregs2;
131 static int has_exception_payload;
132 
133 static bool has_msr_mcg_ext_ctl;
134 
135 static struct kvm_cpuid2 *cpuid_cache;
136 static struct kvm_cpuid2 *hv_cpuid_cache;
137 static struct kvm_msr_list *kvm_feature_msrs;
138 
139 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
140 static RateLimit bus_lock_ratelimit_ctrl;
141 
142 int kvm_has_pit_state2(void)
143 {
144     return has_pit_state2;
145 }
146 
147 bool kvm_has_smm(void)
148 {
149     return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
150 }
151 
152 bool kvm_has_adjust_clock_stable(void)
153 {
154     int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
155 
156     return (ret == KVM_CLOCK_TSC_STABLE);
157 }
158 
159 bool kvm_has_adjust_clock(void)
160 {
161     return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
162 }
163 
164 bool kvm_has_exception_payload(void)
165 {
166     return has_exception_payload;
167 }
168 
169 static bool kvm_x2apic_api_set_flags(uint64_t flags)
170 {
171     KVMState *s = KVM_STATE(current_accel());
172 
173     return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
174 }
175 
176 #define MEMORIZE(fn, _result) \
177     ({ \
178         static bool _memorized; \
179         \
180         if (_memorized) { \
181             return _result; \
182         } \
183         _memorized = true; \
184         _result = fn; \
185     })
186 
187 static bool has_x2apic_api;
188 
189 bool kvm_has_x2apic_api(void)
190 {
191     return has_x2apic_api;
192 }
193 
194 bool kvm_enable_x2apic(void)
195 {
196     return MEMORIZE(
197              kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
198                                       KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
199              has_x2apic_api);
200 }
201 
202 bool kvm_hv_vpindex_settable(void)
203 {
204     return hv_vpindex_settable;
205 }
206 
207 static int kvm_get_tsc(CPUState *cs)
208 {
209     X86CPU *cpu = X86_CPU(cs);
210     CPUX86State *env = &cpu->env;
211     struct {
212         struct kvm_msrs info;
213         struct kvm_msr_entry entries[1];
214     } msr_data = {};
215     int ret;
216 
217     if (env->tsc_valid) {
218         return 0;
219     }
220 
221     memset(&msr_data, 0, sizeof(msr_data));
222     msr_data.info.nmsrs = 1;
223     msr_data.entries[0].index = MSR_IA32_TSC;
224     env->tsc_valid = !runstate_is_running();
225 
226     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
227     if (ret < 0) {
228         return ret;
229     }
230 
231     assert(ret == 1);
232     env->tsc = msr_data.entries[0].data;
233     return 0;
234 }
235 
236 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
237 {
238     kvm_get_tsc(cpu);
239 }
240 
241 void kvm_synchronize_all_tsc(void)
242 {
243     CPUState *cpu;
244 
245     if (kvm_enabled()) {
246         CPU_FOREACH(cpu) {
247             run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
248         }
249     }
250 }
251 
252 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
253 {
254     struct kvm_cpuid2 *cpuid;
255     int r, size;
256 
257     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
258     cpuid = g_malloc0(size);
259     cpuid->nent = max;
260     r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
261     if (r == 0 && cpuid->nent >= max) {
262         r = -E2BIG;
263     }
264     if (r < 0) {
265         if (r == -E2BIG) {
266             g_free(cpuid);
267             return NULL;
268         } else {
269             fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
270                     strerror(-r));
271             exit(1);
272         }
273     }
274     return cpuid;
275 }
276 
277 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
278  * for all entries.
279  */
280 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
281 {
282     struct kvm_cpuid2 *cpuid;
283     int max = 1;
284 
285     if (cpuid_cache != NULL) {
286         return cpuid_cache;
287     }
288     while ((cpuid = try_get_cpuid(s, max)) == NULL) {
289         max *= 2;
290     }
291     cpuid_cache = cpuid;
292     return cpuid;
293 }
294 
295 static bool host_tsx_broken(void)
296 {
297     int family, model, stepping;\
298     char vendor[CPUID_VENDOR_SZ + 1];
299 
300     host_cpu_vendor_fms(vendor, &family, &model, &stepping);
301 
302     /* Check if we are running on a Haswell host known to have broken TSX */
303     return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
304            (family == 6) &&
305            ((model == 63 && stepping < 4) ||
306             model == 60 || model == 69 || model == 70);
307 }
308 
309 /* Returns the value for a specific register on the cpuid entry
310  */
311 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
312 {
313     uint32_t ret = 0;
314     switch (reg) {
315     case R_EAX:
316         ret = entry->eax;
317         break;
318     case R_EBX:
319         ret = entry->ebx;
320         break;
321     case R_ECX:
322         ret = entry->ecx;
323         break;
324     case R_EDX:
325         ret = entry->edx;
326         break;
327     }
328     return ret;
329 }
330 
331 /* Find matching entry for function/index on kvm_cpuid2 struct
332  */
333 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
334                                                  uint32_t function,
335                                                  uint32_t index)
336 {
337     int i;
338     for (i = 0; i < cpuid->nent; ++i) {
339         if (cpuid->entries[i].function == function &&
340             cpuid->entries[i].index == index) {
341             return &cpuid->entries[i];
342         }
343     }
344     /* not found: */
345     return NULL;
346 }
347 
348 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
349                                       uint32_t index, int reg)
350 {
351     struct kvm_cpuid2 *cpuid;
352     uint32_t ret = 0;
353     uint32_t cpuid_1_edx;
354     uint64_t bitmask;
355 
356     cpuid = get_supported_cpuid(s);
357 
358     struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
359     if (entry) {
360         ret = cpuid_entry_get_reg(entry, reg);
361     }
362 
363     /* Fixups for the data returned by KVM, below */
364 
365     if (function == 1 && reg == R_EDX) {
366         /* KVM before 2.6.30 misreports the following features */
367         ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
368     } else if (function == 1 && reg == R_ECX) {
369         /* We can set the hypervisor flag, even if KVM does not return it on
370          * GET_SUPPORTED_CPUID
371          */
372         ret |= CPUID_EXT_HYPERVISOR;
373         /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
374          * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
375          * and the irqchip is in the kernel.
376          */
377         if (kvm_irqchip_in_kernel() &&
378                 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
379             ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
380         }
381 
382         /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
383          * without the in-kernel irqchip
384          */
385         if (!kvm_irqchip_in_kernel()) {
386             ret &= ~CPUID_EXT_X2APIC;
387         }
388 
389         if (enable_cpu_pm) {
390             int disable_exits = kvm_check_extension(s,
391                                                     KVM_CAP_X86_DISABLE_EXITS);
392 
393             if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
394                 ret |= CPUID_EXT_MONITOR;
395             }
396         }
397     } else if (function == 6 && reg == R_EAX) {
398         ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
399     } else if (function == 7 && index == 0 && reg == R_EBX) {
400         if (host_tsx_broken()) {
401             ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
402         }
403     } else if (function == 7 && index == 0 && reg == R_EDX) {
404         /*
405          * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
406          * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
407          * returned by KVM_GET_MSR_INDEX_LIST.
408          */
409         if (!has_msr_arch_capabs) {
410             ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
411         }
412     } else if (function == 0xd && index == 0 &&
413                (reg == R_EAX || reg == R_EDX)) {
414         struct kvm_device_attr attr = {
415             .group = 0,
416             .attr = KVM_X86_XCOMP_GUEST_SUPP,
417             .addr = (unsigned long) &bitmask
418         };
419 
420         bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
421         if (!sys_attr) {
422             warn_report("cannot get sys attribute capabilities %d", sys_attr);
423         }
424 
425         int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
426         if (rc == -1 && (errno == ENXIO || errno == EINVAL)) {
427             warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
428                         "error: %d", rc);
429         }
430         ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
431     } else if (function == 0x80000001 && reg == R_ECX) {
432         /*
433          * It's safe to enable TOPOEXT even if it's not returned by
434          * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
435          * us to keep CPU models including TOPOEXT runnable on older kernels.
436          */
437         ret |= CPUID_EXT3_TOPOEXT;
438     } else if (function == 0x80000001 && reg == R_EDX) {
439         /* On Intel, kvm returns cpuid according to the Intel spec,
440          * so add missing bits according to the AMD spec:
441          */
442         cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
443         ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
444     } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
445         /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
446          * be enabled without the in-kernel irqchip
447          */
448         if (!kvm_irqchip_in_kernel()) {
449             ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
450         }
451         if (kvm_irqchip_is_split()) {
452             ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
453         }
454     } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
455         ret |= 1U << KVM_HINTS_REALTIME;
456     }
457 
458     return ret;
459 }
460 
461 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
462 {
463     struct {
464         struct kvm_msrs info;
465         struct kvm_msr_entry entries[1];
466     } msr_data = {};
467     uint64_t value;
468     uint32_t ret, can_be_one, must_be_one;
469 
470     if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
471         return 0;
472     }
473 
474     /* Check if requested MSR is supported feature MSR */
475     int i;
476     for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
477         if (kvm_feature_msrs->indices[i] == index) {
478             break;
479         }
480     if (i == kvm_feature_msrs->nmsrs) {
481         return 0; /* if the feature MSR is not supported, simply return 0 */
482     }
483 
484     msr_data.info.nmsrs = 1;
485     msr_data.entries[0].index = index;
486 
487     ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
488     if (ret != 1) {
489         error_report("KVM get MSR (index=0x%x) feature failed, %s",
490             index, strerror(-ret));
491         exit(1);
492     }
493 
494     value = msr_data.entries[0].data;
495     switch (index) {
496     case MSR_IA32_VMX_PROCBASED_CTLS2:
497         if (!has_msr_vmx_procbased_ctls2) {
498             /* KVM forgot to add these bits for some time, do this ourselves. */
499             if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
500                 CPUID_XSAVE_XSAVES) {
501                 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
502             }
503             if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
504                 CPUID_EXT_RDRAND) {
505                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
506             }
507             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
508                 CPUID_7_0_EBX_INVPCID) {
509                 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
510             }
511             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
512                 CPUID_7_0_EBX_RDSEED) {
513                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
514             }
515             if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
516                 CPUID_EXT2_RDTSCP) {
517                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
518             }
519         }
520         /* fall through */
521     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
522     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
523     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
524     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
525         /*
526          * Return true for bits that can be one, but do not have to be one.
527          * The SDM tells us which bits could have a "must be one" setting,
528          * so we can do the opposite transformation in make_vmx_msr_value.
529          */
530         must_be_one = (uint32_t)value;
531         can_be_one = (uint32_t)(value >> 32);
532         return can_be_one & ~must_be_one;
533 
534     default:
535         return value;
536     }
537 }
538 
539 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
540                                      int *max_banks)
541 {
542     int r;
543 
544     r = kvm_check_extension(s, KVM_CAP_MCE);
545     if (r > 0) {
546         *max_banks = r;
547         return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
548     }
549     return -ENOSYS;
550 }
551 
552 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
553 {
554     CPUState *cs = CPU(cpu);
555     CPUX86State *env = &cpu->env;
556     uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
557                       MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
558     uint64_t mcg_status = MCG_STATUS_MCIP;
559     int flags = 0;
560 
561     if (code == BUS_MCEERR_AR) {
562         status |= MCI_STATUS_AR | 0x134;
563         mcg_status |= MCG_STATUS_EIPV;
564     } else {
565         status |= 0xc0;
566         mcg_status |= MCG_STATUS_RIPV;
567     }
568 
569     flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
570     /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
571      * guest kernel back into env->mcg_ext_ctl.
572      */
573     cpu_synchronize_state(cs);
574     if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
575         mcg_status |= MCG_STATUS_LMCE;
576         flags = 0;
577     }
578 
579     cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
580                        (MCM_ADDR_PHYS << 6) | 0xc, flags);
581 }
582 
583 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
584 {
585     MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
586 
587     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
588                                    &mff);
589 }
590 
591 static void hardware_memory_error(void *host_addr)
592 {
593     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
594     error_report("QEMU got Hardware memory error at addr %p", host_addr);
595     exit(1);
596 }
597 
598 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
599 {
600     X86CPU *cpu = X86_CPU(c);
601     CPUX86State *env = &cpu->env;
602     ram_addr_t ram_addr;
603     hwaddr paddr;
604 
605     /* If we get an action required MCE, it has been injected by KVM
606      * while the VM was running.  An action optional MCE instead should
607      * be coming from the main thread, which qemu_init_sigbus identifies
608      * as the "early kill" thread.
609      */
610     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
611 
612     if ((env->mcg_cap & MCG_SER_P) && addr) {
613         ram_addr = qemu_ram_addr_from_host(addr);
614         if (ram_addr != RAM_ADDR_INVALID &&
615             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
616             kvm_hwpoison_page_add(ram_addr);
617             kvm_mce_inject(cpu, paddr, code);
618 
619             /*
620              * Use different logging severity based on error type.
621              * If there is additional MCE reporting on the hypervisor, QEMU VA
622              * could be another source to identify the PA and MCE details.
623              */
624             if (code == BUS_MCEERR_AR) {
625                 error_report("Guest MCE Memory Error at QEMU addr %p and "
626                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
627                     addr, paddr, "BUS_MCEERR_AR");
628             } else {
629                  warn_report("Guest MCE Memory Error at QEMU addr %p and "
630                      "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
631                      addr, paddr, "BUS_MCEERR_AO");
632             }
633 
634             return;
635         }
636 
637         if (code == BUS_MCEERR_AO) {
638             warn_report("Hardware memory error at addr %p of type %s "
639                 "for memory used by QEMU itself instead of guest system!",
640                  addr, "BUS_MCEERR_AO");
641         }
642     }
643 
644     if (code == BUS_MCEERR_AR) {
645         hardware_memory_error(addr);
646     }
647 
648     /* Hope we are lucky for AO MCE, just notify a event */
649     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
650 }
651 
652 static void kvm_reset_exception(CPUX86State *env)
653 {
654     env->exception_nr = -1;
655     env->exception_pending = 0;
656     env->exception_injected = 0;
657     env->exception_has_payload = false;
658     env->exception_payload = 0;
659 }
660 
661 static void kvm_queue_exception(CPUX86State *env,
662                                 int32_t exception_nr,
663                                 uint8_t exception_has_payload,
664                                 uint64_t exception_payload)
665 {
666     assert(env->exception_nr == -1);
667     assert(!env->exception_pending);
668     assert(!env->exception_injected);
669     assert(!env->exception_has_payload);
670 
671     env->exception_nr = exception_nr;
672 
673     if (has_exception_payload) {
674         env->exception_pending = 1;
675 
676         env->exception_has_payload = exception_has_payload;
677         env->exception_payload = exception_payload;
678     } else {
679         env->exception_injected = 1;
680 
681         if (exception_nr == EXCP01_DB) {
682             assert(exception_has_payload);
683             env->dr[6] = exception_payload;
684         } else if (exception_nr == EXCP0E_PAGE) {
685             assert(exception_has_payload);
686             env->cr[2] = exception_payload;
687         } else {
688             assert(!exception_has_payload);
689         }
690     }
691 }
692 
693 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
694 {
695     CPUX86State *env = &cpu->env;
696 
697     if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
698         unsigned int bank, bank_num = env->mcg_cap & 0xff;
699         struct kvm_x86_mce mce;
700 
701         kvm_reset_exception(env);
702 
703         /*
704          * There must be at least one bank in use if an MCE is pending.
705          * Find it and use its values for the event injection.
706          */
707         for (bank = 0; bank < bank_num; bank++) {
708             if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
709                 break;
710             }
711         }
712         assert(bank < bank_num);
713 
714         mce.bank = bank;
715         mce.status = env->mce_banks[bank * 4 + 1];
716         mce.mcg_status = env->mcg_status;
717         mce.addr = env->mce_banks[bank * 4 + 2];
718         mce.misc = env->mce_banks[bank * 4 + 3];
719 
720         return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
721     }
722     return 0;
723 }
724 
725 static void cpu_update_state(void *opaque, bool running, RunState state)
726 {
727     CPUX86State *env = opaque;
728 
729     if (running) {
730         env->tsc_valid = false;
731     }
732 }
733 
734 unsigned long kvm_arch_vcpu_id(CPUState *cs)
735 {
736     X86CPU *cpu = X86_CPU(cs);
737     return cpu->apic_id;
738 }
739 
740 #ifndef KVM_CPUID_SIGNATURE_NEXT
741 #define KVM_CPUID_SIGNATURE_NEXT                0x40000100
742 #endif
743 
744 static bool hyperv_enabled(X86CPU *cpu)
745 {
746     return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
747         ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
748          cpu->hyperv_features || cpu->hyperv_passthrough);
749 }
750 
751 /*
752  * Check whether target_freq is within conservative
753  * ntp correctable bounds (250ppm) of freq
754  */
755 static inline bool freq_within_bounds(int freq, int target_freq)
756 {
757         int max_freq = freq + (freq * 250 / 1000000);
758         int min_freq = freq - (freq * 250 / 1000000);
759 
760         if (target_freq >= min_freq && target_freq <= max_freq) {
761                 return true;
762         }
763 
764         return false;
765 }
766 
767 static int kvm_arch_set_tsc_khz(CPUState *cs)
768 {
769     X86CPU *cpu = X86_CPU(cs);
770     CPUX86State *env = &cpu->env;
771     int r, cur_freq;
772     bool set_ioctl = false;
773 
774     if (!env->tsc_khz) {
775         return 0;
776     }
777 
778     cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
779                kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
780 
781     /*
782      * If TSC scaling is supported, attempt to set TSC frequency.
783      */
784     if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
785         set_ioctl = true;
786     }
787 
788     /*
789      * If desired TSC frequency is within bounds of NTP correction,
790      * attempt to set TSC frequency.
791      */
792     if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
793         set_ioctl = true;
794     }
795 
796     r = set_ioctl ?
797         kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
798         -ENOTSUP;
799 
800     if (r < 0) {
801         /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
802          * TSC frequency doesn't match the one we want.
