xref: /qemu/target/i386/tcg/decode-new.c.inc (revision ebda3036)
1/*
2 * New-style decoder for i386 instructions
3 *
4 *  Copyright (c) 2022 Red Hat, Inc.
5 *
6 * Author: Paolo Bonzini <pbonzini@redhat.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * The decoder is mostly based on tables copied from the Intel SDM.  As
24 * a result, most operand load and writeback is done entirely in common
25 * table-driven code using the same operand type (X86_TYPE_*) and
26 * size (X86_SIZE_*) codes used in the manual.
27 *
28 * The main difference is that the V, U and W types are extended to
29 * cover MMX as well; if an instruction is like
30 *
31 *      por   Pq, Qq
32 *  66  por   Vx, Hx, Wx
33 *
34 * only the second row is included and the instruction is marked as a
35 * valid MMX instruction.  The MMX flag directs the decoder to rewrite
36 * the V/U/H/W types to P/N/P/Q if there is no prefix, as well as changing
37 * "x" to "q" if there is no prefix.
38 *
39 * In addition, the ss/ps/sd/pd types are sometimes mushed together as "x"
40 * if the difference is expressed via prefixes.  Individual instructions
41 * are separated by prefix in the generator functions.
42 *
43 * There are a couple cases in which instructions (e.g. MOVD) write the
44 * whole XMM or MM register but are established incorrectly in the manual
45 * as "d" or "q".  These have to be fixed for the decoder to work correctly.
46 */
47
48#define X86_OP_NONE { 0 },
49
50#define X86_OP_GROUP3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \
51    .decode = glue(decode_, op),                                  \
52    .op0 = glue(X86_TYPE_, op0_),                                 \
53    .s0 = glue(X86_SIZE_, s0_),                                   \
54    .op1 = glue(X86_TYPE_, op1_),                                 \
55    .s1 = glue(X86_SIZE_, s1_),                                   \
56    .op2 = glue(X86_TYPE_, op2_),                                 \
57    .s2 = glue(X86_SIZE_, s2_),                                   \
58    .is_decode = true,                                            \
59    ## __VA_ARGS__                                                \
60}
61
62#define X86_OP_GROUP2(op, op0, s0, op1, s1, ...)                  \
63    X86_OP_GROUP3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__)
64#define X86_OP_GROUP0(op, ...)                                    \
65    X86_OP_GROUP3(op, None, None, None, None, None, None, ## __VA_ARGS__)
66
67#define X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \
68    .gen = glue(gen_, op),                                        \
69    .op0 = glue(X86_TYPE_, op0_),                                 \
70    .s0 = glue(X86_SIZE_, s0_),                                   \
71    .op1 = glue(X86_TYPE_, op1_),                                 \
72    .s1 = glue(X86_SIZE_, s1_),                                   \
73    .op2 = glue(X86_TYPE_, op2_),                                 \
74    .s2 = glue(X86_SIZE_, s2_),                                   \
75    ## __VA_ARGS__                                                \
76}
77
78#define X86_OP_ENTRY4(op, op0_, s0_, op1_, s1_, op2_, s2_, ...)   \
79    X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_,            \
80        .op3 = X86_TYPE_I, .s3 = X86_SIZE_b,                      \
81        ## __VA_ARGS__)
82
83#define X86_OP_ENTRY2(op, op0, s0, op1, s1, ...)                  \
84    X86_OP_ENTRY3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__)
85#define X86_OP_ENTRYw(op, op0, s0, ...)                           \
86    X86_OP_ENTRY3(op, op0, s0, None, None, None, None, ## __VA_ARGS__)
87#define X86_OP_ENTRYr(op, op0, s0, ...)                           \
88    X86_OP_ENTRY3(op, None, None, None, None, op0, s0, ## __VA_ARGS__)
89#define X86_OP_ENTRY0(op, ...)                                    \
90    X86_OP_ENTRY3(op, None, None, None, None, None, None, ## __VA_ARGS__)
91
92#define cpuid(feat) .cpuid = X86_FEAT_##feat,
93#define i64 .special = X86_SPECIAL_i64,
94#define o64 .special = X86_SPECIAL_o64,
95#define xchg .special = X86_SPECIAL_Locked,
96#define mmx .special = X86_SPECIAL_MMX,
97#define zext0 .special = X86_SPECIAL_ZExtOp0,
98#define zext2 .special = X86_SPECIAL_ZExtOp2,
99#define avx_movx .special = X86_SPECIAL_AVXExtMov,
100
101#define vex1 .vex_class = 1,
102#define vex1_rep3 .vex_class = 1, .vex_special = X86_VEX_REPScalar,
103#define vex2 .vex_class = 2,
104#define vex2_rep3 .vex_class = 2, .vex_special = X86_VEX_REPScalar,
105#define vex3 .vex_class = 3,
106#define vex4 .vex_class = 4,
107#define vex4_unal .vex_class = 4, .vex_special = X86_VEX_SSEUnaligned,
108#define vex4_rep5 .vex_class = 4, .vex_special = X86_VEX_REPScalar,
109#define vex5 .vex_class = 5,
110#define vex6 .vex_class = 6,
111#define vex7 .vex_class = 7,
112#define vex8 .vex_class = 8,
113#define vex11 .vex_class = 11,
114#define vex12 .vex_class = 12,
115#define vex13 .vex_class = 13,
116
117#define avx2_256 .vex_special = X86_VEX_AVX2_256,
118
119#define P_00          1
120#define P_66          (1 << PREFIX_DATA)
121#define P_F3          (1 << PREFIX_REPZ)
122#define P_F2          (1 << PREFIX_REPNZ)
123
124#define p_00          .valid_prefix = P_00,
125#define p_66          .valid_prefix = P_66,
126#define p_f3          .valid_prefix = P_F3,
127#define p_f2          .valid_prefix = P_F2,
128#define p_00_66       .valid_prefix = P_00 | P_66,
129#define p_00_f3       .valid_prefix = P_00 | P_F3,
130#define p_66_f2       .valid_prefix = P_66 | P_F2,
131#define p_00_66_f3    .valid_prefix = P_00 | P_66 | P_F3,
132#define p_66_f3_f2    .valid_prefix = P_66 | P_F3 | P_F2,
133#define p_00_66_f3_f2 .valid_prefix = P_00 | P_66 | P_F3 | P_F2,
134
135static uint8_t get_modrm(DisasContext *s, CPUX86State *env)
136{
137    if (!s->has_modrm) {
138        s->modrm = x86_ldub_code(env, s);
139        s->has_modrm = true;
140    }
141    return s->modrm;
142}
143
144static inline const X86OpEntry *decode_by_prefix(DisasContext *s, const X86OpEntry entries[4])
145{
146    if (s->prefix & PREFIX_REPNZ) {
147        return &entries[3];
148    } else if (s->prefix & PREFIX_REPZ) {
149        return &entries[2];
150    } else if (s->prefix & PREFIX_DATA) {
151        return &entries[1];
152    } else {
153        return &entries[0];
154    }
155}
156
157static void decode_group15(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
158{
159    /* only includes ldmxcsr and stmxcsr, because they have AVX variants.  */
160    static const X86OpEntry group15_reg[8] = {
161    };
162
163    static const X86OpEntry group15_mem[8] = {
164        [2] = X86_OP_ENTRYr(LDMXCSR,    E,d, vex5),
165        [3] = X86_OP_ENTRYw(STMXCSR,    E,d, vex5),
166    };
167
168    uint8_t modrm = get_modrm(s, env);
169    if ((modrm >> 6) == 3) {
170        *entry = group15_reg[(modrm >> 3) & 7];
171    } else {
172        *entry = group15_mem[(modrm >> 3) & 7];
173    }
174}
175
176static void decode_group17(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
177{
178    static const X86GenFunc group17_gen[8] = {
179        NULL, gen_BLSR, gen_BLSMSK, gen_BLSI,
180    };
181    int op = (get_modrm(s, env) >> 3) & 7;
182    entry->gen = group17_gen[op];
183}
184
185static void decode_group12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
186{
187    static const X86OpEntry opcodes_group12[8] = {
188        {},
189        {},
190        X86_OP_ENTRY3(PSRLW_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
191        {},
192        X86_OP_ENTRY3(PSRAW_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
193        {},
194        X86_OP_ENTRY3(PSLLW_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
195        {},
196    };
197
198    int op = (get_modrm(s, env) >> 3) & 7;
199    *entry = opcodes_group12[op];
200}
201
202static void decode_group13(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
203{
204    static const X86OpEntry opcodes_group13[8] = {
205        {},
206        {},
207        X86_OP_ENTRY3(PSRLD_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
208        {},
209        X86_OP_ENTRY3(PSRAD_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
210        {},
211        X86_OP_ENTRY3(PSLLD_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
212        {},
213    };
214
215    int op = (get_modrm(s, env) >> 3) & 7;
216    *entry = opcodes_group13[op];
217}
218
219static void decode_group14(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
220{
221    static const X86OpEntry opcodes_group14[8] = {
222        /* grp14 */
223        {},
224        {},
225        X86_OP_ENTRY3(PSRLQ_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
226        X86_OP_ENTRY3(PSRLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66),
227        {},
228        {},
229        X86_OP_ENTRY3(PSLLQ_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
230        X86_OP_ENTRY3(PSLLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66),
231    };
232
233    int op = (get_modrm(s, env) >> 3) & 7;
234    *entry = opcodes_group14[op];
235}
236
237static void decode_0F6F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
238{
239    static const X86OpEntry opcodes_0F6F[4] = {
240        X86_OP_ENTRY3(MOVDQ,       P,q, None,None, Q,q, vex5 mmx),  /* movq */
241        X86_OP_ENTRY3(MOVDQ,       V,x, None,None, W,x, vex1),      /* movdqa */
242        X86_OP_ENTRY3(MOVDQ,       V,x, None,None, W,x, vex4_unal), /* movdqu */
243        {},
244    };
245    *entry = *decode_by_prefix(s, opcodes_0F6F);
246}
247
248static void decode_0F70(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
249{
250    static const X86OpEntry pshufw[4] = {
251        X86_OP_ENTRY3(PSHUFW,  P,q, Q,q, I,b, vex4 mmx),
252        X86_OP_ENTRY3(PSHUFD,  V,x, W,x, I,b, vex4 avx2_256),
