xref: /qemu/target/i386/kvm/kvm.c (revision d709bbf3)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright (C) 2006-2008 Qumranet Technologies
5  * Copyright IBM, Corp. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include <sys/ioctl.h>
19 #include <sys/utsname.h>
20 #include <sys/syscall.h>
21 
22 #include <linux/kvm.h>
23 #include "standard-headers/asm-x86/kvm_para.h"
24 
25 #include "cpu.h"
26 #include "host-cpu.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/hw_accel.h"
29 #include "sysemu/kvm_int.h"
30 #include "sysemu/runstate.h"
31 #include "kvm_i386.h"
32 #include "sev.h"
33 #include "hyperv.h"
34 #include "hyperv-proto.h"
35 
36 #include "exec/gdbstub.h"
37 #include "qemu/host-utils.h"
38 #include "qemu/main-loop.h"
39 #include "qemu/config-file.h"
40 #include "qemu/error-report.h"
41 #include "qemu/memalign.h"
42 #include "hw/i386/x86.h"
43 #include "hw/i386/apic.h"
44 #include "hw/i386/apic_internal.h"
45 #include "hw/i386/apic-msidef.h"
46 #include "hw/i386/intel_iommu.h"
47 #include "hw/i386/x86-iommu.h"
48 #include "hw/i386/e820_memory_layout.h"
49 
50 #include "hw/pci/pci.h"
51 #include "hw/pci/msi.h"
52 #include "hw/pci/msix.h"
53 #include "migration/blocker.h"
54 #include "exec/memattrs.h"
55 #include "trace.h"
56 
57 //#define DEBUG_KVM
58 
59 #ifdef DEBUG_KVM
60 #define DPRINTF(fmt, ...) \
61     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
62 #else
63 #define DPRINTF(fmt, ...) \
64     do { } while (0)
65 #endif
66 
67 /* From arch/x86/kvm/lapic.h */
68 #define KVM_APIC_BUS_CYCLE_NS       1
69 #define KVM_APIC_BUS_FREQUENCY      (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
70 
71 #define MSR_KVM_WALL_CLOCK  0x11
72 #define MSR_KVM_SYSTEM_TIME 0x12
73 
74 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
75  * 255 kvm_msr_entry structs */
76 #define MSR_BUF_SIZE 4096
77 
78 static void kvm_init_msrs(X86CPU *cpu);
79 
80 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
81     KVM_CAP_INFO(SET_TSS_ADDR),
82     KVM_CAP_INFO(EXT_CPUID),
83     KVM_CAP_INFO(MP_STATE),
84     KVM_CAP_LAST_INFO
85 };
86 
87 static bool has_msr_star;
88 static bool has_msr_hsave_pa;
89 static bool has_msr_tsc_aux;
90 static bool has_msr_tsc_adjust;
91 static bool has_msr_tsc_deadline;
92 static bool has_msr_feature_control;
93 static bool has_msr_misc_enable;
94 static bool has_msr_smbase;
95 static bool has_msr_bndcfgs;
96 static int lm_capable_kernel;
97 static bool has_msr_hv_hypercall;
98 static bool has_msr_hv_crash;
99 static bool has_msr_hv_reset;
100 static bool has_msr_hv_vpindex;
101 static bool hv_vpindex_settable;
102 static bool has_msr_hv_runtime;
103 static bool has_msr_hv_synic;
104 static bool has_msr_hv_stimer;
105 static bool has_msr_hv_frequencies;
106 static bool has_msr_hv_reenlightenment;
107 static bool has_msr_xss;
108 static bool has_msr_umwait;
109 static bool has_msr_spec_ctrl;
110 static bool has_tsc_scale_msr;
111 static bool has_msr_tsx_ctrl;
112 static bool has_msr_virt_ssbd;
113 static bool has_msr_smi_count;
114 static bool has_msr_arch_capabs;
115 static bool has_msr_core_capabs;
116 static bool has_msr_vmx_vmfunc;
117 static bool has_msr_ucode_rev;
118 static bool has_msr_vmx_procbased_ctls2;
119 static bool has_msr_perf_capabs;
120 static bool has_msr_pkrs;
121 
122 static uint32_t has_architectural_pmu_version;
123 static uint32_t num_architectural_pmu_gp_counters;
124 static uint32_t num_architectural_pmu_fixed_counters;
125 
126 static int has_xsave;
127 static int has_xsave2;
128 static int has_xcrs;
129 static int has_pit_state2;
130 static int has_sregs2;
131 static int has_exception_payload;
132 
133 static bool has_msr_mcg_ext_ctl;
134 
135 static struct kvm_cpuid2 *cpuid_cache;
136 static struct kvm_cpuid2 *hv_cpuid_cache;
137 static struct kvm_msr_list *kvm_feature_msrs;
138 
139 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
140 static RateLimit bus_lock_ratelimit_ctrl;
141 
142 int kvm_has_pit_state2(void)
143 {
144     return has_pit_state2;
145 }
146 
147 bool kvm_has_smm(void)
148 {
149     return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
150 }
151 
152 bool kvm_has_adjust_clock_stable(void)
153 {
154     int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
155 
156     return (ret == KVM_CLOCK_TSC_STABLE);
157 }
158 
159 bool kvm_has_adjust_clock(void)
160 {
161     return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
162 }
163 
164 bool kvm_has_exception_payload(void)
165 {
166     return has_exception_payload;
167 }
168 
169 static bool kvm_x2apic_api_set_flags(uint64_t flags)
170 {
171     KVMState *s = KVM_STATE(current_accel());
172 
173     return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
174 }
175 
176 #define MEMORIZE(fn, _result) \
177     ({ \
178         static bool _memorized; \
179         \
180         if (_memorized) { \
181             return _result; \
182         } \
183         _memorized = true; \
184         _result = fn; \
185     })
186 
187 static bool has_x2apic_api;
188 
189 bool kvm_has_x2apic_api(void)
190 {
191     return has_x2apic_api;
192 }
193 
194 bool kvm_enable_x2apic(void)
195 {
196     return MEMORIZE(
197              kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
198                                       KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
199              has_x2apic_api);
200 }
201 
202 bool kvm_hv_vpindex_settable(void)
203 {
204     return hv_vpindex_settable;
205 }
206 
207 static int kvm_get_tsc(CPUState *cs)
208 {
209     X86CPU *cpu = X86_CPU(cs);
210     CPUX86State *env = &cpu->env;
211     struct {
212         struct kvm_msrs info;
213         struct kvm_msr_entry entries[1];
214     } msr_data = {};
215     int ret;
216 
217     if (env->tsc_valid) {
218         return 0;
219     }
220 
221     memset(&msr_data, 0, sizeof(msr_data));
222     msr_data.info.nmsrs = 1;
223     msr_data.entries[0].index = MSR_IA32_TSC;
224     env->tsc_valid = !runstate_is_running();
225 
226     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
227     if (ret < 0) {
228         return ret;
229     }
230 
231     assert(ret == 1);
232     env->tsc = msr_data.entries[0].data;
233     return 0;
234 }
235 
236 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
237 {
238     kvm_get_tsc(cpu);
239 }
240 
241 void kvm_synchronize_all_tsc(void)
242 {
243     CPUState *cpu;
244 
245     if (kvm_enabled()) {
246         CPU_FOREACH(cpu) {
247             run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
248         }
249     }
250 }
251 
252 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
253 {
254     struct kvm_cpuid2 *cpuid;
255     int r, size;
256 
257     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
258     cpuid = g_malloc0(size);
259     cpuid->nent = max;
260     r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
261     if (r == 0 && cpuid->nent >= max) {
262         r = -E2BIG;
263     }
264     if (r < 0) {
265         if (r == -E2BIG) {
266             g_free(cpuid);
267             return NULL;
268         } else {
269             fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
270                     strerror(-r));
271             exit(1);
272         }
273     }
274     return cpuid;
275 }
276 
277 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
278  * for all entries.
279  */
280 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
281 {
282     struct kvm_cpuid2 *cpuid;
283     int max = 1;
284 
285     if (cpuid_cache != NULL) {
286         return cpuid_cache;
287     }
288     while ((cpuid = try_get_cpuid(s, max)) == NULL) {
289         max *= 2;
290     }
291     cpuid_cache = cpuid;
292     return cpuid;
293 }
294 
295 static bool host_tsx_broken(void)
296 {
297     int family, model, stepping;\
298     char vendor[CPUID_VENDOR_SZ + 1];
299 
300     host_cpu_vendor_fms(vendor, &family, &model, &stepping);
301 
302     /* Check if we are running on a Haswell host known to have broken TSX */
303     return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
304            (family == 6) &&
305            ((model == 63 && stepping < 4) ||
306             model == 60 || model == 69 || model == 70);
307 }
308 
309 /* Returns the value for a specific register on the cpuid entry
310  */
311 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
312 {
313     uint32_t ret = 0;
314     switch (reg) {
315     case R_EAX:
316         ret = entry->eax;
317         break;
318     case R_EBX:
319         ret = entry->ebx;
320         break;
321     case R_ECX:
322         ret = entry->ecx;
323         break;
324     case R_EDX:
325         ret = entry->edx;
326         break;
327     }
328     return ret;
329 }
330 
331 /* Find matching entry for function/index on kvm_cpuid2 struct
332  */
333 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
334                                                  uint32_t function,
335                                                  uint32_t index)
336 {
337     int i;
338     for (i = 0; i < cpuid->nent; ++i) {
339         if (cpuid->entries[i].function == function &&
340             cpuid->entries[i].index == index) {
341             return &cpuid->entries[i];
342         }
343     }
344     /* not found: */
345     return NULL;
346 }
347 
348 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
349                                       uint32_t index, int reg)
350 {
351     struct kvm_cpuid2 *cpuid;
352     uint32_t ret = 0;
353     uint32_t cpuid_1_edx;
354     uint64_t bitmask;
355 
356     cpuid = get_supported_cpuid(s);
357 
358     struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
359     if (entry) {
360         ret = cpuid_entry_get_reg(entry, reg);
361     }
362 
363     /* Fixups for the data returned by KVM, below */
364 
365     if (function == 1 && reg == R_EDX) {
366         /* KVM before 2.6.30 misreports the following features */
367         ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
368     } else if (function == 1 && reg == R_ECX) {
369         /* We can set the hypervisor flag, even if KVM does not return it on
370          * GET_SUPPORTED_CPUID
371          */
372         ret |= CPUID_EXT_HYPERVISOR;
373         /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
374          * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
375          * and the irqchip is in the kernel.
376          */
377         if (kvm_irqchip_in_kernel() &&
378                 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
379             ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
380         }
381 
382         /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
383          * without the in-kernel irqchip
384          */
385         if (!kvm_irqchip_in_kernel()) {
386             ret &= ~CPUID_EXT_X2APIC;
387         }
388 
389         if (enable_cpu_pm) {
390             int disable_exits = kvm_check_extension(s,
391                                                     KVM_CAP_X86_DISABLE_EXITS);
392 
393             if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
394                 ret |= CPUID_EXT_MONITOR;
395             }
396         }
397     } else if (function == 6 && reg == R_EAX) {
398         ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
399     } else if (function == 7 && index == 0 && reg == R_EBX) {
400         if (host_tsx_broken()) {
401             ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
402         }
403     } else if (function == 7 && index == 0 && reg == R_EDX) {
404         /*
405          * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
406          * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
407          * returned by KVM_GET_MSR_INDEX_LIST.
408          */
409         if (!has_msr_arch_capabs) {
410             ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
411         }
412     } else if (function == 0xd && index == 0 &&
413                (reg == R_EAX || reg == R_EDX)) {
414         /*
415          * The value returned by KVM_GET_SUPPORTED_CPUID does not include
416          * features that still have to be enabled with the arch_prctl
417          * system call.  QEMU needs the full value, which is retrieved
418          * with KVM_GET_DEVICE_ATTR.
419          */
420         struct kvm_device_attr attr = {
421             .group = 0,
422             .attr = KVM_X86_XCOMP_GUEST_SUPP,
423             .addr = (unsigned long) &bitmask
424         };
425 
426         bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
427         if (!sys_attr) {
428             return ret;
429         }
430 
431         int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
432         if (rc < 0) {
433             if (rc != -ENXIO) {
434                 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
435                             "error: %d", rc);
436             }
437             return ret;
438         }
439         ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
440     } else if (function == 0x80000001 && reg == R_ECX) {
441         /*
442          * It's safe to enable TOPOEXT even if it's not returned by
443          * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
444          * us to keep CPU models including TOPOEXT runnable on older kernels.
445          */
446         ret |= CPUID_EXT3_TOPOEXT;
447     } else if (function == 0x80000001 && reg == R_EDX) {
448         /* On Intel, kvm returns cpuid according to the Intel spec,
449          * so add missing bits according to the AMD spec:
450          */
451         cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
452         ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
453     } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
454         /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
455          * be enabled without the in-kernel irqchip
456          */
457         if (!kvm_irqchip_in_kernel()) {
458             ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
459         }
460         if (kvm_irqchip_is_split()) {
461             ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
462         }
463     } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
464         ret |= 1U << KVM_HINTS_REALTIME;
465     }
466 
467     return ret;
468 }
469 
470 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
471 {
472     struct {
473         struct kvm_msrs info;
474         struct kvm_msr_entry entries[1];
475     } msr_data = {};
476     uint64_t value;
477     uint32_t ret, can_be_one, must_be_one;
478 
479     if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
480         return 0;
481     }
482 
483     /* Check if requested MSR is supported feature MSR */
484     int i;
485     for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
486         if (kvm_feature_msrs->indices[i] == index) {
487             break;
488         }
489     if (i == kvm_feature_msrs->nmsrs) {
490         return 0; /* if the feature MSR is not supported, simply return 0 */
491     }
492 
493     msr_data.info.nmsrs = 1;
494     msr_data.entries[0].index = index;
495 
496     ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
497     if (ret != 1) {
498         error_report("KVM get MSR (index=0x%x) feature failed, %s",
499             index, strerror(-ret));
500         exit(1);
501     }
502 
503     value = msr_data.entries[0].data;
504     switch (index) {
505     case MSR_IA32_VMX_PROCBASED_CTLS2:
506         if (!has_msr_vmx_procbased_ctls2) {
507             /* KVM forgot to add these bits for some time, do this ourselves. */
508             if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
509                 CPUID_XSAVE_XSAVES) {
510                 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
511             }
512             if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
513                 CPUID_EXT_RDRAND) {
514                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
515             }
516             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
517                 CPUID_7_0_EBX_INVPCID) {
518                 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
519             }
520             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
521                 CPUID_7_0_EBX_RDSEED) {
522                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
523             }
524             if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
525                 CPUID_EXT2_RDTSCP) {
526                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
527             }
528         }
529         /* fall through */
530     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
531     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
532     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
533     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
534         /*
535          * Return true for bits that can be one, but do not have to be one.
536          * The SDM tells us which bits could have a "must be one" setting,
537          * so we can do the opposite transformation in make_vmx_msr_value.
538          */
539         must_be_one = (uint32_t)value;
540         can_be_one = (uint32_t)(value >> 32);
541         return can_be_one & ~must_be_one;
542 
543     default:
544         return value;
545     }
546 }
547 
548 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
549                                      int *max_banks)
550 {
551     int r;
552 
553     r = kvm_check_extension(s, KVM_CAP_MCE);
554     if (r > 0) {
555         *max_banks = r;
556         return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
557     }
558     return -ENOSYS;
559 }
560 
561 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
562 {
563     CPUState *cs = CPU(cpu);
564     CPUX86State *env = &cpu->env;
565     uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
566                       MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
567     uint64_t mcg_status = MCG_STATUS_MCIP;
568     int flags = 0;
569 
570     if (code == BUS_MCEERR_AR) {
571         status |= MCI_STATUS_AR | 0x134;
572         mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV;
573     } else {
574         status |= 0xc0;
575         mcg_status |= MCG_STATUS_RIPV;
576     }
577 
578     flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
579     /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
580      * guest kernel back into env->mcg_ext_ctl.
581      */
582     cpu_synchronize_state(cs);
583     if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
584         mcg_status |= MCG_STATUS_LMCE;
585         flags = 0;
586     }
587 
588     cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
589                        (MCM_ADDR_PHYS << 6) | 0xc, flags);
590 }
591 
592 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
593 {
594     MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
595 
596     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
597                                    &mff);
598 }
599 
600 static void hardware_memory_error(void *host_addr)
601 {
602     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
603     error_report("QEMU got Hardware memory error at addr %p", host_addr);
604     exit(1);
605 }
606 
607 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
608 {
609     X86CPU *cpu = X86_CPU(c);
610     CPUX86State *env = &cpu->env;
611     ram_addr_t ram_addr;
612     hwaddr paddr;
613 
614     /* If we get an action required MCE, it has been injected by KVM
615      * while the VM was running.  An action optional MCE instead should
616      * be coming from the main thread, which qemu_init_sigbus identifies
617      * as the "early kill" thread.
618      */
619     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
620 
621     if ((env->mcg_cap & MCG_SER_P) && addr) {
622         ram_addr = qemu_ram_addr_from_host(addr);
623         if (ram_addr != RAM_ADDR_INVALID &&
624             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
625             kvm_hwpoison_page_add(ram_addr);
626             kvm_mce_inject(cpu, paddr, code);
627 
628             /*
629              * Use different logging severity based on error type.
630              * If there is additional MCE reporting on the hypervisor, QEMU VA
631              * could be another source to identify the PA and MCE details.