803          */
804         cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
805                    kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
806                    -ENOTSUP;
807         if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
808             warn_report("TSC frequency mismatch between "
809                         "VM (%" PRId64 " kHz) and host (%d kHz), "
810                         "and TSC scaling unavailable",
811                         env->tsc_khz, cur_freq);
812             return r;
813         }
814     }
815 
816     return 0;
817 }
818 
819 static bool tsc_is_stable_and_known(CPUX86State *env)
820 {
821     if (!env->tsc_khz) {
822         return false;
823     }
824     return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
825         || env->user_tsc_khz;
826 }
827 
828 static struct {
829     const char *desc;
830     struct {
831         uint32_t func;
832         int reg;
833         uint32_t bits;
834     } flags[2];
835     uint64_t dependencies;
836 } kvm_hyperv_properties[] = {
837     [HYPERV_FEAT_RELAXED] = {
838         .desc = "relaxed timing (hv-relaxed)",
839         .flags = {
840             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
841              .bits = HV_RELAXED_TIMING_RECOMMENDED}
842         }
843     },
844     [HYPERV_FEAT_VAPIC] = {
845         .desc = "virtual APIC (hv-vapic)",
846         .flags = {
847             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
848              .bits = HV_APIC_ACCESS_AVAILABLE}
849         }
850     },
851     [HYPERV_FEAT_TIME] = {
852         .desc = "clocksources (hv-time)",
853         .flags = {
854             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
855              .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
856         }
857     },
858     [HYPERV_FEAT_CRASH] = {
859         .desc = "crash MSRs (hv-crash)",
860         .flags = {
861             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
862              .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
863         }
864     },
865     [HYPERV_FEAT_RESET] = {
866         .desc = "reset MSR (hv-reset)",
867         .flags = {
868             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
869              .bits = HV_RESET_AVAILABLE}
870         }
871     },
872     [HYPERV_FEAT_VPINDEX] = {
873         .desc = "VP_INDEX MSR (hv-vpindex)",
874         .flags = {
875             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
876              .bits = HV_VP_INDEX_AVAILABLE}
877         }
878     },
879     [HYPERV_FEAT_RUNTIME] = {
880         .desc = "VP_RUNTIME MSR (hv-runtime)",
881         .flags = {
882             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
883              .bits = HV_VP_RUNTIME_AVAILABLE}
884         }
885     },
886     [HYPERV_FEAT_SYNIC] = {
887         .desc = "synthetic interrupt controller (hv-synic)",
888         .flags = {
889             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
890              .bits = HV_SYNIC_AVAILABLE}
891         }
892     },
893     [HYPERV_FEAT_STIMER] = {
894         .desc = "synthetic timers (hv-stimer)",
895         .flags = {
896             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
897              .bits = HV_SYNTIMERS_AVAILABLE}
898         },
899         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
900     },
901     [HYPERV_FEAT_FREQUENCIES] = {
902         .desc = "frequency MSRs (hv-frequencies)",
903         .flags = {
904             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
905              .bits = HV_ACCESS_FREQUENCY_MSRS},
906             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
907              .bits = HV_FREQUENCY_MSRS_AVAILABLE}
908         }
909     },
910     [HYPERV_FEAT_REENLIGHTENMENT] = {
911         .desc = "reenlightenment MSRs (hv-reenlightenment)",
912         .flags = {
913             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
914              .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
915         }
916     },
917     [HYPERV_FEAT_TLBFLUSH] = {
918         .desc = "paravirtualized TLB flush (hv-tlbflush)",
919         .flags = {
920             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
921              .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
922              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
923         },
924         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
925     },
926     [HYPERV_FEAT_EVMCS] = {
927         .desc = "enlightened VMCS (hv-evmcs)",
928         .flags = {
929             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
930              .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
931         },
932         .dependencies = BIT(HYPERV_FEAT_VAPIC)
933     },
934     [HYPERV_FEAT_IPI] = {
935         .desc = "paravirtualized IPI (hv-ipi)",
936         .flags = {
937             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
938              .bits = HV_CLUSTER_IPI_RECOMMENDED |
939              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
940         },
941         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
942     },
943     [HYPERV_FEAT_STIMER_DIRECT] = {
944         .desc = "direct mode synthetic timers (hv-stimer-direct)",
945         .flags = {
946             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
947              .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
948         },
949         .dependencies = BIT(HYPERV_FEAT_STIMER)
950     },
951     [HYPERV_FEAT_AVIC] = {
952         .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
953         .flags = {
954             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
955              .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
956         }
957     },
958 };
959 
960 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
961                                            bool do_sys_ioctl)
962 {
963     struct kvm_cpuid2 *cpuid;
964     int r, size;
965 
966     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
967     cpuid = g_malloc0(size);
968     cpuid->nent = max;
969 
970     if (do_sys_ioctl) {
971         r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
972     } else {
973         r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
974     }
975     if (r == 0 && cpuid->nent >= max) {
976         r = -E2BIG;
977     }
978     if (r < 0) {
979         if (r == -E2BIG) {
980             g_free(cpuid);
981             return NULL;
982         } else {
983             fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
984                     strerror(-r));
985             exit(1);
986         }
987     }
988     return cpuid;
989 }
990 
991 /*
992  * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
993  * for all entries.
994  */
995 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
996 {
997     struct kvm_cpuid2 *cpuid;
998     /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000080 leaves */
999     int max = 10;
1000     int i;
1001     bool do_sys_ioctl;
1002 
1003     do_sys_ioctl =
1004         kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1005 
1006     /*
1007      * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1008      * unsupported, kvm_hyperv_expand_features() checks for that.
1009      */
1010     assert(do_sys_ioctl || cs->kvm_state);
1011 
1012     /*
1013      * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1014      * -E2BIG, however, it doesn't report back the right size. Keep increasing
1015      * it and re-trying until we succeed.
1016      */
1017     while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1018         max++;
1019     }
1020 
1021     /*
1022      * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1023      * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1024      * information early, just check for the capability and set the bit
1025      * manually.
1026      */
1027     if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1028                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1029         for (i = 0; i < cpuid->nent; i++) {
1030             if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1031                 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1032             }
1033         }
1034     }
1035 
1036     return cpuid;
1037 }
1038 
1039 /*
1040  * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1041  * leaves from KVM_CAP_HYPERV* and present MSRs data.
1042  */
1043 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1044 {
1045     X86CPU *cpu = X86_CPU(cs);
1046     struct kvm_cpuid2 *cpuid;
1047     struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1048 
1049     /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1050     cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1051     cpuid->nent = 2;
1052 
1053     /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1054     entry_feat = &cpuid->entries[0];
1055     entry_feat->function = HV_CPUID_FEATURES;
1056 
1057     entry_recomm = &cpuid->entries[1];
1058     entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1059     entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1060 
1061     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1062         entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1063         entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1064         entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1065         entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1066         entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1067     }
1068 
1069     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1070         entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1071         entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1072     }
1073 
1074     if (has_msr_hv_frequencies) {
1075         entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1076         entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1077     }
1078 
1079     if (has_msr_hv_crash) {
1080         entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1081     }
1082 
1083     if (has_msr_hv_reenlightenment) {
1084         entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1085     }
1086 
1087     if (has_msr_hv_reset) {
1088         entry_feat->eax |= HV_RESET_AVAILABLE;
1089     }
1090 
1091     if (has_msr_hv_vpindex) {
1092         entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1093     }
1094 
1095     if (has_msr_hv_runtime) {
1096         entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1097     }
1098 
1099     if (has_msr_hv_synic) {
1100         unsigned int cap = cpu->hyperv_synic_kvm_only ?
1101             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1102 
1103         if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1104             entry_feat->eax |= HV_SYNIC_AVAILABLE;
1105         }
1106     }
1107 
1108     if (has_msr_hv_stimer) {
1109         entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1110     }
1111 
1112     if (kvm_check_extension(cs->kvm_state,
1113                             KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1114         entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1115         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1116     }
1117 
1118     if (kvm_check_extension(cs->kvm_state,
1119                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1120         entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1121     }
1122 
1123     if (kvm_check_extension(cs->kvm_state,
1124                             KVM_CAP_HYPERV_SEND_IPI) > 0) {
1125         entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1126         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1127     }
1128 
1129     return cpuid;
1130 }
1131 
1132 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1133 {
1134     struct kvm_cpuid_entry2 *entry;
1135     struct kvm_cpuid2 *cpuid;
1136 
1137     if (hv_cpuid_cache) {
1138         cpuid = hv_cpuid_cache;
1139     } else {
1140         if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1141             cpuid = get_supported_hv_cpuid(cs);
1142         } else {
1143             /*
1144              * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1145              * before KVM context is created but this is only done when
1146              * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1147              * KVM_CAP_HYPERV_CPUID.
1148              */
1149             assert(cs->kvm_state);
1150 
1151             cpuid = get_supported_hv_cpuid_legacy(cs);
1152         }
1153         hv_cpuid_cache = cpuid;
1154     }
1155 
1156     if (!cpuid) {
1157         return 0;
1158     }
1159 
1160     entry = cpuid_find_entry(cpuid, func, 0);
1161     if (!entry) {
1162         return 0;
1163     }
1164 
1165     return cpuid_entry_get_reg(entry, reg);
1166 }
1167 
1168 static bool hyperv_feature_supported(CPUState *cs, int feature)
1169 {
1170     uint32_t func, bits;
1171     int i, reg;
1172 
1173     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1174 
1175         func = kvm_hyperv_properties[feature].flags[i].func;
1176         reg = kvm_hyperv_properties[feature].flags[i].reg;
1177         bits = kvm_hyperv_properties[feature].flags[i].bits;
1178 
1179         if (!func) {
1180             continue;
1181         }
1182 
1183         if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1184             return false;
1185         }
1186     }
1187 
1188     return true;
1189 }
1190 
1191 /* Checks that all feature dependencies are enabled */
1192 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1193 {
1194     uint64_t deps;
1195     int dep_feat;
1196 
1197     deps = kvm_hyperv_properties[feature].dependencies;
1198     while (deps) {
1199         dep_feat = ctz64(deps);
1200         if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1201             error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1202                        kvm_hyperv_properties[feature].desc,
1203                        kvm_hyperv_properties[dep_feat].desc);
1204             return false;
1205         }
1206         deps &= ~(1ull << dep_feat);
1207     }
1208 
1209     return true;
1210 }
1211 
1212 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1213 {
1214     X86CPU *cpu = X86_CPU(cs);
1215     uint32_t r = 0;
1216     int i, j;
1217 
1218     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1219         if (!hyperv_feat_enabled(cpu, i)) {
1220             continue;
1221         }
1222 
1223         for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1224             if (kvm_hyperv_properties[i].flags[j].func != func) {
1225                 continue;
1226             }
1227             if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1228                 continue;
1229             }
1230 
1231             r |= kvm_hyperv_properties[i].flags[j].bits;
1232         }
1233     }
1234 
1235     return r;
1236 }
1237 
1238 /*
1239  * Expand Hyper-V CPU features. In partucular, check that all the requested
1240  * features are supported by the host and the sanity of the configuration
1241  * (that all the required dependencies are included). Also, this takes care
1242  * of 'hv_passthrough' mode and fills the environment with all supported
1243  * Hyper-V features.
1244  */
1245 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1246 {
1247     CPUState *cs = CPU(cpu);
1248     Error *local_err = NULL;
1249     int feat;
1250 
1251     if (!hyperv_enabled(cpu))
1252         return true;
1253 
1254     /*
1255      * When kvm_hyperv_expand_features is called at CPU feature expansion
1256      * time per-CPU kvm_state is not available yet so we can only proceed
1257      * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1258      */
1259     if (!cs->kvm_state &&
1260         !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1261         return true;
1262 
1263     if (cpu->hyperv_passthrough) {
1264         cpu->hyperv_vendor_id[0] =
1265             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1266         cpu->hyperv_vendor_id[1] =
1267             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1268         cpu->hyperv_vendor_id[2] =
1269             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1270         cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1271                                        sizeof(cpu->hyperv_vendor_id) + 1);
1272         memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1273                sizeof(cpu->hyperv_vendor_id));
1274         cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1275 
1276         cpu->hyperv_interface_id[0] =
1277             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1278         cpu->hyperv_interface_id[1] =
1279             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1280         cpu->hyperv_interface_id[2] =
1281             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1282         cpu->hyperv_interface_id[3] =
1283             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1284 
1285         cpu->hyperv_ver_id_build =
1286             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1287         cpu->hyperv_ver_id_major =
1288             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1289         cpu->hyperv_ver_id_minor =
1290             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1291         cpu->hyperv_ver_id_sp =
1292             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1293         cpu->hyperv_ver_id_sb =
1294             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1295         cpu->hyperv_ver_id_sn =
1296             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1297 
1298         cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1299                                             R_EAX);
1300         cpu->hyperv_limits[0] =
1301             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1302         cpu->hyperv_limits[1] =
1303             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1304         cpu->hyperv_limits[2] =
1305             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1306 
1307         cpu->hyperv_spinlock_attempts =
1308             hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1309 
1310         /*
1311          * Mark feature as enabled in 'cpu->hyperv_features' as
1312          * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1313          */
1314         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1315             if (hyperv_feature_supported(cs, feat)) {
1316                 cpu->hyperv_features |= BIT(feat);
1317             }
1318         }
1319     } else {
1320         /* Check features availability and dependencies */
1321         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1322             /* If the feature was not requested skip it. */
1323             if (!hyperv_feat_enabled(cpu, feat)) {
1324                 continue;
1325             }
1326 
1327             /* Check if the feature is supported by KVM */
1328             if (!hyperv_feature_supported(cs, feat)) {
1329                 error_setg(errp, "Hyper-V %s is not supported by kernel",
1330                            kvm_hyperv_properties[feat].desc);
1331                 return false;
1332             }
1333 
1334             /* Check dependencies */
1335             if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1336                 error_propagate(errp, local_err);
1337                 return false;
1338             }
1339         }
1340     }
1341 
1342     /* Additional dependencies not covered by kvm_hyperv_properties[] */
1343     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1344         !cpu->hyperv_synic_kvm_only &&
1345         !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1346         error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1347                    kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1348                    kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1349         return false;
1350     }
1351 
1352     return true;
1353 }
1354 
1355 /*
1356  * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1357  */
1358 static int hyperv_fill_cpuids(CPUState *cs,
1359                               struct kvm_cpuid_entry2 *cpuid_ent)
1360 {
1361     X86CPU *cpu = X86_CPU(cs);
1362     struct kvm_cpuid_entry2 *c;
1363     uint32_t cpuid_i = 0;
1364 
1365     c = &cpuid_ent[cpuid_i++];
1366     c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1367     c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1368         HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1369     c->ebx = cpu->hyperv_vendor_id[0];
1370     c->ecx = cpu->hyperv_vendor_id[1];
1371     c->edx = cpu->hyperv_vendor_id[2];
1372 
1373     c = &cpuid_ent[cpuid_i++];
1374     c->function = HV_CPUID_INTERFACE;
1375     c->eax = cpu->hyperv_interface_id[0];
1376     c->ebx = cpu->hyperv_interface_id[1];
1377     c->ecx = cpu->hyperv_interface_id[2];
1378     c->edx = cpu->hyperv_interface_id[3];
1379 
1380     c = &cpuid_ent[cpuid_i++];
1381     c->function = HV_CPUID_VERSION;
1382     c->eax = cpu->hyperv_ver_id_build;
1383     c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1384         cpu->hyperv_ver_id_minor;
1385     c->ecx = cpu->hyperv_ver_id_sp;
1386     c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1387         (cpu->hyperv_ver_id_sn & 0xffffff);
1388 
1389     c = &cpuid_ent[cpuid_i++];
1390     c->function = HV_CPUID_FEATURES;
1391     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1392     c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1393     c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1394 
1395     /* Unconditionally required with any Hyper-V enlightenment */
1396     c->eax |= HV_HYPERCALL_AVAILABLE;
1397 
1398     /* SynIC and Vmbus devices require messages/signals hypercalls */
1399     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1400         !cpu->hyperv_synic_kvm_only) {
1401         c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1402     }
1403 
1404 
1405     /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1406     c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1407 
1408     c = &cpuid_ent[cpuid_i++];
1409     c->function = HV_CPUID_ENLIGHTMENT_INFO;
1410     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1411     c->ebx = cpu->hyperv_spinlock_attempts;
1412 
1413     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1414         !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1415         c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1416     }
1417 
1418     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1419         c->eax |= HV_NO_NONARCH_CORESHARING;
1420     } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1421         c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1422             HV_NO_NONARCH_CORESHARING;
1423     }
1424 
1425     c = &cpuid_ent[cpuid_i++];
1426     c->function = HV_CPUID_IMPLEMENT_LIMITS;
1427     c->eax = cpu->hv_max_vps;
1428     c->ebx = cpu->hyperv_limits[0];
1429     c->ecx = cpu->hyperv_limits[1];
1430     c->edx = cpu->hyperv_limits[2];
1431 
1432     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1433         uint32_t function;
1434 
1435         /* Create zeroed 0x40000006..0x40000009 leaves */
1436         for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1437              function < HV_CPUID_NESTED_FEATURES; function++) {
1438             c = &cpuid_ent[cpuid_i++];
1439             c->function = function;
1440         }
1441 
1442         c = &cpuid_ent[cpuid_i++];
1443         c->function = HV_CPUID_NESTED_FEATURES;
1444         c->eax = cpu->hyperv_nested[0];
1445     }
1446 
1447     return cpuid_i;
1448 }
1449 
1450 static Error *hv_passthrough_mig_blocker;
1451 static Error *hv_no_nonarch_cs_mig_blocker;
1452 
1453 /* Checks that the exposed eVMCS version range is supported by KVM */
1454 static bool evmcs_version_supported(uint16_t evmcs_version,
1455                                     uint16_t supported_evmcs_version)
1456 {
1457     uint8_t min_version = evmcs_version & 0xff;
1458     uint8_t max_version = evmcs_version >> 8;
1459     uint8_t min_supported_version = supported_evmcs_version & 0xff;
1460     uint8_t max_supported_version = supported_evmcs_version >> 8;
1461 
1462     return (min_version >= min_supported_version) &&
1463         (max_version <= max_supported_version);
1464 }
1465 
1466 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
1467 
1468 static int hyperv_init_vcpu(X86CPU *cpu)
1469 {
1470     CPUState *cs = CPU(cpu);
1471     Error *local_err = NULL;
1472     int ret;
1473 
1474     if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1475         error_setg(&hv_passthrough_mig_blocker,
1476                    "'hv-passthrough' CPU flag prevents migration, use explicit"
1477                    " set of hv-* flags instead");
1478         ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1479         if (ret < 0) {
1480             error_report_err(local_err);
1481             return ret;
1482         }
1483     }
1484 
1485     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1486         hv_no_nonarch_cs_mig_blocker == NULL) {
1487         error_setg(&hv_no_nonarch_cs_mig_blocker,
1488                    "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1489                    " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1490                    " make sure SMT is disabled and/or that vCPUs are properly"
1491                    " pinned)");
1492         ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1493         if (ret < 0) {
1494             error_report_err(local_err);
1495             return ret;
1496         }
1497     }
1498 
1499     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1500         /*
1501          * the kernel doesn't support setting vp_index; assert that its value
1502          * is in sync
1503          */
1504         struct {
1505             struct kvm_msrs info;
1506             struct kvm_msr_entry entries[1];
1507         } msr_data = {
1508             .info.nmsrs = 1,
1509             .entries[0].index = HV_X64_MSR_VP_INDEX,
1510         };
1511 
1512         ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
1513         if (ret < 0) {
1514             return ret;
1515         }
1516         assert(ret == 1);
1517 
1518         if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
1519             error_report("kernel's vp_index != QEMU's vp_index");
1520             return -ENXIO;
1521         }
1522     }
1523 
1524     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1525         uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1526             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1527         ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1528         if (ret < 0) {
1529             error_report("failed to turn on HyperV SynIC in KVM: %s",
1530                          strerror(-ret));
1531             return ret;
1532         }
1533 
1534         if (!cpu->hyperv_synic_kvm_only) {
1535             ret = hyperv_x86_synic_add(cpu);
1536             if (ret < 0) {
1537                 error_report("failed to create HyperV SynIC: %s",
1538                              strerror(-ret));
1539                 return ret;
1540             }
1541         }
1542     }
1543 
1544     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1545         uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1546         uint16_t supported_evmcs_version;
1547 
1548         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1549                                   (uintptr_t)&supported_evmcs_version);
1550 
1551         /*
1552          * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1553          * option sets. Note: we hardcode the maximum supported eVMCS version
1554          * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1555          * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1556          * to be added.