253        X86_OP_ENTRY3(PSHUFHW, V,x, W,x, I,b, vex4 avx2_256),
254        X86_OP_ENTRY3(PSHUFLW, V,x, W,x, I,b, vex4 avx2_256),
255    };
256
257    *entry = *decode_by_prefix(s, pshufw);
258}
259
260static void decode_0F77(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
261{
262    if (!(s->prefix & PREFIX_VEX)) {
263        entry->gen = gen_EMMS;
264    } else if (!s->vex_l) {
265        entry->gen = gen_VZEROUPPER;
266        entry->vex_class = 8;
267    } else {
268        entry->gen = gen_VZEROALL;
269        entry->vex_class = 8;
270    }
271}
272
273static void decode_0F78(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
274{
275    static const X86OpEntry opcodes_0F78[4] = {
276        {},
277        X86_OP_ENTRY3(EXTRQ_i,       V,x, None,None, I,w,  cpuid(SSE4A)), /* AMD extension */
278        {},
279        X86_OP_ENTRY3(INSERTQ_i,     V,x, U,x, I,w,        cpuid(SSE4A)), /* AMD extension */
280    };
281    *entry = *decode_by_prefix(s, opcodes_0F78);
282}
283
284static void decode_0F79(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
285{
286    if (s->prefix & PREFIX_REPNZ) {
287        entry->gen = gen_INSERTQ_r; /* AMD extension */
288    } else if (s->prefix & PREFIX_DATA) {
289        entry->gen = gen_EXTRQ_r; /* AMD extension */
290    } else {
291        entry->gen = NULL;
292    };
293}
294
295static void decode_0F7E(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
296{
297    static const X86OpEntry opcodes_0F7E[4] = {
298        X86_OP_ENTRY3(MOVD_from,  E,y, None,None, P,y, vex5 mmx),
299        X86_OP_ENTRY3(MOVD_from,  E,y, None,None, V,y, vex5),
300        X86_OP_ENTRY3(MOVQ,       V,x, None,None, W,q, vex5),  /* wrong dest Vy on SDM! */
301        {},
302    };
303    *entry = *decode_by_prefix(s, opcodes_0F7E);
304}
305
306static void decode_0F7F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
307{
308    static const X86OpEntry opcodes_0F7F[4] = {
309        X86_OP_ENTRY3(MOVDQ,       W,x, None,None, V,x, vex5 mmx), /* movq */
310        X86_OP_ENTRY3(MOVDQ,       W,x, None,None, V,x, vex1), /* movdqa */
311        X86_OP_ENTRY3(MOVDQ,       W,x, None,None, V,x, vex4_unal), /* movdqu */
312        {},
313    };
314    *entry = *decode_by_prefix(s, opcodes_0F7F);
315}
316
317static void decode_0FD6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
318{
319    static const X86OpEntry movq[4] = {
320        {},
321        X86_OP_ENTRY3(MOVQ,    W,x,  None, None, V,q, vex5),
322        X86_OP_ENTRY3(MOVq_dq, V,dq, None, None, N,q),
323        X86_OP_ENTRY3(MOVq_dq, P,q,  None, None, U,q),
324    };
325
326    *entry = *decode_by_prefix(s, movq);
327}
328
329static const X86OpEntry opcodes_0F38_00toEF[240] = {
330    [0x00] = X86_OP_ENTRY3(PSHUFB,    V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
331    [0x01] = X86_OP_ENTRY3(PHADDW,    V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
332    [0x02] = X86_OP_ENTRY3(PHADDD,    V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
333    [0x03] = X86_OP_ENTRY3(PHADDSW,   V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
334    [0x04] = X86_OP_ENTRY3(PMADDUBSW, V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
335    [0x05] = X86_OP_ENTRY3(PHSUBW,    V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
336    [0x06] = X86_OP_ENTRY3(PHSUBD,    V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
337    [0x07] = X86_OP_ENTRY3(PHSUBSW,   V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
338
339    [0x10] = X86_OP_ENTRY2(PBLENDVB,  V,x,         W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
340    [0x13] = X86_OP_ENTRY2(VCVTPH2PS, V,x,         W,ph, vex11 cpuid(F16C) p_66),
341    [0x14] = X86_OP_ENTRY2(BLENDVPS,  V,x,         W,x,  vex4 cpuid(SSE41) p_66),
342    [0x15] = X86_OP_ENTRY2(BLENDVPD,  V,x,         W,x,  vex4 cpuid(SSE41) p_66),
343    /* Listed incorrectly as type 4 */
344    [0x16] = X86_OP_ENTRY3(VPERMD,    V,qq, H,qq,      W,qq,  vex6 cpuid(AVX2) p_66),
345    [0x17] = X86_OP_ENTRY3(VPTEST,    None,None, V,x,  W,x,   vex4 cpuid(SSE41) p_66),
346
347    /*
348     * Source operand listed as Mq/Ux and similar in the manual; incorrectly listed
349     * as 128-bit only in 2-17.
350     */
351    [0x20] = X86_OP_ENTRY3(VPMOVSXBW, V,x,  None,None, W,q,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
352    [0x21] = X86_OP_ENTRY3(VPMOVSXBD, V,x,  None,None, W,d,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
353    [0x22] = X86_OP_ENTRY3(VPMOVSXBQ, V,x,  None,None, W,w,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
354    [0x23] = X86_OP_ENTRY3(VPMOVSXWD, V,x,  None,None, W,q,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
355    [0x24] = X86_OP_ENTRY3(VPMOVSXWQ, V,x,  None,None, W,d,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
356    [0x25] = X86_OP_ENTRY3(VPMOVSXDQ, V,x,  None,None, W,q,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
357
358    /* Same as PMOVSX.  */
359    [0x30] = X86_OP_ENTRY3(VPMOVZXBW, V,x,  None,None, W,q,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
360    [0x31] = X86_OP_ENTRY3(VPMOVZXBD, V,x,  None,None, W,d,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
361    [0x32] = X86_OP_ENTRY3(VPMOVZXBQ, V,x,  None,None, W,w,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
362    [0x33] = X86_OP_ENTRY3(VPMOVZXWD, V,x,  None,None, W,q,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
363    [0x34] = X86_OP_ENTRY3(VPMOVZXWQ, V,x,  None,None, W,d,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
364    [0x35] = X86_OP_ENTRY3(VPMOVZXDQ, V,x,  None,None, W,q,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
365    [0x36] = X86_OP_ENTRY3(VPERMD,    V,qq, H,qq,      W,qq,  vex6 cpuid(AVX2) p_66),
366    [0x37] = X86_OP_ENTRY3(PCMPGTQ,   V,x,  H,x,       W,x,   vex4 cpuid(SSE42) avx2_256 p_66),
367
368    [0x40] = X86_OP_ENTRY3(PMULLD,      V,x,  H,x,       W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
369    [0x41] = X86_OP_ENTRY3(VPHMINPOSUW, V,dq, None,None, W,dq, vex4 cpuid(SSE41) p_66),
370    /* Listed incorrectly as type 4 */
371    [0x45] = X86_OP_ENTRY3(VPSRLV,      V,x,  H,x,       W,x,  vex6 cpuid(AVX2) p_66),
372    [0x46] = X86_OP_ENTRY3(VPSRAV,      V,x,  H,x,       W,x,  vex6 cpuid(AVX2) p_66),
373    [0x47] = X86_OP_ENTRY3(VPSLLV,      V,x,  H,x,       W,x,  vex6 cpuid(AVX2) p_66),
374
375    [0x90] = X86_OP_ENTRY3(VPGATHERD, V,x,  H,x,  M,d,  vex12 cpuid(AVX2) p_66), /* vpgatherdd/q */
376    [0x91] = X86_OP_ENTRY3(VPGATHERQ, V,x,  H,x,  M,q,  vex12 cpuid(AVX2) p_66), /* vpgatherqd/q */
377    [0x92] = X86_OP_ENTRY3(VPGATHERD, V,x,  H,x,  M,d,  vex12 cpuid(AVX2) p_66), /* vgatherdps/d */
378    [0x93] = X86_OP_ENTRY3(VPGATHERQ, V,x,  H,x,  M,q,  vex12 cpuid(AVX2) p_66), /* vgatherqps/d */
379
380    /* Should be exception type 2 but they do not have legacy SSE equivalents? */
381    [0x96] = X86_OP_ENTRY3(VFMADDSUB132Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
382    [0x97] = X86_OP_ENTRY3(VFMSUBADD132Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
383
384    [0xa6] = X86_OP_ENTRY3(VFMADDSUB213Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
385    [0xa7] = X86_OP_ENTRY3(VFMSUBADD213Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
386
387    [0xb6] = X86_OP_ENTRY3(VFMADDSUB231Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
388    [0xb7] = X86_OP_ENTRY3(VFMSUBADD231Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
389
390    [0x08] = X86_OP_ENTRY3(PSIGNB,    V,x,        H,x,  W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
391    [0x09] = X86_OP_ENTRY3(PSIGNW,    V,x,        H,x,  W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
392    [0x0a] = X86_OP_ENTRY3(PSIGND,    V,x,        H,x,  W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
393    [0x0b] = X86_OP_ENTRY3(PMULHRSW,  V,x,        H,x,  W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
394    [0x0c] = X86_OP_ENTRY3(VPERMILPS, V,x,        H,x,  W,x,  vex4 cpuid(AVX) p_00_66),
395    [0x0d] = X86_OP_ENTRY3(VPERMILPD, V,x,        H,x,  W,x,  vex4 cpuid(AVX) p_66),
396    [0x0e] = X86_OP_ENTRY3(VTESTPS,   None,None,  V,x,  W,x,  vex4 cpuid(AVX) p_66),
397    [0x0f] = X86_OP_ENTRY3(VTESTPD,   None,None,  V,x,  W,x,  vex4 cpuid(AVX) p_66),
398
399    [0x18] = X86_OP_ENTRY3(VPBROADCASTD,   V,x,  None,None, W,d,  vex6 cpuid(AVX) p_66), /* vbroadcastss */
400    [0x19] = X86_OP_ENTRY3(VPBROADCASTQ,   V,qq, None,None, W,q,  vex6 cpuid(AVX) p_66), /* vbroadcastsd */
401    [0x1a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 cpuid(AVX) p_66),
402    [0x1c] = X86_OP_ENTRY3(PABSB,          V,x,  None,None, W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
403    [0x1d] = X86_OP_ENTRY3(PABSW,          V,x,  None,None, W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
404    [0x1e] = X86_OP_ENTRY3(PABSD,          V,x,  None,None, W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
405
406    [0x28] = X86_OP_ENTRY3(PMULDQ,        V,x, H,x,       W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
407    [0x29] = X86_OP_ENTRY3(PCMPEQQ,       V,x, H,x,       W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
408    [0x2a] = X86_OP_ENTRY3(MOVDQ,         V,x, None,None, WM,x, vex1 cpuid(SSE41) avx2_256 p_66), /* movntdqa */
409    [0x2b] = X86_OP_ENTRY3(VPACKUSDW,     V,x, H,x,       W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
410    [0x2c] = X86_OP_ENTRY3(VMASKMOVPS,    V,x, H,x,       WM,x, vex6 cpuid(AVX) p_66),
411    [0x2d] = X86_OP_ENTRY3(VMASKMOVPD,    V,x, H,x,       WM,x, vex6 cpuid(AVX) p_66),
412    /* Incorrectly listed as Mx,Hx,Vx in the manual */
413    [0x2e] = X86_OP_ENTRY3(VMASKMOVPS_st, M,x, V,x,       H,x,  vex6 cpuid(AVX) p_66),
414    [0x2f] = X86_OP_ENTRY3(VMASKMOVPD_st, M,x, V,x,       H,x,  vex6 cpuid(AVX) p_66),
415