632              */
633             if (code == BUS_MCEERR_AR) {
634                 error_report("Guest MCE Memory Error at QEMU addr %p and "
635                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
636                     addr, paddr, "BUS_MCEERR_AR");
637             } else {
638                  warn_report("Guest MCE Memory Error at QEMU addr %p and "
639                      "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
640                      addr, paddr, "BUS_MCEERR_AO");
641             }
642 
643             return;
644         }
645 
646         if (code == BUS_MCEERR_AO) {
647             warn_report("Hardware memory error at addr %p of type %s "
648                 "for memory used by QEMU itself instead of guest system!",
649                  addr, "BUS_MCEERR_AO");
650         }
651     }
652 
653     if (code == BUS_MCEERR_AR) {
654         hardware_memory_error(addr);
655     }
656 
657     /* Hope we are lucky for AO MCE, just notify a event */
658     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
659 }
660 
661 static void kvm_reset_exception(CPUX86State *env)
662 {
663     env->exception_nr = -1;
664     env->exception_pending = 0;
665     env->exception_injected = 0;
666     env->exception_has_payload = false;
667     env->exception_payload = 0;
668 }
669 
670 static void kvm_queue_exception(CPUX86State *env,
671                                 int32_t exception_nr,
672                                 uint8_t exception_has_payload,
673                                 uint64_t exception_payload)
674 {
675     assert(env->exception_nr == -1);
676     assert(!env->exception_pending);
677     assert(!env->exception_injected);
678     assert(!env->exception_has_payload);
679 
680     env->exception_nr = exception_nr;
681 
682     if (has_exception_payload) {
683         env->exception_pending = 1;
684 
685         env->exception_has_payload = exception_has_payload;
686         env->exception_payload = exception_payload;
687     } else {
688         env->exception_injected = 1;
689 
690         if (exception_nr == EXCP01_DB) {
691             assert(exception_has_payload);
692             env->dr[6] = exception_payload;
693         } else if (exception_nr == EXCP0E_PAGE) {
694             assert(exception_has_payload);
695             env->cr[2] = exception_payload;
696         } else {
697             assert(!exception_has_payload);
698         }
699     }
700 }
701 
702 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
703 {
704     CPUX86State *env = &cpu->env;
705 
706     if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
707         unsigned int bank, bank_num = env->mcg_cap & 0xff;
708         struct kvm_x86_mce mce;
709 
710         kvm_reset_exception(env);
711 
712         /*
713          * There must be at least one bank in use if an MCE is pending.
714          * Find it and use its values for the event injection.
715          */
716         for (bank = 0; bank < bank_num; bank++) {
717             if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
718                 break;
719             }
720         }
721         assert(bank < bank_num);
722 
723         mce.bank = bank;
724         mce.status = env->mce_banks[bank * 4 + 1];
725         mce.mcg_status = env->mcg_status;
726         mce.addr = env->mce_banks[bank * 4 + 2];
727         mce.misc = env->mce_banks[bank * 4 + 3];
728 
729         return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
730     }
731     return 0;
732 }
733 
734 static void cpu_update_state(void *opaque, bool running, RunState state)
735 {
736     CPUX86State *env = opaque;
737 
738     if (running) {
739         env->tsc_valid = false;
740     }
741 }
742 
743 unsigned long kvm_arch_vcpu_id(CPUState *cs)
744 {
745     X86CPU *cpu = X86_CPU(cs);
746     return cpu->apic_id;
747 }
748 
749 #ifndef KVM_CPUID_SIGNATURE_NEXT
750 #define KVM_CPUID_SIGNATURE_NEXT                0x40000100
751 #endif
752 
753 static bool hyperv_enabled(X86CPU *cpu)
754 {
755     return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
756         ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
757          cpu->hyperv_features || cpu->hyperv_passthrough);
758 }
759 
760 /*
761  * Check whether target_freq is within conservative
762  * ntp correctable bounds (250ppm) of freq
763  */
764 static inline bool freq_within_bounds(int freq, int target_freq)
765 {
766         int max_freq = freq + (freq * 250 / 1000000);
767         int min_freq = freq - (freq * 250 / 1000000);
768 
769         if (target_freq >= min_freq && target_freq <= max_freq) {
770                 return true;
771         }
772 
773         return false;
774 }
775 
776 static int kvm_arch_set_tsc_khz(CPUState *cs)
777 {
778     X86CPU *cpu = X86_CPU(cs);
779     CPUX86State *env = &cpu->env;
780     int r, cur_freq;
781     bool set_ioctl = false;
782 
783     if (!env->tsc_khz) {
784         return 0;
785     }
786 
787     cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
788                kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
789 
790     /*
791      * If TSC scaling is supported, attempt to set TSC frequency.
792      */
793     if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
794         set_ioctl = true;
795     }
796 
797     /*
798      * If desired TSC frequency is within bounds of NTP correction,
799      * attempt to set TSC frequency.
800      */
801     if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
802         set_ioctl = true;
803     }
804 
805     r = set_ioctl ?
806         kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
807         -ENOTSUP;
808 
809     if (r < 0) {
810         /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
811          * TSC frequency doesn't match the one we want.
812          */
813         cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
814                    kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
815                    -ENOTSUP;
816         if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
817             warn_report("TSC frequency mismatch between "
818                         "VM (%" PRId64 " kHz) and host (%d kHz), "
819                         "and TSC scaling unavailable",
820                         env->tsc_khz, cur_freq);
821             return r;
822         }
823     }
824 
825     return 0;
826 }
827 
828 static bool tsc_is_stable_and_known(CPUX86State *env)
829 {
830     if (!env->tsc_khz) {
831         return false;
832     }
833     return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
834         || env->user_tsc_khz;
835 }
836 
837 static struct {
838     const char *desc;
839     struct {
840         uint32_t func;
841         int reg;
842         uint32_t bits;
843     } flags[2];
844     uint64_t dependencies;
845 } kvm_hyperv_properties[] = {
846     [HYPERV_FEAT_RELAXED] = {
847         .desc = "relaxed timing (hv-relaxed)",
848         .flags = {
849             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
850              .bits = HV_RELAXED_TIMING_RECOMMENDED}
851         }
852     },
853     [HYPERV_FEAT_VAPIC] = {
854         .desc = "virtual APIC (hv-vapic)",
855         .flags = {
856             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
857              .bits = HV_APIC_ACCESS_AVAILABLE}
858         }
859     },
860     [HYPERV_FEAT_TIME] = {
861         .desc = "clocksources (hv-time)",
862         .flags = {
863             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
864              .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
865         }
866     },
867     [HYPERV_FEAT_CRASH] = {
868         .desc = "crash MSRs (hv-crash)",
869         .flags = {
870             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
871              .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
872         }
873     },
874     [HYPERV_FEAT_RESET] = {
875         .desc = "reset MSR (hv-reset)",
876         .flags = {
877             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
878              .bits = HV_RESET_AVAILABLE}
879         }
880     },
881     [HYPERV_FEAT_VPINDEX] = {
882         .desc = "VP_INDEX MSR (hv-vpindex)",
883         .flags = {
884             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
885              .bits = HV_VP_INDEX_AVAILABLE}
886         }
887     },
888     [HYPERV_FEAT_RUNTIME] = {
889         .desc = "VP_RUNTIME MSR (hv-runtime)",
890         .flags = {
891             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
892              .bits = HV_VP_RUNTIME_AVAILABLE}
893         }
894     },
895     [HYPERV_FEAT_SYNIC] = {
896         .desc = "synthetic interrupt controller (hv-synic)",
897         .flags = {
898             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
899              .bits = HV_SYNIC_AVAILABLE}
900         }
901     },
902     [HYPERV_FEAT_STIMER] = {
903         .desc = "synthetic timers (hv-stimer)",
904         .flags = {
905             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
906              .bits = HV_SYNTIMERS_AVAILABLE}
907         },
908         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
909     },
910     [HYPERV_FEAT_FREQUENCIES] = {
911         .desc = "frequency MSRs (hv-frequencies)",
912         .flags = {
913             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
914              .bits = HV_ACCESS_FREQUENCY_MSRS},
915             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
916              .bits = HV_FREQUENCY_MSRS_AVAILABLE}
917         }
918     },
919     [HYPERV_FEAT_REENLIGHTENMENT] = {
920         .desc = "reenlightenment MSRs (hv-reenlightenment)",
921         .flags = {
922             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
923              .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
924         }
925     },
926     [HYPERV_FEAT_TLBFLUSH] = {
927         .desc = "paravirtualized TLB flush (hv-tlbflush)",
928         .flags = {
929             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
930              .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
931              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
932         },
933         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
934     },
935     [HYPERV_FEAT_EVMCS] = {
936         .desc = "enlightened VMCS (hv-evmcs)",
937         .flags = {
938             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
939              .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
940         },
941         .dependencies = BIT(HYPERV_FEAT_VAPIC)
942     },
943     [HYPERV_FEAT_IPI] = {
944         .desc = "paravirtualized IPI (hv-ipi)",
945         .flags = {
946             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
947              .bits = HV_CLUSTER_IPI_RECOMMENDED |
948              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
949         },
950         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
951     },
952     [HYPERV_FEAT_STIMER_DIRECT] = {
953         .desc = "direct mode synthetic timers (hv-stimer-direct)",
954         .flags = {
955             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
956              .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
957         },
958         .dependencies = BIT(HYPERV_FEAT_STIMER)
959     },
960     [HYPERV_FEAT_AVIC] = {
961         .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
962         .flags = {
963             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
964              .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
965         }
966     },
967 };
968 
969 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
970                                            bool do_sys_ioctl)
971 {
972     struct kvm_cpuid2 *cpuid;
973     int r, size;
974 
975     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
976     cpuid = g_malloc0(size);
977     cpuid->nent = max;
978 
979     if (do_sys_ioctl) {
980         r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
981     } else {
982         r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
983     }
984     if (r == 0 && cpuid->nent >= max) {
985         r = -E2BIG;
986     }
987     if (r < 0) {
988         if (r == -E2BIG) {
989             g_free(cpuid);
990             return NULL;
991         } else {
992             fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
993                     strerror(-r));
994             exit(1);
995         }
996     }
997     return cpuid;
998 }
999 
1000 /*
1001  * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1002  * for all entries.
1003  */
1004 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1005 {
1006     struct kvm_cpuid2 *cpuid;
1007     /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000080 leaves */
1008     int max = 10;
1009     int i;
1010     bool do_sys_ioctl;
1011 
1012     do_sys_ioctl =
1013         kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1014 
1015     /*
1016      * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1017      * unsupported, kvm_hyperv_expand_features() checks for that.
1018      */
1019     assert(do_sys_ioctl || cs->kvm_state);
1020 
1021     /*
1022      * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1023      * -E2BIG, however, it doesn't report back the right size. Keep increasing
1024      * it and re-trying until we succeed.
1025      */
1026     while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1027         max++;
1028     }
1029 
1030     /*
1031      * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1032      * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1033      * information early, just check for the capability and set the bit
1034      * manually.
1035      */
1036     if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1037                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1038         for (i = 0; i < cpuid->nent; i++) {
1039             if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1040                 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1041             }
1042         }
1043     }
1044 
1045     return cpuid;
1046 }
1047 
1048 /*
1049  * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1050  * leaves from KVM_CAP_HYPERV* and present MSRs data.
1051  */
1052 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1053 {
1054     X86CPU *cpu = X86_CPU(cs);
1055     struct kvm_cpuid2 *cpuid;
1056     struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1057 
1058     /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1059     cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1060     cpuid->nent = 2;
1061 
1062     /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1063     entry_feat = &cpuid->entries[0];
1064     entry_feat->function = HV_CPUID_FEATURES;
1065 
1066     entry_recomm = &cpuid->entries[1];
1067     entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1068     entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1069 
1070     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1071         entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1072         entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1073         entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1074         entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1075         entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1076     }
1077 
1078     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1079         entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1080         entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1081     }
1082 
1083     if (has_msr_hv_frequencies) {
1084         entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1085         entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1086     }
1087 
1088     if (has_msr_hv_crash) {
1089         entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1090     }
1091 
1092     if (has_msr_hv_reenlightenment) {
1093         entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1094     }
1095 
1096     if (has_msr_hv_reset) {
1097         entry_feat->eax |= HV_RESET_AVAILABLE;
1098     }
1099 
1100     if (has_msr_hv_vpindex) {
1101         entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1102     }
1103 
1104     if (has_msr_hv_runtime) {
1105         entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1106     }
1107 
1108     if (has_msr_hv_synic) {
1109         unsigned int cap = cpu->hyperv_synic_kvm_only ?
1110             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1111 
1112         if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1113             entry_feat->eax |= HV_SYNIC_AVAILABLE;
1114         }
1115     }
1116 
1117     if (has_msr_hv_stimer) {
1118         entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1119     }
1120 
1121     if (kvm_check_extension(cs->kvm_state,
1122                             KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1123         entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1124         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1125     }
1126 
1127     if (kvm_check_extension(cs->kvm_state,
1128                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1129         entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1130     }
1131 
1132     if (kvm_check_extension(cs->kvm_state,
1133                             KVM_CAP_HYPERV_SEND_IPI) > 0) {
1134         entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1135         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1136     }
1137 
1138     return cpuid;
1139 }
1140 
1141 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1142 {
1143     struct kvm_cpuid_entry2 *entry;
1144     struct kvm_cpuid2 *cpuid;
1145 
1146     if (hv_cpuid_cache) {
1147         cpuid = hv_cpuid_cache;
1148     } else {
1149         if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1150             cpuid = get_supported_hv_cpuid(cs);
1151         } else {
1152             /*
1153              * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1154              * before KVM context is created but this is only done when
1155              * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1156              * KVM_CAP_HYPERV_CPUID.
1157              */
1158             assert(cs->kvm_state);
1159 
1160             cpuid = get_supported_hv_cpuid_legacy(cs);
1161         }
1162         hv_cpuid_cache = cpuid;
1163     }
1164 
1165     if (!cpuid) {
1166         return 0;
1167     }
1168 
1169     entry = cpuid_find_entry(cpuid, func, 0);
1170     if (!entry) {
1171         return 0;
1172     }
1173 
1174     return cpuid_entry_get_reg(entry, reg);
1175 }
1176 
1177 static bool hyperv_feature_supported(CPUState *cs, int feature)
1178 {
1179     uint32_t func, bits;
1180     int i, reg;
1181 
1182     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1183 
1184         func = kvm_hyperv_properties[feature].flags[i].func;
1185         reg = kvm_hyperv_properties[feature].flags[i].reg;
1186         bits = kvm_hyperv_properties[feature].flags[i].bits;
1187 
1188         if (!func) {
1189             continue;
1190         }
1191 
1192         if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1193             return false;
1194         }
1195     }
1196 
1197     return true;
1198 }
1199 
1200 /* Checks that all feature dependencies are enabled */
1201 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1202 {
1203     uint64_t deps;
1204     int dep_feat;
1205 
1206     deps = kvm_hyperv_properties[feature].dependencies;
1207     while (deps) {
1208         dep_feat = ctz64(deps);
1209         if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1210             error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1211                        kvm_hyperv_properties[feature].desc,
1212                        kvm_hyperv_properties[dep_feat].desc);
1213             return false;
1214         }
1215         deps &= ~(1ull << dep_feat);
1216     }
1217 
1218     return true;
1219 }
1220 
1221 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1222 {
1223     X86CPU *cpu = X86_CPU(cs);
1224     uint32_t r = 0;
1225     int i, j;
1226 
1227     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1228         if (!hyperv_feat_enabled(cpu, i)) {
1229             continue;
1230         }
1231 
1232         for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1233             if (kvm_hyperv_properties[i].flags[j].func != func) {
1234                 continue;
1235             }
1236             if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1237                 continue;
1238             }
1239 
1240             r |= kvm_hyperv_properties[i].flags[j].bits;
1241         }
1242     }
1243 
1244     return r;
1245 }
1246 
1247 /*
1248  * Expand Hyper-V CPU features. In partucular, check that all the requested
1249  * features are supported by the host and the sanity of the configuration
1250  * (that all the required dependencies are included). Also, this takes care
1251  * of 'hv_passthrough' mode and fills the environment with all supported
1252  * Hyper-V features.