1557          */
1558         if (ret < 0) {
1559             error_report("Hyper-V %s is not supported by kernel",
1560                          kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1561             return ret;
1562         }
1563 
1564         if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1565             error_report("eVMCS version range [%d..%d] is not supported by "
1566                          "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1567                          evmcs_version >> 8, supported_evmcs_version & 0xff,
1568                          supported_evmcs_version >> 8);
1569             return -ENOTSUP;
1570         }
1571 
1572         cpu->hyperv_nested[0] = evmcs_version;
1573     }
1574 
1575     if (cpu->hyperv_enforce_cpuid) {
1576         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1577         if (ret < 0) {
1578             error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1579                          strerror(-ret));
1580             return ret;
1581         }
1582     }
1583 
1584     return 0;
1585 }
1586 
1587 static Error *invtsc_mig_blocker;
1588 
1589 #define KVM_MAX_CPUID_ENTRIES  100
1590 
1591 static void kvm_init_xsave(CPUX86State *env)
1592 {
1593     if (has_xsave2) {
1594         env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1595     } else if (has_xsave) {
1596         env->xsave_buf_len = sizeof(struct kvm_xsave);
1597     } else {
1598         return;
1599     }
1600 
1601     env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1602     memset(env->xsave_buf, 0, env->xsave_buf_len);
1603     /*
1604      * The allocated storage must be large enough for all of the
1605      * possible XSAVE state components.
1606      */
1607     assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1608            env->xsave_buf_len);
1609 }
1610 
1611 int kvm_arch_init_vcpu(CPUState *cs)
1612 {
1613     struct {
1614         struct kvm_cpuid2 cpuid;
1615         struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1616     } cpuid_data;
1617     /*
1618      * The kernel defines these structs with padding fields so there
1619      * should be no extra padding in our cpuid_data struct.
1620      */
1621     QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1622                       sizeof(struct kvm_cpuid2) +
1623                       sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1624 
1625     X86CPU *cpu = X86_CPU(cs);
1626     CPUX86State *env = &cpu->env;
1627     uint32_t limit, i, j, cpuid_i;
1628     uint32_t unused;
1629     struct kvm_cpuid_entry2 *c;
1630     uint32_t signature[3];
1631     int kvm_base = KVM_CPUID_SIGNATURE;
1632     int max_nested_state_len;
1633     int r;
1634     Error *local_err = NULL;
1635 
1636     memset(&cpuid_data, 0, sizeof(cpuid_data));
1637 
1638     cpuid_i = 0;
1639 
1640     has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
1641 
1642     r = kvm_arch_set_tsc_khz(cs);
1643     if (r < 0) {
1644         return r;
1645     }
1646 
1647     /* vcpu's TSC frequency is either specified by user, or following
1648      * the value used by KVM if the former is not present. In the
1649      * latter case, we query it from KVM and record in env->tsc_khz,
1650      * so that vcpu's TSC frequency can be migrated later via this field.
1651      */
1652     if (!env->tsc_khz) {
1653         r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1654             kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1655             -ENOTSUP;
1656         if (r > 0) {
1657             env->tsc_khz = r;
1658         }
1659     }
1660 
1661     env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1662 
1663     /*
1664      * kvm_hyperv_expand_features() is called here for the second time in case
1665      * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
1666      * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
1667      * check which Hyper-V enlightenments are supported and which are not, we
1668      * can still proceed and check/expand Hyper-V enlightenments here so legacy
1669      * behavior is preserved.
1670      */
1671     if (!kvm_hyperv_expand_features(cpu, &local_err)) {
1672         error_report_err(local_err);
1673         return -ENOSYS;
1674     }
1675 
1676     if (hyperv_enabled(cpu)) {
1677         r = hyperv_init_vcpu(cpu);
1678         if (r) {
1679             return r;
1680         }
1681 
1682         cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
1683         kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1684         has_msr_hv_hypercall = true;
1685     }
1686 
1687     if (cpu->expose_kvm) {
1688         memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1689         c = &cpuid_data.entries[cpuid_i++];
1690         c->function = KVM_CPUID_SIGNATURE | kvm_base;
1691         c->eax = KVM_CPUID_FEATURES | kvm_base;
1692         c->ebx = signature[0];
1693         c->ecx = signature[1];
1694         c->edx = signature[2];
1695 
1696         c = &cpuid_data.entries[cpuid_i++];
1697         c->function = KVM_CPUID_FEATURES | kvm_base;
1698         c->eax = env->features[FEAT_KVM];
1699         c->edx = env->features[FEAT_KVM_HINTS];
1700     }
1701 
1702     cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1703 
1704     if (cpu->kvm_pv_enforce_cpuid) {
1705         r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
1706         if (r < 0) {
1707             fprintf(stderr,
1708                     "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
1709                     strerror(-r));
1710             abort();
1711         }
1712     }
1713 
1714     for (i = 0; i <= limit; i++) {
1715         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1716             fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1717             abort();
1718         }
1719         c = &cpuid_data.entries[cpuid_i++];
1720 
1721         switch (i) {
1722         case 2: {
1723             /* Keep reading function 2 till all the input is received */
1724             int times;
1725 
1726             c->function = i;
1727             c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1728                        KVM_CPUID_FLAG_STATE_READ_NEXT;
1729             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1730             times = c->eax & 0xff;
1731 
1732             for (j = 1; j < times; ++j) {
1733                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1734                     fprintf(stderr, "cpuid_data is full, no space for "
1735                             "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1736                     abort();
1737                 }
1738                 c = &cpuid_data.entries[cpuid_i++];
1739                 c->function = i;
1740                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1741                 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1742             }
1743             break;
1744         }
1745         case 0x1f:
1746             if (env->nr_dies < 2) {
1747                 break;
1748             }
1749             /* fallthrough */
1750         case 4:
1751         case 0xb:
1752         case 0xd:
1753             for (j = 0; ; j++) {
1754                 if (i == 0xd && j == 64) {
1755                     break;
1756                 }
1757 
1758                 if (i == 0x1f && j == 64) {
1759                     break;
1760                 }
1761 
1762                 c->function = i;
1763                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1764                 c->index = j;
1765                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1766 
1767                 if (i == 4 && c->eax == 0) {
1768                     break;
1769                 }
1770                 if (i == 0xb && !(c->ecx & 0xff00)) {
1771                     break;
1772                 }
1773                 if (i == 0x1f && !(c->ecx & 0xff00)) {
1774                     break;
1775                 }
1776                 if (i == 0xd && c->eax == 0) {
1777                     continue;
1778                 }
1779                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1780                     fprintf(stderr, "cpuid_data is full, no space for "
1781                             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1782                     abort();
1783                 }
1784                 c = &cpuid_data.entries[cpuid_i++];
1785             }
1786             break;
1787         case 0x7:
1788         case 0x12:
1789             for (j = 0; ; j++) {
1790                 c->function = i;
1791                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1792                 c->index = j;
1793                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1794 
1795                 if (j > 1 && (c->eax & 0xf) != 1) {
1796                     break;
1797                 }
1798 
1799                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1800                     fprintf(stderr, "cpuid_data is full, no space for "
1801                                 "cpuid(eax:0x12,ecx:0x%x)\n", j);
1802                     abort();
1803                 }
1804                 c = &cpuid_data.entries[cpuid_i++];
1805             }
1806             break;
1807         case 0x14:
1808         case 0x1d:
1809         case 0x1e: {
1810             uint32_t times;
1811 
1812             c->function = i;
1813             c->index = 0;
1814             c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1815             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1816             times = c->eax;
1817 
1818             for (j = 1; j <= times; ++j) {
1819                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1820                     fprintf(stderr, "cpuid_data is full, no space for "
1821                                 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1822                     abort();
1823                 }
1824                 c = &cpuid_data.entries[cpuid_i++];
1825                 c->function = i;
1826                 c->index = j;
1827                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1828                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1829             }
1830             break;
1831         }
1832         default:
1833             c->function = i;
1834             c->flags = 0;
1835             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1836             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1837                 /*
1838                  * KVM already returns all zeroes if a CPUID entry is missing,
1839                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1840                  */
1841                 cpuid_i--;
1842             }
1843             break;
1844         }
1845     }
1846 
1847     if (limit >= 0x0a) {
1848         uint32_t eax, edx;
1849 
1850         cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1851 
1852         has_architectural_pmu_version = eax & 0xff;
1853         if (has_architectural_pmu_version > 0) {
1854             num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1855 
1856             /* Shouldn't be more than 32, since that's the number of bits
1857              * available in EBX to tell us _which_ counters are available.
1858              * Play it safe.
1859              */
1860             if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1861                 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1862             }
1863 
1864             if (has_architectural_pmu_version > 1) {
1865                 num_architectural_pmu_fixed_counters = edx & 0x1f;
1866 
1867                 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1868                     num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1869                 }
1870             }
1871         }
1872     }
1873 
1874     cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1875 
1876     for (i = 0x80000000; i <= limit; i++) {
1877         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1878             fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1879             abort();
1880         }
1881         c = &cpuid_data.entries[cpuid_i++];
1882 
1883         switch (i) {
1884         case 0x8000001d:
1885             /* Query for all AMD cache information leaves */
1886             for (j = 0; ; j++) {
1887                 c->function = i;
1888                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1889                 c->index = j;
1890                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1891 
1892                 if (c->eax == 0) {
1893                     break;
1894                 }
1895                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1896                     fprintf(stderr, "cpuid_data is full, no space for "
1897                             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1898                     abort();
1899                 }
1900                 c = &cpuid_data.entries[cpuid_i++];
1901             }
1902             break;
1903         default:
1904             c->function = i;
1905             c->flags = 0;
1906             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1907             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1908                 /*
1909                  * KVM already returns all zeroes if a CPUID entry is missing,
1910                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1911                  */
1912                 cpuid_i--;
1913             }
1914             break;
1915         }
1916     }
1917 
1918     /* Call Centaur's CPUID instructions they are supported. */
1919     if (env->cpuid_xlevel2 > 0) {
1920         cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1921 
1922         for (i = 0xC0000000; i <= limit; i++) {
1923             if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1924                 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1925                 abort();
1926             }
1927             c = &cpuid_data.entries[cpuid_i++];
1928 
1929             c->function = i;
1930             c->flags = 0;
1931             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1932         }
1933     }
1934 
1935     cpuid_data.cpuid.nent = cpuid_i;
1936 
1937     if (((env->cpuid_version >> 8)&0xF) >= 6
1938         && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1939            (CPUID_MCE | CPUID_MCA)
1940         && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1941         uint64_t mcg_cap, unsupported_caps;
1942         int banks;
1943         int ret;
1944 
1945         ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1946         if (ret < 0) {
1947             fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1948             return ret;
1949         }
1950 
1951         if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1952             error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1953                          (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1954             return -ENOTSUP;
1955         }
1956 
1957         unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1958         if (unsupported_caps) {
1959             if (unsupported_caps & MCG_LMCE_P) {
1960                 error_report("kvm: LMCE not supported");
1961                 return -ENOTSUP;
1962             }
1963             warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1964                         unsupported_caps);
1965         }
1966 
1967         env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1968         ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1969         if (ret < 0) {
1970             fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1971             return ret;
1972         }
1973     }
1974 
1975     cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
1976 
1977     c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1978     if (c) {
1979         has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1980                                   !!(c->ecx & CPUID_EXT_SMX);
1981     }
1982 
1983     c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
1984     if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
1985         has_msr_feature_control = true;
1986     }
1987 
1988     if (env->mcg_cap & MCG_LMCE_P) {
1989         has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1990     }
1991 
1992     if (!env->user_tsc_khz) {
1993         if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1994             invtsc_mig_blocker == NULL) {
1995             error_setg(&invtsc_mig_blocker,
1996                        "State blocked by non-migratable CPU device"
1997                        " (invtsc flag)");
1998             r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1999             if (r < 0) {
2000                 error_report_err(local_err);
2001                 return r;
2002             }
2003         }
2004     }
2005 
2006     if (cpu->vmware_cpuid_freq
2007         /* Guests depend on 0x40000000 to detect this feature, so only expose
2008          * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2009         && cpu->expose_kvm
2010         && kvm_base == KVM_CPUID_SIGNATURE
2011         /* TSC clock must be stable and known for this feature. */
2012         && tsc_is_stable_and_known(env)) {
2013 
2014         c = &cpuid_data.entries[cpuid_i++];
2015         c->function = KVM_CPUID_SIGNATURE | 0x10;
2016         c->eax = env->tsc_khz;
2017         c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2018         c->ecx = c->edx = 0;
2019 
2020         c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2021         c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2022     }
2023 
2024     cpuid_data.cpuid.nent = cpuid_i;
2025 
2026     cpuid_data.cpuid.padding = 0;
2027     r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2028     if (r) {
2029         goto fail;
2030     }
2031     kvm_init_xsave(env);
2032 
2033     max_nested_state_len = kvm_max_nested_state_length();
2034     if (max_nested_state_len > 0) {
2035         assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2036 
2037         if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2038             struct kvm_vmx_nested_state_hdr *vmx_hdr;
2039 
2040             env->nested_state = g_malloc0(max_nested_state_len);
2041             env->nested_state->size = max_nested_state_len;
2042 
2043             if (cpu_has_vmx(env)) {
2044                 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
2045                 vmx_hdr = &env->nested_state->hdr.vmx;
2046                 vmx_hdr->vmxon_pa = -1ull;
2047                 vmx_hdr->vmcs12_pa = -1ull;
2048             } else {
2049                 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
2050             }
2051         }
2052     }
2053 
2054     cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2055 
2056     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2057         has_msr_tsc_aux = false;
2058     }
2059 
2060     kvm_init_msrs(cpu);
2061 
2062     return 0;
2063 
2064  fail:
2065     migrate_del_blocker(invtsc_mig_blocker);
2066 
2067     return r;
2068 }
2069 
2070 int kvm_arch_destroy_vcpu(CPUState *cs)
2071 {
2072     X86CPU *cpu = X86_CPU(cs);
2073     CPUX86State *env = &cpu->env;
2074 
2075     if (cpu->kvm_msr_buf) {
2076         g_free(cpu->kvm_msr_buf);
2077         cpu->kvm_msr_buf = NULL;
2078     }
2079 
2080     if (env->nested_state) {
2081         g_free(env->nested_state);
2082         env->nested_state = NULL;
2083     }
2084 
2085     qemu_del_vm_change_state_handler(cpu->vmsentry);
2086 
2087     return 0;
2088 }
2089 
2090 void kvm_arch_reset_vcpu(X86CPU *cpu)
2091 {
2092     CPUX86State *env = &cpu->env;
2093 
2094     env->xcr0 = 1;
2095     if (kvm_irqchip_in_kernel()) {
2096         env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2097                                           KVM_MP_STATE_UNINITIALIZED;
2098     } else {
2099         env->mp_state = KVM_MP_STATE_RUNNABLE;
2100     }
2101 
2102     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2103         int i;
2104         for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2105             env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2106         }
2107 
2108         hyperv_x86_synic_reset(cpu);
2109     }
2110     /* enabled by default */
2111     env->poll_control_msr = 1;
2112 
2113     sev_es_set_reset_vector(CPU(cpu));
2114 }
2115 
2116 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2117 {
2118     CPUX86State *env = &cpu->env;
2119 
2120     /* APs get directly into wait-for-SIPI state.  */
2121     if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2122         env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2123     }
2124 }
2125 
2126 static int kvm_get_supported_feature_msrs(KVMState *s)
2127 {
2128     int ret = 0;
2129 
2130     if (kvm_feature_msrs != NULL) {
2131         return 0;
2132     }
2133 
2134     if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2135         return 0;
2136     }
2137 
2138     struct kvm_msr_list msr_list;
2139 
2140     msr_list.nmsrs = 0;
2141     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2142     if (ret < 0 && ret != -E2BIG) {
2143         error_report("Fetch KVM feature MSR list failed: %s",
2144             strerror(-ret));
2145         return ret;
2146     }
2147 
2148     assert(msr_list.nmsrs > 0);
2149     kvm_feature_msrs = (struct kvm_msr_list *) \
2150         g_malloc0(sizeof(msr_list) +
2151                  msr_list.nmsrs * sizeof(msr_list.indices[0]));
2152 
2153     kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2154     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2155 
2156     if (ret < 0) {
2157         error_report("Fetch KVM feature MSR list failed: %s",
2158             strerror(-ret));
2159         g_free(kvm_feature_msrs);
2160         kvm_feature_msrs = NULL;
2161         return ret;
2162     }
2163 
2164     return 0;
2165 }
2166 
2167 static int kvm_get_supported_msrs(KVMState *s)
2168 {
2169     int ret = 0;
2170     struct kvm_msr_list msr_list, *kvm_msr_list;
2171 
2172     /*
2173      *  Obtain MSR list from KVM.  These are the MSRs that we must
2174      *  save/restore.