416    [0x38] = X86_OP_ENTRY3(PMINSB,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
417    [0x39] = X86_OP_ENTRY3(PMINSD,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
418    [0x3a] = X86_OP_ENTRY3(PMINUW,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
419    [0x3b] = X86_OP_ENTRY3(PMINUD,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
420    [0x3c] = X86_OP_ENTRY3(PMAXSB,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
421    [0x3d] = X86_OP_ENTRY3(PMAXSD,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
422    [0x3e] = X86_OP_ENTRY3(PMAXUW,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
423    [0x3f] = X86_OP_ENTRY3(PMAXUD,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
424
425    [0x58] = X86_OP_ENTRY3(VPBROADCASTD,   V,x,  None,None, W,d,  vex6 cpuid(AVX2) p_66),
426    [0x59] = X86_OP_ENTRY3(VPBROADCASTQ,   V,x,  None,None, W,q,  vex6 cpuid(AVX2) p_66),
427    [0x5a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 cpuid(AVX2) p_66),
428
429    [0x78] = X86_OP_ENTRY3(VPBROADCASTB,   V,x,  None,None, W,b,  vex6 cpuid(AVX2) p_66),
430    [0x79] = X86_OP_ENTRY3(VPBROADCASTW,   V,x,  None,None, W,w,  vex6 cpuid(AVX2) p_66),
431
432    [0x8c] = X86_OP_ENTRY3(VPMASKMOV,    V,x,  H,x, WM,x, vex6 cpuid(AVX2) p_66),
433    [0x8e] = X86_OP_ENTRY3(VPMASKMOV_st, M,x,  V,x, H,x,  vex6 cpuid(AVX2) p_66),
434
435    /* Should be exception type 2 or 3 but they do not have legacy SSE equivalents? */
436    [0x98] = X86_OP_ENTRY3(VFMADD132Px,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
437    [0x99] = X86_OP_ENTRY3(VFMADD132Sx,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
438    [0x9a] = X86_OP_ENTRY3(VFMSUB132Px,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
439    [0x9b] = X86_OP_ENTRY3(VFMSUB132Sx,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
440    [0x9c] = X86_OP_ENTRY3(VFNMADD132Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
441    [0x9d] = X86_OP_ENTRY3(VFNMADD132Sx, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
442    [0x9e] = X86_OP_ENTRY3(VFNMSUB132Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
443    [0x9f] = X86_OP_ENTRY3(VFNMSUB132Sx, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
444
445    [0xa8] = X86_OP_ENTRY3(VFMADD213Px,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
446    [0xa9] = X86_OP_ENTRY3(VFMADD213Sx,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
447    [0xaa] = X86_OP_ENTRY3(VFMSUB213Px,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
448    [0xab] = X86_OP_ENTRY3(VFMSUB213Sx,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
449    [0xac] = X86_OP_ENTRY3(VFNMADD213Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
450    [0xad] = X86_OP_ENTRY3(VFNMADD213Sx, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
451    [0xae] = X86_OP_ENTRY3(VFNMSUB213Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
452    [0xaf] = X86_OP_ENTRY3(VFNMSUB213Sx, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
453
454    [0xb8] = X86_OP_ENTRY3(VFMADD231Px,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
455    [0xb9] = X86_OP_ENTRY3(VFMADD231Sx,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
456    [0xba] = X86_OP_ENTRY3(VFMSUB231Px,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
457    [0xbb] = X86_OP_ENTRY3(VFMSUB231Sx,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
458    [0xbc] = X86_OP_ENTRY3(VFNMADD231Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
459    [0xbd] = X86_OP_ENTRY3(VFNMADD231Sx, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
460    [0xbe] = X86_OP_ENTRY3(VFNMSUB231Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
461    [0xbf] = X86_OP_ENTRY3(VFNMSUB231Sx, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
462
463    [0xdb] = X86_OP_ENTRY3(VAESIMC,     V,dq, None,None, W,dq, vex4 cpuid(AES) p_66),
464    [0xdc] = X86_OP_ENTRY3(VAESENC,     V,x,  H,x,       W,x,  vex4 cpuid(AES) p_66),
465    [0xdd] = X86_OP_ENTRY3(VAESENCLAST, V,x,  H,x,       W,x,  vex4 cpuid(AES) p_66),
466    [0xde] = X86_OP_ENTRY3(VAESDEC,     V,x,  H,x,       W,x,  vex4 cpuid(AES) p_66),
467    [0xdf] = X86_OP_ENTRY3(VAESDECLAST, V,x,  H,x,       W,x,  vex4 cpuid(AES) p_66),
468};
469
470/* five rows for no prefix, 66, F3, F2, 66+F2  */
471static const X86OpEntry opcodes_0F38_F0toFF[16][5] = {
472    [0] = {
473        X86_OP_ENTRY3(MOVBE, G,y, M,y, None,None, cpuid(MOVBE)),
474        X86_OP_ENTRY3(MOVBE, G,w, M,w, None,None, cpuid(MOVBE)),
475        {},
476        X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)),
477        X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)),
478    },
479    [1] = {
480        X86_OP_ENTRY3(MOVBE, M,y, G,y, None,None, cpuid(MOVBE)),
481        X86_OP_ENTRY3(MOVBE, M,w, G,w, None,None, cpuid(MOVBE)),
482        {},
483        X86_OP_ENTRY2(CRC32, G,d, E,y, cpuid(SSE42)),
484        X86_OP_ENTRY2(CRC32, G,d, E,w, cpuid(SSE42)),
485    },
486    [2] = {
487        X86_OP_ENTRY3(ANDN, G,y, B,y, E,y, vex13 cpuid(BMI1)),
488        {},
489        {},
490        {},
491        {},
492    },
493    [3] = {
494        X86_OP_GROUP3(group17, B,y, E,y, None,None, vex13 cpuid(BMI1)),
495        {},
496        {},
497        {},
498        {},
499    },
500    [5] = {
501        X86_OP_ENTRY3(BZHI, G,y, E,y, B,y, vex13 cpuid(BMI1)),
502        {},
503        X86_OP_ENTRY3(PEXT, G,y, B,y, E,y, vex13 cpuid(BMI2)),
504        X86_OP_ENTRY3(PDEP, G,y, B,y, E,y, vex13 cpuid(BMI2)),
505        {},
506    },
507    [6] = {
508        {},
509        X86_OP_ENTRY2(ADCX, G,y, E,y, cpuid(ADX)),
510        X86_OP_ENTRY2(ADOX, G,y, E,y, cpuid(ADX)),
511        X86_OP_ENTRY3(MULX, /* B,y, */ G,y, E,y, 2,y, vex13 cpuid(BMI2)),
512        {},
513    },
514    [7] = {
515        X86_OP_ENTRY3(BEXTR, G,y, E,y, B,y, vex13 cpuid(BMI1)),
516        X86_OP_ENTRY3(SHLX, G,y, E,y, B,y, vex13 cpuid(BMI1)),
517        X86_OP_ENTRY3(SARX, G,y, E,y, B,y, vex13 cpuid(BMI1)),
518        X86_OP_ENTRY3(SHRX, G,y, E,y, B,y, vex13 cpuid(BMI1)),
519        {},
520    },
521};
522
523static void decode_0F38(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
524{
525    *b = x86_ldub_code(env, s);
526    if (*b < 0xf0) {
527        *entry = opcodes_0F38_00toEF[*b];
528    } else {
529        int row = 0;
530        if (s->prefix & PREFIX_REPZ) {
531            /* The REPZ (F3) prefix has priority over 66 */
532            row = 2;
533        } else {
534            row += s->prefix & PREFIX_REPNZ ? 3 : 0;
535            row += s->prefix & PREFIX_DATA ? 1 : 0;
536        }
537        *entry = opcodes_0F38_F0toFF[*b & 15][row];
538    }
539}
540
541static void decode_VINSERTPS(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
542{
543    static const X86OpEntry
544        vinsertps_reg = X86_OP_ENTRY4(VINSERTPS_r, V,dq, H,dq, U,dq, vex5 cpuid(SSE41) p_66),
545        vinsertps_mem = X86_OP_ENTRY4(VINSERTPS_m, V,dq, H,dq, M,d,  vex5 cpuid(SSE41) p_66);
546
547    int modrm = get_modrm(s, env);
548    *entry = (modrm >> 6) == 3 ? vinsertps_reg : vinsertps_mem;
549}
550
551static const X86OpEntry opcodes_0F3A[256] = {
552    /*
553     * These are VEX-only, but incorrectly listed in the manual as exception type 4.
554     * Also the "qq" instructions are sometimes omitted by Table 2-17, but are VEX256
555     * only.
556     */
557    [0x00] = X86_OP_ENTRY3(VPERMQ,      V,qq, W,qq, I,b,  vex6 cpuid(AVX2) p_66),
558    [0x01] = X86_OP_ENTRY3(VPERMQ,      V,qq, W,qq, I,b,  vex6 cpuid(AVX2) p_66), /* VPERMPD */
559    [0x02] = X86_OP_ENTRY4(VBLENDPS,    V,x,  H,x,  W,x,  vex6 cpuid(AVX2) p_66), /* VPBLENDD */
560    [0x04] = X86_OP_ENTRY3(VPERMILPS_i, V,x,  W,x,  I,b,  vex6 cpuid(AVX) p_66),
561    [0x05] = X86_OP_ENTRY3(VPERMILPD_i, V,x,  W,x,  I,b,  vex6 cpuid(AVX) p_66),
562    [0x06] = X86_OP_ENTRY4(VPERM2x128,  V,qq, H,qq, W,qq, vex6 cpuid(AVX) p_66),
563
564    [0x14] = X86_OP_ENTRY3(PEXTRB,     E,b,  V,dq, I,b,  vex5 cpuid(SSE41) zext0 p_66),
565    [0x15] = X86_OP_ENTRY3(PEXTRW,     E,w,  V,dq, I,b,  vex5 cpuid(SSE41) zext0 p_66),
566    [0x16] = X86_OP_ENTRY3(PEXTR,      E,y,  V,dq, I,b,  vex5 cpuid(SSE41) p_66),
567    [0x17] = X86_OP_ENTRY3(VEXTRACTPS, E,d,  V,dq, I,b,  vex5 cpuid(SSE41) p_66),
568    [0x1d] = X86_OP_ENTRY3(VCVTPS2PH,  W,ph, V,x,  I,b,  vex11 cpuid(F16C) p_66),
569
570    [0x20] = X86_OP_ENTRY4(PINSRB,     V,dq, H,dq, E,b,  vex5 cpuid(SSE41) zext2 p_66),
571    [0x21] = X86_OP_GROUP0(VINSERTPS),
572    [0x22] = X86_OP_ENTRY4(PINSR,      V,dq, H,dq, E,y,  vex5 cpuid(SSE41) p_66),
573
574    [0x40] = X86_OP_ENTRY4(VDDPS,      V,x,  H,x,  W,x,  vex2 cpuid(SSE41) p_66),
575    [0x41] = X86_OP_ENTRY4(VDDPD,      V,dq, H,dq, W,dq, vex2 cpuid(SSE41) p_66),
576    [0x42] = X86_OP_ENTRY4(VMPSADBW,   V,x,  H,x,  W,x,  vex2 cpuid(SSE41) avx2_256 p_66),
577    [0x44] = X86_OP_ENTRY4(PCLMULQDQ,  V,dq, H,dq, W,dq, vex4 cpuid(PCLMULQDQ) p_66),
578    [0x46] = X86_OP_ENTRY4(VPERM2x128, V,qq, H,qq, W,qq, vex6 cpuid(AVX2) p_66),
579
580    [0x60] = X86_OP_ENTRY4(PCMPESTRM,  None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
581    [0x61] = X86_OP_ENTRY4(PCMPESTRI,  None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
582    [0x62] = X86_OP_ENTRY4(PCMPISTRM,  None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
583    [0x63] = X86_OP_ENTRY4(PCMPISTRI,  None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
584
585    [0x08] = X86_OP_ENTRY3(VROUNDPS,   V,x,  W,x,  I,b,  vex2 cpuid(SSE41) p_66),
586    [0x09] = X86_OP_ENTRY3(VROUNDPD,   V,x,  W,x,  I,b,  vex2 cpuid(SSE41) p_66),
587    /*
588     * Not listed as four operand in the manual.  Also writes and reads 128-bits
589     * from the first two operands due to the V operand picking higher entries of
590     * the H operand; the "Vss,Hss,Wss" description from the manual is incorrect.