1253  */
1254 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1255 {
1256     CPUState *cs = CPU(cpu);
1257     Error *local_err = NULL;
1258     int feat;
1259 
1260     if (!hyperv_enabled(cpu))
1261         return true;
1262 
1263     /*
1264      * When kvm_hyperv_expand_features is called at CPU feature expansion
1265      * time per-CPU kvm_state is not available yet so we can only proceed
1266      * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1267      */
1268     if (!cs->kvm_state &&
1269         !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1270         return true;
1271 
1272     if (cpu->hyperv_passthrough) {
1273         cpu->hyperv_vendor_id[0] =
1274             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1275         cpu->hyperv_vendor_id[1] =
1276             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1277         cpu->hyperv_vendor_id[2] =
1278             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1279         cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1280                                        sizeof(cpu->hyperv_vendor_id) + 1);
1281         memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1282                sizeof(cpu->hyperv_vendor_id));
1283         cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1284 
1285         cpu->hyperv_interface_id[0] =
1286             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1287         cpu->hyperv_interface_id[1] =
1288             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1289         cpu->hyperv_interface_id[2] =
1290             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1291         cpu->hyperv_interface_id[3] =
1292             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1293 
1294         cpu->hyperv_ver_id_build =
1295             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1296         cpu->hyperv_ver_id_major =
1297             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1298         cpu->hyperv_ver_id_minor =
1299             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1300         cpu->hyperv_ver_id_sp =
1301             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1302         cpu->hyperv_ver_id_sb =
1303             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1304         cpu->hyperv_ver_id_sn =
1305             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1306 
1307         cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1308                                             R_EAX);
1309         cpu->hyperv_limits[0] =
1310             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1311         cpu->hyperv_limits[1] =
1312             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1313         cpu->hyperv_limits[2] =
1314             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1315 
1316         cpu->hyperv_spinlock_attempts =
1317             hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1318 
1319         /*
1320          * Mark feature as enabled in 'cpu->hyperv_features' as
1321          * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1322          */
1323         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1324             if (hyperv_feature_supported(cs, feat)) {
1325                 cpu->hyperv_features |= BIT(feat);
1326             }
1327         }
1328     } else {
1329         /* Check features availability and dependencies */
1330         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1331             /* If the feature was not requested skip it. */
1332             if (!hyperv_feat_enabled(cpu, feat)) {
1333                 continue;
1334             }
1335 
1336             /* Check if the feature is supported by KVM */
1337             if (!hyperv_feature_supported(cs, feat)) {
1338                 error_setg(errp, "Hyper-V %s is not supported by kernel",
1339                            kvm_hyperv_properties[feat].desc);
1340                 return false;
1341             }
1342 
1343             /* Check dependencies */
1344             if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1345                 error_propagate(errp, local_err);
1346                 return false;
1347             }
1348         }
1349     }
1350 
1351     /* Additional dependencies not covered by kvm_hyperv_properties[] */
1352     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1353         !cpu->hyperv_synic_kvm_only &&
1354         !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1355         error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1356                    kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1357                    kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1358         return false;
1359     }
1360 
1361     return true;
1362 }
1363 
1364 /*
1365  * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1366  */
1367 static int hyperv_fill_cpuids(CPUState *cs,
1368                               struct kvm_cpuid_entry2 *cpuid_ent)
1369 {
1370     X86CPU *cpu = X86_CPU(cs);
1371     struct kvm_cpuid_entry2 *c;
1372     uint32_t cpuid_i = 0;
1373 
1374     c = &cpuid_ent[cpuid_i++];
1375     c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1376     c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1377         HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1378     c->ebx = cpu->hyperv_vendor_id[0];
1379     c->ecx = cpu->hyperv_vendor_id[1];
1380     c->edx = cpu->hyperv_vendor_id[2];
1381 
1382     c = &cpuid_ent[cpuid_i++];
1383     c->function = HV_CPUID_INTERFACE;
1384     c->eax = cpu->hyperv_interface_id[0];
1385     c->ebx = cpu->hyperv_interface_id[1];
1386     c->ecx = cpu->hyperv_interface_id[2];
1387     c->edx = cpu->hyperv_interface_id[3];
1388 
1389     c = &cpuid_ent[cpuid_i++];
1390     c->function = HV_CPUID_VERSION;
1391     c->eax = cpu->hyperv_ver_id_build;
1392     c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1393         cpu->hyperv_ver_id_minor;
1394     c->ecx = cpu->hyperv_ver_id_sp;
1395     c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1396         (cpu->hyperv_ver_id_sn & 0xffffff);
1397 
1398     c = &cpuid_ent[cpuid_i++];
1399     c->function = HV_CPUID_FEATURES;
1400     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1401     c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1402     c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1403 
1404     /* Unconditionally required with any Hyper-V enlightenment */
1405     c->eax |= HV_HYPERCALL_AVAILABLE;
1406 
1407     /* SynIC and Vmbus devices require messages/signals hypercalls */
1408     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1409         !cpu->hyperv_synic_kvm_only) {
1410         c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1411     }
1412 
1413 
1414     /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1415     c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1416 
1417     c = &cpuid_ent[cpuid_i++];
1418     c->function = HV_CPUID_ENLIGHTMENT_INFO;
1419     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1420     c->ebx = cpu->hyperv_spinlock_attempts;
1421 
1422     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1423         !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1424         c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1425     }
1426 
1427     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1428         c->eax |= HV_NO_NONARCH_CORESHARING;
1429     } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1430         c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1431             HV_NO_NONARCH_CORESHARING;
1432     }
1433 
1434     c = &cpuid_ent[cpuid_i++];
1435     c->function = HV_CPUID_IMPLEMENT_LIMITS;
1436     c->eax = cpu->hv_max_vps;
1437     c->ebx = cpu->hyperv_limits[0];
1438     c->ecx = cpu->hyperv_limits[1];
1439     c->edx = cpu->hyperv_limits[2];
1440 
1441     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1442         uint32_t function;
1443 
1444         /* Create zeroed 0x40000006..0x40000009 leaves */
1445         for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1446              function < HV_CPUID_NESTED_FEATURES; function++) {
1447             c = &cpuid_ent[cpuid_i++];
1448             c->function = function;
1449         }
1450 
1451         c = &cpuid_ent[cpuid_i++];
1452         c->function = HV_CPUID_NESTED_FEATURES;
1453         c->eax = cpu->hyperv_nested[0];
1454     }
1455 
1456     return cpuid_i;
1457 }
1458 
1459 static Error *hv_passthrough_mig_blocker;
1460 static Error *hv_no_nonarch_cs_mig_blocker;
1461 
1462 /* Checks that the exposed eVMCS version range is supported by KVM */
1463 static bool evmcs_version_supported(uint16_t evmcs_version,
1464                                     uint16_t supported_evmcs_version)
1465 {
1466     uint8_t min_version = evmcs_version & 0xff;
1467     uint8_t max_version = evmcs_version >> 8;
1468     uint8_t min_supported_version = supported_evmcs_version & 0xff;
1469     uint8_t max_supported_version = supported_evmcs_version >> 8;
1470 
1471     return (min_version >= min_supported_version) &&
1472         (max_version <= max_supported_version);
1473 }
1474 
1475 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
1476 
1477 static int hyperv_init_vcpu(X86CPU *cpu)
1478 {
1479     CPUState *cs = CPU(cpu);
1480     Error *local_err = NULL;
1481     int ret;
1482 
1483     if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1484         error_setg(&hv_passthrough_mig_blocker,
1485                    "'hv-passthrough' CPU flag prevents migration, use explicit"
1486                    " set of hv-* flags instead");
1487         ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1488         if (ret < 0) {
1489             error_report_err(local_err);
1490             return ret;
1491         }
1492     }
1493 
1494     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1495         hv_no_nonarch_cs_mig_blocker == NULL) {
1496         error_setg(&hv_no_nonarch_cs_mig_blocker,
1497                    "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1498                    " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1499                    " make sure SMT is disabled and/or that vCPUs are properly"
1500                    " pinned)");
1501         ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1502         if (ret < 0) {
1503             error_report_err(local_err);
1504             return ret;
1505         }
1506     }
1507 
1508     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1509         /*
1510          * the kernel doesn't support setting vp_index; assert that its value
1511          * is in sync
1512          */
1513         struct {
1514             struct kvm_msrs info;
1515             struct kvm_msr_entry entries[1];
1516         } msr_data = {
1517             .info.nmsrs = 1,
1518             .entries[0].index = HV_X64_MSR_VP_INDEX,
1519         };
1520 
1521         ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
1522         if (ret < 0) {
1523             return ret;
1524         }
1525         assert(ret == 1);
1526 
1527         if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
1528             error_report("kernel's vp_index != QEMU's vp_index");
1529             return -ENXIO;
1530         }
1531     }
1532 
1533     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1534         uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1535             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1536         ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1537         if (ret < 0) {
1538             error_report("failed to turn on HyperV SynIC in KVM: %s",
1539                          strerror(-ret));
1540             return ret;
1541         }
1542 
1543         if (!cpu->hyperv_synic_kvm_only) {
1544             ret = hyperv_x86_synic_add(cpu);
1545             if (ret < 0) {
1546                 error_report("failed to create HyperV SynIC: %s",
1547                              strerror(-ret));
1548                 return ret;
1549             }
1550         }
1551     }
1552 
1553     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1554         uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1555         uint16_t supported_evmcs_version;
1556 
1557         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1558                                   (uintptr_t)&supported_evmcs_version);
1559 
1560         /*
1561          * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1562          * option sets. Note: we hardcode the maximum supported eVMCS version
1563          * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1564          * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1565          * to be added.
1566          */
1567         if (ret < 0) {
1568             error_report("Hyper-V %s is not supported by kernel",
1569                          kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1570             return ret;
1571         }
1572 
1573         if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1574             error_report("eVMCS version range [%d..%d] is not supported by "
1575                          "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1576                          evmcs_version >> 8, supported_evmcs_version & 0xff,
1577                          supported_evmcs_version >> 8);
1578             return -ENOTSUP;
1579         }
1580 
1581         cpu->hyperv_nested[0] = evmcs_version;
1582     }
1583 
1584     if (cpu->hyperv_enforce_cpuid) {
1585         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1586         if (ret < 0) {
1587             error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1588                          strerror(-ret));
1589             return ret;
1590         }
1591     }
1592 
1593     return 0;
1594 }
1595 
1596 static Error *invtsc_mig_blocker;
1597 
1598 #define KVM_MAX_CPUID_ENTRIES  100
1599 
1600 static void kvm_init_xsave(CPUX86State *env)
1601 {
1602     if (has_xsave2) {
1603         env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1604     } else if (has_xsave) {
1605         env->xsave_buf_len = sizeof(struct kvm_xsave);
1606     } else {
1607         return;
1608     }
1609 
1610     env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1611     memset(env->xsave_buf, 0, env->xsave_buf_len);
1612     /*
1613      * The allocated storage must be large enough for all of the
1614      * possible XSAVE state components.
1615      */
1616     assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1617            env->xsave_buf_len);
1618 }
1619 
1620 int kvm_arch_init_vcpu(CPUState *cs)
1621 {
1622     struct {
1623         struct kvm_cpuid2 cpuid;
1624         struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1625     } cpuid_data;
1626     /*
1627      * The kernel defines these structs with padding fields so there
1628      * should be no extra padding in our cpuid_data struct.
1629      */
1630     QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1631                       sizeof(struct kvm_cpuid2) +
1632                       sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1633 
1634     X86CPU *cpu = X86_CPU(cs);
1635     CPUX86State *env = &cpu->env;
1636     uint32_t limit, i, j, cpuid_i;
1637     uint32_t unused;
1638     struct kvm_cpuid_entry2 *c;
1639     uint32_t signature[3];
1640     int kvm_base = KVM_CPUID_SIGNATURE;
1641     int max_nested_state_len;
1642     int r;
1643     Error *local_err = NULL;
1644 
1645     memset(&cpuid_data, 0, sizeof(cpuid_data));
1646 
1647     cpuid_i = 0;
1648 
1649     has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
1650 
1651     r = kvm_arch_set_tsc_khz(cs);
1652     if (r < 0) {
1653         return r;
1654     }
1655 
1656     /* vcpu's TSC frequency is either specified by user, or following
1657      * the value used by KVM if the former is not present. In the
1658      * latter case, we query it from KVM and record in env->tsc_khz,
1659      * so that vcpu's TSC frequency can be migrated later via this field.
1660      */
1661     if (!env->tsc_khz) {
1662         r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1663             kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1664             -ENOTSUP;
1665         if (r > 0) {
1666             env->tsc_khz = r;
1667         }
1668     }
1669 
1670     env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1671 
1672     /*
1673      * kvm_hyperv_expand_features() is called here for the second time in case
1674      * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
1675      * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
1676      * check which Hyper-V enlightenments are supported and which are not, we
1677      * can still proceed and check/expand Hyper-V enlightenments here so legacy
1678      * behavior is preserved.
1679      */
1680     if (!kvm_hyperv_expand_features(cpu, &local_err)) {
1681         error_report_err(local_err);
1682         return -ENOSYS;
1683     }
1684 
1685     if (hyperv_enabled(cpu)) {
1686         r = hyperv_init_vcpu(cpu);
1687         if (r) {
1688             return r;
1689         }
1690 
1691         cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
1692         kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1693         has_msr_hv_hypercall = true;
1694     }
1695 
1696     if (cpu->expose_kvm) {
1697         memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1698         c = &cpuid_data.entries[cpuid_i++];
1699         c->function = KVM_CPUID_SIGNATURE | kvm_base;
1700         c->eax = KVM_CPUID_FEATURES | kvm_base;
1701         c->ebx = signature[0];
1702         c->ecx = signature[1];
1703         c->edx = signature[2];
1704 
1705         c = &cpuid_data.entries[cpuid_i++];
1706         c->function = KVM_CPUID_FEATURES | kvm_base;
1707         c->eax = env->features[FEAT_KVM];
1708         c->edx = env->features[FEAT_KVM_HINTS];
1709     }
1710 
1711     cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1712 
1713     if (cpu->kvm_pv_enforce_cpuid) {
1714         r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
1715         if (r < 0) {
1716             fprintf(stderr,
1717                     "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
1718                     strerror(-r));
1719             abort();
1720         }
1721     }
1722 
1723     for (i = 0; i <= limit; i++) {
1724         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1725             fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1726             abort();
1727         }
1728         c = &cpuid_data.entries[cpuid_i++];
1729 
1730         switch (i) {
1731         case 2: {
1732             /* Keep reading function 2 till all the input is received */
1733             int times;
1734 
1735             c->function = i;
1736             c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1737                        KVM_CPUID_FLAG_STATE_READ_NEXT;
1738             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1739             times = c->eax & 0xff;
1740 
1741             for (j = 1; j < times; ++j) {
1742                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1743                     fprintf(stderr, "cpuid_data is full, no space for "
1744                             "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1745                     abort();
1746                 }
1747                 c = &cpuid_data.entries[cpuid_i++];
1748                 c->function = i;
1749                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1750                 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1751             }
1752             break;
1753         }
1754         case 0x1f:
1755             if (env->nr_dies < 2) {
1756                 break;
1757             }
1758             /* fallthrough */
1759         case 4:
1760         case 0xb:
1761         case 0xd:
1762             for (j = 0; ; j++) {
1763                 if (i == 0xd && j == 64) {
1764                     break;
1765                 }
1766 
1767                 if (i == 0x1f && j == 64) {
1768                     break;
1769                 }
1770 
1771                 c->function = i;
1772                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1773                 c->index = j;
1774                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1775 
1776                 if (i == 4 && c->eax == 0) {
1777                     break;
1778                 }
1779                 if (i == 0xb && !(c->ecx & 0xff00)) {
1780                     break;
1781                 }
1782                 if (i == 0x1f && !(c->ecx & 0xff00)) {
1783                     break;
1784                 }
1785                 if (i == 0xd && c->eax == 0) {
1786                     continue;
1787                 }
1788                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1789                     fprintf(stderr, "cpuid_data is full, no space for "
1790                             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1791                     abort();
1792                 }
1793                 c = &cpuid_data.entries[cpuid_i++];
1794             }
1795             break;
1796         case 0x7:
1797         case 0x12:
1798             for (j = 0; ; j++) {
1799                 c->function = i;
1800                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1801                 c->index = j;
1802                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1803 
1804                 if (j > 1 && (c->eax & 0xf) != 1) {
1805                     break;
1806                 }
1807 
1808                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1809                     fprintf(stderr, "cpuid_data is full, no space for "
1810                                 "cpuid(eax:0x12,ecx:0x%x)\n", j);
1811                     abort();
1812                 }
1813                 c = &cpuid_data.entries[cpuid_i++];
1814             }
1815             break;
1816         case 0x14:
1817         case 0x1d:
1818         case 0x1e: {
1819             uint32_t times;
1820 
1821             c->function = i;
1822             c->index = 0;
1823             c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1824             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1825             times = c->eax;
1826 
1827             for (j = 1; j <= times; ++j) {
1828                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1829                     fprintf(stderr, "cpuid_data is full, no space for "
1830                                 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1831                     abort();
1832                 }
1833                 c = &cpuid_data.entries[cpuid_i++];
1834                 c->function = i;
1835                 c->index = j;
1836                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1837                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1838             }
1839             break;
1840         }
1841         default:
1842             c->function = i;
1843             c->flags = 0;
1844             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1845             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1846                 /*
1847                  * KVM already returns all zeroes if a CPUID entry is missing,
1848                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1849                  */
1850                 cpuid_i--;
1851             }
1852             break;
1853         }
1854     }
1855 
1856     if (limit >= 0x0a) {
1857         uint32_t eax, edx;
1858 
1859         cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1860 
1861         has_architectural_pmu_version = eax & 0xff;
1862         if (has_architectural_pmu_version > 0) {
1863             num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1864 
1865             /* Shouldn't be more than 32, since that's the number of bits
1866              * available in EBX to tell us _which_ counters are available.
1867              * Play it safe.
1868              */
1869             if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1870                 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1871             }
1872 
1873             if (has_architectural_pmu_version > 1) {
1874                 num_architectural_pmu_fixed_counters = edx & 0x1f;
1875 
1876                 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1877                     num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1878                 }
1879             }
1880         }
1881     }
1882 
1883     cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1884 
1885     for (i = 0x80000000; i <= limit; i++) {
1886         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1887             fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1888             abort();
1889         }
1890         c = &cpuid_data.entries[cpuid_i++];
1891 
1892         switch (i) {
1893         case 0x8000001d:
1894             /* Query for all AMD cache information leaves */
1895             for (j = 0; ; j++) {
1896                 c->function = i;
1897                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1898                 c->index = j;
1899                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1900 
1901                 if (c->eax == 0) {
1902                     break;
1903                 }
1904                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1905                     fprintf(stderr, "cpuid_data is full, no space for "
1906                             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1907                     abort();
1908                 }
1909                 c = &cpuid_data.entries[cpuid_i++];
1910             }
1911             break;
1912         default:
1913             c->function = i;
1914             c->flags = 0;
1915             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1916             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1917                 /*
1918                  * KVM already returns all zeroes if a CPUID entry is missing,
1919                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1920                  */
1921                 cpuid_i--;
1922             }
1923             break;
1924         }
1925     }
1926 
1927     /* Call Centaur's CPUID instructions they are supported. */
1928     if (env->cpuid_xlevel2 > 0) {
1929         cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1930 
1931         for (i = 0xC0000000; i <= limit; i++) {
1932             if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1933                 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1934                 abort();
1935             }
1936             c = &cpuid_data.entries[cpuid_i++];
1937 
1938             c->function = i;
1939             c->flags = 0;
1940             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1941         }
1942     }
1943 
1944     cpuid_data.cpuid.nent = cpuid_i;
1945 
1946     if (((env->cpuid_version >> 8)&0xF) >= 6
1947         && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1948            (CPUID_MCE | CPUID_MCA)
1949         && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1950         uint64_t mcg_cap, unsupported_caps;
1951         int banks;
1952         int ret;
1953 
1954         ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1955         if (ret < 0) {
1956             fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1957             return ret;
1958         }
1959 
1960         if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1961             error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1962                          (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1963             return -ENOTSUP;
1964         }
1965 
1966         unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1967         if (unsupported_caps) {
1968             if (unsupported_caps & MCG_LMCE_P) {
1969                 error_report("kvm: LMCE not supported");
1970                 return -ENOTSUP;
1971             }
1972             warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1973                         unsupported_caps);
1974         }
1975 
1976         env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1977         ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1978         if (ret < 0) {
1979             fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1980             return ret;
1981         }
1982     }
1983 
1984     cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
1985 
1986     c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1987     if (c) {
1988         has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1989                                   !!(c->ecx & CPUID_EXT_SMX);
1990     }
1991 
1992     c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
1993     if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
1994         has_msr_feature_control = true;
1995     }
1996 
1997     if (env->mcg_cap & MCG_LMCE_P) {
1998         has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1999     }
2000 
2001     if (!env->user_tsc_khz) {
2002         if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2003             invtsc_mig_blocker == NULL) {
2004             error_setg(&invtsc_mig_blocker,
2005                        "State blocked by non-migratable CPU device"
2006                        " (invtsc flag)");
2007             r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
2008             if (r < 0) {
2009                 error_report_err(local_err);
2010                 return r;
2011             }
2012         }
2013     }
2014 
2015     if (cpu->vmware_cpuid_freq
2016         /* Guests depend on 0x40000000 to detect this feature, so only expose
2017          * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2018         && cpu->expose_kvm
2019         && kvm_base == KVM_CPUID_SIGNATURE
2020         /* TSC clock must be stable and known for this feature. */
2021         && tsc_is_stable_and_known(env)) {
2022 
2023         c = &cpuid_data.entries[cpuid_i++];
2024         c->function = KVM_CPUID_SIGNATURE | 0x10;
2025         c->eax = env->tsc_khz;
2026         c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2027         c->ecx = c->edx = 0;
2028 
2029         c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2030         c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2031     }
2032 
2033     cpuid_data.cpuid.nent = cpuid_i;
2034 
2035     cpuid_data.cpuid.padding = 0;
2036     r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2037     if (r) {
2038         goto fail;
2039     }
2040     kvm_init_xsave(env);
2041 
2042     max_nested_state_len = kvm_max_nested_state_length();
2043     if (max_nested_state_len > 0) {
2044         assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2045 
2046         if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2047             struct kvm_vmx_nested_state_hdr *vmx_hdr;
2048 
2049             env->nested_state = g_malloc0(max_nested_state_len);
2050             env->nested_state->size = max_nested_state_len;
2051 
2052             if (cpu_has_vmx(env)) {
2053                 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
2054                 vmx_hdr = &env->nested_state->hdr.vmx;
2055                 vmx_hdr->vmxon_pa = -1ull;
2056                 vmx_hdr->vmcs12_pa = -1ull;
2057             } else {
2058                 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
2059             }
2060         }
2061     }
2062 
2063     cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2064 
2065     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2066         has_msr_tsc_aux = false;
2067     }
2068 
2069     kvm_init_msrs(cpu);
2070 
2071     return 0;
2072 
2073  fail:
2074     migrate_del_blocker(invtsc_mig_blocker);
2075 
2076     return r;
2077 }
2078 
2079 int kvm_arch_destroy_vcpu(CPUState *cs)
2080 {
2081     X86CPU *cpu = X86_CPU(cs);
2082     CPUX86State *env = &cpu->env;
2083 
2084     g_free(env->xsave_buf);
2085 
2086     if (cpu->kvm_msr_buf) {
2087         g_free(cpu->kvm_msr_buf);
2088         cpu->kvm_msr_buf = NULL;
2089     }
2090 
2091     if (env->nested_state) {
2092         g_free(env->nested_state);
2093         env->nested_state = NULL;
2094     }
2095 
2096     qemu_del_vm_change_state_handler(cpu->vmsentry);
2097 
2098     return 0;
2099 }
2100 
2101 void kvm_arch_reset_vcpu(X86CPU *cpu)
2102 {
2103     CPUX86State *env = &cpu->env;
2104 
2105     env->xcr0 = 1;
2106     if (kvm_irqchip_in_kernel()) {
2107         env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2108                                           KVM_MP_STATE_UNINITIALIZED;
2109     } else {
2110         env->mp_state = KVM_MP_STATE_RUNNABLE;
2111     }
2112 
2113     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2114         int i;
2115         for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2116             env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2117         }
2118 
2119         hyperv_x86_synic_reset(cpu);
2120     }
2121     /* enabled by default */
2122     env->poll_control_msr = 1;
2123 
2124     sev_es_set_reset_vector(CPU(cpu));
2125 }
2126 
2127 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2128 {
2129     CPUX86State *env = &cpu->env;
2130 
2131     /* APs get directly into wait-for-SIPI state.  */
2132     if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2133         env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2134     }
2135 }
2136 
2137 static int kvm_get_supported_feature_msrs(KVMState *s)
2138 {
2139     int ret = 0;
2140 
2141     if (kvm_feature_msrs != NULL) {
2142         return 0;
2143     }
2144 
2145     if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2146         return 0;
2147     }
2148 
2149     struct kvm_msr_list msr_list;
2150 
2151     msr_list.nmsrs = 0;
2152     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2153     if (ret < 0 && ret != -E2BIG) {
2154         error_report("Fetch KVM feature MSR list failed: %s",
2155             strerror(-ret));
2156         return ret;
2157     }
2158 
2159     assert(msr_list.nmsrs > 0);
2160     kvm_feature_msrs = (struct kvm_msr_list *) \
2161         g_malloc0(sizeof(msr_list) +
2162                  msr_list.nmsrs * sizeof(msr_list.indices[0]));
2163 
2164     kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2165     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2166 
2167     if (ret < 0) {
2168         error_report("Fetch KVM feature MSR list failed: %s",
2169             strerror(-ret));
2170         g_free(kvm_feature_msrs);
2171         kvm_feature_msrs = NULL;
2172         return ret;
2173     }
2174 
2175     return 0;
2176 }
2177 
2178 static int kvm_get_supported_msrs(KVMState *s)
2179 {
2180     int ret = 0;
2181     struct kvm_msr_list msr_list, *kvm_msr_list;
2182 
2183     /*
2184      *  Obtain MSR list from KVM.  These are the MSRs that we must
2185      *  save/restore.