2175      */
2176     msr_list.nmsrs = 0;
2177     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2178     if (ret < 0 && ret != -E2BIG) {
2179         return ret;
2180     }
2181     /*
2182      * Old kernel modules had a bug and could write beyond the provided
2183      * memory. Allocate at least a safe amount of 1K.
2184      */
2185     kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2186                                           msr_list.nmsrs *
2187                                           sizeof(msr_list.indices[0])));
2188 
2189     kvm_msr_list->nmsrs = msr_list.nmsrs;
2190     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2191     if (ret >= 0) {
2192         int i;
2193 
2194         for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2195             switch (kvm_msr_list->indices[i]) {
2196             case MSR_STAR:
2197                 has_msr_star = true;
2198                 break;
2199             case MSR_VM_HSAVE_PA:
2200                 has_msr_hsave_pa = true;
2201                 break;
2202             case MSR_TSC_AUX:
2203                 has_msr_tsc_aux = true;
2204                 break;
2205             case MSR_TSC_ADJUST:
2206                 has_msr_tsc_adjust = true;
2207                 break;
2208             case MSR_IA32_TSCDEADLINE:
2209                 has_msr_tsc_deadline = true;
2210                 break;
2211             case MSR_IA32_SMBASE:
2212                 has_msr_smbase = true;
2213                 break;
2214             case MSR_SMI_COUNT:
2215                 has_msr_smi_count = true;
2216                 break;
2217             case MSR_IA32_MISC_ENABLE:
2218                 has_msr_misc_enable = true;
2219                 break;
2220             case MSR_IA32_BNDCFGS:
2221                 has_msr_bndcfgs = true;
2222                 break;
2223             case MSR_IA32_XSS:
2224                 has_msr_xss = true;
2225                 break;
2226             case MSR_IA32_UMWAIT_CONTROL:
2227                 has_msr_umwait = true;
2228                 break;
2229             case HV_X64_MSR_CRASH_CTL:
2230                 has_msr_hv_crash = true;
2231                 break;
2232             case HV_X64_MSR_RESET:
2233                 has_msr_hv_reset = true;
2234                 break;
2235             case HV_X64_MSR_VP_INDEX:
2236                 has_msr_hv_vpindex = true;
2237                 break;
2238             case HV_X64_MSR_VP_RUNTIME:
2239                 has_msr_hv_runtime = true;
2240                 break;
2241             case HV_X64_MSR_SCONTROL:
2242                 has_msr_hv_synic = true;
2243                 break;
2244             case HV_X64_MSR_STIMER0_CONFIG:
2245                 has_msr_hv_stimer = true;
2246                 break;
2247             case HV_X64_MSR_TSC_FREQUENCY:
2248                 has_msr_hv_frequencies = true;
2249                 break;
2250             case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2251                 has_msr_hv_reenlightenment = true;
2252                 break;
2253             case MSR_IA32_SPEC_CTRL:
2254                 has_msr_spec_ctrl = true;
2255                 break;
2256             case MSR_AMD64_TSC_RATIO:
2257                 has_tsc_scale_msr = true;
2258                 break;
2259             case MSR_IA32_TSX_CTRL:
2260                 has_msr_tsx_ctrl = true;
2261                 break;
2262             case MSR_VIRT_SSBD:
2263                 has_msr_virt_ssbd = true;
2264                 break;
2265             case MSR_IA32_ARCH_CAPABILITIES:
2266                 has_msr_arch_capabs = true;
2267                 break;
2268             case MSR_IA32_CORE_CAPABILITY:
2269                 has_msr_core_capabs = true;
2270                 break;
2271             case MSR_IA32_PERF_CAPABILITIES:
2272                 has_msr_perf_capabs = true;
2273                 break;
2274             case MSR_IA32_VMX_VMFUNC:
2275                 has_msr_vmx_vmfunc = true;
2276                 break;
2277             case MSR_IA32_UCODE_REV:
2278                 has_msr_ucode_rev = true;
2279                 break;
2280             case MSR_IA32_VMX_PROCBASED_CTLS2:
2281                 has_msr_vmx_procbased_ctls2 = true;
2282                 break;
2283             case MSR_IA32_PKRS:
2284                 has_msr_pkrs = true;
2285                 break;
2286             }
2287         }
2288     }
2289 
2290     g_free(kvm_msr_list);
2291 
2292     return ret;
2293 }
2294 
2295 static Notifier smram_machine_done;
2296 static KVMMemoryListener smram_listener;
2297 static AddressSpace smram_address_space;
2298 static MemoryRegion smram_as_root;
2299 static MemoryRegion smram_as_mem;
2300 
2301 static void register_smram_listener(Notifier *n, void *unused)
2302 {
2303     MemoryRegion *smram =
2304         (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2305 
2306     /* Outer container... */
2307     memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2308     memory_region_set_enabled(&smram_as_root, true);
2309 
2310     /* ... with two regions inside: normal system memory with low
2311      * priority, and...
2312      */
2313     memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2314                              get_system_memory(), 0, ~0ull);
2315     memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2316     memory_region_set_enabled(&smram_as_mem, true);
2317 
2318     if (smram) {
2319         /* ... SMRAM with higher priority */
2320         memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2321         memory_region_set_enabled(smram, true);
2322     }
2323 
2324     address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2325     kvm_memory_listener_register(kvm_state, &smram_listener,
2326                                  &smram_address_space, 1, "kvm-smram");
2327 }
2328 
2329 int kvm_arch_init(MachineState *ms, KVMState *s)
2330 {
2331     uint64_t identity_base = 0xfffbc000;
2332     uint64_t shadow_mem;
2333     int ret;
2334     struct utsname utsname;
2335     Error *local_err = NULL;
2336 
2337     /*
2338      * Initialize SEV context, if required
2339      *
2340      * If no memory encryption is requested (ms->cgs == NULL) this is
2341      * a no-op.
2342      *
2343      * It's also a no-op if a non-SEV confidential guest support
2344      * mechanism is selected.  SEV is the only mechanism available to
2345      * select on x86 at present, so this doesn't arise, but if new
2346      * mechanisms are supported in future (e.g. TDX), they'll need
2347      * their own initialization either here or elsewhere.
2348      */
2349     ret = sev_kvm_init(ms->cgs, &local_err);
2350     if (ret < 0) {
2351         error_report_err(local_err);
2352         return ret;
2353     }
2354 
2355     if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2356         error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2357         return -ENOTSUP;
2358     }
2359 
2360     has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2361     has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2362     has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2363     has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
2364 
2365     hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2366 
2367     has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2368     if (has_exception_payload) {
2369         ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2370         if (ret < 0) {
2371             error_report("kvm: Failed to enable exception payload cap: %s",
2372                          strerror(-ret));
2373             return ret;
2374         }
2375     }
2376 
2377     ret = kvm_get_supported_msrs(s);
2378     if (ret < 0) {
2379         return ret;
2380     }
2381 
2382     kvm_get_supported_feature_msrs(s);
2383 
2384     uname(&utsname);
2385     lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2386 
2387     /*
2388      * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2389      * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
2390      * Since these must be part of guest physical memory, we need to allocate
2391      * them, both by setting their start addresses in the kernel and by
2392      * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2393      *
2394      * Older KVM versions may not support setting the identity map base. In
2395      * that case we need to stick with the default, i.e. a 256K maximum BIOS
2396      * size.
2397      */
2398     if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2399         /* Allows up to 16M BIOSes. */
2400         identity_base = 0xfeffc000;
2401 
2402         ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2403         if (ret < 0) {
2404             return ret;
2405         }
2406     }
2407 
2408     /* Set TSS base one page after EPT identity map. */
2409     ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2410     if (ret < 0) {
2411         return ret;
2412     }
2413 
2414     /* Tell fw_cfg to notify the BIOS to reserve the range. */
2415     ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2416     if (ret < 0) {
2417         fprintf(stderr, "e820_add_entry() table is full\n");
2418         return ret;
2419     }
2420 
2421     shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2422     if (shadow_mem != -1) {
2423         shadow_mem /= 4096;
2424         ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2425         if (ret < 0) {
2426             return ret;
2427         }
2428     }
2429 
2430     if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2431         object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2432         x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2433         smram_machine_done.notify = register_smram_listener;
2434         qemu_add_machine_init_done_notifier(&smram_machine_done);
2435     }
2436 
2437     if (enable_cpu_pm) {
2438         int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2439         int ret;
2440 
2441 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2442 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2443 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2444 #endif
2445         if (disable_exits) {
2446             disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2447                               KVM_X86_DISABLE_EXITS_HLT |
2448                               KVM_X86_DISABLE_EXITS_PAUSE |
2449                               KVM_X86_DISABLE_EXITS_CSTATE);
2450         }
2451 
2452         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2453                                 disable_exits);
2454         if (ret < 0) {
2455             error_report("kvm: guest stopping CPU not supported: %s",
2456                          strerror(-ret));
2457         }
2458     }
2459 
2460     if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2461         X86MachineState *x86ms = X86_MACHINE(ms);
2462 
2463         if (x86ms->bus_lock_ratelimit > 0) {
2464             ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2465             if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2466                 error_report("kvm: bus lock detection unsupported");
2467                 return -ENOTSUP;
2468             }
2469             ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2470                                     KVM_BUS_LOCK_DETECTION_EXIT);
2471             if (ret < 0) {
2472                 error_report("kvm: Failed to enable bus lock detection cap: %s",
2473                              strerror(-ret));
2474                 return ret;
2475             }
2476             ratelimit_init(&bus_lock_ratelimit_ctrl);
2477             ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2478                                 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2479         }
2480     }
2481 
2482     return 0;
2483 }
2484 
2485 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2486 {
2487     lhs->selector = rhs->selector;
2488     lhs->base = rhs->base;
2489     lhs->limit = rhs->limit;
2490     lhs->type = 3;
2491     lhs->present = 1;
2492     lhs->dpl = 3;
2493     lhs->db = 0;
2494     lhs->s = 1;
2495     lhs->l = 0;
2496     lhs->g = 0;
2497     lhs->avl = 0;
2498     lhs->unusable = 0;
2499 }
2500 
2501 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2502 {
2503     unsigned flags = rhs->flags;
2504     lhs->selector = rhs->selector;
2505     lhs->base = rhs->base;
2506     lhs->limit = rhs->limit;
2507     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2508     lhs->present = (flags & DESC_P_MASK) != 0;
2509     lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2510     lhs->db = (flags >> DESC_B_SHIFT) & 1;
2511     lhs->s = (flags & DESC_S_MASK) != 0;
2512     lhs->l = (flags >> DESC_L_SHIFT) & 1;
2513     lhs->g = (flags & DESC_G_MASK) != 0;
2514     lhs->avl = (flags & DESC_AVL_MASK) != 0;
2515     lhs->unusable = !lhs->present;
2516     lhs->padding = 0;
2517 }
2518 
2519 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2520 {
2521     lhs->selector = rhs->selector;
2522     lhs->base = rhs->base;
2523     lhs->limit = rhs->limit;
2524     lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2525                  ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2526                  (rhs->dpl << DESC_DPL_SHIFT) |
2527                  (rhs->db << DESC_B_SHIFT) |
2528                  (rhs->s * DESC_S_MASK) |
2529                  (rhs->l << DESC_L_SHIFT) |
2530                  (rhs->g * DESC_G_MASK) |
2531                  (rhs->avl * DESC_AVL_MASK);
2532 }
2533 
2534 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2535 {
2536     if (set) {
2537         *kvm_reg = *qemu_reg;
2538     } else {
2539         *qemu_reg = *kvm_reg;
2540     }
2541 }
2542 
2543 static int kvm_getput_regs(X86CPU *cpu, int set)
2544 {
2545     CPUX86State *env = &cpu->env;
2546     struct kvm_regs regs;
2547     int ret = 0;
2548 
2549     if (!set) {
2550         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2551         if (ret < 0) {
2552             return ret;
2553         }
2554     }
2555 
2556     kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2557     kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2558     kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2559     kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2560     kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2561     kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2562     kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2563     kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2564 #ifdef TARGET_X86_64
2565     kvm_getput_reg(&regs.r8, &env->regs[8], set);
2566     kvm_getput_reg(&regs.r9, &env->regs[9], set);
2567     kvm_getput_reg(&regs.r10, &env->regs[10], set);
2568     kvm_getput_reg(&regs.r11, &env->regs[11], set);
2569     kvm_getput_reg(&regs.r12, &env->regs[12], set);
2570     kvm_getput_reg(&regs.r13, &env->regs[13], set);
2571     kvm_getput_reg(&regs.r14, &env->regs[14], set);
2572     kvm_getput_reg(&regs.r15, &env->regs[15], set);
2573 #endif
2574 
2575     kvm_getput_reg(&regs.rflags, &env->eflags, set);
2576     kvm_getput_reg(&regs.rip, &env->eip, set);
2577 
2578     if (set) {
2579         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2580     }
2581 
2582     return ret;
2583 }
2584 
2585 static int kvm_put_fpu(X86CPU *cpu)
2586 {
2587     CPUX86State *env = &cpu->env;
2588     struct kvm_fpu fpu;
2589     int i;
2590 
2591     memset(&fpu, 0, sizeof fpu);
2592     fpu.fsw = env->fpus & ~(7 << 11);
2593     fpu.fsw |= (env->fpstt & 7) << 11;
2594     fpu.fcw = env->fpuc;
2595     fpu.last_opcode = env->fpop;
2596     fpu.last_ip = env->fpip;
2597     fpu.last_dp = env->fpdp;
2598     for (i = 0; i < 8; ++i) {
2599         fpu.ftwx |= (!env->fptags[i]) << i;
2600     }
2601     memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2602     for (i = 0; i < CPU_NB_REGS; i++) {
2603         stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2604         stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2605     }
2606     fpu.mxcsr = env->mxcsr;
2607 
2608     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2609 }
2610 
2611 static int kvm_put_xsave(X86CPU *cpu)
2612 {
2613     CPUX86State *env = &cpu->env;
2614     void *xsave = env->xsave_buf;
2615 
2616     if (!has_xsave) {
2617         return kvm_put_fpu(cpu);
2618     }
2619     x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
2620 
2621     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2622 }
2623 
2624 static int kvm_put_xcrs(X86CPU *cpu)
2625 {
2626     CPUX86State *env = &cpu->env;
2627     struct kvm_xcrs xcrs = {};
2628 
2629     if (!has_xcrs) {
2630         return 0;
2631     }
2632 
2633     xcrs.nr_xcrs = 1;
2634     xcrs.flags = 0;
2635     xcrs.xcrs[0].xcr = 0;
2636     xcrs.xcrs[0].value = env->xcr0;
2637     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2638 }
2639 
2640 static int kvm_put_sregs(X86CPU *cpu)
2641 {
2642     CPUX86State *env = &cpu->env;
2643     struct kvm_sregs sregs;
2644 
2645     /*
2646      * The interrupt_bitmap is ignored because KVM_SET_SREGS is
2647      * always followed by KVM_SET_VCPU_EVENTS.