591     * For other unary operations such as VSQRTSx this is hidden by the "REPScalar"
592     * value of vex_special, because the table lists the operand types of VSQRTPx.
593     */
594    [0x0a] = X86_OP_ENTRY4(VROUNDSS,   V,x,  H,x, W,ss, vex3 cpuid(SSE41) p_66),
595    [0x0b] = X86_OP_ENTRY4(VROUNDSD,   V,x,  H,x, W,sd, vex3 cpuid(SSE41) p_66),
596    [0x0c] = X86_OP_ENTRY4(VBLENDPS,   V,x,  H,x,  W,x,  vex4 cpuid(SSE41) p_66),
597    [0x0d] = X86_OP_ENTRY4(VBLENDPD,   V,x,  H,x,  W,x,  vex4 cpuid(SSE41) p_66),
598    [0x0e] = X86_OP_ENTRY4(VPBLENDW,   V,x,  H,x,  W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
599    [0x0f] = X86_OP_ENTRY4(PALIGNR,    V,x,  H,x,  W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
600
601    [0x18] = X86_OP_ENTRY4(VINSERTx128,  V,qq, H,qq, W,qq, vex6 cpuid(AVX) p_66),
602    [0x19] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b,  vex6 cpuid(AVX) p_66),
603
604    [0x38] = X86_OP_ENTRY4(VINSERTx128,  V,qq, H,qq, W,qq, vex6 cpuid(AVX2) p_66),
605    [0x39] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b,  vex6 cpuid(AVX2) p_66),
606
607    /* Listed incorrectly as type 4 */
608    [0x4a] = X86_OP_ENTRY4(VBLENDVPS, V,x,  H,x,  W,x,   vex6 cpuid(AVX) p_66),
609    [0x4b] = X86_OP_ENTRY4(VBLENDVPD, V,x,  H,x,  W,x,   vex6 cpuid(AVX) p_66),
610    [0x4c] = X86_OP_ENTRY4(VPBLENDVB, V,x,  H,x,  W,x,   vex6 cpuid(AVX) p_66 avx2_256),
611
612    [0xdf] = X86_OP_ENTRY3(VAESKEYGEN, V,dq, W,dq, I,b,  vex4 cpuid(AES) p_66),
613
614    [0xF0] = X86_OP_ENTRY3(RORX, G,y, E,y, I,b, vex13 cpuid(BMI2) p_f2),
615};
616
617static void decode_0F3A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
618{
619    *b = x86_ldub_code(env, s);
620    *entry = opcodes_0F3A[*b];
621}
622
623/*
624 * There are some mistakes in the operands in the manual, and the load/store/register
625 * cases are easiest to keep separate, so the entries for 10-17 follow simplicity and
626 * efficiency of implementation rather than copying what the manual says.
627 *
628 * In particular:
629 *
630 * 1) "VMOVSS m32, xmm1" and "VMOVSD m64, xmm1" do not support VEX.vvvv != 1111b,
631 * but this is not mentioned in the tables.
632 *
633 * 2) MOVHLPS, MOVHPS, MOVHPD, MOVLPD, MOVLPS read the high quadword of one of their
634 * operands, which must therefore be dq; MOVLPD and MOVLPS also write the high
635 * quadword of the V operand.
636 */
637static void decode_0F10(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
638{
639    static const X86OpEntry opcodes_0F10_reg[4] = {
640        X86_OP_ENTRY3(MOVDQ,   V,x,  None,None, W,x, vex4_unal), /* MOVUPS */
641        X86_OP_ENTRY3(MOVDQ,   V,x,  None,None, W,x, vex4_unal), /* MOVUPD */
642        X86_OP_ENTRY3(VMOVSS,  V,x,  H,x,       W,x, vex5),
643        X86_OP_ENTRY3(VMOVLPx, V,x,  H,x,       W,x, vex5), /* MOVSD */
644    };
645
646    static const X86OpEntry opcodes_0F10_mem[4] = {
647        X86_OP_ENTRY3(MOVDQ,      V,x,  None,None, W,x,  vex4_unal), /* MOVUPS */
648        X86_OP_ENTRY3(MOVDQ,      V,x,  None,None, W,x,  vex4_unal), /* MOVUPD */
649        X86_OP_ENTRY3(VMOVSS_ld,  V,x,  H,x,       M,ss, vex5),
650        X86_OP_ENTRY3(VMOVSD_ld,  V,x,  H,x,       M,sd, vex5),
651    };
652
653    if ((get_modrm(s, env) >> 6) == 3) {
654        *entry = *decode_by_prefix(s, opcodes_0F10_reg);
655    } else {
656        *entry = *decode_by_prefix(s, opcodes_0F10_mem);
657    }
658}
659
660static void decode_0F11(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
661{
662    static const X86OpEntry opcodes_0F11_reg[4] = {
663        X86_OP_ENTRY3(MOVDQ,   W,x,  None,None, V,x, vex4), /* MOVUPS */
664        X86_OP_ENTRY3(MOVDQ,   W,x,  None,None, V,x, vex4), /* MOVUPD */
665        X86_OP_ENTRY3(VMOVSS,  W,x,  H,x,       V,x, vex5),
666        X86_OP_ENTRY3(VMOVLPx, W,x,  H,x,       V,q, vex5), /* MOVSD */
667    };
668
669    static const X86OpEntry opcodes_0F11_mem[4] = {
670        X86_OP_ENTRY3(MOVDQ,      W,x,  None,None, V,x, vex4), /* MOVUPS */
671        X86_OP_ENTRY3(MOVDQ,      W,x,  None,None, V,x, vex4), /* MOVUPD */
672        X86_OP_ENTRY3(VMOVSS_st,  M,ss, None,None, V,x, vex5),
673        X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex5), /* MOVSD */
674    };
675
676    if ((get_modrm(s, env) >> 6) == 3) {
677        *entry = *decode_by_prefix(s, opcodes_0F11_reg);
678    } else {
679        *entry = *decode_by_prefix(s, opcodes_0F11_mem);
680    }
681}
682
683static void decode_0F12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
684{
685    static const X86OpEntry opcodes_0F12_mem[4] = {
686        /*
687         * Use dq for operand for compatibility with gen_MOVSD and
688         * to allow VEX128 only.
689         */
690        X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq,      M,q, vex5), /* MOVLPS */
691        X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq,      M,q, vex5), /* MOVLPD */
692        X86_OP_ENTRY3(VMOVSLDUP,  V,x,  None,None, W,x, vex4 cpuid(SSE3)),
693        X86_OP_ENTRY3(VMOVDDUP,   V,x,  None,None, WM,q, vex5 cpuid(SSE3)), /* qq if VEX.256 */
694    };
695    static const X86OpEntry opcodes_0F12_reg[4] = {
696        X86_OP_ENTRY3(VMOVHLPS,  V,dq, H,dq,       U,dq, vex7),
697        X86_OP_ENTRY3(VMOVLPx,   W,x,  H,x,        U,q,  vex5), /* MOVLPD */
698        X86_OP_ENTRY3(VMOVSLDUP, V,x,  None,None,  U,x,  vex4 cpuid(SSE3)),
699        X86_OP_ENTRY3(VMOVDDUP,  V,x,  None,None,  U,x,  vex5 cpuid(SSE3)),
700    };
701
702    if ((get_modrm(s, env) >> 6) == 3) {
703        *entry = *decode_by_prefix(s, opcodes_0F12_reg);
704    } else {
705        *entry = *decode_by_prefix(s, opcodes_0F12_mem);
706        if ((s->prefix & PREFIX_REPNZ) && s->vex_l) {
707            entry->s2 = X86_SIZE_qq;
708        }
709    }
710}
711
712static void decode_0F16(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
713{
714    static const X86OpEntry opcodes_0F16_mem[4] = {
715        /*
716         * Operand 1 technically only reads the low 64 bits, but uses dq so that
717         * it is easier to check for op0 == op1 in an endianness-neutral manner.
718         */
719        X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq,      M,q, vex5), /* MOVHPS */
720        X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq,      M,q, vex5), /* MOVHPD */
721        X86_OP_ENTRY3(VMOVSHDUP,  V,x,  None,None, W,x, vex4 cpuid(SSE3)),
722        {},
723    };
724    static const X86OpEntry opcodes_0F16_reg[4] = {
725        /* Same as above, operand 1 could be Hq if it wasn't for big-endian.  */
726        X86_OP_ENTRY3(VMOVLHPS,  V,dq, H,dq,      U,q, vex7),
727        X86_OP_ENTRY3(VMOVHPx,   V,x,  H,x,       U,x, vex5), /* MOVHPD */
728        X86_OP_ENTRY3(VMOVSHDUP, V,x,  None,None, U,x, vex4 cpuid(SSE3)),
729        {},
730    };
731
732    if ((get_modrm(s, env) >> 6) == 3) {
733        *entry = *decode_by_prefix(s, opcodes_0F16_reg);
734    } else {
735        *entry = *decode_by_prefix(s, opcodes_0F16_mem);
736    }
737}
738
739static void decode_0F2A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
740{
741    static const X86OpEntry opcodes_0F2A[4] = {
742        X86_OP_ENTRY3(CVTPI2Px,  V,x,  None,None, Q,q),
743        X86_OP_ENTRY3(CVTPI2Px,  V,x,  None,None, Q,q),
744        X86_OP_ENTRY3(VCVTSI2Sx, V,x,  H,x, E,y,        vex3),
745        X86_OP_ENTRY3(VCVTSI2Sx, V,x,  H,x, E,y,        vex3),
746    };
747    *entry = *decode_by_prefix(s, opcodes_0F2A);
748}
749
750static void decode_0F2B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
751{
752    static const X86OpEntry opcodes_0F2B[4] = {
753        X86_OP_ENTRY3(MOVDQ,      M,x,  None,None, V,x, vex1), /* MOVNTPS */
754        X86_OP_ENTRY3(MOVDQ,      M,x,  None,None, V,x, vex1), /* MOVNTPD */
755        /* AMD extensions */
756        X86_OP_ENTRY3(VMOVSS_st,  M,ss, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSS */
757        X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSD */
758    };
759
760    *entry = *decode_by_prefix(s, opcodes_0F2B);
761}
762
763static void decode_0F2C(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
764{
765    static const X86OpEntry opcodes_0F2C[4] = {
766        /* Listed as ps/pd in the manual, but CVTTPS2PI only reads 64-bit.  */
767        X86_OP_ENTRY3(CVTTPx2PI,  P,q,  None,None, W,q),
768        X86_OP_ENTRY3(CVTTPx2PI,  P,q,  None,None, W,dq),
769        X86_OP_ENTRY3(VCVTTSx2SI, G,y,  None,None, W,ss, vex3),
770        X86_OP_ENTRY3(VCVTTSx2SI, G,y,  None,None, W,sd, vex3),
771    };
772    *entry = *decode_by_prefix(s, opcodes_0F2C);
773}
774
775static void decode_0F2D(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
776{
777    static const X86OpEntry opcodes_0F2D[4] = {
778        /* Listed as ps/pd in the manual, but CVTPS2PI only reads 64-bit.  */
779        X86_OP_ENTRY3(CVTPx2PI,  P,q,  None,None, W,q),
780        X86_OP_ENTRY3(CVTPx2PI,  P,q,  None,None, W,dq),
781        X86_OP_ENTRY3(VCVTSx2SI, G,y,  None,None, W,ss, vex3),
782        X86_OP_ENTRY3(VCVTSx2SI, G,y,  None,None, W,sd, vex3),
783    };
784    *entry = *decode_by_prefix(s, opcodes_0F2D);
785}
786
787static void decode_VxCOMISx(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
788{
789    /*
790     * VUCOMISx and VCOMISx are different and use no-prefix and 0x66 for SS and SD
791     * respectively.  Scalar values usually are associated with 0xF2 and 0xF3, for
792     * which X86_VEX_REPScalar exists, but here it has to be decoded by hand.