2186      */
2187     msr_list.nmsrs = 0;
2188     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2189     if (ret < 0 && ret != -E2BIG) {
2190         return ret;
2191     }
2192     /*
2193      * Old kernel modules had a bug and could write beyond the provided
2194      * memory. Allocate at least a safe amount of 1K.
2195      */
2196     kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2197                                           msr_list.nmsrs *
2198                                           sizeof(msr_list.indices[0])));
2199 
2200     kvm_msr_list->nmsrs = msr_list.nmsrs;
2201     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2202     if (ret >= 0) {
2203         int i;
2204 
2205         for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2206             switch (kvm_msr_list->indices[i]) {
2207             case MSR_STAR:
2208                 has_msr_star = true;
2209                 break;
2210             case MSR_VM_HSAVE_PA:
2211                 has_msr_hsave_pa = true;
2212                 break;
2213             case MSR_TSC_AUX:
2214                 has_msr_tsc_aux = true;
2215                 break;
2216             case MSR_TSC_ADJUST:
2217                 has_msr_tsc_adjust = true;
2218                 break;
2219             case MSR_IA32_TSCDEADLINE:
2220                 has_msr_tsc_deadline = true;
2221                 break;
2222             case MSR_IA32_SMBASE:
2223                 has_msr_smbase = true;
2224                 break;
2225             case MSR_SMI_COUNT:
2226                 has_msr_smi_count = true;
2227                 break;
2228             case MSR_IA32_MISC_ENABLE:
2229                 has_msr_misc_enable = true;
2230                 break;
2231             case MSR_IA32_BNDCFGS:
2232                 has_msr_bndcfgs = true;
2233                 break;
2234             case MSR_IA32_XSS:
2235                 has_msr_xss = true;
2236                 break;
2237             case MSR_IA32_UMWAIT_CONTROL:
2238                 has_msr_umwait = true;
2239                 break;
2240             case HV_X64_MSR_CRASH_CTL:
2241                 has_msr_hv_crash = true;
2242                 break;
2243             case HV_X64_MSR_RESET:
2244                 has_msr_hv_reset = true;
2245                 break;
2246             case HV_X64_MSR_VP_INDEX:
2247                 has_msr_hv_vpindex = true;
2248                 break;
2249             case HV_X64_MSR_VP_RUNTIME:
2250                 has_msr_hv_runtime = true;
2251                 break;
2252             case HV_X64_MSR_SCONTROL:
2253                 has_msr_hv_synic = true;
2254                 break;
2255             case HV_X64_MSR_STIMER0_CONFIG:
2256                 has_msr_hv_stimer = true;
2257                 break;
2258             case HV_X64_MSR_TSC_FREQUENCY:
2259                 has_msr_hv_frequencies = true;
2260                 break;
2261             case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2262                 has_msr_hv_reenlightenment = true;
2263                 break;
2264             case MSR_IA32_SPEC_CTRL:
2265                 has_msr_spec_ctrl = true;
2266                 break;
2267             case MSR_AMD64_TSC_RATIO:
2268                 has_tsc_scale_msr = true;
2269                 break;
2270             case MSR_IA32_TSX_CTRL:
2271                 has_msr_tsx_ctrl = true;
2272                 break;
2273             case MSR_VIRT_SSBD:
2274                 has_msr_virt_ssbd = true;
2275                 break;
2276             case MSR_IA32_ARCH_CAPABILITIES:
2277                 has_msr_arch_capabs = true;
2278                 break;
2279             case MSR_IA32_CORE_CAPABILITY:
2280                 has_msr_core_capabs = true;
2281                 break;
2282             case MSR_IA32_PERF_CAPABILITIES:
2283                 has_msr_perf_capabs = true;
2284                 break;
2285             case MSR_IA32_VMX_VMFUNC:
2286                 has_msr_vmx_vmfunc = true;
2287                 break;
2288             case MSR_IA32_UCODE_REV:
2289                 has_msr_ucode_rev = true;
2290                 break;
2291             case MSR_IA32_VMX_PROCBASED_CTLS2:
2292                 has_msr_vmx_procbased_ctls2 = true;
2293                 break;
2294             case MSR_IA32_PKRS:
2295                 has_msr_pkrs = true;
2296                 break;
2297             }
2298         }
2299     }
2300 
2301     g_free(kvm_msr_list);
2302 
2303     return ret;
2304 }
2305 
2306 static Notifier smram_machine_done;
2307 static KVMMemoryListener smram_listener;
2308 static AddressSpace smram_address_space;
2309 static MemoryRegion smram_as_root;
2310 static MemoryRegion smram_as_mem;
2311 
2312 static void register_smram_listener(Notifier *n, void *unused)
2313 {
2314     MemoryRegion *smram =
2315         (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2316 
2317     /* Outer container... */
2318     memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2319     memory_region_set_enabled(&smram_as_root, true);
2320 
2321     /* ... with two regions inside: normal system memory with low
2322      * priority, and...
2323      */
2324     memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2325                              get_system_memory(), 0, ~0ull);
2326     memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2327     memory_region_set_enabled(&smram_as_mem, true);
2328 
2329     if (smram) {
2330         /* ... SMRAM with higher priority */
2331         memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2332         memory_region_set_enabled(smram, true);
2333     }
2334 
2335     address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2336     kvm_memory_listener_register(kvm_state, &smram_listener,
2337                                  &smram_address_space, 1, "kvm-smram");
2338 }
2339 
2340 int kvm_arch_init(MachineState *ms, KVMState *s)
2341 {
2342     uint64_t identity_base = 0xfffbc000;
2343     uint64_t shadow_mem;
2344     int ret;
2345     struct utsname utsname;
2346     Error *local_err = NULL;
2347 
2348     /*
2349      * Initialize SEV context, if required
2350      *
2351      * If no memory encryption is requested (ms->cgs == NULL) this is
2352      * a no-op.
2353      *
2354      * It's also a no-op if a non-SEV confidential guest support
2355      * mechanism is selected.  SEV is the only mechanism available to
2356      * select on x86 at present, so this doesn't arise, but if new
2357      * mechanisms are supported in future (e.g. TDX), they'll need
2358      * their own initialization either here or elsewhere.
2359      */
2360     ret = sev_kvm_init(ms->cgs, &local_err);
2361     if (ret < 0) {
2362         error_report_err(local_err);
2363         return ret;
2364     }
2365 
2366     if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2367         error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2368         return -ENOTSUP;
2369     }
2370 
2371     has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2372     has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2373     has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2374     has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
2375 
2376     hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2377 
2378     has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2379     if (has_exception_payload) {
2380         ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2381         if (ret < 0) {
2382             error_report("kvm: Failed to enable exception payload cap: %s",
2383                          strerror(-ret));
2384             return ret;
2385         }
2386     }
2387 
2388     ret = kvm_get_supported_msrs(s);
2389     if (ret < 0) {
2390         return ret;
2391     }
2392 
2393     kvm_get_supported_feature_msrs(s);
2394 
2395     uname(&utsname);
2396     lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2397 
2398     /*
2399      * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2400      * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
2401      * Since these must be part of guest physical memory, we need to allocate
2402      * them, both by setting their start addresses in the kernel and by
2403      * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2404      *
2405      * Older KVM versions may not support setting the identity map base. In
2406      * that case we need to stick with the default, i.e. a 256K maximum BIOS
2407      * size.
2408      */
2409     if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2410         /* Allows up to 16M BIOSes. */
2411         identity_base = 0xfeffc000;
2412 
2413         ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2414         if (ret < 0) {
2415             return ret;
2416         }
2417     }
2418 
2419     /* Set TSS base one page after EPT identity map. */
2420     ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2421     if (ret < 0) {
2422         return ret;
2423     }
2424 
2425     /* Tell fw_cfg to notify the BIOS to reserve the range. */
2426     ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2427     if (ret < 0) {
2428         fprintf(stderr, "e820_add_entry() table is full\n");
2429         return ret;
2430     }
2431 
2432     shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2433     if (shadow_mem != -1) {
2434         shadow_mem /= 4096;
2435         ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2436         if (ret < 0) {
2437             return ret;
2438         }
2439     }
2440 
2441     if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2442         object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2443         x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2444         smram_machine_done.notify = register_smram_listener;
2445         qemu_add_machine_init_done_notifier(&smram_machine_done);
2446     }
2447 
2448     if (enable_cpu_pm) {
2449         int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2450         int ret;
2451 
2452 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2453 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2454 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2455 #endif
2456         if (disable_exits) {
2457             disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2458                               KVM_X86_DISABLE_EXITS_HLT |
2459                               KVM_X86_DISABLE_EXITS_PAUSE |
2460                               KVM_X86_DISABLE_EXITS_CSTATE);
2461         }
2462 
2463         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2464                                 disable_exits);
2465         if (ret < 0) {
2466             error_report("kvm: guest stopping CPU not supported: %s",
2467                          strerror(-ret));
2468         }
2469     }
2470 
2471     if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2472         X86MachineState *x86ms = X86_MACHINE(ms);
2473 
2474         if (x86ms->bus_lock_ratelimit > 0) {
2475             ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2476             if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2477                 error_report("kvm: bus lock detection unsupported");
2478                 return -ENOTSUP;
2479             }
2480             ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2481                                     KVM_BUS_LOCK_DETECTION_EXIT);
2482             if (ret < 0) {
2483                 error_report("kvm: Failed to enable bus lock detection cap: %s",
2484                              strerror(-ret));
2485                 return ret;
2486             }
2487             ratelimit_init(&bus_lock_ratelimit_ctrl);
2488             ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2489                                 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2490         }
2491     }
2492 
2493     return 0;
2494 }
2495 
2496 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2497 {
2498     lhs->selector = rhs->selector;
2499     lhs->base = rhs->base;
2500     lhs->limit = rhs->limit;
2501     lhs->type = 3;
2502     lhs->present = 1;
2503     lhs->dpl = 3;
2504     lhs->db = 0;
2505     lhs->s = 1;
2506     lhs->l = 0;
2507     lhs->g = 0;
2508     lhs->avl = 0;
2509     lhs->unusable = 0;
2510 }
2511 
2512 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2513 {
2514     unsigned flags = rhs->flags;
2515     lhs->selector = rhs->selector;
2516     lhs->base = rhs->base;
2517     lhs->limit = rhs->limit;
2518     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2519     lhs->present = (flags & DESC_P_MASK) != 0;
2520     lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2521     lhs->db = (flags >> DESC_B_SHIFT) & 1;
2522     lhs->s = (flags & DESC_S_MASK) != 0;
2523     lhs->l = (flags >> DESC_L_SHIFT) & 1;
2524     lhs->g = (flags & DESC_G_MASK) != 0;
2525     lhs->avl = (flags & DESC_AVL_MASK) != 0;
2526     lhs->unusable = !lhs->present;
2527     lhs->padding = 0;
2528 }
2529 
2530 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2531 {
2532     lhs->selector = rhs->selector;
2533     lhs->base = rhs->base;
2534     lhs->limit = rhs->limit;
2535     lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2536                  ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2537                  (rhs->dpl << DESC_DPL_SHIFT) |
2538                  (rhs->db << DESC_B_SHIFT) |
2539                  (rhs->s * DESC_S_MASK) |
2540                  (rhs->l << DESC_L_SHIFT) |
2541                  (rhs->g * DESC_G_MASK) |
2542                  (rhs->avl * DESC_AVL_MASK);
2543 }
2544 
2545 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2546 {
2547     if (set) {
2548         *kvm_reg = *qemu_reg;
2549     } else {
2550         *qemu_reg = *kvm_reg;
2551     }
2552 }
2553 
2554 static int kvm_getput_regs(X86CPU *cpu, int set)
2555 {
2556     CPUX86State *env = &cpu->env;
2557     struct kvm_regs regs;
2558     int ret = 0;
2559 
2560     if (!set) {
2561         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2562         if (ret < 0) {
2563             return ret;
2564         }
2565     }
2566 
2567     kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2568     kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2569     kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2570     kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2571     kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2572     kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2573     kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2574     kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2575 #ifdef TARGET_X86_64
2576     kvm_getput_reg(&regs.r8, &env->regs[8], set);
2577     kvm_getput_reg(&regs.r9, &env->regs[9], set);
2578     kvm_getput_reg(&regs.r10, &env->regs[10], set);
2579     kvm_getput_reg(&regs.r11, &env->regs[11], set);
2580     kvm_getput_reg(&regs.r12, &env->regs[12], set);
2581     kvm_getput_reg(&regs.r13, &env->regs[13], set);
2582     kvm_getput_reg(&regs.r14, &env->regs[14], set);
2583     kvm_getput_reg(&regs.r15, &env->regs[15], set);
2584 #endif
2585 
2586     kvm_getput_reg(&regs.rflags, &env->eflags, set);
2587     kvm_getput_reg(&regs.rip, &env->eip, set);
2588 
2589     if (set) {
2590         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2591     }
2592 
2593     return ret;
2594 }
2595 
2596 static int kvm_put_fpu(X86CPU *cpu)
2597 {
2598     CPUX86State *env = &cpu->env;
2599     struct kvm_fpu fpu;
2600     int i;
2601 
2602     memset(&fpu, 0, sizeof fpu);
2603     fpu.fsw = env->fpus & ~(7 << 11);
2604     fpu.fsw |= (env->fpstt & 7) << 11;
2605     fpu.fcw = env->fpuc;
2606     fpu.last_opcode = env->fpop;
2607     fpu.last_ip = env->fpip;
2608     fpu.last_dp = env->fpdp;
2609     for (i = 0; i < 8; ++i) {
2610         fpu.ftwx |= (!env->fptags[i]) << i;
2611     }
2612     memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2613     for (i = 0; i < CPU_NB_REGS; i++) {
2614         stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2615         stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2616     }
2617     fpu.mxcsr = env->mxcsr;
2618 
2619     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2620 }
2621 
2622 static int kvm_put_xsave(X86CPU *cpu)
2623 {
2624     CPUX86State *env = &cpu->env;
2625     void *xsave = env->xsave_buf;
2626 
2627     if (!has_xsave) {
2628         return kvm_put_fpu(cpu);
2629     }
2630     x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
2631 
2632     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2633 }
2634 
2635 static int kvm_put_xcrs(X86CPU *cpu)
2636 {
2637     CPUX86State *env = &cpu->env;
2638     struct kvm_xcrs xcrs = {};
2639 
2640     if (!has_xcrs) {
2641         return 0;
2642     }
2643 
2644     xcrs.nr_xcrs = 1;
2645     xcrs.flags = 0;
2646     xcrs.xcrs[0].xcr = 0;
2647     xcrs.xcrs[0].value = env->xcr0;
2648     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2649 }
2650 
2651 static int kvm_put_sregs(X86CPU *cpu)
2652 {
2653     CPUX86State *env = &cpu->env;
2654     struct kvm_sregs sregs;
2655 
2656     /*
2657      * The interrupt_bitmap is ignored because KVM_SET_SREGS is
2658      * always followed by KVM_SET_VCPU_EVENTS.