2648      */
2649     memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2650 
2651     if ((env->eflags & VM_MASK)) {
2652         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2653         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2654         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2655         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2656         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2657         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2658     } else {
2659         set_seg(&sregs.cs, &env->segs[R_CS]);
2660         set_seg(&sregs.ds, &env->segs[R_DS]);
2661         set_seg(&sregs.es, &env->segs[R_ES]);
2662         set_seg(&sregs.fs, &env->segs[R_FS]);
2663         set_seg(&sregs.gs, &env->segs[R_GS]);
2664         set_seg(&sregs.ss, &env->segs[R_SS]);
2665     }
2666 
2667     set_seg(&sregs.tr, &env->tr);
2668     set_seg(&sregs.ldt, &env->ldt);
2669 
2670     sregs.idt.limit = env->idt.limit;
2671     sregs.idt.base = env->idt.base;
2672     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2673     sregs.gdt.limit = env->gdt.limit;
2674     sregs.gdt.base = env->gdt.base;
2675     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2676 
2677     sregs.cr0 = env->cr[0];
2678     sregs.cr2 = env->cr[2];
2679     sregs.cr3 = env->cr[3];
2680     sregs.cr4 = env->cr[4];
2681 
2682     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2683     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2684 
2685     sregs.efer = env->efer;
2686 
2687     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2688 }
2689 
2690 static int kvm_put_sregs2(X86CPU *cpu)
2691 {
2692     CPUX86State *env = &cpu->env;
2693     struct kvm_sregs2 sregs;
2694     int i;
2695 
2696     sregs.flags = 0;
2697 
2698     if ((env->eflags & VM_MASK)) {
2699         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2700         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2701         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2702         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2703         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2704         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2705     } else {
2706         set_seg(&sregs.cs, &env->segs[R_CS]);
2707         set_seg(&sregs.ds, &env->segs[R_DS]);
2708         set_seg(&sregs.es, &env->segs[R_ES]);
2709         set_seg(&sregs.fs, &env->segs[R_FS]);
2710         set_seg(&sregs.gs, &env->segs[R_GS]);
2711         set_seg(&sregs.ss, &env->segs[R_SS]);
2712     }
2713 
2714     set_seg(&sregs.tr, &env->tr);
2715     set_seg(&sregs.ldt, &env->ldt);
2716 
2717     sregs.idt.limit = env->idt.limit;
2718     sregs.idt.base = env->idt.base;
2719     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2720     sregs.gdt.limit = env->gdt.limit;
2721     sregs.gdt.base = env->gdt.base;
2722     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2723 
2724     sregs.cr0 = env->cr[0];
2725     sregs.cr2 = env->cr[2];
2726     sregs.cr3 = env->cr[3];
2727     sregs.cr4 = env->cr[4];
2728 
2729     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2730     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2731 
2732     sregs.efer = env->efer;
2733 
2734     if (env->pdptrs_valid) {
2735         for (i = 0; i < 4; i++) {
2736             sregs.pdptrs[i] = env->pdptrs[i];
2737         }
2738         sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
2739     }
2740 
2741     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
2742 }
2743 
2744 
2745 static void kvm_msr_buf_reset(X86CPU *cpu)
2746 {
2747     memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2748 }
2749 
2750 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2751 {
2752     struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2753     void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2754     struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2755 
2756     assert((void *)(entry + 1) <= limit);
2757 
2758     entry->index = index;
2759     entry->reserved = 0;
2760     entry->data = value;
2761     msrs->nmsrs++;
2762 }
2763 
2764 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2765 {
2766     kvm_msr_buf_reset(cpu);
2767     kvm_msr_entry_add(cpu, index, value);
2768 
2769     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2770 }
2771 
2772 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2773 {
2774     int ret;
2775 
2776     ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2777     assert(ret == 1);
2778 }
2779 
2780 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2781 {
2782     CPUX86State *env = &cpu->env;
2783     int ret;
2784 
2785     if (!has_msr_tsc_deadline) {
2786         return 0;
2787     }
2788 
2789     ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2790     if (ret < 0) {
2791         return ret;
2792     }
2793 
2794     assert(ret == 1);
2795     return 0;
2796 }
2797 
2798 /*
2799  * Provide a separate write service for the feature control MSR in order to
2800  * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2801  * before writing any other state because forcibly leaving nested mode
2802  * invalidates the VCPU state.
2803  */
2804 static int kvm_put_msr_feature_control(X86CPU *cpu)
2805 {
2806     int ret;
2807 
2808     if (!has_msr_feature_control) {
2809         return 0;
2810     }
2811 
2812     ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2813                           cpu->env.msr_ia32_feature_control);
2814     if (ret < 0) {
2815         return ret;
2816     }
2817 
2818     assert(ret == 1);
2819     return 0;
2820 }
2821 
2822 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2823 {
2824     uint32_t default1, can_be_one, can_be_zero;
2825     uint32_t must_be_one;
2826 
2827     switch (index) {
2828     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2829         default1 = 0x00000016;
2830         break;
2831     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2832         default1 = 0x0401e172;
2833         break;
2834     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2835         default1 = 0x000011ff;
2836         break;
2837     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2838         default1 = 0x00036dff;
2839         break;
2840     case MSR_IA32_VMX_PROCBASED_CTLS2:
2841         default1 = 0;
2842         break;
2843     default:
2844         abort();
2845     }
2846 
2847     /* If a feature bit is set, the control can be either set or clear.
2848      * Otherwise the value is limited to either 0 or 1 by default1.
2849      */
2850     can_be_one = features | default1;
2851     can_be_zero = features | ~default1;
2852     must_be_one = ~can_be_zero;
2853 
2854     /*
2855      * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2856      * Bit 32:63 -> 1 if the control bit can be one.
2857      */
2858     return must_be_one | (((uint64_t)can_be_one) << 32);
2859 }
2860 
2861 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2862 {
2863     uint64_t kvm_vmx_basic =
2864         kvm_arch_get_supported_msr_feature(kvm_state,
2865                                            MSR_IA32_VMX_BASIC);
2866 
2867     if (!kvm_vmx_basic) {
2868         /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2869          * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2870          */
2871         return;
2872     }
2873 
2874     uint64_t kvm_vmx_misc =
2875         kvm_arch_get_supported_msr_feature(kvm_state,
2876                                            MSR_IA32_VMX_MISC);
2877     uint64_t kvm_vmx_ept_vpid =
2878         kvm_arch_get_supported_msr_feature(kvm_state,
2879                                            MSR_IA32_VMX_EPT_VPID_CAP);
2880 
2881     /*
2882      * If the guest is 64-bit, a value of 1 is allowed for the host address
2883      * space size vmexit control.
2884      */
2885     uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2886         ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2887 
2888     /*
2889      * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
2890      * not change them for backwards compatibility.
2891      */
2892     uint64_t fixed_vmx_basic = kvm_vmx_basic &
2893         (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2894          MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2895          MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2896 
2897     /*
2898      * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
2899      * change in the future but are always zero for now, clear them to be
2900      * future proof.  Bits 32-63 in theory could change, though KVM does
2901      * not support dual-monitor treatment and probably never will; mask
2902      * them out as well.
2903      */
2904     uint64_t fixed_vmx_misc = kvm_vmx_misc &
2905         (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2906          MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2907 
2908     /*
2909      * EPT memory types should not change either, so we do not bother
2910      * adding features for them.
2911      */
2912     uint64_t fixed_vmx_ept_mask =
2913             (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2914              MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2915     uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2916 
2917     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2918                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2919                                          f[FEAT_VMX_PROCBASED_CTLS]));
2920     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2921                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2922                                          f[FEAT_VMX_PINBASED_CTLS]));
2923     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2924                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2925                                          f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2926     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2927                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2928                                          f[FEAT_VMX_ENTRY_CTLS]));
2929     kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2930                       make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2931                                          f[FEAT_VMX_SECONDARY_CTLS]));
2932     kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2933                       f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2934     kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2935                       f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2936     kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2937                       f[FEAT_VMX_MISC] | fixed_vmx_misc);
2938     if (has_msr_vmx_vmfunc) {
2939         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2940     }
2941 
2942     /*
2943      * Just to be safe, write these with constant values.  The CRn_FIXED1
2944      * MSRs are generated by KVM based on the vCPU's CPUID.
2945      */
2946     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2947                       CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2948     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2949                       CR4_VMXE_MASK);
2950 
2951     if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
2952         /* TSC multiplier (0x2032).  */
2953         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
2954     } else {
2955         /* Preemption timer (0x482E).  */
2956         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
2957     }
2958 }
2959 
2960 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
2961 {
2962     uint64_t kvm_perf_cap =
2963         kvm_arch_get_supported_msr_feature(kvm_state,
2964                                            MSR_IA32_PERF_CAPABILITIES);
2965 
2966     if (kvm_perf_cap) {
2967         kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
2968                         kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
2969     }
2970 }
2971 
2972 static int kvm_buf_set_msrs(X86CPU *cpu)
2973 {
2974     int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2975     if (ret < 0) {
2976         return ret;
2977     }
2978 
2979     if (ret < cpu->kvm_msr_buf->nmsrs) {
2980         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2981         error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2982                      (uint32_t)e->index, (uint64_t)e->data);
2983     }
2984 
2985     assert(ret == cpu->kvm_msr_buf->nmsrs);
2986     return 0;
2987 }
2988 
2989 static void kvm_init_msrs(X86CPU *cpu)
2990 {
2991     CPUX86State *env = &cpu->env;
2992 
2993     kvm_msr_buf_reset(cpu);
2994     if (has_msr_arch_capabs) {
2995         kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2996                           env->features[FEAT_ARCH_CAPABILITIES]);
2997     }
2998 
2999     if (has_msr_core_capabs) {
3000         kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3001                           env->features[FEAT_CORE_CAPABILITY]);
3002     }
3003 
3004     if (has_msr_perf_capabs && cpu->enable_pmu) {
3005         kvm_msr_entry_add_perf(cpu, env->features);
3006     }
3007 
3008     if (has_msr_ucode_rev) {
3009         kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3010     }
3011 
3012     /*
3013      * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3014      * all kernels with MSR features should have them.
3015      */
3016     if (kvm_feature_msrs && cpu_has_vmx(env)) {
3017         kvm_msr_entry_add_vmx(cpu, env->features);
3018     }
3019 
3020     assert(kvm_buf_set_msrs(cpu) == 0);
3021 }
3022 
3023 static int kvm_put_msrs(X86CPU *cpu, int level)
3024 {
3025     CPUX86State *env = &cpu->env;
3026     int i;
3027 
3028     kvm_msr_buf_reset(cpu);
3029 
3030     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3031     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3032     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3033     kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3034     if (has_msr_star) {
3035         kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3036     }
3037     if (has_msr_hsave_pa) {
3038         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3039     }
3040     if (has_msr_tsc_aux) {
3041         kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3042     }
3043     if (has_msr_tsc_adjust) {
3044         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3045     }
3046     if (has_msr_misc_enable) {
3047         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3048                           env->msr_ia32_misc_enable);
3049     }
3050     if (has_msr_smbase) {
3051         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3052     }
3053     if (has_msr_smi_count) {
3054         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3055     }
3056     if (has_msr_pkrs) {
3057         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3058     }
3059     if (has_msr_bndcfgs) {
3060         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3061     }
3062     if (has_msr_xss) {
3063         kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3064     }
3065     if (has_msr_umwait) {
3066         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3067     }
3068     if (has_msr_spec_ctrl) {
3069         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3070     }
3071     if (has_tsc_scale_msr) {
3072         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3073     }
3074 
3075     if (has_msr_tsx_ctrl) {
3076         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3077     }
3078     if (has_msr_virt_ssbd) {
3079         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3080     }
3081 
3082 #ifdef TARGET_X86_64
3083     if (lm_capable_kernel) {
3084         kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3085         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3086         kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3087         kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3088     }
3089 #endif
3090 
3091     /*
3092      * The following MSRs have side effects on the guest or are too heavy
3093      * for normal writeback. Limit them to reset or full state updates.
3094      */
3095     if (level >= KVM_PUT_RESET_STATE) {
3096         kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3097         kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3098         kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3099         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3100             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3101         }
3102         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3103             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3104         }
3105         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3106             kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3107         }
3108         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3109             kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3110         }
3111 
3112         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3113             kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3114         }
3115 
3116         if (has_architectural_pmu_version > 0) {
3117             if (has_architectural_pmu_version > 1) {
3118                 /* Stop the counter.  */
3119                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3120                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3121             }
3122 
3123             /* Set the counter values.  */
3124             for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3125                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
3126                                   env->msr_fixed_counters[i]);
3127             }
3128             for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3129                 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
3130                                   env->msr_gp_counters[i]);
3131                 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
3132                                   env->msr_gp_evtsel[i]);
3133             }
3134             if (has_architectural_pmu_version > 1) {
3135                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3136                                   env->msr_global_status);
3137                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3138                                   env->msr_global_ovf_ctrl);
3139 
3140                 /* Now start the PMU.  */
3141                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3142                                   env->msr_fixed_ctr_ctrl);
3143                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3144                                   env->msr_global_ctrl);
3145             }
3146         }
3147         /*
3148          * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3149          * only sync them to KVM on the first cpu
3150          */
3151         if (current_cpu == first_cpu) {
3152             if (has_msr_hv_hypercall) {
3153                 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3154                                   env->msr_hv_guest_os_id);
3155                 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3156                                   env->msr_hv_hypercall);
3157             }
3158             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3159                 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3160                                   env->msr_hv_tsc);
3161             }
3162             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3163                 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3164                                   env->msr_hv_reenlightenment_control);
3165                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3166                                   env->msr_hv_tsc_emulation_control);
3167                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3168                                   env->msr_hv_tsc_emulation_status);
3169             }
3170         }
3171         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3172             kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
3173                               env->msr_hv_vapic);
3174         }
3175         if (has_msr_hv_crash) {
3176             int j;
3177 
3178             for (j = 0; j < HV_CRASH_PARAMS; j++)
3179                 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
3180                                   env->msr_hv_crash_params[j]);
3181 
3182             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
3183         }
3184         if (has_msr_hv_runtime) {
3185             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
3186         }
3187         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3188             && hv_vpindex_settable) {
3189             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3190                               hyperv_vp_index(CPU(cpu)));
3191         }
3192         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3193             int j;
3194 
3195             kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3196 
3197             kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
3198                               env->msr_hv_synic_control);
3199             kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
3200                               env->msr_hv_synic_evt_page);
3201             kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
3202                               env->msr_hv_synic_msg_page);
3203 
3204             for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
3205                 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
3206                                   env->msr_hv_synic_sint[j]);
3207             }
3208         }
3209         if (has_msr_hv_stimer) {
3210             int j;
3211 
3212             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
3213                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
3214                                 env->msr_hv_stimer_config[j]);
3215             }
3216 
3217             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
3218                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
3219                                 env->msr_hv_stimer_count[j]);
3220             }
3221         }
3222         if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3223             uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3224 
3225             kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3226             kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3227             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3228             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3229             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3230             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3231             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3232             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3233             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3234             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3235             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3236             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
3237             for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3238                 /* The CPU GPs if we write to a bit above the physical limit of
3239                  * the host CPU (and KVM emulates that)
3240                  */
3241                 uint64_t mask = env->mtrr_var[i].mask;
3242                 mask &= phys_mask;
3243 
3244                 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3245                                   env->mtrr_var[i].base);
3246                 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3247             }
3248         }
3249         if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3250             int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3251                                                     0x14, 1, R_EAX) & 0x7;
3252 
3253             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3254                             env->msr_rtit_ctrl);
3255             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3256                             env->msr_rtit_status);
3257             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3258                             env->msr_rtit_output_base);
3259             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3260                             env->msr_rtit_output_mask);
3261             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3262                             env->msr_rtit_cr3_match);
3263             for (i = 0; i < addr_num; i++) {
3264                 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3265                             env->msr_rtit_addrs[i]);
3266             }
3267         }
3268 
3269         if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3270             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3271                               env->msr_ia32_sgxlepubkeyhash[0]);
3272             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3273                               env->msr_ia32_sgxlepubkeyhash[1]);
3274             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3275                               env->msr_ia32_sgxlepubkeyhash[2]);
3276             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3277                               env->msr_ia32_sgxlepubkeyhash[3]);
3278         }
3279 
3280         if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3281             kvm_msr_entry_add(cpu, MSR_IA32_XFD,
3282                               env->msr_xfd);
3283             kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
3284                               env->msr_xfd_err);
3285         }
3286 
3287         /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3288          *       kvm_put_msr_feature_control. */
3289     }
3290 
3291     if (env->mcg_cap) {
3292         int i;
3293 
3294         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3295         kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3296         if (has_msr_mcg_ext_ctl) {
3297             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3298         }
3299         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3300             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3301         }
3302     }
3303 
3304     return kvm_buf_set_msrs(cpu);
3305 }
3306 
3307 
3308 static int kvm_get_fpu(X86CPU *cpu)
3309 {
3310     CPUX86State *env = &cpu->env;
3311     struct kvm_fpu fpu;
3312     int i, ret;
3313 
3314     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
3315     if (ret < 0) {
3316         return ret;
3317     }
3318 
3319     env->fpstt = (fpu.fsw >> 11) & 7;
3320     env->fpus = fpu.fsw;
3321     env->fpuc = fpu.fcw;
3322     env->fpop = fpu.last_opcode;
3323     env->fpip = fpu.last_ip;
3324     env->fpdp = fpu.last_dp;
3325     for (i = 0; i < 8; ++i) {
3326         env->fptags[i] = !((fpu.ftwx >> i) & 1);
3327     }
3328     memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3329     for (i = 0; i < CPU_NB_REGS; i++) {
3330         env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3331         env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3332     }
3333     env->mxcsr = fpu.mxcsr;
3334 
3335     return 0;
3336 }
3337 
3338 static int kvm_get_xsave(X86CPU *cpu)
3339 {
3340     CPUX86State *env = &cpu->env;
3341     void *xsave = env->xsave_buf;
3342     int type, ret;
3343 
3344     if (!has_xsave) {
3345         return kvm_get_fpu(cpu);
3346     }
3347 
3348     type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
3349     ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
3350     if (ret < 0) {
3351         return ret;
3352     }
3353     x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
3354 
3355     return 0;
3356 }
3357 
3358 static int kvm_get_xcrs(X86CPU *cpu)
3359 {
3360     CPUX86State *env = &cpu->env;
3361     int i, ret;
3362     struct kvm_xcrs xcrs;
3363 
3364     if (!has_xcrs) {
3365         return 0;
3366     }
3367 
3368     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3369     if (ret < 0) {
3370         return ret;
3371     }
3372 
3373     for (i = 0; i < xcrs.nr_xcrs; i++) {
3374         /* Only support xcr0 now */
3375         if (xcrs.xcrs[i].xcr == 0) {
3376             env->xcr0 = xcrs.xcrs[i].value;
3377             break;
3378         }
3379     }
3380     return 0;
3381 }
3382 
3383 static int kvm_get_sregs(X86CPU *cpu)
3384 {
3385     CPUX86State *env = &cpu->env;
3386     struct kvm_sregs sregs;
3387     int ret;
3388 
3389     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3390     if (ret < 0) {
3391         return ret;
3392     }
3393 
3394     /*
3395      * The interrupt_bitmap is ignored because KVM_GET_SREGS is
3396      * always preceded by KVM_GET_VCPU_EVENTS.