793     */
794    entry->s1 = entry->s2 = (s->prefix & PREFIX_DATA ? X86_SIZE_sd : X86_SIZE_ss);
795    entry->gen = (*b == 0x2E ? gen_VUCOMI : gen_VCOMI);
796}
797
798static void decode_sse_unary(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
799{
800    if (!(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ))) {
801        entry->op1 = X86_TYPE_None;
802        entry->s1 = X86_SIZE_None;
803    }
804    switch (*b) {
805    case 0x51: entry->gen = gen_VSQRT; break;
806    case 0x52: entry->gen = gen_VRSQRT; break;
807    case 0x53: entry->gen = gen_VRCP; break;
808    case 0x5A: entry->gen = gen_VCVTfp2fp; break;
809    }
810}
811
812static void decode_0F5B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
813{
814    static const X86OpEntry opcodes_0F5B[4] = {
815        X86_OP_ENTRY2(VCVTDQ2PS,   V,x, W,x,      vex2),
816        X86_OP_ENTRY2(VCVTPS2DQ,   V,x, W,x,      vex2),
817        X86_OP_ENTRY2(VCVTTPS2DQ,  V,x, W,x,      vex2),
818        {},
819    };
820    *entry = *decode_by_prefix(s, opcodes_0F5B);
821}
822
823static void decode_0FE6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
824{
825    static const X86OpEntry opcodes_0FE6[4] = {
826        {},
827        X86_OP_ENTRY2(VCVTTPD2DQ,  V,x, W,x,      vex2),
828        X86_OP_ENTRY2(VCVTDQ2PD,   V,x, W,x,      vex5),
829        X86_OP_ENTRY2(VCVTPD2DQ,   V,x, W,x,      vex2),
830    };
831    *entry = *decode_by_prefix(s, opcodes_0FE6);
832}
833
834static const X86OpEntry opcodes_0F[256] = {
835    [0x0E] = X86_OP_ENTRY0(EMMS,                              cpuid(3DNOW)), /* femms */
836    /*
837     * 3DNow!'s opcode byte comes *after* modrm and displacements, making it
838     * more like an Ib operand.  Dispatch to the right helper in a single gen_*
839     * function.
840     */
841    [0x0F] = X86_OP_ENTRY3(3dnow,       P,q, Q,q, I,b,        cpuid(3DNOW)),
842
843    [0x10] = X86_OP_GROUP0(0F10),
844    [0x11] = X86_OP_GROUP0(0F11),
845    [0x12] = X86_OP_GROUP0(0F12),
846    [0x13] = X86_OP_ENTRY3(VMOVLPx_st,  M,q, None,None, V,q,  vex5 p_00_66),
847    [0x14] = X86_OP_ENTRY3(VUNPCKLPx,   V,x, H,x, W,x,        vex4 p_00_66),
848    [0x15] = X86_OP_ENTRY3(VUNPCKHPx,   V,x, H,x, W,x,        vex4 p_00_66),
849    [0x16] = X86_OP_GROUP0(0F16),
850    /* Incorrectly listed as Mq,Vq in the manual */
851    [0x17] = X86_OP_ENTRY3(VMOVHPx_st,  M,q, None,None, V,dq, vex5 p_00_66),
852
853    [0x50] = X86_OP_ENTRY3(MOVMSK,     G,y, None,None, U,x, vex7 p_00_66),
854    [0x51] = X86_OP_GROUP3(sse_unary,  V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), /* sqrtps */
855    [0x52] = X86_OP_GROUP3(sse_unary,  V,x, H,x, W,x, vex4_rep5 p_00_f3), /* rsqrtps */
856    [0x53] = X86_OP_GROUP3(sse_unary,  V,x, H,x, W,x, vex4_rep5 p_00_f3), /* rcpps */
857    [0x54] = X86_OP_ENTRY3(PAND,       V,x, H,x, W,x,  vex4 p_00_66), /* vand */
858    [0x55] = X86_OP_ENTRY3(PANDN,      V,x, H,x, W,x,  vex4 p_00_66), /* vandn */
859    [0x56] = X86_OP_ENTRY3(POR,        V,x, H,x, W,x,  vex4 p_00_66), /* vor */
860    [0x57] = X86_OP_ENTRY3(PXOR,       V,x, H,x, W,x,  vex4 p_00_66), /* vxor */
861
862    [0x60] = X86_OP_ENTRY3(PUNPCKLBW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
863    [0x61] = X86_OP_ENTRY3(PUNPCKLWD,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
864    [0x62] = X86_OP_ENTRY3(PUNPCKLDQ,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
865    [0x63] = X86_OP_ENTRY3(PACKSSWB,   V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
866    [0x64] = X86_OP_ENTRY3(PCMPGTB,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
867    [0x65] = X86_OP_ENTRY3(PCMPGTW,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
868    [0x66] = X86_OP_ENTRY3(PCMPGTD,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
869    [0x67] = X86_OP_ENTRY3(PACKUSWB,   V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
870
871    [0x70] = X86_OP_GROUP0(0F70),
872    [0x71] = X86_OP_GROUP0(group12),
873    [0x72] = X86_OP_GROUP0(group13),
874    [0x73] = X86_OP_GROUP0(group14),
875    [0x74] = X86_OP_ENTRY3(PCMPEQB,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
876    [0x75] = X86_OP_ENTRY3(PCMPEQW,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
877    [0x76] = X86_OP_ENTRY3(PCMPEQD,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
878    [0x77] = X86_OP_GROUP0(0F77),
879
880    [0x28] = X86_OP_ENTRY3(MOVDQ,      V,x,  None,None, W,x, vex1 p_00_66), /* MOVAPS */
881    [0x29] = X86_OP_ENTRY3(MOVDQ,      W,x,  None,None, V,x, vex1 p_00_66), /* MOVAPS */
882    [0x2A] = X86_OP_GROUP0(0F2A),
883    [0x2B] = X86_OP_GROUP0(0F2B),
884    [0x2C] = X86_OP_GROUP0(0F2C),
885    [0x2D] = X86_OP_GROUP0(0F2D),
886    [0x2E] = X86_OP_GROUP3(VxCOMISx,   None,None, V,x, W,x,  vex3 p_00_66), /* VUCOMISS/SD */
887    [0x2F] = X86_OP_GROUP3(VxCOMISx,   None,None, V,x, W,x,  vex3 p_00_66), /* VCOMISS/SD */
888
889    [0x38] = X86_OP_GROUP0(0F38),
890    [0x3a] = X86_OP_GROUP0(0F3A),
891
892    [0x58] = X86_OP_ENTRY3(VADD,       V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
893    [0x59] = X86_OP_ENTRY3(VMUL,       V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
894    [0x5a] = X86_OP_GROUP3(sse_unary,  V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), /* CVTPS2PD */
895    [0x5b] = X86_OP_GROUP0(0F5B),
896    [0x5c] = X86_OP_ENTRY3(VSUB,       V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
897    [0x5d] = X86_OP_ENTRY3(VMIN,       V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
898    [0x5e] = X86_OP_ENTRY3(VDIV,       V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
899    [0x5f] = X86_OP_ENTRY3(VMAX,       V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
900
901    [0x68] = X86_OP_ENTRY3(PUNPCKHBW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
902    [0x69] = X86_OP_ENTRY3(PUNPCKHWD,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
903    [0x6a] = X86_OP_ENTRY3(PUNPCKHDQ,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
904    [0x6b] = X86_OP_ENTRY3(PACKSSDW,   V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
905    [0x6c] = X86_OP_ENTRY3(PUNPCKLQDQ, V,x, H,x, W,x,  vex4 p_66 avx2_256),
906    [0x6d] = X86_OP_ENTRY3(PUNPCKHQDQ, V,x, H,x, W,x,  vex4 p_66 avx2_256),
907    [0x6e] = X86_OP_ENTRY3(MOVD_to,    V,x, None,None, E,y, vex5 mmx p_00_66),  /* wrong dest Vy on SDM! */
908    [0x6f] = X86_OP_GROUP0(0F6F),
909
910    [0x78] = X86_OP_GROUP0(0F78),
911    [0x79] = X86_OP_GROUP2(0F79,       V,x, U,x,       cpuid(SSE4A)),
912    [0x7c] = X86_OP_ENTRY3(VHADD,      V,x, H,x, W,x,  vex2 cpuid(SSE3) p_66_f2),
913    [0x7d] = X86_OP_ENTRY3(VHSUB,      V,x, H,x, W,x,  vex2 cpuid(SSE3) p_66_f2),
914    [0x7e] = X86_OP_GROUP0(0F7E),
915    [0x7f] = X86_OP_GROUP0(0F7F),
916
917    [0xae] = X86_OP_GROUP0(group15),
918
919    [0xc2] = X86_OP_ENTRY4(VCMP,       V,x, H,x, W,x,       vex2_rep3 p_00_66_f3_f2),
920    [0xc4] = X86_OP_ENTRY4(PINSRW,     V,dq,H,dq,E,w,       vex5 mmx p_00_66),
921    [0xc5] = X86_OP_ENTRY3(PEXTRW,     G,d, U,dq,I,b,       vex5 mmx p_00_66),
922    [0xc6] = X86_OP_ENTRY4(VSHUF,      V,x, H,x, W,x,       vex4 p_00_66),
923
924    [0xd0] = X86_OP_ENTRY3(VADDSUB,   V,x, H,x, W,x,        vex2 cpuid(SSE3) p_66_f2),
925    [0xd1] = X86_OP_ENTRY3(PSRLW_r,   V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
926    [0xd2] = X86_OP_ENTRY3(PSRLD_r,   V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
927    [0xd3] = X86_OP_ENTRY3(PSRLQ_r,   V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
928    [0xd4] = X86_OP_ENTRY3(PADDQ,     V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
929    [0xd5] = X86_OP_ENTRY3(PMULLW,    V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
930    [0xd6] = X86_OP_GROUP0(0FD6),
931    [0xd7] = X86_OP_ENTRY3(PMOVMSKB,  G,d, None,None, U,x,  vex7 mmx avx2_256 p_00_66),
932
933    [0xe0] = X86_OP_ENTRY3(PAVGB,     V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
934    [0xe1] = X86_OP_ENTRY3(PSRAW_r,   V,x, H,x, W,x,        vex7 mmx avx2_256 p_00_66),
935    [0xe2] = X86_OP_ENTRY3(PSRAD_r,   V,x, H,x, W,x,        vex7 mmx avx2_256 p_00_66),
936    [0xe3] = X86_OP_ENTRY3(PAVGW,     V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
937    [0xe4] = X86_OP_ENTRY3(PMULHUW,   V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
938    [0xe5] = X86_OP_ENTRY3(PMULHW,    V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
939    [0xe6] = X86_OP_GROUP0(0FE6),
940    [0xe7] = X86_OP_ENTRY3(MOVDQ,     W,x, None,None, V,x,  vex1 mmx p_00_66), /* MOVNTQ/MOVNTDQ */
941
942    [0xf0] = X86_OP_ENTRY3(MOVDQ,    V,x, None,None, WM,x,  vex4_unal cpuid(SSE3) p_f2), /* LDDQU */
943    [0xf1] = X86_OP_ENTRY3(PSLLW_r,  V,x, H,x, W,x,         vex7 mmx avx2_256 p_00_66),
944    [0xf2] = X86_OP_ENTRY3(PSLLD_r,  V,x, H,x, W,x,         vex7 mmx avx2_256 p_00_66),
945    [0xf3] = X86_OP_ENTRY3(PSLLQ_r,  V,x, H,x, W,x,         vex7 mmx avx2_256 p_00_66),
946    [0xf4] = X86_OP_ENTRY3(PMULUDQ,  V,x, H,x, W,x,         vex4 mmx avx2_256 p_00_66),
947    [0xf5] = X86_OP_ENTRY3(PMADDWD,  V,x, H,x, W,x,         vex4 mmx avx2_256 p_00_66),
948    [0xf6] = X86_OP_ENTRY3(PSADBW,   V,x, H,x, W,x,         vex4 mmx avx2_256 p_00_66),
949    [0xf7] = X86_OP_ENTRY3(MASKMOV,  None,None, V,dq, U,dq, vex4_unal avx2_256 mmx p_00_66),
950
951    /* Incorrectly missing from 2-17 */
952    [0xd8] = X86_OP_ENTRY3(PSUBUSB,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
953    [0xd9] = X86_OP_ENTRY3(PSUBUSW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
954    [0xda] = X86_OP_ENTRY3(PMINUB,   V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
955    [0xdb] = X86_OP_ENTRY3(PAND,     V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
956    [0xdc] = X86_OP_ENTRY3(PADDUSB,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
957    [0xdd] = X86_OP_ENTRY3(PADDUSW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
958    [0xde] = X86_OP_ENTRY3(PMAXUB,   V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
959    [0xdf] = X86_OP_ENTRY3(PANDN,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
960
961    [0xe8] = X86_OP_ENTRY3(PSUBSB,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
962    [0xe9] = X86_OP_ENTRY3(PSUBSW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
963    [0xea] = X86_OP_ENTRY3(PMINSW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