2659      */
2660     memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2661 
2662     if ((env->eflags & VM_MASK)) {
2663         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2664         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2665         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2666         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2667         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2668         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2669     } else {
2670         set_seg(&sregs.cs, &env->segs[R_CS]);
2671         set_seg(&sregs.ds, &env->segs[R_DS]);
2672         set_seg(&sregs.es, &env->segs[R_ES]);
2673         set_seg(&sregs.fs, &env->segs[R_FS]);
2674         set_seg(&sregs.gs, &env->segs[R_GS]);
2675         set_seg(&sregs.ss, &env->segs[R_SS]);
2676     }
2677 
2678     set_seg(&sregs.tr, &env->tr);
2679     set_seg(&sregs.ldt, &env->ldt);
2680 
2681     sregs.idt.limit = env->idt.limit;
2682     sregs.idt.base = env->idt.base;
2683     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2684     sregs.gdt.limit = env->gdt.limit;
2685     sregs.gdt.base = env->gdt.base;
2686     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2687 
2688     sregs.cr0 = env->cr[0];
2689     sregs.cr2 = env->cr[2];
2690     sregs.cr3 = env->cr[3];
2691     sregs.cr4 = env->cr[4];
2692 
2693     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2694     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2695 
2696     sregs.efer = env->efer;
2697 
2698     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2699 }
2700 
2701 static int kvm_put_sregs2(X86CPU *cpu)
2702 {
2703     CPUX86State *env = &cpu->env;
2704     struct kvm_sregs2 sregs;
2705     int i;
2706 
2707     sregs.flags = 0;
2708 
2709     if ((env->eflags & VM_MASK)) {
2710         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2711         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2712         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2713         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2714         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2715         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2716     } else {
2717         set_seg(&sregs.cs, &env->segs[R_CS]);
2718         set_seg(&sregs.ds, &env->segs[R_DS]);
2719         set_seg(&sregs.es, &env->segs[R_ES]);
2720         set_seg(&sregs.fs, &env->segs[R_FS]);
2721         set_seg(&sregs.gs, &env->segs[R_GS]);
2722         set_seg(&sregs.ss, &env->segs[R_SS]);
2723     }
2724 
2725     set_seg(&sregs.tr, &env->tr);
2726     set_seg(&sregs.ldt, &env->ldt);
2727 
2728     sregs.idt.limit = env->idt.limit;
2729     sregs.idt.base = env->idt.base;
2730     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2731     sregs.gdt.limit = env->gdt.limit;
2732     sregs.gdt.base = env->gdt.base;
2733     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2734 
2735     sregs.cr0 = env->cr[0];
2736     sregs.cr2 = env->cr[2];
2737     sregs.cr3 = env->cr[3];
2738     sregs.cr4 = env->cr[4];
2739 
2740     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2741     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2742 
2743     sregs.efer = env->efer;
2744 
2745     if (env->pdptrs_valid) {
2746         for (i = 0; i < 4; i++) {
2747             sregs.pdptrs[i] = env->pdptrs[i];
2748         }
2749         sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
2750     }
2751 
2752     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
2753 }
2754 
2755 
2756 static void kvm_msr_buf_reset(X86CPU *cpu)
2757 {
2758     memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2759 }
2760 
2761 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2762 {
2763     struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2764     void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2765     struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2766 
2767     assert((void *)(entry + 1) <= limit);
2768 
2769     entry->index = index;
2770     entry->reserved = 0;
2771     entry->data = value;
2772     msrs->nmsrs++;
2773 }
2774 
2775 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2776 {
2777     kvm_msr_buf_reset(cpu);
2778     kvm_msr_entry_add(cpu, index, value);
2779 
2780     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2781 }
2782 
2783 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2784 {
2785     int ret;
2786 
2787     ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2788     assert(ret == 1);
2789 }
2790 
2791 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2792 {
2793     CPUX86State *env = &cpu->env;
2794     int ret;
2795 
2796     if (!has_msr_tsc_deadline) {
2797         return 0;
2798     }
2799 
2800     ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2801     if (ret < 0) {
2802         return ret;
2803     }
2804 
2805     assert(ret == 1);
2806     return 0;
2807 }
2808 
2809 /*
2810  * Provide a separate write service for the feature control MSR in order to
2811  * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2812  * before writing any other state because forcibly leaving nested mode
2813  * invalidates the VCPU state.
2814  */
2815 static int kvm_put_msr_feature_control(X86CPU *cpu)
2816 {
2817     int ret;
2818 
2819     if (!has_msr_feature_control) {
2820         return 0;
2821     }
2822 
2823     ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2824                           cpu->env.msr_ia32_feature_control);
2825     if (ret < 0) {
2826         return ret;
2827     }
2828 
2829     assert(ret == 1);
2830     return 0;
2831 }
2832 
2833 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2834 {
2835     uint32_t default1, can_be_one, can_be_zero;
2836     uint32_t must_be_one;
2837 
2838     switch (index) {
2839     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2840         default1 = 0x00000016;
2841         break;
2842     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2843         default1 = 0x0401e172;
2844         break;
2845     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2846         default1 = 0x000011ff;
2847         break;
2848     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2849         default1 = 0x00036dff;
2850         break;
2851     case MSR_IA32_VMX_PROCBASED_CTLS2:
2852         default1 = 0;
2853         break;
2854     default:
2855         abort();
2856     }
2857 
2858     /* If a feature bit is set, the control can be either set or clear.
2859      * Otherwise the value is limited to either 0 or 1 by default1.
2860      */
2861     can_be_one = features | default1;
2862     can_be_zero = features | ~default1;
2863     must_be_one = ~can_be_zero;
2864 
2865     /*
2866      * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2867      * Bit 32:63 -> 1 if the control bit can be one.
2868      */
2869     return must_be_one | (((uint64_t)can_be_one) << 32);
2870 }
2871 
2872 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2873 {
2874     uint64_t kvm_vmx_basic =
2875         kvm_arch_get_supported_msr_feature(kvm_state,
2876                                            MSR_IA32_VMX_BASIC);
2877 
2878     if (!kvm_vmx_basic) {
2879         /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2880          * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2881          */
2882         return;
2883     }
2884 
2885     uint64_t kvm_vmx_misc =
2886         kvm_arch_get_supported_msr_feature(kvm_state,
2887                                            MSR_IA32_VMX_MISC);
2888     uint64_t kvm_vmx_ept_vpid =
2889         kvm_arch_get_supported_msr_feature(kvm_state,
2890                                            MSR_IA32_VMX_EPT_VPID_CAP);
2891 
2892     /*
2893      * If the guest is 64-bit, a value of 1 is allowed for the host address
2894      * space size vmexit control.
2895      */
2896     uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2897         ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2898 
2899     /*
2900      * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
2901      * not change them for backwards compatibility.
2902      */
2903     uint64_t fixed_vmx_basic = kvm_vmx_basic &
2904         (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2905          MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2906          MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2907 
2908     /*
2909      * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
2910      * change in the future but are always zero for now, clear them to be
2911      * future proof.  Bits 32-63 in theory could change, though KVM does
2912      * not support dual-monitor treatment and probably never will; mask
2913      * them out as well.
2914      */
2915     uint64_t fixed_vmx_misc = kvm_vmx_misc &
2916         (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2917          MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2918 
2919     /*
2920      * EPT memory types should not change either, so we do not bother
2921      * adding features for them.
2922      */
2923     uint64_t fixed_vmx_ept_mask =
2924             (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2925              MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2926     uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2927 
2928     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2929                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2930                                          f[FEAT_VMX_PROCBASED_CTLS]));
2931     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2932                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2933                                          f[FEAT_VMX_PINBASED_CTLS]));
2934     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2935                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2936                                          f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2937     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2938                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2939                                          f[FEAT_VMX_ENTRY_CTLS]));
2940     kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2941                       make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2942                                          f[FEAT_VMX_SECONDARY_CTLS]));
2943     kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2944                       f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2945     kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2946                       f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2947     kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2948                       f[FEAT_VMX_MISC] | fixed_vmx_misc);
2949     if (has_msr_vmx_vmfunc) {
2950         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2951     }
2952 
2953     /*
2954      * Just to be safe, write these with constant values.  The CRn_FIXED1
2955      * MSRs are generated by KVM based on the vCPU's CPUID.
2956      */
2957     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2958                       CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2959     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2960                       CR4_VMXE_MASK);
2961 
2962     if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
2963         /* TSC multiplier (0x2032).  */
2964         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
2965     } else {
2966         /* Preemption timer (0x482E).  */
2967         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
2968     }
2969 }
2970 
2971 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
2972 {
2973     uint64_t kvm_perf_cap =
2974         kvm_arch_get_supported_msr_feature(kvm_state,
2975                                            MSR_IA32_PERF_CAPABILITIES);
2976 
2977     if (kvm_perf_cap) {
2978         kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
2979                         kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
2980     }
2981 }
2982 
2983 static int kvm_buf_set_msrs(X86CPU *cpu)
2984 {
2985     int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2986     if (ret < 0) {
2987         return ret;
2988     }
2989 
2990     if (ret < cpu->kvm_msr_buf->nmsrs) {
2991         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2992         error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2993                      (uint32_t)e->index, (uint64_t)e->data);
2994     }
2995 
2996     assert(ret == cpu->kvm_msr_buf->nmsrs);
2997     return 0;
2998 }
2999 
3000 static void kvm_init_msrs(X86CPU *cpu)
3001 {
3002     CPUX86State *env = &cpu->env;
3003 
3004     kvm_msr_buf_reset(cpu);
3005     if (has_msr_arch_capabs) {
3006         kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3007                           env->features[FEAT_ARCH_CAPABILITIES]);
3008     }
3009 
3010     if (has_msr_core_capabs) {
3011         kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3012                           env->features[FEAT_CORE_CAPABILITY]);
3013     }
3014 
3015     if (has_msr_perf_capabs && cpu->enable_pmu) {
3016         kvm_msr_entry_add_perf(cpu, env->features);
3017     }
3018 
3019     if (has_msr_ucode_rev) {
3020         kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3021     }
3022 
3023     /*
3024      * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3025      * all kernels with MSR features should have them.
3026      */
3027     if (kvm_feature_msrs && cpu_has_vmx(env)) {
3028         kvm_msr_entry_add_vmx(cpu, env->features);
3029     }
3030 
3031     assert(kvm_buf_set_msrs(cpu) == 0);
3032 }
3033 
3034 static int kvm_put_msrs(X86CPU *cpu, int level)
3035 {
3036     CPUX86State *env = &cpu->env;
3037     int i;
3038 
3039     kvm_msr_buf_reset(cpu);
3040 
3041     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3042     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3043     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3044     kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3045     if (has_msr_star) {
3046         kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3047     }
3048     if (has_msr_hsave_pa) {
3049         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3050     }
3051     if (has_msr_tsc_aux) {
3052         kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3053     }
3054     if (has_msr_tsc_adjust) {
3055         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3056     }
3057     if (has_msr_misc_enable) {
3058         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3059                           env->msr_ia32_misc_enable);
3060     }
3061     if (has_msr_smbase) {
3062         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3063     }
3064     if (has_msr_smi_count) {
3065         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3066     }
3067     if (has_msr_pkrs) {
3068         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3069     }
3070     if (has_msr_bndcfgs) {
3071         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3072     }
3073     if (has_msr_xss) {
3074         kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3075     }
3076     if (has_msr_umwait) {
3077         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3078     }
3079     if (has_msr_spec_ctrl) {
3080         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3081     }
3082     if (has_tsc_scale_msr) {
3083         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3084     }
3085 
3086     if (has_msr_tsx_ctrl) {
3087         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3088     }
3089     if (has_msr_virt_ssbd) {
3090         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3091     }
3092 
3093 #ifdef TARGET_X86_64
3094     if (lm_capable_kernel) {
3095         kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3096         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3097         kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3098         kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3099     }
3100 #endif
3101 
3102     /*
3103      * The following MSRs have side effects on the guest or are too heavy
3104      * for normal writeback. Limit them to reset or full state updates.
3105      */
3106     if (level >= KVM_PUT_RESET_STATE) {
3107         kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3108         kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3109         kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3110         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3111             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3112         }
3113         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3114             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3115         }
3116         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3117             kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3118         }
3119         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3120             kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3121         }
3122 
3123         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3124             kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3125         }
3126 
3127         if (has_architectural_pmu_version > 0) {
3128             if (has_architectural_pmu_version > 1) {
3129                 /* Stop the counter.  */
3130                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3131                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3132             }
3133 
3134             /* Set the counter values.  */
3135             for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3136                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
3137                                   env->msr_fixed_counters[i]);
3138             }
3139             for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3140                 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
3141                                   env->msr_gp_counters[i]);
3142                 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
3143                                   env->msr_gp_evtsel[i]);
3144             }
3145             if (has_architectural_pmu_version > 1) {
3146                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3147                                   env->msr_global_status);
3148                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3149                                   env->msr_global_ovf_ctrl);
3150 
3151                 /* Now start the PMU.  */
3152                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3153                                   env->msr_fixed_ctr_ctrl);
3154                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3155                                   env->msr_global_ctrl);
3156             }
3157         }
3158         /*
3159          * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3160          * only sync them to KVM on the first cpu
3161          */
3162         if (current_cpu == first_cpu) {
3163             if (has_msr_hv_hypercall) {
3164                 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3165                                   env->msr_hv_guest_os_id);
3166                 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3167                                   env->msr_hv_hypercall);
3168             }
3169             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3170                 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3171                                   env->msr_hv_tsc);
3172             }
3173             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3174                 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3175                                   env->msr_hv_reenlightenment_control);
3176                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3177                                   env->msr_hv_tsc_emulation_control);
3178                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3179                                   env->msr_hv_tsc_emulation_status);
3180             }
3181         }
3182         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3183             kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
3184                               env->msr_hv_vapic);
3185         }
3186         if (has_msr_hv_crash) {
3187             int j;
3188 
3189             for (j = 0; j < HV_CRASH_PARAMS; j++)
3190                 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
3191                                   env->msr_hv_crash_params[j]);
3192 
3193             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
3194         }
3195         if (has_msr_hv_runtime) {
3196             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
3197         }
3198         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3199             && hv_vpindex_settable) {
3200             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3201                               hyperv_vp_index(CPU(cpu)));
3202         }
3203         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3204             int j;
3205 
3206             kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3207 
3208             kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
3209                               env->msr_hv_synic_control);
3210             kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
3211                               env->msr_hv_synic_evt_page);
3212             kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
3213                               env->msr_hv_synic_msg_page);
3214 
3215             for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
3216                 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
3217                                   env->msr_hv_synic_sint[j]);
3218             }
3219         }
3220         if (has_msr_hv_stimer) {
3221             int j;
3222 
3223             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
3224                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
3225                                 env->msr_hv_stimer_config[j]);
3226             }
3227 
3228             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
3229                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
3230                                 env->msr_hv_stimer_count[j]);
3231             }
3232         }
3233         if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3234             uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3235 
3236             kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3237             kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3238             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3239             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3240             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3241             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3242             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3243             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3244             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3245             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3246             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3247             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
3248             for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3249                 /* The CPU GPs if we write to a bit above the physical limit of
3250                  * the host CPU (and KVM emulates that)
3251                  */
3252                 uint64_t mask = env->mtrr_var[i].mask;
3253                 mask &= phys_mask;
3254 
3255                 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3256                                   env->mtrr_var[i].base);
3257                 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3258             }
3259         }
3260         if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3261             int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3262                                                     0x14, 1, R_EAX) & 0x7;
3263 
3264             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3265                             env->msr_rtit_ctrl);
3266             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3267                             env->msr_rtit_status);
3268             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3269                             env->msr_rtit_output_base);
3270             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3271                             env->msr_rtit_output_mask);
3272             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3273                             env->msr_rtit_cr3_match);
3274             for (i = 0; i < addr_num; i++) {
3275                 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3276                             env->msr_rtit_addrs[i]);
3277             }
3278         }
3279 
3280         if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3281             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3282                               env->msr_ia32_sgxlepubkeyhash[0]);
3283             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3284                               env->msr_ia32_sgxlepubkeyhash[1]);
3285             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3286                               env->msr_ia32_sgxlepubkeyhash[2]);
3287             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3288                               env->msr_ia32_sgxlepubkeyhash[3]);
3289         }
3290 
3291         if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3292             kvm_msr_entry_add(cpu, MSR_IA32_XFD,
3293                               env->msr_xfd);
3294             kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
3295                               env->msr_xfd_err);
3296         }
3297 
3298         /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3299          *       kvm_put_msr_feature_control. */
3300     }
3301 
3302     if (env->mcg_cap) {
3303         int i;
3304 
3305         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3306         kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3307         if (has_msr_mcg_ext_ctl) {
3308             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3309         }
3310         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3311             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3312         }
3313     }
3314 
3315     return kvm_buf_set_msrs(cpu);
3316 }
3317 
3318 
3319 static int kvm_get_fpu(X86CPU *cpu)
3320 {
3321     CPUX86State *env = &cpu->env;
3322     struct kvm_fpu fpu;
3323     int i, ret;
3324 
3325     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
3326     if (ret < 0) {
3327         return ret;
3328     }
3329 
3330     env->fpstt = (fpu.fsw >> 11) & 7;
3331     env->fpus = fpu.fsw;
3332     env->fpuc = fpu.fcw;
3333     env->fpop = fpu.last_opcode;
3334     env->fpip = fpu.last_ip;
3335     env->fpdp = fpu.last_dp;
3336     for (i = 0; i < 8; ++i) {
3337         env->fptags[i] = !((fpu.ftwx >> i) & 1);
3338     }
3339     memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3340     for (i = 0; i < CPU_NB_REGS; i++) {
3341         env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3342         env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3343     }
3344     env->mxcsr = fpu.mxcsr;
3345 
3346     return 0;
3347 }
3348 
3349 static int kvm_get_xsave(X86CPU *cpu)
3350 {
3351     CPUX86State *env = &cpu->env;
3352     void *xsave = env->xsave_buf;
3353     int type, ret;
3354 
3355     if (!has_xsave) {
3356         return kvm_get_fpu(cpu);
3357     }
3358 
3359     type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
3360     ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
3361     if (ret < 0) {
3362         return ret;
3363     }
3364     x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
3365 
3366     return 0;
3367 }
3368 
3369 static int kvm_get_xcrs(X86CPU *cpu)
3370 {
3371     CPUX86State *env = &cpu->env;
3372     int i, ret;
3373     struct kvm_xcrs xcrs;
3374 
3375     if (!has_xcrs) {
3376         return 0;
3377     }
3378 
3379     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3380     if (ret < 0) {
3381         return ret;
3382     }
3383 
3384     for (i = 0; i < xcrs.nr_xcrs; i++) {
3385         /* Only support xcr0 now */
3386         if (xcrs.xcrs[i].xcr == 0) {
3387             env->xcr0 = xcrs.xcrs[i].value;
3388             break;
3389         }
3390     }
3391     return 0;
3392 }
3393 
3394 static int kvm_get_sregs(X86CPU *cpu)
3395 {
3396     CPUX86State *env = &cpu->env;
3397     struct kvm_sregs sregs;
3398     int ret;
3399 
3400     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3401     if (ret < 0) {
3402         return ret;
3403     }
3404 
3405     /*
3406      * The interrupt_bitmap is ignored because KVM_GET_SREGS is
3407      * always preceded by KVM_GET_VCPU_EVENTS.