3397      */
3398 
3399     get_seg(&env->segs[R_CS], &sregs.cs);
3400     get_seg(&env->segs[R_DS], &sregs.ds);
3401     get_seg(&env->segs[R_ES], &sregs.es);
3402     get_seg(&env->segs[R_FS], &sregs.fs);
3403     get_seg(&env->segs[R_GS], &sregs.gs);
3404     get_seg(&env->segs[R_SS], &sregs.ss);
3405 
3406     get_seg(&env->tr, &sregs.tr);
3407     get_seg(&env->ldt, &sregs.ldt);
3408 
3409     env->idt.limit = sregs.idt.limit;
3410     env->idt.base = sregs.idt.base;
3411     env->gdt.limit = sregs.gdt.limit;
3412     env->gdt.base = sregs.gdt.base;
3413 
3414     env->cr[0] = sregs.cr0;
3415     env->cr[2] = sregs.cr2;
3416     env->cr[3] = sregs.cr3;
3417     env->cr[4] = sregs.cr4;
3418 
3419     env->efer = sregs.efer;
3420 
3421     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3422     x86_update_hflags(env);
3423 
3424     return 0;
3425 }
3426 
3427 static int kvm_get_sregs2(X86CPU *cpu)
3428 {
3429     CPUX86State *env = &cpu->env;
3430     struct kvm_sregs2 sregs;
3431     int i, ret;
3432 
3433     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
3434     if (ret < 0) {
3435         return ret;
3436     }
3437 
3438     get_seg(&env->segs[R_CS], &sregs.cs);
3439     get_seg(&env->segs[R_DS], &sregs.ds);
3440     get_seg(&env->segs[R_ES], &sregs.es);
3441     get_seg(&env->segs[R_FS], &sregs.fs);
3442     get_seg(&env->segs[R_GS], &sregs.gs);
3443     get_seg(&env->segs[R_SS], &sregs.ss);
3444 
3445     get_seg(&env->tr, &sregs.tr);
3446     get_seg(&env->ldt, &sregs.ldt);
3447 
3448     env->idt.limit = sregs.idt.limit;
3449     env->idt.base = sregs.idt.base;
3450     env->gdt.limit = sregs.gdt.limit;
3451     env->gdt.base = sregs.gdt.base;
3452 
3453     env->cr[0] = sregs.cr0;
3454     env->cr[2] = sregs.cr2;
3455     env->cr[3] = sregs.cr3;
3456     env->cr[4] = sregs.cr4;
3457 
3458     env->efer = sregs.efer;
3459 
3460     env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
3461 
3462     if (env->pdptrs_valid) {
3463         for (i = 0; i < 4; i++) {
3464             env->pdptrs[i] = sregs.pdptrs[i];
3465         }
3466     }
3467 
3468     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3469     x86_update_hflags(env);
3470 
3471     return 0;
3472 }
3473 
3474 static int kvm_get_msrs(X86CPU *cpu)
3475 {
3476     CPUX86State *env = &cpu->env;
3477     struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3478     int ret, i;
3479     uint64_t mtrr_top_bits;
3480 
3481     kvm_msr_buf_reset(cpu);
3482 
3483     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3484     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3485     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3486     kvm_msr_entry_add(cpu, MSR_PAT, 0);
3487     if (has_msr_star) {
3488         kvm_msr_entry_add(cpu, MSR_STAR, 0);
3489     }
3490     if (has_msr_hsave_pa) {
3491         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3492     }
3493     if (has_msr_tsc_aux) {
3494         kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3495     }
3496     if (has_msr_tsc_adjust) {
3497         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3498     }
3499     if (has_msr_tsc_deadline) {
3500         kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3501     }
3502     if (has_msr_misc_enable) {
3503         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3504     }
3505     if (has_msr_smbase) {
3506         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3507     }
3508     if (has_msr_smi_count) {
3509         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3510     }
3511     if (has_msr_feature_control) {
3512         kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3513     }
3514     if (has_msr_pkrs) {
3515         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3516     }
3517     if (has_msr_bndcfgs) {
3518         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3519     }
3520     if (has_msr_xss) {
3521         kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3522     }
3523     if (has_msr_umwait) {
3524         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3525     }
3526     if (has_msr_spec_ctrl) {
3527         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3528     }
3529     if (has_tsc_scale_msr) {
3530         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3531     }
3532 
3533     if (has_msr_tsx_ctrl) {
3534         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3535     }
3536     if (has_msr_virt_ssbd) {
3537         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3538     }
3539     if (!env->tsc_valid) {
3540         kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3541         env->tsc_valid = !runstate_is_running();
3542     }
3543 
3544 #ifdef TARGET_X86_64
3545     if (lm_capable_kernel) {
3546         kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3547         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3548         kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3549         kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3550     }
3551 #endif
3552     kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3553     kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3554     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3555         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3556     }
3557     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3558         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3559     }
3560     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3561         kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3562     }
3563     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3564         kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3565     }
3566     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3567         kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3568     }
3569     if (has_architectural_pmu_version > 0) {
3570         if (has_architectural_pmu_version > 1) {
3571             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3572             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3573             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3574             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3575         }
3576         for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3577             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3578         }
3579         for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3580             kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3581             kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3582         }
3583     }
3584 
3585     if (env->mcg_cap) {
3586         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3587         kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3588         if (has_msr_mcg_ext_ctl) {
3589             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3590         }
3591         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3592             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3593         }
3594     }
3595 
3596     if (has_msr_hv_hypercall) {
3597         kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3598         kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3599     }
3600     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3601         kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3602     }
3603     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3604         kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3605     }
3606     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3607         kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3608         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3609         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3610     }
3611     if (has_msr_hv_crash) {
3612         int j;
3613 
3614         for (j = 0; j < HV_CRASH_PARAMS; j++) {
3615             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3616         }
3617     }
3618     if (has_msr_hv_runtime) {
3619         kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3620     }
3621     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3622         uint32_t msr;
3623 
3624         kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3625         kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3626         kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3627         for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3628             kvm_msr_entry_add(cpu, msr, 0);
3629         }
3630     }
3631     if (has_msr_hv_stimer) {
3632         uint32_t msr;
3633 
3634         for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3635              msr++) {
3636             kvm_msr_entry_add(cpu, msr, 0);
3637         }
3638     }
3639     if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3640         kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3641         kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3642         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3643         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3644         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3645         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3646         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3647         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3648         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3649         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3650         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3651         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3652         for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3653             kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3654             kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3655         }
3656     }
3657 
3658     if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3659         int addr_num =
3660             kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3661 
3662         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3663         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3664         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3665         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3666         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3667         for (i = 0; i < addr_num; i++) {
3668             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3669         }
3670     }
3671 
3672     if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3673         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
3674         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
3675         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
3676         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
3677     }
3678 
3679     if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3680         kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
3681         kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
3682     }
3683 
3684     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3685     if (ret < 0) {
3686         return ret;
3687     }
3688 
3689     if (ret < cpu->kvm_msr_buf->nmsrs) {
3690         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3691         error_report("error: failed to get MSR 0x%" PRIx32,
3692                      (uint32_t)e->index);
3693     }
3694 
3695     assert(ret == cpu->kvm_msr_buf->nmsrs);
3696     /*
3697      * MTRR masks: Each mask consists of 5 parts
3698      * a  10..0: must be zero
3699      * b  11   : valid bit
3700      * c n-1.12: actual mask bits
3701      * d  51..n: reserved must be zero
3702      * e  63.52: reserved must be zero
3703      *
3704      * 'n' is the number of physical bits supported by the CPU and is
3705      * apparently always <= 52.   We know our 'n' but don't know what
3706      * the destinations 'n' is; it might be smaller, in which case
3707      * it masks (c) on loading. It might be larger, in which case
3708      * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3709      * we're migrating to.
3710      */
3711 
3712     if (cpu->fill_mtrr_mask) {
3713         QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3714         assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3715         mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3716     } else {
3717         mtrr_top_bits = 0;
3718     }
3719 
3720     for (i = 0; i < ret; i++) {
3721         uint32_t index = msrs[i].index;
3722         switch (index) {
3723         case MSR_IA32_SYSENTER_CS:
3724             env->sysenter_cs = msrs[i].data;
3725             break;
3726         case MSR_IA32_SYSENTER_ESP:
3727             env->sysenter_esp = msrs[i].data;
3728             break;
3729         case MSR_IA32_SYSENTER_EIP:
3730             env->sysenter_eip = msrs[i].data;
3731             break;
3732         case MSR_PAT:
3733             env->pat = msrs[i].data;
3734             break;
3735         case MSR_STAR:
3736             env->star = msrs[i].data;
3737             break;
3738 #ifdef TARGET_X86_64
3739         case MSR_CSTAR:
3740             env->cstar = msrs[i].data;
3741             break;
3742         case MSR_KERNELGSBASE:
3743             env->kernelgsbase = msrs[i].data;
3744             break;
3745         case MSR_FMASK:
3746             env->fmask = msrs[i].data;
3747             break;
3748         case MSR_LSTAR:
3749             env->lstar = msrs[i].data;
3750             break;
3751 #endif
3752         case MSR_IA32_TSC:
3753             env->tsc = msrs[i].data;
3754             break;
3755         case MSR_TSC_AUX:
3756             env->tsc_aux = msrs[i].data;
3757             break;
3758         case MSR_TSC_ADJUST:
3759             env->tsc_adjust = msrs[i].data;
3760             break;
3761         case MSR_IA32_TSCDEADLINE:
3762             env->tsc_deadline = msrs[i].data;
3763             break;
3764         case MSR_VM_HSAVE_PA:
3765             env->vm_hsave = msrs[i].data;
3766             break;
3767         case MSR_KVM_SYSTEM_TIME:
3768             env->system_time_msr = msrs[i].data;
3769             break;
3770         case MSR_KVM_WALL_CLOCK:
3771             env->wall_clock_msr = msrs[i].data;
3772             break;
3773         case MSR_MCG_STATUS:
3774             env->mcg_status = msrs[i].data;
3775             break;
3776         case MSR_MCG_CTL:
3777             env->mcg_ctl = msrs[i].data;
3778             break;
3779         case MSR_MCG_EXT_CTL:
3780             env->mcg_ext_ctl = msrs[i].data;
3781             break;
3782         case MSR_IA32_MISC_ENABLE:
3783             env->msr_ia32_misc_enable = msrs[i].data;
3784             break;
3785         case MSR_IA32_SMBASE:
3786             env->smbase = msrs[i].data;
3787             break;
3788         case MSR_SMI_COUNT:
3789             env->msr_smi_count = msrs[i].data;
3790             break;
3791         case MSR_IA32_FEATURE_CONTROL:
3792             env->msr_ia32_feature_control = msrs[i].data;
3793             break;
3794         case MSR_IA32_BNDCFGS:
3795             env->msr_bndcfgs = msrs[i].data;
3796             break;
3797         case MSR_IA32_XSS:
3798             env->xss = msrs[i].data;
3799             break;
3800         case MSR_IA32_UMWAIT_CONTROL:
3801             env->umwait = msrs[i].data;
3802             break;
3803         case MSR_IA32_PKRS:
3804             env->pkrs = msrs[i].data;
3805             break;
3806         default:
3807             if (msrs[i].index >= MSR_MC0_CTL &&
3808                 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3809                 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
3810             }
3811             break;
3812         case MSR_KVM_ASYNC_PF_EN:
3813             env->async_pf_en_msr = msrs[i].data;
3814             break;
3815         case MSR_KVM_ASYNC_PF_INT:
3816             env->async_pf_int_msr = msrs[i].data;
3817             break;
3818         case MSR_KVM_PV_EOI_EN:
3819             env->pv_eoi_en_msr = msrs[i].data;
3820             break;
3821         case MSR_KVM_STEAL_TIME:
3822             env->steal_time_msr = msrs[i].data;
3823             break;
3824         case MSR_KVM_POLL_CONTROL: {
3825             env->poll_control_msr = msrs[i].data;
3826             break;
3827         }
3828         case MSR_CORE_PERF_FIXED_CTR_CTRL:
3829             env->msr_fixed_ctr_ctrl = msrs[i].data;
3830             break;
3831         case MSR_CORE_PERF_GLOBAL_CTRL:
3832             env->msr_global_ctrl = msrs[i].data;
3833             break;
3834         case MSR_CORE_PERF_GLOBAL_STATUS:
3835             env->msr_global_status = msrs[i].data;
3836             break;
3837         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3838             env->msr_global_ovf_ctrl = msrs[i].data;
3839             break;
3840         case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3841             env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3842             break;
3843         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3844             env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3845             break;
3846         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3847             env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3848             break;
3849         case HV_X64_MSR_HYPERCALL:
3850             env->msr_hv_hypercall = msrs[i].data;
3851             break;
3852         case HV_X64_MSR_GUEST_OS_ID:
3853             env->msr_hv_guest_os_id = msrs[i].data;
3854             break;
3855         case HV_X64_MSR_APIC_ASSIST_PAGE:
3856             env->msr_hv_vapic = msrs[i].data;
3857             break;
3858         case HV_X64_MSR_REFERENCE_TSC:
3859             env->msr_hv_tsc = msrs[i].data;
3860             break;
3861         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3862             env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3863             break;
3864         case HV_X64_MSR_VP_RUNTIME:
3865             env->msr_hv_runtime = msrs[i].data;
3866             break;
3867         case HV_X64_MSR_SCONTROL:
3868             env->msr_hv_synic_control = msrs[i].data;
3869             break;
3870         case HV_X64_MSR_SIEFP:
3871             env->msr_hv_synic_evt_page = msrs[i].data;
3872             break;
3873         case HV_X64_MSR_SIMP:
3874             env->msr_hv_synic_msg_page = msrs[i].data;
3875             break;
3876         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3877             env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
3878             break;
3879         case HV_X64_MSR_STIMER0_CONFIG:
3880         case HV_X64_MSR_STIMER1_CONFIG:
3881         case HV_X64_MSR_STIMER2_CONFIG:
3882         case HV_X64_MSR_STIMER3_CONFIG:
3883             env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3884                                 msrs[i].data;
3885             break;
3886         case HV_X64_MSR_STIMER0_COUNT:
3887         case HV_X64_MSR_STIMER1_COUNT:
3888         case HV_X64_MSR_STIMER2_COUNT:
3889         case HV_X64_MSR_STIMER3_COUNT:
3890             env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3891                                 msrs[i].data;
3892             break;
3893         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3894             env->msr_hv_reenlightenment_control = msrs[i].data;
3895             break;
3896         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3897             env->msr_hv_tsc_emulation_control = msrs[i].data;
3898             break;
3899         case HV_X64_MSR_TSC_EMULATION_STATUS:
3900             env->msr_hv_tsc_emulation_status = msrs[i].data;
3901             break;
3902         case MSR_MTRRdefType:
3903             env->mtrr_deftype = msrs[i].data;
3904             break;
3905         case MSR_MTRRfix64K_00000:
3906             env->mtrr_fixed[0] = msrs[i].data;
3907             break;
3908         case MSR_MTRRfix16K_80000:
3909             env->mtrr_fixed[1] = msrs[i].data;
3910             break;
3911         case MSR_MTRRfix16K_A0000:
3912             env->mtrr_fixed[2] = msrs[i].data;
3913             break;
3914         case MSR_MTRRfix4K_C0000:
3915             env->mtrr_fixed[3] = msrs[i].data;
3916             break;
3917         case MSR_MTRRfix4K_C8000:
3918             env->mtrr_fixed[4] = msrs[i].data;
3919             break;
3920         case MSR_MTRRfix4K_D0000:
3921             env->mtrr_fixed[5] = msrs[i].data;
3922             break;
3923         case MSR_MTRRfix4K_D8000:
3924             env->mtrr_fixed[6] = msrs[i].data;
3925             break;
3926         case MSR_MTRRfix4K_E0000:
3927             env->mtrr_fixed[7] = msrs[i].data;
3928             break;
3929         case MSR_MTRRfix4K_E8000:
3930             env->mtrr_fixed[8] = msrs[i].data;
3931             break;
3932         case MSR_MTRRfix4K_F0000:
3933             env->mtrr_fixed[9] = msrs[i].data;
3934             break;
3935         case MSR_MTRRfix4K_F8000:
3936             env->mtrr_fixed[10] = msrs[i].data;
3937             break;
3938         case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3939             if (index & 1) {
3940                 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3941                                                                mtrr_top_bits;
3942             } else {
3943                 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3944             }
3945             break;
3946         case MSR_IA32_SPEC_CTRL:
3947             env->spec_ctrl = msrs[i].data;
3948             break;
3949         case MSR_AMD64_TSC_RATIO:
3950             env->amd_tsc_scale_msr = msrs[i].data;
3951             break;
3952         case MSR_IA32_TSX_CTRL:
3953             env->tsx_ctrl = msrs[i].data;
3954             break;
3955         case MSR_VIRT_SSBD:
3956             env->virt_ssbd = msrs[i].data;
3957             break;
3958         case MSR_IA32_RTIT_CTL:
3959             env->msr_rtit_ctrl = msrs[i].data;
3960             break;
3961         case MSR_IA32_RTIT_STATUS:
3962             env->msr_rtit_status = msrs[i].data;
3963             break;
3964         case MSR_IA32_RTIT_OUTPUT_BASE:
3965             env->msr_rtit_output_base = msrs[i].data;
3966             break;
3967         case MSR_IA32_RTIT_OUTPUT_MASK:
3968             env->msr_rtit_output_mask = msrs[i].data;
3969             break;
3970         case MSR_IA32_RTIT_CR3_MATCH:
3971             env->msr_rtit_cr3_match = msrs[i].data;
3972             break;
3973         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3974             env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3975             break;
3976         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
3977             env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
3978                            msrs[i].data;
3979             break;
3980         case MSR_IA32_XFD:
3981             env->msr_xfd = msrs[i].data;
3982             break;
3983         case MSR_IA32_XFD_ERR:
3984             env->msr_xfd_err = msrs[i].data;
3985             break;
3986         }
3987     }
3988 
3989     return 0;
3990 }
3991 
3992 static int kvm_put_mp_state(X86CPU *cpu)
3993 {
3994     struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
3995 
3996     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
3997 }
3998 
3999 static int kvm_get_mp_state(X86CPU *cpu)
4000 {
4001     CPUState *cs = CPU(cpu);
4002     CPUX86State *env = &cpu->env;
4003     struct kvm_mp_state mp_state;
4004     int ret;
4005 
4006     ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4007     if (ret < 0) {
4008         return ret;
4009     }
4010     env->mp_state = mp_state.mp_state;
4011     if (kvm_irqchip_in_kernel()) {
4012         cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4013     }
4014     return 0;
4015 }
4016 
4017 static int kvm_get_apic(X86CPU *cpu)
4018 {
4019     DeviceState *apic = cpu->apic_state;
4020     struct kvm_lapic_state kapic;
4021     int ret;
4022 
4023     if (apic && kvm_irqchip_in_kernel()) {
4024         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
4025         if (ret < 0) {
4026             return ret;
4027         }
4028 
4029         kvm_get_apic_state(apic, &kapic);
4030     }
4031     return 0;
4032 }
4033 
4034 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
4035 {
4036     CPUState *cs = CPU(cpu);
4037     CPUX86State *env = &cpu->env;
4038     struct kvm_vcpu_events events = {};
4039 
4040     if (!kvm_has_vcpu_events()) {
4041         return 0;
4042     }
4043 
4044     events.flags = 0;
4045 
4046     if (has_exception_payload) {
4047         events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4048         events.exception.pending = env->exception_pending;
4049         events.exception_has_payload = env->exception_has_payload;
4050         events.exception_payload = env->exception_payload;
4051     }
4052     events.exception.nr = env->exception_nr;
4053     events.exception.injected = env->exception_injected;
4054     events.exception.has_error_code = env->has_error_code;
4055     events.exception.error_code = env->error_code;
4056 
4057     events.interrupt.injected = (env->interrupt_injected >= 0);
4058     events.interrupt.nr = env->interrupt_injected;
4059     events.interrupt.soft = env->soft_interrupt;
4060 
4061     events.nmi.injected = env->nmi_injected;
4062     events.nmi.pending = env->nmi_pending;
4063     events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4064 
4065     events.sipi_vector = env->sipi_vector;
4066 
4067     if (has_msr_smbase) {
4068         events.smi.smm = !!(env->hflags & HF_SMM_MASK);
4069         events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
4070         if (kvm_irqchip_in_kernel()) {
4071             /* As soon as these are moved to the kernel, remove them
4072              * from cs->interrupt_request.