964    [0xeb] = X86_OP_ENTRY3(POR,     V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
965    [0xec] = X86_OP_ENTRY3(PADDSB,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
966    [0xed] = X86_OP_ENTRY3(PADDSW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
967    [0xee] = X86_OP_ENTRY3(PMAXSW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
968    [0xef] = X86_OP_ENTRY3(PXOR,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
969
970    [0xf8] = X86_OP_ENTRY3(PSUBB,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
971    [0xf9] = X86_OP_ENTRY3(PSUBW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
972    [0xfa] = X86_OP_ENTRY3(PSUBD,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
973    [0xfb] = X86_OP_ENTRY3(PSUBQ,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
974    [0xfc] = X86_OP_ENTRY3(PADDB,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
975    [0xfd] = X86_OP_ENTRY3(PADDW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
976    [0xfe] = X86_OP_ENTRY3(PADDD,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
977    /* 0xff = UD0 */
978};
979
980static void do_decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
981{
982    *entry = opcodes_0F[*b];
983}
984
985static void decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
986{
987    *b = x86_ldub_code(env, s);
988    do_decode_0F(s, env, entry, b);
989}
990
991static const X86OpEntry opcodes_root[256] = {
992    [0x0F] = X86_OP_GROUP0(0F),
993};
994
995#undef mmx
996#undef vex1
997#undef vex2
998#undef vex3
999#undef vex4
1000#undef vex4_unal
1001#undef vex5
1002#undef vex6
1003#undef vex7
1004#undef vex8
1005#undef vex11
1006#undef vex12
1007#undef vex13
1008
1009/*
1010 * Decode the fixed part of the opcode and place the last
1011 * in b.
1012 */
1013static void decode_root(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1014{
1015    *entry = opcodes_root[*b];
1016}
1017
1018
1019static int decode_modrm(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
1020                        X86DecodedOp *op, X86OpType type)
1021{
1022    int modrm = get_modrm(s, env);
1023    if ((modrm >> 6) == 3) {
1024        if (s->prefix & PREFIX_LOCK) {
1025            decode->e.gen = gen_illegal;
1026            return 0xff;
1027        }
1028        op->n = (modrm & 7);
1029        if (type != X86_TYPE_Q && type != X86_TYPE_N) {
1030            op->n |= REX_B(s);
1031        }
1032    } else {
1033        op->has_ea = true;
1034        op->n = -1;
1035        decode->mem = gen_lea_modrm_0(env, s, get_modrm(s, env));
1036    }
1037    return modrm;
1038}
1039
1040static bool decode_op_size(DisasContext *s, X86OpEntry *e, X86OpSize size, MemOp *ot)
1041{
1042    switch (size) {
1043    case X86_SIZE_b:  /* byte */
1044        *ot = MO_8;
1045        return true;
1046
1047    case X86_SIZE_d:  /* 32-bit */
1048    case X86_SIZE_ss: /* SSE/AVX scalar single precision */
1049        *ot = MO_32;
1050        return true;
1051
1052    case X86_SIZE_p:  /* Far pointer, return offset size */
1053    case X86_SIZE_s:  /* Descriptor, return offset size */
1054    case X86_SIZE_v:  /* 16/32/64-bit, based on operand size */
1055        *ot = s->dflag;
1056        return true;
1057
1058    case X86_SIZE_pi: /* MMX */
1059    case X86_SIZE_q:  /* 64-bit */
1060    case X86_SIZE_sd: /* SSE/AVX scalar double precision */
1061        *ot = MO_64;
1062        return true;
1063
1064    case X86_SIZE_w:  /* 16-bit */
1065        *ot = MO_16;
1066        return true;
1067
1068    case X86_SIZE_y:  /* 32/64-bit, based on operand size */
1069        *ot = s->dflag == MO_16 ? MO_32 : s->dflag;
1070        return true;
1071
1072    case X86_SIZE_z:  /* 16-bit for 16-bit operand size, else 32-bit */
1073        *ot = s->dflag == MO_16 ? MO_16 : MO_32;
1074        return true;
1075
1076    case X86_SIZE_dq: /* SSE/AVX 128-bit */
1077        if (e->special == X86_SPECIAL_MMX &&
1078            !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
1079            *ot = MO_64;
1080            return true;
1081        }
1082        if (s->vex_l && e->s0 != X86_SIZE_qq && e->s1 != X86_SIZE_qq) {
1083            return false;
1084        }
1085        *ot = MO_128;
1086        return true;
1087
1088    case X86_SIZE_qq: /* AVX 256-bit */
1089        if (!s->vex_l) {
1090            return false;
1091        }
1092        *ot = MO_256;
1093        return true;
1094
1095    case X86_SIZE_x:  /* 128/256-bit, based on operand size */
1096        if (e->special == X86_SPECIAL_MMX &&
1097            !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
1098            *ot = MO_64;
1099            return true;
1100        }
1101        /* fall through */
1102    case X86_SIZE_ps: /* SSE/AVX packed single precision */
1103    case X86_SIZE_pd: /* SSE/AVX packed double precision */
1104        *ot = s->vex_l ? MO_256 : MO_128;
1105        return true;
1106
1107    case X86_SIZE_ph: /* SSE/AVX packed half precision */
1108        *ot = s->vex_l ? MO_128 : MO_64;
1109        return true;
1110
1111    case X86_SIZE_d64:  /* Default to 64-bit in 64-bit mode */
1112        *ot = CODE64(s) && s->dflag == MO_32 ? MO_64 : s->dflag;
1113        return true;
1114
1115    case X86_SIZE_f64:  /* Ignore size override prefix in 64-bit mode */
1116        *ot = CODE64(s) ? MO_64 : s->dflag;
1117        return true;
1118
1119    default:
1120        *ot = -1;
1121        return true;
1122    }
1123}
1124
1125static bool decode_op(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
1126                      X86DecodedOp *op, X86OpType type, int b)
1127{
1128    int modrm;
1129
1130    switch (type) {
1131    case X86_TYPE_None:  /* Implicit or absent */
1132    case X86_TYPE_A:  /* Implicit */
1133    case X86_TYPE_F:  /* EFLAGS/RFLAGS */
1134        break;
1135
1136    case X86_TYPE_B:  /* VEX.vvvv selects a GPR */
1137        op->unit = X86_OP_INT;
1138        op->n = s->vex_v;
1139        break;
1140
1141    case X86_TYPE_C:  /* REG in the modrm byte selects a control register */
1142        op->unit = X86_OP_CR;
1143        goto get_reg;
1144
1145    case X86_TYPE_D:  /* REG in the modrm byte selects a debug register */
1146        op->unit = X86_OP_DR;
1147        goto get_reg;
1148
1149    case X86_TYPE_G:  /* REG in the modrm byte selects a GPR */
1150        op->unit = X86_OP_INT;
1151        goto get_reg;
1152
1153    case X86_TYPE_S:  /* reg selects a segment register */
1154        op->unit = X86_OP_SEG;
1155        goto get_reg;
1156
1157    case X86_TYPE_P:
1158        op->unit = X86_OP_MMX;
1159        goto get_reg;
1160
1161    case X86_TYPE_V:  /* reg in the modrm byte selects an XMM/YMM register */
1162        if (decode->e.special == X86_SPECIAL_MMX &&
1163            !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
1164            op->unit = X86_OP_MMX;
1165        } else {
1166            op->unit = X86_OP_SSE;
1167        }
1168    get_reg:
1169        op->n = ((get_modrm(s, env) >> 3) & 7) | REX_R(s);
1170        break;
1171
1172    case X86_TYPE_E:  /* ALU modrm operand */
1173        op->unit = X86_OP_INT;
1174        goto get_modrm;
1175
1176    case X86_TYPE_Q:  /* MMX modrm operand */
1177        op->unit = X86_OP_MMX;
1178        goto get_modrm;
1179
1180    case X86_TYPE_W:  /* XMM/YMM modrm operand */
1181        if (decode->e.special == X86_SPECIAL_MMX &&
1182            !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
1183            op->unit = X86_OP_MMX;
1184        } else {
1185            op->unit = X86_OP_SSE;
1186        }
1187        goto get_modrm;
1188
1189    case X86_TYPE_N:  /* R/M in the modrm byte selects an MMX register */
1190        op->unit = X86_OP_MMX;
1191        goto get_modrm_reg;
1192
1193    case X86_TYPE_U:  /* R/M in the modrm byte selects an XMM/YMM register */
1194        if (decode->e.special == X86_SPECIAL_MMX &&
1195            !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
1196            op->unit = X86_OP_MMX;
1197        } else {
1198            op->unit = X86_OP_SSE;
1199        }
1200        goto get_modrm_reg;
1201
1202    case X86_TYPE_R:  /* R/M in the modrm byte selects a register */
1203        op->unit = X86_OP_INT;
1204    get_modrm_reg:
1205        modrm = get_modrm(s, env);
1206        if ((modrm >> 6) != 3) {
1207            return false;
1208        }
1209        goto get_modrm;
1210
1211    case X86_TYPE_WM:  /* modrm byte selects an XMM/YMM memory operand */
1212        op->unit = X86_OP_SSE;
1213        /* fall through */
1214    case X86_TYPE_M:  /* modrm byte selects a memory operand */
1215        modrm = get_modrm(s, env);
1216        if ((modrm >> 6) == 3) {
1217            return false;
1218        }
1219    get_modrm:
1220        decode_modrm(s, env, decode, op, type);
1221        break;
1222
1223    case X86_TYPE_O:  /* Absolute address encoded in the instruction */
1224        op->unit = X86_OP_INT;
1225        op->has_ea = true;
1226        op->n = -1;
1227        decode->mem = (AddressParts) {
1228            .def_seg = R_DS,
1229            .base = -1,
1230            .index = -1,
1231            .disp = insn_get_addr(env, s, s->aflag)
1232        };
1233        break;
1234
1235    case X86_TYPE_H:  /* For AVX, VEX.vvvv selects an XMM/YMM register */
1236        if ((s->prefix & PREFIX_VEX)) {
1237            op->unit = X86_OP_SSE;
1238            op->n = s->vex_v;
1239            break;
1240        }
1241        if (op == &decode->op[0]) {
1242            /* shifts place the destination in VEX.vvvv, use modrm */
1243            return decode_op(s, env, decode, op, decode->e.op1, b);
1244        } else {
1245            return decode_op(s, env, decode, op, decode->e.op0, b);
1246        }
1247
1248    case X86_TYPE_I:  /* Immediate */
1249        op->unit = X86_OP_IMM;
1250        decode->immediate = insn_get_signed(env, s, op->ot);
1251        break;
1252
1253    case X86_TYPE_J:  /* Relative offset for a jump */
1254        op->unit = X86_OP_IMM;
1255        decode->immediate = insn_get_signed(env, s, op->ot);
1256        decode->immediate += s->pc - s->cs_base;
1257        if (s->dflag == MO_16) {
1258            decode->immediate &= 0xffff;
1259        } else if (!CODE64(s)) {
1260            decode->immediate &= 0xffffffffu;
1261        }
1262        break;
1263
1264    case X86_TYPE_L:  /* The upper 4 bits of the immediate select a 128-bit register */