3408      */
3409 
3410     get_seg(&env->segs[R_CS], &sregs.cs);
3411     get_seg(&env->segs[R_DS], &sregs.ds);
3412     get_seg(&env->segs[R_ES], &sregs.es);
3413     get_seg(&env->segs[R_FS], &sregs.fs);
3414     get_seg(&env->segs[R_GS], &sregs.gs);
3415     get_seg(&env->segs[R_SS], &sregs.ss);
3416 
3417     get_seg(&env->tr, &sregs.tr);
3418     get_seg(&env->ldt, &sregs.ldt);
3419 
3420     env->idt.limit = sregs.idt.limit;
3421     env->idt.base = sregs.idt.base;
3422     env->gdt.limit = sregs.gdt.limit;
3423     env->gdt.base = sregs.gdt.base;
3424 
3425     env->cr[0] = sregs.cr0;
3426     env->cr[2] = sregs.cr2;
3427     env->cr[3] = sregs.cr3;
3428     env->cr[4] = sregs.cr4;
3429 
3430     env->efer = sregs.efer;
3431 
3432     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3433     x86_update_hflags(env);
3434 
3435     return 0;
3436 }
3437 
3438 static int kvm_get_sregs2(X86CPU *cpu)
3439 {
3440     CPUX86State *env = &cpu->env;
3441     struct kvm_sregs2 sregs;
3442     int i, ret;
3443 
3444     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
3445     if (ret < 0) {
3446         return ret;
3447     }
3448 
3449     get_seg(&env->segs[R_CS], &sregs.cs);
3450     get_seg(&env->segs[R_DS], &sregs.ds);
3451     get_seg(&env->segs[R_ES], &sregs.es);
3452     get_seg(&env->segs[R_FS], &sregs.fs);
3453     get_seg(&env->segs[R_GS], &sregs.gs);
3454     get_seg(&env->segs[R_SS], &sregs.ss);
3455 
3456     get_seg(&env->tr, &sregs.tr);
3457     get_seg(&env->ldt, &sregs.ldt);
3458 
3459     env->idt.limit = sregs.idt.limit;
3460     env->idt.base = sregs.idt.base;
3461     env->gdt.limit = sregs.gdt.limit;
3462     env->gdt.base = sregs.gdt.base;
3463 
3464     env->cr[0] = sregs.cr0;
3465     env->cr[2] = sregs.cr2;
3466     env->cr[3] = sregs.cr3;
3467     env->cr[4] = sregs.cr4;
3468 
3469     env->efer = sregs.efer;
3470 
3471     env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
3472 
3473     if (env->pdptrs_valid) {
3474         for (i = 0; i < 4; i++) {
3475             env->pdptrs[i] = sregs.pdptrs[i];
3476         }
3477     }
3478 
3479     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3480     x86_update_hflags(env);
3481 
3482     return 0;
3483 }
3484 
3485 static int kvm_get_msrs(X86CPU *cpu)
3486 {
3487     CPUX86State *env = &cpu->env;
3488     struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3489     int ret, i;
3490     uint64_t mtrr_top_bits;
3491 
3492     kvm_msr_buf_reset(cpu);
3493 
3494     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3495     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3496     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3497     kvm_msr_entry_add(cpu, MSR_PAT, 0);
3498     if (has_msr_star) {
3499         kvm_msr_entry_add(cpu, MSR_STAR, 0);
3500     }
3501     if (has_msr_hsave_pa) {
3502         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3503     }
3504     if (has_msr_tsc_aux) {
3505         kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3506     }
3507     if (has_msr_tsc_adjust) {
3508         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3509     }
3510     if (has_msr_tsc_deadline) {
3511         kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3512     }
3513     if (has_msr_misc_enable) {
3514         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3515     }
3516     if (has_msr_smbase) {
3517         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3518     }
3519     if (has_msr_smi_count) {
3520         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3521     }
3522     if (has_msr_feature_control) {
3523         kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3524     }
3525     if (has_msr_pkrs) {
3526         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3527     }
3528     if (has_msr_bndcfgs) {
3529         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3530     }
3531     if (has_msr_xss) {
3532         kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3533     }
3534     if (has_msr_umwait) {
3535         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3536     }
3537     if (has_msr_spec_ctrl) {
3538         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3539     }
3540     if (has_tsc_scale_msr) {
3541         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3542     }
3543 
3544     if (has_msr_tsx_ctrl) {
3545         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3546     }
3547     if (has_msr_virt_ssbd) {
3548         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3549     }
3550     if (!env->tsc_valid) {
3551         kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3552         env->tsc_valid = !runstate_is_running();
3553     }
3554 
3555 #ifdef TARGET_X86_64
3556     if (lm_capable_kernel) {
3557         kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3558         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3559         kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3560         kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3561     }
3562 #endif
3563     kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3564     kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3565     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3566         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3567     }
3568     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3569         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3570     }
3571     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3572         kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3573     }
3574     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3575         kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3576     }
3577     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3578         kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3579     }
3580     if (has_architectural_pmu_version > 0) {
3581         if (has_architectural_pmu_version > 1) {
3582             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3583             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3584             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3585             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3586         }
3587         for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3588             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3589         }
3590         for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3591             kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3592             kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3593         }
3594     }
3595 
3596     if (env->mcg_cap) {
3597         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3598         kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3599         if (has_msr_mcg_ext_ctl) {
3600             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3601         }
3602         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3603             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3604         }
3605     }
3606 
3607     if (has_msr_hv_hypercall) {
3608         kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3609         kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3610     }
3611     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3612         kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3613     }
3614     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3615         kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3616     }
3617     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3618         kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3619         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3620         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3621     }
3622     if (has_msr_hv_crash) {
3623         int j;
3624 
3625         for (j = 0; j < HV_CRASH_PARAMS; j++) {
3626             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3627         }
3628     }
3629     if (has_msr_hv_runtime) {
3630         kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3631     }
3632     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3633         uint32_t msr;
3634 
3635         kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3636         kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3637         kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3638         for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3639             kvm_msr_entry_add(cpu, msr, 0);
3640         }
3641     }
3642     if (has_msr_hv_stimer) {
3643         uint32_t msr;
3644 
3645         for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3646              msr++) {
3647             kvm_msr_entry_add(cpu, msr, 0);
3648         }
3649     }
3650     if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3651         kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3652         kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3653         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3654         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3655         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3656         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3657         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3658         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3659         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3660         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3661         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3662         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3663         for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3664             kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3665             kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3666         }
3667     }
3668 
3669     if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3670         int addr_num =
3671             kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3672 
3673         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3674         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3675         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3676         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3677         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3678         for (i = 0; i < addr_num; i++) {
3679             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3680         }
3681     }
3682 
3683     if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3684         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
3685         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
3686         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
3687         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
3688     }
3689 
3690     if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3691         kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
3692         kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
3693     }
3694 
3695     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3696     if (ret < 0) {
3697         return ret;
3698     }
3699 
3700     if (ret < cpu->kvm_msr_buf->nmsrs) {
3701         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3702         error_report("error: failed to get MSR 0x%" PRIx32,
3703                      (uint32_t)e->index);
3704     }
3705 
3706     assert(ret == cpu->kvm_msr_buf->nmsrs);
3707     /*
3708      * MTRR masks: Each mask consists of 5 parts
3709      * a  10..0: must be zero
3710      * b  11   : valid bit
3711      * c n-1.12: actual mask bits
3712      * d  51..n: reserved must be zero
3713      * e  63.52: reserved must be zero
3714      *
3715      * 'n' is the number of physical bits supported by the CPU and is
3716      * apparently always <= 52.   We know our 'n' but don't know what
3717      * the destinations 'n' is; it might be smaller, in which case
3718      * it masks (c) on loading. It might be larger, in which case
3719      * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3720      * we're migrating to.
3721      */
3722 
3723     if (cpu->fill_mtrr_mask) {
3724         QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3725         assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3726         mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3727     } else {
3728         mtrr_top_bits = 0;
3729     }
3730 
3731     for (i = 0; i < ret; i++) {
3732         uint32_t index = msrs[i].index;
3733         switch (index) {
3734         case MSR_IA32_SYSENTER_CS:
3735             env->sysenter_cs = msrs[i].data;
3736             break;
3737         case MSR_IA32_SYSENTER_ESP:
3738             env->sysenter_esp = msrs[i].data;
3739             break;
3740         case MSR_IA32_SYSENTER_EIP:
3741             env->sysenter_eip = msrs[i].data;
3742             break;
3743         case MSR_PAT:
3744             env->pat = msrs[i].data;
3745             break;
3746         case MSR_STAR:
3747             env->star = msrs[i].data;
3748             break;
3749 #ifdef TARGET_X86_64
3750         case MSR_CSTAR:
3751             env->cstar = msrs[i].data;
3752             break;
3753         case MSR_KERNELGSBASE:
3754             env->kernelgsbase = msrs[i].data;
3755             break;
3756         case MSR_FMASK:
3757             env->fmask = msrs[i].data;
3758             break;
3759         case MSR_LSTAR:
3760             env->lstar = msrs[i].data;
3761             break;
3762 #endif
3763         case MSR_IA32_TSC:
3764             env->tsc = msrs[i].data;
3765             break;
3766         case MSR_TSC_AUX:
3767             env->tsc_aux = msrs[i].data;
3768             break;
3769         case MSR_TSC_ADJUST:
3770             env->tsc_adjust = msrs[i].data;
3771             break;
3772         case MSR_IA32_TSCDEADLINE:
3773             env->tsc_deadline = msrs[i].data;
3774             break;
3775         case MSR_VM_HSAVE_PA:
3776             env->vm_hsave = msrs[i].data;
3777             break;
3778         case MSR_KVM_SYSTEM_TIME:
3779             env->system_time_msr = msrs[i].data;
3780             break;
3781         case MSR_KVM_WALL_CLOCK:
3782             env->wall_clock_msr = msrs[i].data;
3783             break;
3784         case MSR_MCG_STATUS:
3785             env->mcg_status = msrs[i].data;
3786             break;
3787         case MSR_MCG_CTL:
3788             env->mcg_ctl = msrs[i].data;
3789             break;
3790         case MSR_MCG_EXT_CTL:
3791             env->mcg_ext_ctl = msrs[i].data;
3792             break;
3793         case MSR_IA32_MISC_ENABLE:
3794             env->msr_ia32_misc_enable = msrs[i].data;
3795             break;
3796         case MSR_IA32_SMBASE:
3797             env->smbase = msrs[i].data;
3798             break;
3799         case MSR_SMI_COUNT:
3800             env->msr_smi_count = msrs[i].data;
3801             break;
3802         case MSR_IA32_FEATURE_CONTROL:
3803             env->msr_ia32_feature_control = msrs[i].data;
3804             break;
3805         case MSR_IA32_BNDCFGS:
3806             env->msr_bndcfgs = msrs[i].data;
3807             break;
3808         case MSR_IA32_XSS:
3809             env->xss = msrs[i].data;
3810             break;
3811         case MSR_IA32_UMWAIT_CONTROL:
3812             env->umwait = msrs[i].data;
3813             break;
3814         case MSR_IA32_PKRS:
3815             env->pkrs = msrs[i].data;
3816             break;
3817         default:
3818             if (msrs[i].index >= MSR_MC0_CTL &&
3819                 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3820                 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
3821             }
3822             break;
3823         case MSR_KVM_ASYNC_PF_EN:
3824             env->async_pf_en_msr = msrs[i].data;
3825             break;
3826         case MSR_KVM_ASYNC_PF_INT:
3827             env->async_pf_int_msr = msrs[i].data;
3828             break;
3829         case MSR_KVM_PV_EOI_EN:
3830             env->pv_eoi_en_msr = msrs[i].data;
3831             break;
3832         case MSR_KVM_STEAL_TIME:
3833             env->steal_time_msr = msrs[i].data;
3834             break;
3835         case MSR_KVM_POLL_CONTROL: {
3836             env->poll_control_msr = msrs[i].data;
3837             break;
3838         }
3839         case MSR_CORE_PERF_FIXED_CTR_CTRL:
3840             env->msr_fixed_ctr_ctrl = msrs[i].data;
3841             break;
3842         case MSR_CORE_PERF_GLOBAL_CTRL:
3843             env->msr_global_ctrl = msrs[i].data;
3844             break;
3845         case MSR_CORE_PERF_GLOBAL_STATUS:
3846             env->msr_global_status = msrs[i].data;
3847             break;
3848         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3849             env->msr_global_ovf_ctrl = msrs[i].data;
3850             break;
3851         case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3852             env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3853             break;
3854         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3855             env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3856             break;
3857         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3858             env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3859             break;
3860         case HV_X64_MSR_HYPERCALL:
3861             env->msr_hv_hypercall = msrs[i].data;
3862             break;
3863         case HV_X64_MSR_GUEST_OS_ID:
3864             env->msr_hv_guest_os_id = msrs[i].data;
3865             break;
3866         case HV_X64_MSR_APIC_ASSIST_PAGE:
3867             env->msr_hv_vapic = msrs[i].data;
3868             break;
3869         case HV_X64_MSR_REFERENCE_TSC:
3870             env->msr_hv_tsc = msrs[i].data;
3871             break;
3872         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3873             env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3874             break;
3875         case HV_X64_MSR_VP_RUNTIME:
3876             env->msr_hv_runtime = msrs[i].data;
3877             break;
3878         case HV_X64_MSR_SCONTROL:
3879             env->msr_hv_synic_control = msrs[i].data;
3880             break;
3881         case HV_X64_MSR_SIEFP:
3882             env->msr_hv_synic_evt_page = msrs[i].data;
3883             break;
3884         case HV_X64_MSR_SIMP:
3885             env->msr_hv_synic_msg_page = msrs[i].data;
3886             break;
3887         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3888             env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
3889             break;
3890         case HV_X64_MSR_STIMER0_CONFIG:
3891         case HV_X64_MSR_STIMER1_CONFIG:
3892         case HV_X64_MSR_STIMER2_CONFIG:
3893         case HV_X64_MSR_STIMER3_CONFIG:
3894             env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3895                                 msrs[i].data;
3896             break;
3897         case HV_X64_MSR_STIMER0_COUNT:
3898         case HV_X64_MSR_STIMER1_COUNT:
3899         case HV_X64_MSR_STIMER2_COUNT:
3900         case HV_X64_MSR_STIMER3_COUNT:
3901             env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3902                                 msrs[i].data;
3903             break;
3904         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3905             env->msr_hv_reenlightenment_control = msrs[i].data;
3906             break;
3907         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3908             env->msr_hv_tsc_emulation_control = msrs[i].data;
3909             break;
3910         case HV_X64_MSR_TSC_EMULATION_STATUS:
3911             env->msr_hv_tsc_emulation_status = msrs[i].data;
3912             break;
3913         case MSR_MTRRdefType:
3914             env->mtrr_deftype = msrs[i].data;
3915             break;
3916         case MSR_MTRRfix64K_00000:
3917             env->mtrr_fixed[0] = msrs[i].data;
3918             break;
3919         case MSR_MTRRfix16K_80000:
3920             env->mtrr_fixed[1] = msrs[i].data;
3921             break;
3922         case MSR_MTRRfix16K_A0000:
3923             env->mtrr_fixed[2] = msrs[i].data;
3924             break;
3925         case MSR_MTRRfix4K_C0000:
3926             env->mtrr_fixed[3] = msrs[i].data;
3927             break;
3928         case MSR_MTRRfix4K_C8000:
3929             env->mtrr_fixed[4] = msrs[i].data;
3930             break;
3931         case MSR_MTRRfix4K_D0000:
3932             env->mtrr_fixed[5] = msrs[i].data;
3933             break;
3934         case MSR_MTRRfix4K_D8000:
3935             env->mtrr_fixed[6] = msrs[i].data;
3936             break;
3937         case MSR_MTRRfix4K_E0000:
3938             env->mtrr_fixed[7] = msrs[i].data;
3939             break;
3940         case MSR_MTRRfix4K_E8000:
3941             env->mtrr_fixed[8] = msrs[i].data;
3942             break;
3943         case MSR_MTRRfix4K_F0000:
3944             env->mtrr_fixed[9] = msrs[i].data;
3945             break;
3946         case MSR_MTRRfix4K_F8000:
3947             env->mtrr_fixed[10] = msrs[i].data;
3948             break;
3949         case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3950             if (index & 1) {
3951                 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3952                                                                mtrr_top_bits;
3953             } else {
3954                 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3955             }
3956             break;
3957         case MSR_IA32_SPEC_CTRL:
3958             env->spec_ctrl = msrs[i].data;
3959             break;
3960         case MSR_AMD64_TSC_RATIO:
3961             env->amd_tsc_scale_msr = msrs[i].data;
3962             break;
3963         case MSR_IA32_TSX_CTRL:
3964             env->tsx_ctrl = msrs[i].data;
3965             break;
3966         case MSR_VIRT_SSBD:
3967             env->virt_ssbd = msrs[i].data;
3968             break;
3969         case MSR_IA32_RTIT_CTL:
3970             env->msr_rtit_ctrl = msrs[i].data;
3971             break;
3972         case MSR_IA32_RTIT_STATUS:
3973             env->msr_rtit_status = msrs[i].data;
3974             break;
3975         case MSR_IA32_RTIT_OUTPUT_BASE:
3976             env->msr_rtit_output_base = msrs[i].data;
3977             break;
3978         case MSR_IA32_RTIT_OUTPUT_MASK:
3979             env->msr_rtit_output_mask = msrs[i].data;
3980             break;
3981         case MSR_IA32_RTIT_CR3_MATCH:
3982             env->msr_rtit_cr3_match = msrs[i].data;
3983             break;
3984         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3985             env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3986             break;
3987         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
3988             env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
3989                            msrs[i].data;
3990             break;
3991         case MSR_IA32_XFD:
3992             env->msr_xfd = msrs[i].data;
3993             break;
3994         case MSR_IA32_XFD_ERR:
3995             env->msr_xfd_err = msrs[i].data;
3996             break;
3997         }
3998     }
3999 
4000     return 0;
4001 }
4002 
4003 static int kvm_put_mp_state(X86CPU *cpu)
4004 {
4005     struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4006 
4007     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4008 }
4009 
4010 static int kvm_get_mp_state(X86CPU *cpu)
4011 {
4012     CPUState *cs = CPU(cpu);
4013     CPUX86State *env = &cpu->env;
4014     struct kvm_mp_state mp_state;
4015     int ret;
4016 
4017     ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4018     if (ret < 0) {
4019         return ret;
4020     }
4021     env->mp_state = mp_state.mp_state;
4022     if (kvm_irqchip_in_kernel()) {
4023         cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4024     }
4025     return 0;
4026 }
4027 
4028 static int kvm_get_apic(X86CPU *cpu)
4029 {
4030     DeviceState *apic = cpu->apic_state;
4031     struct kvm_lapic_state kapic;
4032     int ret;
4033 
4034     if (apic && kvm_irqchip_in_kernel()) {
4035         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
4036         if (ret < 0) {
4037             return ret;
4038         }
4039 
4040         kvm_get_apic_state(apic, &kapic);
4041     }
4042     return 0;
4043 }
4044 
4045 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
4046 {
4047     CPUState *cs = CPU(cpu);
4048     CPUX86State *env = &cpu->env;
4049     struct kvm_vcpu_events events = {};
4050 
4051     if (!kvm_has_vcpu_events()) {
4052         return 0;
4053     }
4054 
4055     events.flags = 0;
4056 
4057     if (has_exception_payload) {
4058         events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4059         events.exception.pending = env->exception_pending;
4060         events.exception_has_payload = env->exception_has_payload;
4061         events.exception_payload = env->exception_payload;
4062     }
4063     events.exception.nr = env->exception_nr;
4064     events.exception.injected = env->exception_injected;
4065     events.exception.has_error_code = env->has_error_code;
4066     events.exception.error_code = env->error_code;
4067 
4068     events.interrupt.injected = (env->interrupt_injected >= 0);
4069     events.interrupt.nr = env->interrupt_injected;
4070     events.interrupt.soft = env->soft_interrupt;
4071 
4072     events.nmi.injected = env->nmi_injected;
4073     events.nmi.pending = env->nmi_pending;
4074     events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4075 
4076     events.sipi_vector = env->sipi_vector;
4077 
4078     if (has_msr_smbase) {
4079         events.smi.smm = !!(env->hflags & HF_SMM_MASK);
4080         events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
4081         if (kvm_irqchip_in_kernel()) {
4082             /* As soon as these are moved to the kernel, remove them
4083              * from cs->interrupt_request.