4073              */
4074             events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
4075             events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
4076             cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
4077         } else {
4078             /* Keep these in cs->interrupt_request.  */
4079             events.smi.pending = 0;
4080             events.smi.latched_init = 0;
4081         }
4082         /* Stop SMI delivery on old machine types to avoid a reboot
4083          * on an inward migration of an old VM.
4084          */
4085         if (!cpu->kvm_no_smi_migration) {
4086             events.flags |= KVM_VCPUEVENT_VALID_SMM;
4087         }
4088     }
4089 
4090     if (level >= KVM_PUT_RESET_STATE) {
4091         events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
4092         if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
4093             events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
4094         }
4095     }
4096 
4097     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
4098 }
4099 
4100 static int kvm_get_vcpu_events(X86CPU *cpu)
4101 {
4102     CPUX86State *env = &cpu->env;
4103     struct kvm_vcpu_events events;
4104     int ret;
4105 
4106     if (!kvm_has_vcpu_events()) {
4107         return 0;
4108     }
4109 
4110     memset(&events, 0, sizeof(events));
4111     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
4112     if (ret < 0) {
4113        return ret;
4114     }
4115 
4116     if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4117         env->exception_pending = events.exception.pending;
4118         env->exception_has_payload = events.exception_has_payload;
4119         env->exception_payload = events.exception_payload;
4120     } else {
4121         env->exception_pending = 0;
4122         env->exception_has_payload = false;
4123     }
4124     env->exception_injected = events.exception.injected;
4125     env->exception_nr =
4126         (env->exception_pending || env->exception_injected) ?
4127         events.exception.nr : -1;
4128     env->has_error_code = events.exception.has_error_code;
4129     env->error_code = events.exception.error_code;
4130 
4131     env->interrupt_injected =
4132         events.interrupt.injected ? events.interrupt.nr : -1;
4133     env->soft_interrupt = events.interrupt.soft;
4134 
4135     env->nmi_injected = events.nmi.injected;
4136     env->nmi_pending = events.nmi.pending;
4137     if (events.nmi.masked) {
4138         env->hflags2 |= HF2_NMI_MASK;
4139     } else {
4140         env->hflags2 &= ~HF2_NMI_MASK;
4141     }
4142 
4143     if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
4144         if (events.smi.smm) {
4145             env->hflags |= HF_SMM_MASK;
4146         } else {
4147             env->hflags &= ~HF_SMM_MASK;
4148         }
4149         if (events.smi.pending) {
4150             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4151         } else {
4152             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4153         }
4154         if (events.smi.smm_inside_nmi) {
4155             env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4156         } else {
4157             env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4158         }
4159         if (events.smi.latched_init) {
4160             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4161         } else {
4162             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4163         }
4164     }
4165 
4166     env->sipi_vector = events.sipi_vector;
4167 
4168     return 0;
4169 }
4170 
4171 static int kvm_guest_debug_workarounds(X86CPU *cpu)
4172 {
4173     CPUState *cs = CPU(cpu);
4174     CPUX86State *env = &cpu->env;
4175     int ret = 0;
4176     unsigned long reinject_trap = 0;
4177 
4178     if (!kvm_has_vcpu_events()) {
4179         if (env->exception_nr == EXCP01_DB) {
4180             reinject_trap = KVM_GUESTDBG_INJECT_DB;
4181         } else if (env->exception_injected == EXCP03_INT3) {
4182             reinject_trap = KVM_GUESTDBG_INJECT_BP;
4183         }
4184         kvm_reset_exception(env);
4185     }
4186 
4187     /*
4188      * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
4189      * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
4190      * by updating the debug state once again if single-stepping is on.
4191      * Another reason to call kvm_update_guest_debug here is a pending debug
4192      * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
4193      * reinject them via SET_GUEST_DEBUG.
4194      */
4195     if (reinject_trap ||
4196         (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
4197         ret = kvm_update_guest_debug(cs, reinject_trap);
4198     }
4199     return ret;
4200 }
4201 
4202 static int kvm_put_debugregs(X86CPU *cpu)
4203 {
4204     CPUX86State *env = &cpu->env;
4205     struct kvm_debugregs dbgregs;
4206     int i;
4207 
4208     if (!kvm_has_debugregs()) {
4209         return 0;
4210     }
4211 
4212     memset(&dbgregs, 0, sizeof(dbgregs));
4213     for (i = 0; i < 4; i++) {
4214         dbgregs.db[i] = env->dr[i];
4215     }
4216     dbgregs.dr6 = env->dr[6];
4217     dbgregs.dr7 = env->dr[7];
4218     dbgregs.flags = 0;
4219 
4220     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
4221 }
4222 
4223 static int kvm_get_debugregs(X86CPU *cpu)
4224 {
4225     CPUX86State *env = &cpu->env;
4226     struct kvm_debugregs dbgregs;
4227     int i, ret;
4228 
4229     if (!kvm_has_debugregs()) {
4230         return 0;
4231     }
4232 
4233     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
4234     if (ret < 0) {
4235         return ret;
4236     }
4237     for (i = 0; i < 4; i++) {
4238         env->dr[i] = dbgregs.db[i];
4239     }
4240     env->dr[4] = env->dr[6] = dbgregs.dr6;
4241     env->dr[5] = env->dr[7] = dbgregs.dr7;
4242 
4243     return 0;
4244 }
4245 
4246 static int kvm_put_nested_state(X86CPU *cpu)
4247 {
4248     CPUX86State *env = &cpu->env;
4249     int max_nested_state_len = kvm_max_nested_state_length();
4250 
4251     if (!env->nested_state) {
4252         return 0;
4253     }
4254 
4255     /*
4256      * Copy flags that are affected by reset from env->hflags and env->hflags2.
4257      */
4258     if (env->hflags & HF_GUEST_MASK) {
4259         env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4260     } else {
4261         env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4262     }
4263 
4264     /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4265     if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
4266         env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4267     } else {
4268         env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4269     }
4270 
4271     assert(env->nested_state->size <= max_nested_state_len);
4272     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4273 }
4274 
4275 static int kvm_get_nested_state(X86CPU *cpu)
4276 {
4277     CPUX86State *env = &cpu->env;
4278     int max_nested_state_len = kvm_max_nested_state_length();
4279     int ret;
4280 
4281     if (!env->nested_state) {
4282         return 0;
4283     }
4284 
4285     /*
4286      * It is possible that migration restored a smaller size into
4287      * nested_state->hdr.size than what our kernel support.
4288      * We preserve migration origin nested_state->hdr.size for
4289      * call to KVM_SET_NESTED_STATE but wish that our next call
4290      * to KVM_GET_NESTED_STATE will use max size our kernel support.
4291      */
4292     env->nested_state->size = max_nested_state_len;
4293 
4294     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4295     if (ret < 0) {
4296         return ret;
4297     }
4298 
4299     /*
4300      * Copy flags that are affected by reset to env->hflags and env->hflags2.
4301      */
4302     if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4303         env->hflags |= HF_GUEST_MASK;
4304     } else {
4305         env->hflags &= ~HF_GUEST_MASK;
4306     }
4307 
4308     /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4309     if (cpu_has_svm(env)) {
4310         if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4311             env->hflags2 |= HF2_GIF_MASK;
4312         } else {
4313             env->hflags2 &= ~HF2_GIF_MASK;
4314         }
4315     }
4316 
4317     return ret;
4318 }
4319 
4320 int kvm_arch_put_registers(CPUState *cpu, int level)
4321 {
4322     X86CPU *x86_cpu = X86_CPU(cpu);
4323     int ret;
4324 
4325     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
4326 
4327     /* must be before kvm_put_nested_state so that EFER.SVME is set */
4328     ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
4329     if (ret < 0) {
4330         return ret;
4331     }
4332 
4333     if (level >= KVM_PUT_RESET_STATE) {
4334         ret = kvm_put_nested_state(x86_cpu);
4335         if (ret < 0) {
4336             return ret;
4337         }
4338 
4339         ret = kvm_put_msr_feature_control(x86_cpu);
4340         if (ret < 0) {
4341             return ret;
4342         }
4343     }
4344 
4345     if (level == KVM_PUT_FULL_STATE) {
4346         /* We don't check for kvm_arch_set_tsc_khz() errors here,
4347          * because TSC frequency mismatch shouldn't abort migration,
4348          * unless the user explicitly asked for a more strict TSC
4349          * setting (e.g. using an explicit "tsc-freq" option).
4350          */
4351         kvm_arch_set_tsc_khz(cpu);
4352     }
4353 
4354     ret = kvm_getput_regs(x86_cpu, 1);
4355     if (ret < 0) {
4356         return ret;
4357     }
4358     ret = kvm_put_xsave(x86_cpu);
4359     if (ret < 0) {
4360         return ret;
4361     }
4362     ret = kvm_put_xcrs(x86_cpu);
4363     if (ret < 0) {
4364         return ret;
4365     }
4366     /* must be before kvm_put_msrs */
4367     ret = kvm_inject_mce_oldstyle(x86_cpu);
4368     if (ret < 0) {
4369         return ret;
4370     }
4371     ret = kvm_put_msrs(x86_cpu, level);
4372     if (ret < 0) {
4373         return ret;
4374     }
4375     ret = kvm_put_vcpu_events(x86_cpu, level);
4376     if (ret < 0) {
4377         return ret;
4378     }
4379     if (level >= KVM_PUT_RESET_STATE) {
4380         ret = kvm_put_mp_state(x86_cpu);
4381         if (ret < 0) {
4382             return ret;
4383         }
4384     }
4385 
4386     ret = kvm_put_tscdeadline_msr(x86_cpu);
4387     if (ret < 0) {
4388         return ret;
4389     }
4390     ret = kvm_put_debugregs(x86_cpu);
4391     if (ret < 0) {
4392         return ret;
4393     }
4394     /* must be last */
4395     ret = kvm_guest_debug_workarounds(x86_cpu);
4396     if (ret < 0) {
4397         return ret;
4398     }
4399     return 0;
4400 }
4401 
4402 int kvm_arch_get_registers(CPUState *cs)
4403 {
4404     X86CPU *cpu = X86_CPU(cs);
4405     int ret;
4406 
4407     assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4408 
4409     ret = kvm_get_vcpu_events(cpu);
4410     if (ret < 0) {
4411         goto out;
4412     }
4413     /*
4414      * KVM_GET_MPSTATE can modify CS and RIP, call it before
4415      * KVM_GET_REGS and KVM_GET_SREGS.
4416      */
4417     ret = kvm_get_mp_state(cpu);
4418     if (ret < 0) {
4419         goto out;
4420     }
4421     ret = kvm_getput_regs(cpu, 0);
4422     if (ret < 0) {
4423         goto out;
4424     }
4425     ret = kvm_get_xsave(cpu);
4426     if (ret < 0) {
4427         goto out;
4428     }
4429     ret = kvm_get_xcrs(cpu);
4430     if (ret < 0) {
4431         goto out;
4432     }
4433     ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
4434     if (ret < 0) {
4435         goto out;
4436     }
4437     ret = kvm_get_msrs(cpu);
4438     if (ret < 0) {
4439         goto out;
4440     }
4441     ret = kvm_get_apic(cpu);
4442     if (ret < 0) {
4443         goto out;
4444     }
4445     ret = kvm_get_debugregs(cpu);
4446     if (ret < 0) {
4447         goto out;
4448     }
4449     ret = kvm_get_nested_state(cpu);
4450     if (ret < 0) {
4451         goto out;
4452     }
4453     ret = 0;
4454  out:
4455     cpu_sync_bndcs_hflags(&cpu->env);
4456     return ret;
4457 }
4458 
4459 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4460 {
4461     X86CPU *x86_cpu = X86_CPU(cpu);
4462     CPUX86State *env = &x86_cpu->env;
4463     int ret;
4464 
4465     /* Inject NMI */
4466     if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4467         if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4468             qemu_mutex_lock_iothread();
4469             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4470             qemu_mutex_unlock_iothread();
4471             DPRINTF("injected NMI\n");
4472             ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4473             if (ret < 0) {
4474                 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4475                         strerror(-ret));
4476             }
4477         }
4478         if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4479             qemu_mutex_lock_iothread();
4480             cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4481             qemu_mutex_unlock_iothread();
4482             DPRINTF("injected SMI\n");
4483             ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4484             if (ret < 0) {
4485                 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4486                         strerror(-ret));
4487             }
4488         }
4489     }
4490 
4491     if (!kvm_pic_in_kernel()) {
4492         qemu_mutex_lock_iothread();
4493     }
4494 
4495     /* Force the VCPU out of its inner loop to process any INIT requests
4496      * or (for userspace APIC, but it is cheap to combine the checks here)
4497      * pending TPR access reports.