1265        op->n = insn_get(env, s, op->ot) >> 4;
1266        break;
1267
1268    case X86_TYPE_X:  /* string source */
1269        op->n = -1;
1270        decode->mem = (AddressParts) {
1271            .def_seg = R_DS,
1272            .base = R_ESI,
1273            .index = -1,
1274        };
1275        break;
1276
1277    case X86_TYPE_Y:  /* string destination */
1278        op->n = -1;
1279        decode->mem = (AddressParts) {
1280            .def_seg = R_ES,
1281            .base = R_EDI,
1282            .index = -1,
1283        };
1284        break;
1285
1286    case X86_TYPE_2op:
1287        *op = decode->op[0];
1288        break;
1289
1290    case X86_TYPE_LoBits:
1291        op->n = (b & 7) | REX_B(s);
1292        op->unit = X86_OP_INT;
1293        break;
1294
1295    case X86_TYPE_0 ... X86_TYPE_7:
1296        op->n = type - X86_TYPE_0;
1297        op->unit = X86_OP_INT;
1298        break;
1299
1300    case X86_TYPE_ES ... X86_TYPE_GS:
1301        op->n = type - X86_TYPE_ES;
1302        op->unit = X86_OP_SEG;
1303        break;
1304    }
1305
1306    return true;
1307}
1308
1309static bool validate_sse_prefix(DisasContext *s, X86OpEntry *e)
1310{
1311    uint16_t sse_prefixes;
1312
1313    if (!e->valid_prefix) {
1314        return true;
1315    }
1316    if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) {
1317        /* In SSE instructions, 0xF3 and 0xF2 cancel 0x66.  */
1318        s->prefix &= ~PREFIX_DATA;
1319    }
1320
1321    /* Now, either zero or one bit is set in sse_prefixes.  */
1322    sse_prefixes = s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA);
1323    return e->valid_prefix & (1 << sse_prefixes);
1324}
1325
1326static bool decode_insn(DisasContext *s, CPUX86State *env, X86DecodeFunc decode_func,
1327                        X86DecodedInsn *decode)
1328{
1329    X86OpEntry *e = &decode->e;
1330
1331    decode_func(s, env, e, &decode->b);
1332    while (e->is_decode) {
1333        e->is_decode = false;
1334        e->decode(s, env, e, &decode->b);
1335    }
1336
1337    if (!validate_sse_prefix(s, e)) {
1338        return false;
1339    }
1340
1341    /* First compute size of operands in order to initialize s->rip_offset.  */
1342    if (e->op0 != X86_TYPE_None) {
1343        if (!decode_op_size(s, e, e->s0, &decode->op[0].ot)) {
1344            return false;
1345        }
1346        if (e->op0 == X86_TYPE_I) {
1347            s->rip_offset += 1 << decode->op[0].ot;
1348        }
1349    }
1350    if (e->op1 != X86_TYPE_None) {
1351        if (!decode_op_size(s, e, e->s1, &decode->op[1].ot)) {
1352            return false;
1353        }
1354        if (e->op1 == X86_TYPE_I) {
1355            s->rip_offset += 1 << decode->op[1].ot;
1356        }
1357    }
1358    if (e->op2 != X86_TYPE_None) {
1359        if (!decode_op_size(s, e, e->s2, &decode->op[2].ot)) {
1360            return false;
1361        }
1362        if (e->op2 == X86_TYPE_I) {
1363            s->rip_offset += 1 << decode->op[2].ot;
1364        }
1365    }
1366    if (e->op3 != X86_TYPE_None) {
1367        /*
1368         * A couple instructions actually use the extra immediate byte for an Lx
1369         * register operand; those are handled in the gen_* functions as one off.
1370         */
1371        assert(e->op3 == X86_TYPE_I && e->s3 == X86_SIZE_b);
1372        s->rip_offset += 1;
1373    }
1374
1375    if (e->op0 != X86_TYPE_None &&
1376        !decode_op(s, env, decode, &decode->op[0], e->op0, decode->b)) {
1377        return false;
1378    }
1379
1380    if (e->op1 != X86_TYPE_None &&
1381        !decode_op(s, env, decode, &decode->op[1], e->op1, decode->b)) {
1382        return false;
1383    }
1384
1385    if (e->op2 != X86_TYPE_None &&
1386        !decode_op(s, env, decode, &decode->op[2], e->op2, decode->b)) {
1387        return false;
1388    }
1389
1390    if (e->op3 != X86_TYPE_None) {
1391        decode->immediate = insn_get_signed(env, s, MO_8);
1392    }
1393
1394    return true;
1395}
1396
1397static bool has_cpuid_feature(DisasContext *s, X86CPUIDFeature cpuid)
1398{
1399    switch (cpuid) {
1400    case X86_FEAT_None:
1401        return true;
1402    case X86_FEAT_F16C:
1403        return (s->cpuid_ext_features & CPUID_EXT_F16C);
1404    case X86_FEAT_FMA:
1405        return (s->cpuid_ext_features & CPUID_EXT_FMA);
1406    case X86_FEAT_MOVBE:
1407        return (s->cpuid_ext_features & CPUID_EXT_MOVBE);
1408    case X86_FEAT_PCLMULQDQ:
1409        return (s->cpuid_ext_features & CPUID_EXT_PCLMULQDQ);
1410    case X86_FEAT_SSE:
1411        return (s->cpuid_ext_features & CPUID_SSE);
1412    case X86_FEAT_SSE2:
1413        return (s->cpuid_ext_features & CPUID_SSE2);
1414    case X86_FEAT_SSE3:
1415        return (s->cpuid_ext_features & CPUID_EXT_SSE3);
1416    case X86_FEAT_SSSE3:
1417        return (s->cpuid_ext_features & CPUID_EXT_SSSE3);
1418    case X86_FEAT_SSE41:
1419        return (s->cpuid_ext_features & CPUID_EXT_SSE41);
1420    case X86_FEAT_SSE42:
1421        return (s->cpuid_ext_features & CPUID_EXT_SSE42);
1422    case X86_FEAT_AES:
1423        if (!(s->cpuid_ext_features & CPUID_EXT_AES)) {
1424            return false;
1425        } else if (!(s->prefix & PREFIX_VEX)) {
1426            return true;
1427        } else if (!(s->cpuid_ext_features & CPUID_EXT_AVX)) {
1428            return false;
1429        } else {
1430            return !s->vex_l || (s->cpuid_7_0_ecx_features & CPUID_7_0_ECX_VAES);
1431        }
1432
1433    case X86_FEAT_AVX:
1434        return (s->cpuid_ext_features & CPUID_EXT_AVX);
1435
1436    case X86_FEAT_3DNOW:
1437        return (s->cpuid_ext2_features & CPUID_EXT2_3DNOW);
1438    case X86_FEAT_SSE4A:
1439        return (s->cpuid_ext3_features & CPUID_EXT3_SSE4A);
1440
1441    case X86_FEAT_ADX:
1442        return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_ADX);
1443    case X86_FEAT_BMI1:
1444        return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI1);
1445    case X86_FEAT_BMI2:
1446        return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI2);
1447    case X86_FEAT_AVX2:
1448        return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_AVX2);
1449    }
1450    g_assert_not_reached();
1451}
1452
1453static bool validate_vex(DisasContext *s, X86DecodedInsn *decode)
1454{
1455    X86OpEntry *e = &decode->e;
1456
1457    switch (e->vex_special) {
1458    case X86_VEX_REPScalar:
1459        /*
1460         * Instructions which differ between 00/66 and F2/F3 in the
1461         * exception classification and the size of the memory operand.
1462         */
1463        assert(e->vex_class == 1 || e->vex_class == 2 || e->vex_class == 4);
1464        if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) {
1465            e->vex_class = e->vex_class < 4 ? 3 : 5;
1466            if (s->vex_l) {
1467                goto illegal;
1468            }
1469            assert(decode->e.s2 == X86_SIZE_x);
1470            if (decode->op[2].has_ea) {
1471                decode->op[2].ot = s->prefix & PREFIX_REPZ ? MO_32 : MO_64;
1472            }
1473        }
1474        break;
1475
1476    case X86_VEX_SSEUnaligned:
1477        /* handled in sse_needs_alignment.  */
1478        break;
1479
1480    case X86_VEX_AVX2_256:
1481        if ((s->prefix & PREFIX_VEX) && s->vex_l && !has_cpuid_feature(s, X86_FEAT_AVX2)) {
1482            goto illegal;
1483        }
1484    }
1485
1486    /* TODO: instructions that require VEX.W=0 (Table 2-16) */
1487
1488    switch (e->vex_class) {
1489    case 0:
1490        if (s->prefix & PREFIX_VEX) {
1491            goto illegal;
1492        }
1493        return true;
1494    case 1:
1495    case 2:
1496    case 3:
1497    case 4:
1498    case 5:
1499    case 7:
1500        if (s->prefix & PREFIX_VEX) {
1501            if (!(s->flags & HF_AVX_EN_MASK)) {
1502                goto illegal;
1503            }
1504        } else if (e->special != X86_SPECIAL_MMX ||
1505                   (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) {
1506            if (!(s->flags & HF_OSFXSR_MASK)) {
1507                goto illegal;
1508            }
1509        }
1510        break;
1511    case 12:
1512        /* Must have a VSIB byte and no address prefix.  */
1513        assert(s->has_modrm);
1514        if ((s->modrm & 7) != 4 || s->aflag == MO_16) {
1515            goto illegal;
1516        }
1517
1518        /* Check no overlap between registers.  */
1519        if (!decode->op[0].has_ea &&
1520            (decode->op[0].n == decode->mem.index || decode->op[0].n == decode->op[1].n)) {
1521            goto illegal;
1522        }
1523        assert(!decode->op[1].has_ea);
1524        if (decode->op[1].n == decode->mem.index) {
1525            goto illegal;
1526        }
1527        if (!decode->op[2].has_ea &&
1528            (decode->op[2].n == decode->mem.index || decode->op[2].n == decode->op[1].n)) {
1529            goto illegal;
1530        }
1531        /* fall through */
1532    case 6:
1533    case 11:
1534        if (!(s->prefix & PREFIX_VEX)) {
1535            goto illegal;
1536        }
1537        if (!(s->flags & HF_AVX_EN_MASK)) {
1538            goto illegal;
1539        }
1540        break;
1541    case 8:
1542        /* Non-VEX case handled in decode_0F77.  */
1543        assert(s->prefix & PREFIX_VEX);
1544        if (!(s->flags & HF_AVX_EN_MASK)) {
1545            goto illegal;
1546        }
1547        break;
1548    case 13:
1549        if (!(s->prefix & PREFIX_VEX)) {
1550            goto illegal;
1551        }
1552        if (s->vex_l) {
1553            goto illegal;
1554        }
1555        /* All integer instructions use VEX.vvvv, so exit.  */
1556        return true;
1557    }
1558
1559    if (s->vex_v != 0 &&
1560        e->op0 != X86_TYPE_H && e->op0 != X86_TYPE_B &&
1561        e->op1 != X86_TYPE_H && e->op1 != X86_TYPE_B &&
1562        e->op2 != X86_TYPE_H && e->op2 != X86_TYPE_B) {
1563        goto illegal;
1564    }
1565
1566    if (s->flags & HF_TS_MASK) {
1567        goto nm_exception;
1568    }
1569    if (s->flags & HF_EM_MASK) {
1570        goto illegal;
1571    }
1572    return true;
1573
1574nm_exception:
1575    gen_NM_exception(s);
1576    return false;
1577illegal:
1578    gen_illegal_opcode(s);
1579    return false;
1580}
1581
1582/*
1583 * Convert one instruction. s->base.is_jmp is set if the translation must
1584 * be stopped.