4084              */
4085             events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
4086             events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
4087             cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
4088         } else {
4089             /* Keep these in cs->interrupt_request.  */
4090             events.smi.pending = 0;
4091             events.smi.latched_init = 0;
4092         }
4093         /* Stop SMI delivery on old machine types to avoid a reboot
4094          * on an inward migration of an old VM.
4095          */
4096         if (!cpu->kvm_no_smi_migration) {
4097             events.flags |= KVM_VCPUEVENT_VALID_SMM;
4098         }
4099     }
4100 
4101     if (level >= KVM_PUT_RESET_STATE) {
4102         events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
4103         if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
4104             events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
4105         }
4106     }
4107 
4108     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
4109 }
4110 
4111 static int kvm_get_vcpu_events(X86CPU *cpu)
4112 {
4113     CPUX86State *env = &cpu->env;
4114     struct kvm_vcpu_events events;
4115     int ret;
4116 
4117     if (!kvm_has_vcpu_events()) {
4118         return 0;
4119     }
4120 
4121     memset(&events, 0, sizeof(events));
4122     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
4123     if (ret < 0) {
4124        return ret;
4125     }
4126 
4127     if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4128         env->exception_pending = events.exception.pending;
4129         env->exception_has_payload = events.exception_has_payload;
4130         env->exception_payload = events.exception_payload;
4131     } else {
4132         env->exception_pending = 0;
4133         env->exception_has_payload = false;
4134     }
4135     env->exception_injected = events.exception.injected;
4136     env->exception_nr =
4137         (env->exception_pending || env->exception_injected) ?
4138         events.exception.nr : -1;
4139     env->has_error_code = events.exception.has_error_code;
4140     env->error_code = events.exception.error_code;
4141 
4142     env->interrupt_injected =
4143         events.interrupt.injected ? events.interrupt.nr : -1;
4144     env->soft_interrupt = events.interrupt.soft;
4145 
4146     env->nmi_injected = events.nmi.injected;
4147     env->nmi_pending = events.nmi.pending;
4148     if (events.nmi.masked) {
4149         env->hflags2 |= HF2_NMI_MASK;
4150     } else {
4151         env->hflags2 &= ~HF2_NMI_MASK;
4152     }
4153 
4154     if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
4155         if (events.smi.smm) {
4156             env->hflags |= HF_SMM_MASK;
4157         } else {
4158             env->hflags &= ~HF_SMM_MASK;
4159         }
4160         if (events.smi.pending) {
4161             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4162         } else {
4163             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4164         }
4165         if (events.smi.smm_inside_nmi) {
4166             env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4167         } else {
4168             env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4169         }
4170         if (events.smi.latched_init) {
4171             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4172         } else {
4173             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4174         }
4175     }
4176 
4177     env->sipi_vector = events.sipi_vector;
4178 
4179     return 0;
4180 }
4181 
4182 static int kvm_guest_debug_workarounds(X86CPU *cpu)
4183 {
4184     CPUState *cs = CPU(cpu);
4185     CPUX86State *env = &cpu->env;
4186     int ret = 0;
4187     unsigned long reinject_trap = 0;
4188 
4189     if (!kvm_has_vcpu_events()) {
4190         if (env->exception_nr == EXCP01_DB) {
4191             reinject_trap = KVM_GUESTDBG_INJECT_DB;
4192         } else if (env->exception_injected == EXCP03_INT3) {
4193             reinject_trap = KVM_GUESTDBG_INJECT_BP;
4194         }
4195         kvm_reset_exception(env);
4196     }
4197 
4198     /*
4199      * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
4200      * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
4201      * by updating the debug state once again if single-stepping is on.
4202      * Another reason to call kvm_update_guest_debug here is a pending debug
4203      * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
4204      * reinject them via SET_GUEST_DEBUG.
4205      */
4206     if (reinject_trap ||
4207         (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
4208         ret = kvm_update_guest_debug(cs, reinject_trap);
4209     }
4210     return ret;
4211 }
4212 
4213 static int kvm_put_debugregs(X86CPU *cpu)
4214 {
4215     CPUX86State *env = &cpu->env;
4216     struct kvm_debugregs dbgregs;
4217     int i;
4218 
4219     if (!kvm_has_debugregs()) {
4220         return 0;
4221     }
4222 
4223     memset(&dbgregs, 0, sizeof(dbgregs));
4224     for (i = 0; i < 4; i++) {
4225         dbgregs.db[i] = env->dr[i];
4226     }
4227     dbgregs.dr6 = env->dr[6];
4228     dbgregs.dr7 = env->dr[7];
4229     dbgregs.flags = 0;
4230 
4231     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
4232 }
4233 
4234 static int kvm_get_debugregs(X86CPU *cpu)
4235 {
4236     CPUX86State *env = &cpu->env;
4237     struct kvm_debugregs dbgregs;
4238     int i, ret;
4239 
4240     if (!kvm_has_debugregs()) {
4241         return 0;
4242     }
4243 
4244     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
4245     if (ret < 0) {
4246         return ret;
4247     }
4248     for (i = 0; i < 4; i++) {
4249         env->dr[i] = dbgregs.db[i];
4250     }
4251     env->dr[4] = env->dr[6] = dbgregs.dr6;
4252     env->dr[5] = env->dr[7] = dbgregs.dr7;
4253 
4254     return 0;
4255 }
4256 
4257 static int kvm_put_nested_state(X86CPU *cpu)
4258 {
4259     CPUX86State *env = &cpu->env;
4260     int max_nested_state_len = kvm_max_nested_state_length();
4261 
4262     if (!env->nested_state) {
4263         return 0;
4264     }
4265 
4266     /*
4267      * Copy flags that are affected by reset from env->hflags and env->hflags2.
4268      */
4269     if (env->hflags & HF_GUEST_MASK) {
4270         env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4271     } else {
4272         env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4273     }
4274 
4275     /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4276     if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
4277         env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4278     } else {
4279         env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4280     }
4281 
4282     assert(env->nested_state->size <= max_nested_state_len);
4283     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4284 }
4285 
4286 static int kvm_get_nested_state(X86CPU *cpu)
4287 {
4288     CPUX86State *env = &cpu->env;
4289     int max_nested_state_len = kvm_max_nested_state_length();
4290     int ret;
4291 
4292     if (!env->nested_state) {
4293         return 0;
4294     }
4295 
4296     /*
4297      * It is possible that migration restored a smaller size into
4298      * nested_state->hdr.size than what our kernel support.
4299      * We preserve migration origin nested_state->hdr.size for
4300      * call to KVM_SET_NESTED_STATE but wish that our next call
4301      * to KVM_GET_NESTED_STATE will use max size our kernel support.
4302      */
4303     env->nested_state->size = max_nested_state_len;
4304 
4305     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4306     if (ret < 0) {
4307         return ret;
4308     }
4309 
4310     /*
4311      * Copy flags that are affected by reset to env->hflags and env->hflags2.
4312      */
4313     if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4314         env->hflags |= HF_GUEST_MASK;
4315     } else {
4316         env->hflags &= ~HF_GUEST_MASK;
4317     }
4318 
4319     /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4320     if (cpu_has_svm(env)) {
4321         if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4322             env->hflags2 |= HF2_GIF_MASK;
4323         } else {
4324             env->hflags2 &= ~HF2_GIF_MASK;
4325         }
4326     }
4327 
4328     return ret;
4329 }
4330 
4331 int kvm_arch_put_registers(CPUState *cpu, int level)
4332 {
4333     X86CPU *x86_cpu = X86_CPU(cpu);
4334     int ret;
4335 
4336     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
4337 
4338     /* must be before kvm_put_nested_state so that EFER.SVME is set */
4339     ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
4340     if (ret < 0) {
4341         return ret;
4342     }
4343 
4344     if (level >= KVM_PUT_RESET_STATE) {
4345         ret = kvm_put_nested_state(x86_cpu);
4346         if (ret < 0) {
4347             return ret;
4348         }
4349 
4350         ret = kvm_put_msr_feature_control(x86_cpu);
4351         if (ret < 0) {
4352             return ret;
4353         }
4354     }
4355 
4356     if (level == KVM_PUT_FULL_STATE) {
4357         /* We don't check for kvm_arch_set_tsc_khz() errors here,
4358          * because TSC frequency mismatch shouldn't abort migration,
4359          * unless the user explicitly asked for a more strict TSC
4360          * setting (e.g. using an explicit "tsc-freq" option).
4361          */
4362         kvm_arch_set_tsc_khz(cpu);
4363     }
4364 
4365     ret = kvm_getput_regs(x86_cpu, 1);
4366     if (ret < 0) {
4367         return ret;
4368     }
4369     ret = kvm_put_xsave(x86_cpu);
4370     if (ret < 0) {
4371         return ret;
4372     }
4373     ret = kvm_put_xcrs(x86_cpu);
4374     if (ret < 0) {
4375         return ret;
4376     }
4377     /* must be before kvm_put_msrs */
4378     ret = kvm_inject_mce_oldstyle(x86_cpu);
4379     if (ret < 0) {
4380         return ret;
4381     }
4382     ret = kvm_put_msrs(x86_cpu, level);
4383     if (ret < 0) {
4384         return ret;
4385     }
4386     ret = kvm_put_vcpu_events(x86_cpu, level);
4387     if (ret < 0) {
4388         return ret;
4389     }
4390     if (level >= KVM_PUT_RESET_STATE) {
4391         ret = kvm_put_mp_state(x86_cpu);
4392         if (ret < 0) {
4393             return ret;
4394         }
4395     }
4396 
4397     ret = kvm_put_tscdeadline_msr(x86_cpu);
4398     if (ret < 0) {
4399         return ret;
4400     }
4401     ret = kvm_put_debugregs(x86_cpu);
4402     if (ret < 0) {
4403         return ret;
4404     }
4405     /* must be last */
4406     ret = kvm_guest_debug_workarounds(x86_cpu);
4407     if (ret < 0) {
4408         return ret;
4409     }
4410     return 0;
4411 }
4412 
4413 int kvm_arch_get_registers(CPUState *cs)
4414 {
4415     X86CPU *cpu = X86_CPU(cs);
4416     int ret;
4417 
4418     assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4419 
4420     ret = kvm_get_vcpu_events(cpu);
4421     if (ret < 0) {
4422         goto out;
4423     }
4424     /*
4425      * KVM_GET_MPSTATE can modify CS and RIP, call it before
4426      * KVM_GET_REGS and KVM_GET_SREGS.
4427      */
4428     ret = kvm_get_mp_state(cpu);
4429     if (ret < 0) {
4430         goto out;
4431     }
4432     ret = kvm_getput_regs(cpu, 0);
4433     if (ret < 0) {
4434         goto out;
4435     }
4436     ret = kvm_get_xsave(cpu);
4437     if (ret < 0) {
4438         goto out;
4439     }
4440     ret = kvm_get_xcrs(cpu);
4441     if (ret < 0) {
4442         goto out;
4443     }
4444     ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
4445     if (ret < 0) {
4446         goto out;
4447     }
4448     ret = kvm_get_msrs(cpu);
4449     if (ret < 0) {
4450         goto out;
4451     }
4452     ret = kvm_get_apic(cpu);
4453     if (ret < 0) {
4454         goto out;
4455     }
4456     ret = kvm_get_debugregs(cpu);
4457     if (ret < 0) {
4458         goto out;
4459     }
4460     ret = kvm_get_nested_state(cpu);
4461     if (ret < 0) {
4462         goto out;
4463     }
4464     ret = 0;
4465  out:
4466     cpu_sync_bndcs_hflags(&cpu->env);
4467     return ret;
4468 }
4469 
4470 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4471 {
4472     X86CPU *x86_cpu = X86_CPU(cpu);
4473     CPUX86State *env = &x86_cpu->env;
4474     int ret;
4475 
4476     /* Inject NMI */
4477     if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4478         if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4479             qemu_mutex_lock_iothread();
4480             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4481             qemu_mutex_unlock_iothread();
4482             DPRINTF("injected NMI\n");
4483             ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4484             if (ret < 0) {
4485                 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4486                         strerror(-ret));
4487             }
4488         }
4489         if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4490             qemu_mutex_lock_iothread();
4491             cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4492             qemu_mutex_unlock_iothread();
4493             DPRINTF("injected SMI\n");
4494             ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4495             if (ret < 0) {
4496                 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4497                         strerror(-ret));
4498             }
4499         }
4500     }
4501 
4502     if (!kvm_pic_in_kernel()) {
4503         qemu_mutex_lock_iothread();
4504     }
4505 
4506     /* Force the VCPU out of its inner loop to process any INIT requests
4507      * or (for userspace APIC, but it is cheap to combine the checks here)
4508      * pending TPR access reports.