4498      */
4499     if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4500         if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4501             !(env->hflags & HF_SMM_MASK)) {
4502             cpu->exit_request = 1;
4503         }
4504         if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4505             cpu->exit_request = 1;
4506         }
4507     }
4508 
4509     if (!kvm_pic_in_kernel()) {
4510         /* Try to inject an interrupt if the guest can accept it */
4511         if (run->ready_for_interrupt_injection &&
4512             (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4513             (env->eflags & IF_MASK)) {
4514             int irq;
4515 
4516             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4517             irq = cpu_get_pic_interrupt(env);
4518             if (irq >= 0) {
4519                 struct kvm_interrupt intr;
4520 
4521                 intr.irq = irq;
4522                 DPRINTF("injected interrupt %d\n", irq);
4523                 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4524                 if (ret < 0) {
4525                     fprintf(stderr,
4526                             "KVM: injection failed, interrupt lost (%s)\n",
4527                             strerror(-ret));
4528                 }
4529             }
4530         }
4531 
4532         /* If we have an interrupt but the guest is not ready to receive an
4533          * interrupt, request an interrupt window exit.  This will
4534          * cause a return to userspace as soon as the guest is ready to
4535          * receive interrupts. */
4536         if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4537             run->request_interrupt_window = 1;
4538         } else {
4539             run->request_interrupt_window = 0;
4540         }
4541 
4542         DPRINTF("setting tpr\n");
4543         run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4544 
4545         qemu_mutex_unlock_iothread();
4546     }
4547 }
4548 
4549 static void kvm_rate_limit_on_bus_lock(void)
4550 {
4551     uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4552 
4553     if (delay_ns) {
4554         g_usleep(delay_ns / SCALE_US);
4555     }
4556 }
4557 
4558 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4559 {
4560     X86CPU *x86_cpu = X86_CPU(cpu);
4561     CPUX86State *env = &x86_cpu->env;
4562 
4563     if (run->flags & KVM_RUN_X86_SMM) {
4564         env->hflags |= HF_SMM_MASK;
4565     } else {
4566         env->hflags &= ~HF_SMM_MASK;
4567     }
4568     if (run->if_flag) {
4569         env->eflags |= IF_MASK;
4570     } else {
4571         env->eflags &= ~IF_MASK;
4572     }
4573     if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4574         kvm_rate_limit_on_bus_lock();
4575     }
4576 
4577     /* We need to protect the apic state against concurrent accesses from
4578      * different threads in case the userspace irqchip is used. */
4579     if (!kvm_irqchip_in_kernel()) {
4580         qemu_mutex_lock_iothread();
4581     }
4582     cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4583     cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4584     if (!kvm_irqchip_in_kernel()) {
4585         qemu_mutex_unlock_iothread();
4586     }
4587     return cpu_get_mem_attrs(env);
4588 }
4589 
4590 int kvm_arch_process_async_events(CPUState *cs)
4591 {
4592     X86CPU *cpu = X86_CPU(cs);
4593     CPUX86State *env = &cpu->env;
4594 
4595     if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4596         /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4597         assert(env->mcg_cap);
4598 
4599         cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4600 
4601         kvm_cpu_synchronize_state(cs);
4602 
4603         if (env->exception_nr == EXCP08_DBLE) {
4604             /* this means triple fault */
4605             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4606             cs->exit_request = 1;
4607             return 0;
4608         }
4609         kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4610         env->has_error_code = 0;
4611 
4612         cs->halted = 0;
4613         if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4614             env->mp_state = KVM_MP_STATE_RUNNABLE;
4615         }
4616     }
4617 
4618     if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4619         !(env->hflags & HF_SMM_MASK)) {
4620         kvm_cpu_synchronize_state(cs);
4621         do_cpu_init(cpu);
4622     }
4623 
4624     if (kvm_irqchip_in_kernel()) {
4625         return 0;
4626     }
4627 
4628     if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4629         cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4630         apic_poll_irq(cpu->apic_state);
4631     }
4632     if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4633          (env->eflags & IF_MASK)) ||
4634         (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4635         cs->halted = 0;
4636     }
4637     if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4638         kvm_cpu_synchronize_state(cs);
4639         do_cpu_sipi(cpu);
4640     }
4641     if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4642         cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4643         kvm_cpu_synchronize_state(cs);
4644         apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4645                                       env->tpr_access_type);
4646     }
4647 
4648     return cs->halted;
4649 }
4650 
4651 static int kvm_handle_halt(X86CPU *cpu)
4652 {
4653     CPUState *cs = CPU(cpu);
4654     CPUX86State *env = &cpu->env;
4655 
4656     if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4657           (env->eflags & IF_MASK)) &&
4658         !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4659         cs->halted = 1;
4660         return EXCP_HLT;
4661     }
4662 
4663     return 0;
4664 }
4665 
4666 static int kvm_handle_tpr_access(X86CPU *cpu)
4667 {
4668     CPUState *cs = CPU(cpu);
4669     struct kvm_run *run = cs->kvm_run;
4670 
4671     apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4672                                   run->tpr_access.is_write ? TPR_ACCESS_WRITE
4673                                                            : TPR_ACCESS_READ);
4674     return 1;
4675 }
4676 
4677 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4678 {
4679     static const uint8_t int3 = 0xcc;
4680 
4681     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4682         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4683         return -EINVAL;
4684     }
4685     return 0;
4686 }
4687 
4688 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4689 {
4690     uint8_t int3;
4691 
4692     if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
4693         return -EINVAL;
4694     }
4695     if (int3 != 0xcc) {
4696         return 0;
4697     }
4698     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4699         return -EINVAL;
4700     }
4701     return 0;
4702 }
4703 
4704 static struct {
4705     target_ulong addr;
4706     int len;
4707     int type;
4708 } hw_breakpoint[4];
4709 
4710 static int nb_hw_breakpoint;
4711 
4712 static int find_hw_breakpoint(target_ulong addr, int len, int type)
4713 {
4714     int n;
4715 
4716     for (n = 0; n < nb_hw_breakpoint; n++) {
4717         if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
4718             (hw_breakpoint[n].len == len || len == -1)) {
4719             return n;
4720         }
4721     }
4722     return -1;
4723 }
4724 
4725 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4726                                   target_ulong len, int type)
4727 {
4728     switch (type) {
4729     case GDB_BREAKPOINT_HW:
4730         len = 1;
4731         break;
4732     case GDB_WATCHPOINT_WRITE:
4733     case GDB_WATCHPOINT_ACCESS:
4734         switch (len) {
4735         case 1:
4736             break;
4737         case 2:
4738         case 4:
4739         case 8:
4740             if (addr & (len - 1)) {
4741                 return -EINVAL;
4742             }
4743             break;
4744         default:
4745             return -EINVAL;
4746         }
4747         break;
4748     default:
4749         return -ENOSYS;
4750     }
4751 
4752     if (nb_hw_breakpoint == 4) {
4753         return -ENOBUFS;
4754     }
4755     if (find_hw_breakpoint(addr, len, type) >= 0) {
4756         return -EEXIST;
4757     }
4758     hw_breakpoint[nb_hw_breakpoint].addr = addr;
4759     hw_breakpoint[nb_hw_breakpoint].len = len;
4760     hw_breakpoint[nb_hw_breakpoint].type = type;
4761     nb_hw_breakpoint++;
4762 
4763     return 0;
4764 }
4765 
4766 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4767                                   target_ulong len, int type)
4768 {
4769     int n;
4770 
4771     n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
4772     if (n < 0) {
4773         return -ENOENT;
4774     }
4775     nb_hw_breakpoint--;
4776     hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4777 
4778     return 0;
4779 }
4780 
4781 void kvm_arch_remove_all_hw_breakpoints(void)
4782 {
4783     nb_hw_breakpoint = 0;
4784 }
4785 
4786 static CPUWatchpoint hw_watchpoint;
4787 
4788 static int kvm_handle_debug(X86CPU *cpu,
4789                             struct kvm_debug_exit_arch *arch_info)
4790 {
4791     CPUState *cs = CPU(cpu);
4792     CPUX86State *env = &cpu->env;
4793     int ret = 0;
4794     int n;
4795 
4796     if (arch_info->exception == EXCP01_DB) {
4797         if (arch_info->dr6 & DR6_BS) {
4798             if (cs->singlestep_enabled) {
4799                 ret = EXCP_DEBUG;
4800             }
4801         } else {
4802             for (n = 0; n < 4; n++) {
4803                 if (arch_info->dr6 & (1 << n)) {
4804                     switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4805                     case 0x0:
4806                         ret = EXCP_DEBUG;
4807                         break;
4808                     case 0x1:
4809                         ret = EXCP_DEBUG;
4810                         cs->watchpoint_hit = &hw_watchpoint;
4811                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4812                         hw_watchpoint.flags = BP_MEM_WRITE;
4813                         break;
4814                     case 0x3:
4815                         ret = EXCP_DEBUG;
4816                         cs->watchpoint_hit = &hw_watchpoint;
4817                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4818                         hw_watchpoint.flags = BP_MEM_ACCESS;
4819                         break;
4820                     }
4821                 }
4822             }
4823         }
4824     } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
4825         ret = EXCP_DEBUG;
4826     }
4827     if (ret == 0) {
4828         cpu_synchronize_state(cs);
4829         assert(env->exception_nr == -1);
4830 
4831         /* pass to guest */
4832         kvm_queue_exception(env, arch_info->exception,
4833                             arch_info->exception == EXCP01_DB,
4834                             arch_info->dr6);
4835         env->has_error_code = 0;
4836     }
4837 
4838     return ret;
4839 }
4840 
4841 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
4842 {
4843     const uint8_t type_code[] = {
4844         [GDB_BREAKPOINT_HW] = 0x0,
4845         [GDB_WATCHPOINT_WRITE] = 0x1,
4846         [GDB_WATCHPOINT_ACCESS] = 0x3
4847     };
4848     const uint8_t len_code[] = {
4849         [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4850     };
4851     int n;
4852 
4853     if (kvm_sw_breakpoints_active(cpu)) {
4854         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
4855     }
4856     if (nb_hw_breakpoint > 0) {
4857         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4858         dbg->arch.debugreg[7] = 0x0600;
4859         for (n = 0; n < nb_hw_breakpoint; n++) {
4860             dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4861             dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4862                 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
4863                 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
4864         }
4865     }
4866 }
4867 
4868 static bool has_sgx_provisioning;
4869 
4870 static bool __kvm_enable_sgx_provisioning(KVMState *s)
4871 {
4872     int fd, ret;
4873 
4874     if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
4875         return false;
4876     }
4877 
4878     fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
4879     if (fd < 0) {
4880         return false;
4881     }
4882 
4883     ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
4884     if (ret) {
4885         error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
4886         exit(1);
4887     }
4888     close(fd);
4889     return true;
4890 }
4891 
4892 bool kvm_enable_sgx_provisioning(KVMState *s)
4893 {
4894     return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
4895 }
4896 
4897 static bool host_supports_vmx(void)
4898 {
4899     uint32_t ecx, unused;
4900 
4901     host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4902     return ecx & CPUID_EXT_VMX;
4903 }
4904 
4905 #define VMX_INVALID_GUEST_STATE 0x80000021
4906 
4907 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
4908 {
4909     X86CPU *cpu = X86_CPU(cs);
4910     uint64_t code;
4911     int ret;
4912 
4913     switch (run->exit_reason) {
4914     case KVM_EXIT_HLT:
4915         DPRINTF("handle_hlt\n");
4916         qemu_mutex_lock_iothread();
4917         ret = kvm_handle_halt(cpu);
4918         qemu_mutex_unlock_iothread();
4919         break;
4920     case KVM_EXIT_SET_TPR:
4921         ret = 0;
4922         break;
4923     case KVM_EXIT_TPR_ACCESS:
4924         qemu_mutex_lock_iothread();
4925         ret = kvm_handle_tpr_access(cpu);
4926         qemu_mutex_unlock_iothread();
4927         break;
4928     case KVM_EXIT_FAIL_ENTRY:
4929         code = run->fail_entry.hardware_entry_failure_reason;
4930         fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4931                 code);
4932         if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4933             fprintf(stderr,
4934                     "\nIf you're running a guest on an Intel machine without "
4935                         "unrestricted mode\n"
4936                     "support, the failure can be most likely due to the guest "
4937                         "entering an invalid\n"
4938                     "state for Intel VT. For example, the guest maybe running "
4939                         "in big real mode\n"
4940                     "which is not supported on less recent Intel processors."
4941                         "\n\n");
4942         }
4943         ret = -1;
4944         break;
4945     case KVM_EXIT_EXCEPTION:
4946         fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4947                 run->ex.exception, run->ex.error_code);
4948         ret = -1;
4949         break;
4950     case KVM_EXIT_DEBUG:
4951         DPRINTF("kvm_exit_debug\n");
4952         qemu_mutex_lock_iothread();
4953         ret = kvm_handle_debug(cpu, &run->debug.arch);
4954         qemu_mutex_unlock_iothread();
4955         break;
4956     case KVM_EXIT_HYPERV:
4957         ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4958         break;
4959     case KVM_EXIT_IOAPIC_EOI:
4960         ioapic_eoi_broadcast(run->eoi.vector);
4961         ret = 0;
4962         break;
4963     case KVM_EXIT_X86_BUS_LOCK:
4964         /* already handled in kvm_arch_post_run */
4965         ret = 0;
4966         break;
4967     default:
4968         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4969         ret = -1;
4970         break;
4971     }
4972 
4973     return ret;
4974 }
4975 
4976 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4977 {
4978     X86CPU *cpu = X86_CPU(cs);
4979     CPUX86State *env = &cpu->env;
4980 
4981     kvm_cpu_synchronize_state(cs);
4982     return !(env->cr[0] & CR0_PE_MASK) ||
4983            ((env->segs[R_CS].selector  & 3) != 3);
4984 }
4985 
4986 void kvm_arch_init_irq_routing(KVMState *s)
4987 {
4988     /* We know at this point that we're using the in-kernel
4989      * irqchip, so we can use irqfds, and on x86 we know
4990      * we can use msi via irqfd and GSI routing.
4991      */
4992     kvm_msi_via_irqfd_allowed = true;
4993     kvm_gsi_routing_allowed = true;
4994 
4995     if (kvm_irqchip_is_split()) {
4996         KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
4997         int i;
4998 
4999         /* If the ioapic is in QEMU and the lapics are in KVM, reserve
5000            MSI routes for signaling interrupts to the local apics. */
5001         for (i = 0; i < IOAPIC_NUM_PINS; i++) {
5002             if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
5003                 error_report("Could not enable split IRQ mode.");
5004                 exit(1);
5005             }
5006         }
5007         kvm_irqchip_commit_route_changes(&c);
5008     }
5009 }
5010 
5011 int kvm_arch_irqchip_create(KVMState *s)
5012 {
5013     int ret;
5014     if (kvm_kernel_irqchip_split()) {
5015         ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
5016         if (ret) {
5017             error_report("Could not enable split irqchip mode: %s",
5018                          strerror(-ret));
5019             exit(1);
5020         } else {
5021             DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
5022             kvm_split_irqchip = true;
5023             return 1;
5024         }
5025     } else {
5026         return 0;
5027     }
5028 }
5029 
5030 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
5031 {
5032     CPUX86State *env;
5033     uint64_t ext_id;
5034 
5035     if (!first_cpu) {
5036         return address;
5037     }
5038     env = &X86_CPU(first_cpu)->env;
5039     if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
5040         return address;
5041     }
5042 
5043     /*
5044      * If the remappable format bit is set, or the upper bits are
5045      * already set in address_hi, or the low extended bits aren't
5046      * there anyway, do nothing.
5047      */
5048     ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
5049     if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
5050         return address;
5051     }
5052 
5053     address &= ~ext_id;
5054     address |= ext_id << 35;
5055     return address;
5056 }
5057 
5058 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
5059                              uint64_t address, uint32_t data, PCIDevice *dev)
5060 {
5061     X86IOMMUState *iommu = x86_iommu_get_default();
5062 
5063     if (iommu) {
5064         X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
5065 
5066         if (class->int_remap) {
5067             int ret;
5068             MSIMessage src, dst;
5069 
5070             src.address = route->u.msi.address_hi;
5071             src.address <<= VTD_MSI_ADDR_HI_SHIFT;
5072             src.address |= route->u.msi.address_lo;
5073             src.data = route->u.msi.data;
5074 
5075             ret = class->int_remap(iommu, &src, &dst, dev ?     \
5076                                    pci_requester_id(dev) :      \
5077                                    X86_IOMMU_SID_INVALID);
5078             if (ret) {
5079                 trace_kvm_x86_fixup_msi_error(route->gsi);
5080                 return 1;
5081             }
5082 
5083             /*
5084              * Handled untranslated compatibilty format interrupt with
5085              * extended destination ID in the low bits 11-5. */
5086             dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
5087 
5088             route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
5089             route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
5090             route->u.msi.data = dst.data;
5091             return 0;
5092         }
5093     }
5094 
5095     address = kvm_swizzle_msi_ext_dest_id(address);
5096     route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
5097     route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
5098     return 0;
5099 }
5100 
5101 typedef struct MSIRouteEntry MSIRouteEntry;
5102 
5103 struct MSIRouteEntry {
5104     PCIDevice *dev;             /* Device pointer */
5105     int vector;                 /* MSI/MSIX vector index */
5106     int virq;                   /* Virtual IRQ index */
5107     QLIST_ENTRY(MSIRouteEntry) list;
5108 };
5109 
5110 /* List of used GSI routes */
5111 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
5112     QLIST_HEAD_INITIALIZER(msi_route_list);
5113 
5114 static void kvm_update_msi_routes_all(void *private, bool global,
5115                                       uint32_t index, uint32_t mask)
5116 {
5117     int cnt = 0, vector;
5118     MSIRouteEntry *entry;
5119     MSIMessage msg;
5120     PCIDevice *dev;
5121 
5122     /* TODO: explicit route update */
5123     QLIST_FOREACH(entry, &msi_route_list, list) {
5124         cnt++;
5125         vector = entry->vector;
5126         dev = entry->dev;
5127         if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
5128             msg = msix_get_message(dev, vector);
5129         } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
5130             msg = msi_get_message(dev, vector);
5131         } else {
5132             /*
5133              * Either MSI/MSIX is disabled for the device, or the
5134              * specific message was masked out.  Skip this one.
5135              */
5136             continue;
5137         }
5138         kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
5139     }
5140     kvm_irqchip_commit_routes(kvm_state);
5141     trace_kvm_x86_update_msi_routes(cnt);
5142 }
5143 
5144 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
5145                                 int vector, PCIDevice *dev)
5146 {
5147     static bool notify_list_inited = false;
5148     MSIRouteEntry *entry;
5149 
5150     if (!dev) {
5151         /* These are (possibly) IOAPIC routes only used for split
5152          * kernel irqchip mode, while what we are housekeeping are
5153          * PCI devices only. */
5154         return 0;
5155     }
5156 
5157     entry = g_new0(MSIRouteEntry, 1);
5158     entry->dev = dev;
5159     entry->vector = vector;
5160     entry->virq = route->gsi;
5161     QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5162 
5163     trace_kvm_x86_add_msi_route(route->gsi);
5164 
5165     if (!notify_list_inited) {
5166         /* For the first time we do add route, add ourselves into
5167          * IOMMU's IEC notify list if needed. */
5168         X86IOMMUState *iommu = x86_iommu_get_default();
5169         if (iommu) {
5170             x86_iommu_iec_register_notifier(iommu,
5171                                             kvm_update_msi_routes_all,
5172                                             NULL);
5173         }
5174         notify_list_inited = true;
5175     }
5176     return 0;
5177 }
5178 
5179 int kvm_arch_release_virq_post(int virq)
5180 {
5181     MSIRouteEntry *entry, *next;
5182     QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5183         if (entry->virq == virq) {
5184             trace_kvm_x86_remove_msi_route(virq);
5185             QLIST_REMOVE(entry, list);
5186             g_free(entry);
5187             break;
5188         }
5189     }
5190     return 0;
5191 }
5192 
5193 int kvm_arch_msi_data_to_gsi(uint32_t data)
5194 {
5195     abort();
5196 }
5197 
5198 bool kvm_has_waitpkg(void)
5199 {
5200     return has_msr_umwait;
5201 }
5202 
5203 bool kvm_arch_cpu_check_are_resettable(void)
5204 {
5205     return !sev_es_enabled();
5206 }
5207 
5208 #define ARCH_REQ_XCOMP_GUEST_PERM       0x1025
5209 
5210 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
5211 {
5212     KVMState *s = kvm_state;
5213     uint64_t supported;
5214 
5215     mask &= XSTATE_DYNAMIC_MASK;
5216     if (!mask) {
5217         return;
5218     }
5219     /*
5220      * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
5221      * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
5222      * about them already because they are not supported features.
5223      */
5224     supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
5225     supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
5226     mask &= supported;
5227 
5228     while (mask) {
5229         int bit = ctz64(mask);
5230         int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
5231         if (rc) {
5232             /*
5233              * Older kernel version (<5.17) do not support
5234              * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
5235              * any dynamic feature from kvm_arch_get_supported_cpuid.
5236              */
5237             warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
5238                         "for feature bit %d", bit);
5239         }
5240         mask &= ~BIT_ULL(bit);
5241     }
5242 }
5243