1585 */
1586static void disas_insn_new(DisasContext *s, CPUState *cpu, int b)
1587{
1588    CPUX86State *env = cpu->env_ptr;
1589    bool first = true;
1590    X86DecodedInsn decode;
1591    X86DecodeFunc decode_func = decode_root;
1592
1593    s->has_modrm = false;
1594
1595 next_byte:
1596    if (first) {
1597        first = false;
1598    } else {
1599        b = x86_ldub_code(env, s);
1600    }
1601    /* Collect prefixes.  */
1602    switch (b) {
1603    case 0xf3:
1604        s->prefix |= PREFIX_REPZ;
1605        s->prefix &= ~PREFIX_REPNZ;
1606        goto next_byte;
1607    case 0xf2:
1608        s->prefix |= PREFIX_REPNZ;
1609        s->prefix &= ~PREFIX_REPZ;
1610        goto next_byte;
1611    case 0xf0:
1612        s->prefix |= PREFIX_LOCK;
1613        goto next_byte;
1614    case 0x2e:
1615        s->override = R_CS;
1616        goto next_byte;
1617    case 0x36:
1618        s->override = R_SS;
1619        goto next_byte;
1620    case 0x3e:
1621        s->override = R_DS;
1622        goto next_byte;
1623    case 0x26:
1624        s->override = R_ES;
1625        goto next_byte;
1626    case 0x64:
1627        s->override = R_FS;
1628        goto next_byte;
1629    case 0x65:
1630        s->override = R_GS;
1631        goto next_byte;
1632    case 0x66:
1633        s->prefix |= PREFIX_DATA;
1634        goto next_byte;
1635    case 0x67:
1636        s->prefix |= PREFIX_ADR;
1637        goto next_byte;
1638#ifdef TARGET_X86_64
1639    case 0x40 ... 0x4f:
1640        if (CODE64(s)) {
1641            /* REX prefix */
1642            s->prefix |= PREFIX_REX;
1643            s->vex_w = (b >> 3) & 1;
1644            s->rex_r = (b & 0x4) << 1;
1645            s->rex_x = (b & 0x2) << 2;
1646            s->rex_b = (b & 0x1) << 3;
1647            goto next_byte;
1648        }
1649        break;
1650#endif
1651    case 0xc5: /* 2-byte VEX */
1652    case 0xc4: /* 3-byte VEX */
1653        /*
1654         * VEX prefixes cannot be used except in 32-bit mode.
1655         * Otherwise the instruction is LES or LDS.
1656         */
1657        if (CODE32(s) && !VM86(s)) {
1658            static const int pp_prefix[4] = {
1659                0, PREFIX_DATA, PREFIX_REPZ, PREFIX_REPNZ
1660            };
1661            int vex3, vex2 = x86_ldub_code(env, s);
1662
1663            if (!CODE64(s) && (vex2 & 0xc0) != 0xc0) {
1664                /*
1665                 * 4.1.4.6: In 32-bit mode, bits [7:6] must be 11b,
1666                 * otherwise the instruction is LES or LDS.
1667                 */
1668                s->pc--; /* rewind the advance_pc() x86_ldub_code() did */
1669                break;
1670            }
1671
1672            /* 4.1.1-4.1.3: No preceding lock, 66, f2, f3, or rex prefixes. */
1673            if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ
1674                             | PREFIX_LOCK | PREFIX_DATA | PREFIX_REX)) {
1675                goto illegal_op;
1676            }
1677#ifdef TARGET_X86_64
1678            s->rex_r = (~vex2 >> 4) & 8;
1679#endif
1680            if (b == 0xc5) {
1681                /* 2-byte VEX prefix: RVVVVlpp, implied 0f leading opcode byte */
1682                vex3 = vex2;
1683                decode_func = decode_0F;
1684            } else {
1685                /* 3-byte VEX prefix: RXBmmmmm wVVVVlpp */
1686                vex3 = x86_ldub_code(env, s);
1687#ifdef TARGET_X86_64
1688                s->rex_x = (~vex2 >> 3) & 8;
1689                s->rex_b = (~vex2 >> 2) & 8;
1690#endif
1691                s->vex_w = (vex3 >> 7) & 1;
1692                switch (vex2 & 0x1f) {
1693                case 0x01: /* Implied 0f leading opcode bytes.  */
1694                    decode_func = decode_0F;
1695                    break;
1696                case 0x02: /* Implied 0f 38 leading opcode bytes.  */
1697                    decode_func = decode_0F38;
1698                    break;
1699                case 0x03: /* Implied 0f 3a leading opcode bytes.  */
1700                    decode_func = decode_0F3A;
1701                    break;
1702                default:   /* Reserved for future use.  */
1703                    goto unknown_op;
1704                }
1705            }
1706            s->vex_v = (~vex3 >> 3) & 0xf;
1707            s->vex_l = (vex3 >> 2) & 1;
1708            s->prefix |= pp_prefix[vex3 & 3] | PREFIX_VEX;
1709        }
1710        break;
1711    default:
1712        if (b >= 0x100) {
1713            b -= 0x100;
1714            decode_func = do_decode_0F;
1715        }
1716        break;
1717    }
1718
1719    /* Post-process prefixes.  */
1720    if (CODE64(s)) {
1721        /*
1722         * In 64-bit mode, the default data size is 32-bit.  Select 64-bit
1723         * data with rex_w, and 16-bit data with 0x66; rex_w takes precedence
1724         * over 0x66 if both are present.
1725         */
1726        s->dflag = (REX_W(s) ? MO_64 : s->prefix & PREFIX_DATA ? MO_16 : MO_32);
1727        /* In 64-bit mode, 0x67 selects 32-bit addressing.  */
1728        s->aflag = (s->prefix & PREFIX_ADR ? MO_32 : MO_64);
1729    } else {
1730        /* In 16/32-bit mode, 0x66 selects the opposite data size.  */
1731        if (CODE32(s) ^ ((s->prefix & PREFIX_DATA) != 0)) {
1732            s->dflag = MO_32;
1733        } else {
1734            s->dflag = MO_16;
1735        }
1736        /* In 16/32-bit mode, 0x67 selects the opposite addressing.  */
1737        if (CODE32(s) ^ ((s->prefix & PREFIX_ADR) != 0)) {
1738            s->aflag = MO_32;
1739        }  else {
1740            s->aflag = MO_16;
1741        }
1742    }
1743
1744    memset(&decode, 0, sizeof(decode));
1745    decode.b = b;
1746    if (!decode_insn(s, env, decode_func, &decode)) {
1747        goto illegal_op;
1748    }
1749    if (!decode.e.gen) {
1750        goto unknown_op;
1751    }
1752
1753    if (!has_cpuid_feature(s, decode.e.cpuid)) {
1754        goto illegal_op;
1755    }
1756
1757    switch (decode.e.special) {
1758    case X86_SPECIAL_None:
1759        break;
1760
1761    case X86_SPECIAL_Locked:
1762        if (decode.op[0].has_ea) {
1763            s->prefix |= PREFIX_LOCK;
1764        }
1765        break;
1766
1767    case X86_SPECIAL_ProtMode:
1768        if (!PE(s) || VM86(s)) {
1769            goto illegal_op;
1770        }
1771        break;
1772
1773    case X86_SPECIAL_i64:
1774        if (CODE64(s)) {
1775            goto illegal_op;
1776        }
1777        break;
1778    case X86_SPECIAL_o64:
1779        if (!CODE64(s)) {
1780            goto illegal_op;
1781        }
1782        break;
1783
1784    case X86_SPECIAL_ZExtOp0:
1785        assert(decode.op[0].unit == X86_OP_INT);
1786        if (!decode.op[0].has_ea) {
1787            decode.op[0].ot = MO_32;
1788        }
1789        break;
1790
1791    case X86_SPECIAL_ZExtOp2:
1792        assert(decode.op[2].unit == X86_OP_INT);
1793        if (!decode.op[2].has_ea) {
1794            decode.op[2].ot = MO_32;
1795        }
1796        break;
1797
1798    case X86_SPECIAL_AVXExtMov:
1799        if (!decode.op[2].has_ea) {
1800            decode.op[2].ot = s->vex_l ? MO_256 : MO_128;
1801        } else if (s->vex_l) {
1802            decode.op[2].ot++;
1803        }
1804        break;
1805
1806    default:
1807        break;
1808    }
1809
1810    if (!validate_vex(s, &decode)) {
1811        return;
1812    }
1813    if (decode.e.special == X86_SPECIAL_MMX &&
1814        !(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) {
1815        gen_helper_enter_mmx(cpu_env);
1816    }
1817
1818    if (decode.op[0].has_ea || decode.op[1].has_ea || decode.op[2].has_ea) {
1819        gen_load_ea(s, &decode.mem, decode.e.vex_class == 12);
1820    }
1821    if (s->prefix & PREFIX_LOCK) {
1822        if (decode.op[0].unit != X86_OP_INT || !decode.op[0].has_ea) {
1823            goto illegal_op;
1824        }
1825        gen_load(s, &decode, 2, s->T1);
1826        decode.e.gen(s, env, &decode);
1827    } else {
1828        if (decode.op[0].unit == X86_OP_MMX) {
1829            compute_mmx_offset(&decode.op[0]);
1830        } else if (decode.op[0].unit == X86_OP_SSE) {
1831            compute_xmm_offset(&decode.op[0]);
1832        }
1833        gen_load(s, &decode, 1, s->T0);
1834        gen_load(s, &decode, 2, s->T1);
1835        decode.e.gen(s, env, &decode);
1836        gen_writeback(s, &decode, 0, s->T0);
1837    }
1838    return;
1839 illegal_op:
1840    gen_illegal_opcode(s);
1841    return;
1842 unknown_op:
1843    gen_unknown_opcode(env, s);
1844}
1845