4509      */
4510     if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4511         if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4512             !(env->hflags & HF_SMM_MASK)) {
4513             cpu->exit_request = 1;
4514         }
4515         if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4516             cpu->exit_request = 1;
4517         }
4518     }
4519 
4520     if (!kvm_pic_in_kernel()) {
4521         /* Try to inject an interrupt if the guest can accept it */
4522         if (run->ready_for_interrupt_injection &&
4523             (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4524             (env->eflags & IF_MASK)) {
4525             int irq;
4526 
4527             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4528             irq = cpu_get_pic_interrupt(env);
4529             if (irq >= 0) {
4530                 struct kvm_interrupt intr;
4531 
4532                 intr.irq = irq;
4533                 DPRINTF("injected interrupt %d\n", irq);
4534                 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4535                 if (ret < 0) {
4536                     fprintf(stderr,
4537                             "KVM: injection failed, interrupt lost (%s)\n",
4538                             strerror(-ret));
4539                 }
4540             }
4541         }
4542 
4543         /* If we have an interrupt but the guest is not ready to receive an
4544          * interrupt, request an interrupt window exit.  This will
4545          * cause a return to userspace as soon as the guest is ready to
4546          * receive interrupts. */
4547         if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4548             run->request_interrupt_window = 1;
4549         } else {
4550             run->request_interrupt_window = 0;
4551         }
4552 
4553         DPRINTF("setting tpr\n");
4554         run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4555 
4556         qemu_mutex_unlock_iothread();
4557     }
4558 }
4559 
4560 static void kvm_rate_limit_on_bus_lock(void)
4561 {
4562     uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4563 
4564     if (delay_ns) {
4565         g_usleep(delay_ns / SCALE_US);
4566     }
4567 }
4568 
4569 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4570 {
4571     X86CPU *x86_cpu = X86_CPU(cpu);
4572     CPUX86State *env = &x86_cpu->env;
4573 
4574     if (run->flags & KVM_RUN_X86_SMM) {
4575         env->hflags |= HF_SMM_MASK;
4576     } else {
4577         env->hflags &= ~HF_SMM_MASK;
4578     }
4579     if (run->if_flag) {
4580         env->eflags |= IF_MASK;
4581     } else {
4582         env->eflags &= ~IF_MASK;
4583     }
4584     if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4585         kvm_rate_limit_on_bus_lock();
4586     }
4587 
4588     /* We need to protect the apic state against concurrent accesses from
4589      * different threads in case the userspace irqchip is used. */
4590     if (!kvm_irqchip_in_kernel()) {
4591         qemu_mutex_lock_iothread();
4592     }
4593     cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4594     cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4595     if (!kvm_irqchip_in_kernel()) {
4596         qemu_mutex_unlock_iothread();
4597     }
4598     return cpu_get_mem_attrs(env);
4599 }
4600 
4601 int kvm_arch_process_async_events(CPUState *cs)
4602 {
4603     X86CPU *cpu = X86_CPU(cs);
4604     CPUX86State *env = &cpu->env;
4605 
4606     if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4607         /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4608         assert(env->mcg_cap);
4609 
4610         cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4611 
4612         kvm_cpu_synchronize_state(cs);
4613 
4614         if (env->exception_nr == EXCP08_DBLE) {
4615             /* this means triple fault */
4616             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4617             cs->exit_request = 1;
4618             return 0;
4619         }
4620         kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4621         env->has_error_code = 0;
4622 
4623         cs->halted = 0;
4624         if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4625             env->mp_state = KVM_MP_STATE_RUNNABLE;
4626         }
4627     }
4628 
4629     if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4630         !(env->hflags & HF_SMM_MASK)) {
4631         kvm_cpu_synchronize_state(cs);
4632         do_cpu_init(cpu);
4633     }
4634 
4635     if (kvm_irqchip_in_kernel()) {
4636         return 0;
4637     }
4638 
4639     if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4640         cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4641         apic_poll_irq(cpu->apic_state);
4642     }
4643     if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4644          (env->eflags & IF_MASK)) ||
4645         (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4646         cs->halted = 0;
4647     }
4648     if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4649         kvm_cpu_synchronize_state(cs);
4650         do_cpu_sipi(cpu);
4651     }
4652     if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4653         cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4654         kvm_cpu_synchronize_state(cs);
4655         apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4656                                       env->tpr_access_type);
4657     }
4658 
4659     return cs->halted;
4660 }
4661 
4662 static int kvm_handle_halt(X86CPU *cpu)
4663 {
4664     CPUState *cs = CPU(cpu);
4665     CPUX86State *env = &cpu->env;
4666 
4667     if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4668           (env->eflags & IF_MASK)) &&
4669         !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4670         cs->halted = 1;
4671         return EXCP_HLT;
4672     }
4673 
4674     return 0;
4675 }
4676 
4677 static int kvm_handle_tpr_access(X86CPU *cpu)
4678 {
4679     CPUState *cs = CPU(cpu);
4680     struct kvm_run *run = cs->kvm_run;
4681 
4682     apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4683                                   run->tpr_access.is_write ? TPR_ACCESS_WRITE
4684                                                            : TPR_ACCESS_READ);
4685     return 1;
4686 }
4687 
4688 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4689 {
4690     static const uint8_t int3 = 0xcc;
4691 
4692     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4693         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4694         return -EINVAL;
4695     }
4696     return 0;
4697 }
4698 
4699 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4700 {
4701     uint8_t int3;
4702 
4703     if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
4704         return -EINVAL;
4705     }
4706     if (int3 != 0xcc) {
4707         return 0;
4708     }
4709     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4710         return -EINVAL;
4711     }
4712     return 0;
4713 }
4714 
4715 static struct {
4716     target_ulong addr;
4717     int len;
4718     int type;
4719 } hw_breakpoint[4];
4720 
4721 static int nb_hw_breakpoint;
4722 
4723 static int find_hw_breakpoint(target_ulong addr, int len, int type)
4724 {
4725     int n;
4726 
4727     for (n = 0; n < nb_hw_breakpoint; n++) {
4728         if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
4729             (hw_breakpoint[n].len == len || len == -1)) {
4730             return n;
4731         }
4732     }
4733     return -1;
4734 }
4735 
4736 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4737                                   target_ulong len, int type)
4738 {
4739     switch (type) {
4740     case GDB_BREAKPOINT_HW:
4741         len = 1;
4742         break;
4743     case GDB_WATCHPOINT_WRITE:
4744     case GDB_WATCHPOINT_ACCESS:
4745         switch (len) {
4746         case 1:
4747             break;
4748         case 2:
4749         case 4:
4750         case 8:
4751             if (addr & (len - 1)) {
4752                 return -EINVAL;
4753             }
4754             break;
4755         default:
4756             return -EINVAL;
4757         }
4758         break;
4759     default:
4760         return -ENOSYS;
4761     }
4762 
4763     if (nb_hw_breakpoint == 4) {
4764         return -ENOBUFS;
4765     }
4766     if (find_hw_breakpoint(addr, len, type) >= 0) {
4767         return -EEXIST;
4768     }
4769     hw_breakpoint[nb_hw_breakpoint].addr = addr;
4770     hw_breakpoint[nb_hw_breakpoint].len = len;
4771     hw_breakpoint[nb_hw_breakpoint].type = type;
4772     nb_hw_breakpoint++;
4773 
4774     return 0;
4775 }
4776 
4777 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4778                                   target_ulong len, int type)
4779 {
4780     int n;
4781 
4782     n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
4783     if (n < 0) {
4784         return -ENOENT;
4785     }
4786     nb_hw_breakpoint--;
4787     hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4788 
4789     return 0;
4790 }
4791 
4792 void kvm_arch_remove_all_hw_breakpoints(void)
4793 {
4794     nb_hw_breakpoint = 0;
4795 }
4796 
4797 static CPUWatchpoint hw_watchpoint;
4798 
4799 static int kvm_handle_debug(X86CPU *cpu,
4800                             struct kvm_debug_exit_arch *arch_info)
4801 {
4802     CPUState *cs = CPU(cpu);
4803     CPUX86State *env = &cpu->env;
4804     int ret = 0;
4805     int n;
4806 
4807     if (arch_info->exception == EXCP01_DB) {
4808         if (arch_info->dr6 & DR6_BS) {
4809             if (cs->singlestep_enabled) {
4810                 ret = EXCP_DEBUG;
4811             }
4812         } else {
4813             for (n = 0; n < 4; n++) {
4814                 if (arch_info->dr6 & (1 << n)) {
4815                     switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4816                     case 0x0:
4817                         ret = EXCP_DEBUG;
4818                         break;
4819                     case 0x1:
4820                         ret = EXCP_DEBUG;
4821                         cs->watchpoint_hit = &hw_watchpoint;
4822                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4823                         hw_watchpoint.flags = BP_MEM_WRITE;
4824                         break;
4825                     case 0x3:
4826                         ret = EXCP_DEBUG;
4827                         cs->watchpoint_hit = &hw_watchpoint;
4828                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4829                         hw_watchpoint.flags = BP_MEM_ACCESS;
4830                         break;
4831                     }
4832                 }
4833             }
4834         }
4835     } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
4836         ret = EXCP_DEBUG;
4837     }
4838     if (ret == 0) {
4839         cpu_synchronize_state(cs);
4840         assert(env->exception_nr == -1);
4841 
4842         /* pass to guest */
4843         kvm_queue_exception(env, arch_info->exception,
4844                             arch_info->exception == EXCP01_DB,
4845                             arch_info->dr6);
4846         env->has_error_code = 0;
4847     }
4848 
4849     return ret;
4850 }
4851 
4852 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
4853 {
4854     const uint8_t type_code[] = {
4855         [GDB_BREAKPOINT_HW] = 0x0,
4856         [GDB_WATCHPOINT_WRITE] = 0x1,
4857         [GDB_WATCHPOINT_ACCESS] = 0x3
4858     };
4859     const uint8_t len_code[] = {
4860         [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4861     };
4862     int n;
4863 
4864     if (kvm_sw_breakpoints_active(cpu)) {
4865         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
4866     }
4867     if (nb_hw_breakpoint > 0) {
4868         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4869         dbg->arch.debugreg[7] = 0x0600;
4870         for (n = 0; n < nb_hw_breakpoint; n++) {
4871             dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4872             dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4873                 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
4874                 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
4875         }
4876     }
4877 }
4878 
4879 static bool has_sgx_provisioning;
4880 
4881 static bool __kvm_enable_sgx_provisioning(KVMState *s)
4882 {
4883     int fd, ret;
4884 
4885     if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
4886         return false;
4887     }
4888 
4889     fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
4890     if (fd < 0) {
4891         return false;
4892     }
4893 
4894     ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
4895     if (ret) {
4896         error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
4897         exit(1);
4898     }
4899     close(fd);
4900     return true;
4901 }
4902 
4903 bool kvm_enable_sgx_provisioning(KVMState *s)
4904 {
4905     return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
4906 }
4907 
4908 static bool host_supports_vmx(void)
4909 {
4910     uint32_t ecx, unused;
4911 
4912     host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4913     return ecx & CPUID_EXT_VMX;
4914 }
4915 
4916 #define VMX_INVALID_GUEST_STATE 0x80000021
4917 
4918 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
4919 {
4920     X86CPU *cpu = X86_CPU(cs);
4921     uint64_t code;
4922     int ret;
4923 
4924     switch (run->exit_reason) {
4925     case KVM_EXIT_HLT:
4926         DPRINTF("handle_hlt\n");
4927         qemu_mutex_lock_iothread();
4928         ret = kvm_handle_halt(cpu);
4929         qemu_mutex_unlock_iothread();
4930         break;
4931     case KVM_EXIT_SET_TPR:
4932         ret = 0;
4933         break;
4934     case KVM_EXIT_TPR_ACCESS:
4935         qemu_mutex_lock_iothread();
4936         ret = kvm_handle_tpr_access(cpu);
4937         qemu_mutex_unlock_iothread();
4938         break;
4939     case KVM_EXIT_FAIL_ENTRY:
4940         code = run->fail_entry.hardware_entry_failure_reason;
4941         fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4942                 code);
4943         if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4944             fprintf(stderr,
4945                     "\nIf you're running a guest on an Intel machine without "
4946                         "unrestricted mode\n"
4947                     "support, the failure can be most likely due to the guest "
4948                         "entering an invalid\n"
4949                     "state for Intel VT. For example, the guest maybe running "
4950                         "in big real mode\n"
4951                     "which is not supported on less recent Intel processors."
4952                         "\n\n");
4953         }
4954         ret = -1;
4955         break;
4956     case KVM_EXIT_EXCEPTION:
4957         fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4958                 run->ex.exception, run->ex.error_code);
4959         ret = -1;
4960         break;
4961     case KVM_EXIT_DEBUG:
4962         DPRINTF("kvm_exit_debug\n");
4963         qemu_mutex_lock_iothread();
4964         ret = kvm_handle_debug(cpu, &run->debug.arch);
4965         qemu_mutex_unlock_iothread();
4966         break;
4967     case KVM_EXIT_HYPERV:
4968         ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4969         break;
4970     case KVM_EXIT_IOAPIC_EOI:
4971         ioapic_eoi_broadcast(run->eoi.vector);
4972         ret = 0;
4973         break;
4974     case KVM_EXIT_X86_BUS_LOCK:
4975         /* already handled in kvm_arch_post_run */
4976         ret = 0;
4977         break;
4978     default:
4979         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4980         ret = -1;
4981         break;
4982     }
4983 
4984     return ret;
4985 }
4986 
4987 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4988 {
4989     X86CPU *cpu = X86_CPU(cs);
4990     CPUX86State *env = &cpu->env;
4991 
4992     kvm_cpu_synchronize_state(cs);
4993     return !(env->cr[0] & CR0_PE_MASK) ||
4994            ((env->segs[R_CS].selector  & 3) != 3);
4995 }
4996 
4997 void kvm_arch_init_irq_routing(KVMState *s)
4998 {
4999     /* We know at this point that we're using the in-kernel
5000      * irqchip, so we can use irqfds, and on x86 we know
5001      * we can use msi via irqfd and GSI routing.
5002      */
5003     kvm_msi_via_irqfd_allowed = true;
5004     kvm_gsi_routing_allowed = true;
5005 
5006     if (kvm_irqchip_is_split()) {
5007         KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
5008         int i;
5009 
5010         /* If the ioapic is in QEMU and the lapics are in KVM, reserve
5011            MSI routes for signaling interrupts to the local apics. */
5012         for (i = 0; i < IOAPIC_NUM_PINS; i++) {
5013             if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
5014                 error_report("Could not enable split IRQ mode.");
5015                 exit(1);
5016             }
5017         }
5018         kvm_irqchip_commit_route_changes(&c);
5019     }
5020 }
5021 
5022 int kvm_arch_irqchip_create(KVMState *s)
5023 {
5024     int ret;
5025     if (kvm_kernel_irqchip_split()) {
5026         ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
5027         if (ret) {
5028             error_report("Could not enable split irqchip mode: %s",
5029                          strerror(-ret));
5030             exit(1);
5031         } else {
5032             DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
5033             kvm_split_irqchip = true;
5034             return 1;
5035         }
5036     } else {
5037         return 0;
5038     }
5039 }
5040 
5041 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
5042 {
5043     CPUX86State *env;
5044     uint64_t ext_id;
5045 
5046     if (!first_cpu) {
5047         return address;
5048     }
5049     env = &X86_CPU(first_cpu)->env;
5050     if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
5051         return address;
5052     }
5053 
5054     /*
5055      * If the remappable format bit is set, or the upper bits are
5056      * already set in address_hi, or the low extended bits aren't
5057      * there anyway, do nothing.
5058      */
5059     ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
5060     if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
5061         return address;
5062     }
5063 
5064     address &= ~ext_id;
5065     address |= ext_id << 35;
5066     return address;
5067 }
5068 
5069 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
5070                              uint64_t address, uint32_t data, PCIDevice *dev)
5071 {
5072     X86IOMMUState *iommu = x86_iommu_get_default();
5073 
5074     if (iommu) {
5075         X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
5076 
5077         if (class->int_remap) {
5078             int ret;
5079             MSIMessage src, dst;
5080 
5081             src.address = route->u.msi.address_hi;
5082             src.address <<= VTD_MSI_ADDR_HI_SHIFT;
5083             src.address |= route->u.msi.address_lo;
5084             src.data = route->u.msi.data;
5085 
5086             ret = class->int_remap(iommu, &src, &dst, dev ?     \
5087                                    pci_requester_id(dev) :      \
5088                                    X86_IOMMU_SID_INVALID);
5089             if (ret) {
5090                 trace_kvm_x86_fixup_msi_error(route->gsi);
5091                 return 1;
5092             }
5093 
5094             /*
5095              * Handled untranslated compatibilty format interrupt with
5096              * extended destination ID in the low bits 11-5. */
5097             dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
5098 
5099             route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
5100             route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
5101             route->u.msi.data = dst.data;
5102             return 0;
5103         }
5104     }
5105 
5106     address = kvm_swizzle_msi_ext_dest_id(address);
5107     route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
5108     route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
5109     return 0;
5110 }
5111 
5112 typedef struct MSIRouteEntry MSIRouteEntry;
5113 
5114 struct MSIRouteEntry {
5115     PCIDevice *dev;             /* Device pointer */
5116     int vector;                 /* MSI/MSIX vector index */
5117     int virq;                   /* Virtual IRQ index */
5118     QLIST_ENTRY(MSIRouteEntry) list;
5119 };
5120 
5121 /* List of used GSI routes */
5122 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
5123     QLIST_HEAD_INITIALIZER(msi_route_list);
5124 
5125 static void kvm_update_msi_routes_all(void *private, bool global,
5126                                       uint32_t index, uint32_t mask)
5127 {
5128     int cnt = 0, vector;
5129     MSIRouteEntry *entry;
5130     MSIMessage msg;
5131     PCIDevice *dev;
5132 
5133     /* TODO: explicit route update */
5134     QLIST_FOREACH(entry, &msi_route_list, list) {
5135         cnt++;
5136         vector = entry->vector;
5137         dev = entry->dev;
5138         if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
5139             msg = msix_get_message(dev, vector);
5140         } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
5141             msg = msi_get_message(dev, vector);
5142         } else {
5143             /*
5144              * Either MSI/MSIX is disabled for the device, or the
5145              * specific message was masked out.  Skip this one.
5146              */
5147             continue;
5148         }
5149         kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
5150     }
5151     kvm_irqchip_commit_routes(kvm_state);
5152     trace_kvm_x86_update_msi_routes(cnt);
5153 }
5154 
5155 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
5156                                 int vector, PCIDevice *dev)
5157 {
5158     static bool notify_list_inited = false;
5159     MSIRouteEntry *entry;
5160 
5161     if (!dev) {
5162         /* These are (possibly) IOAPIC routes only used for split
5163          * kernel irqchip mode, while what we are housekeeping are
5164          * PCI devices only. */
5165         return 0;
5166     }
5167 
5168     entry = g_new0(MSIRouteEntry, 1);
5169     entry->dev = dev;
5170     entry->vector = vector;
5171     entry->virq = route->gsi;
5172     QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5173 
5174     trace_kvm_x86_add_msi_route(route->gsi);
5175 
5176     if (!notify_list_inited) {
5177         /* For the first time we do add route, add ourselves into
5178          * IOMMU's IEC notify list if needed. */
5179         X86IOMMUState *iommu = x86_iommu_get_default();
5180         if (iommu) {
5181             x86_iommu_iec_register_notifier(iommu,
5182                                             kvm_update_msi_routes_all,
5183                                             NULL);
5184         }
5185         notify_list_inited = true;
5186     }
5187     return 0;
5188 }
5189 
5190 int kvm_arch_release_virq_post(int virq)
5191 {
5192     MSIRouteEntry *entry, *next;
5193     QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5194         if (entry->virq == virq) {
5195             trace_kvm_x86_remove_msi_route(virq);
5196             QLIST_REMOVE(entry, list);
5197             g_free(entry);
5198             break;
5199         }
5200     }
5201     return 0;
5202 }
5203 
5204 int kvm_arch_msi_data_to_gsi(uint32_t data)
5205 {
5206     abort();
5207 }
5208 
5209 bool kvm_has_waitpkg(void)
5210 {
5211     return has_msr_umwait;
5212 }
5213 
5214 bool kvm_arch_cpu_check_are_resettable(void)
5215 {
5216     return !sev_es_enabled();
5217 }
5218 
5219 #define ARCH_REQ_XCOMP_GUEST_PERM       0x1025
5220 
5221 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
5222 {
5223     KVMState *s = kvm_state;
5224     uint64_t supported;
5225 
5226     mask &= XSTATE_DYNAMIC_MASK;
5227     if (!mask) {
5228         return;
5229     }
5230     /*
5231      * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
5232      * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
5233      * about them already because they are not supported features.
5234      */
5235     supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
5236     supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
5237     mask &= supported;
5238 
5239     while (mask) {
5240         int bit = ctz64(mask);
5241         int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
5242         if (rc) {
5243             /*
5244              * Older kernel version (<5.17) do not support
5245              * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
5246              * any dynamic feature from kvm_arch_get_supported_cpuid.
5247              */
5248             warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
5249                         "for feature bit %d", bit);
5250         }
5251         mask &= ~BIT_ULL(bit);
5252     }
5253 }
5254