xref: /qemu/target/i386/tcg/sysemu/excp_helper.c (revision 1dd91b22)
1 /*
2  *  x86 exception helpers - sysemu code
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg/helper-tcg.h"
24 
25 typedef struct TranslateParams {
26     target_ulong addr;
27     target_ulong cr3;
28     int pg_mode;
29     int mmu_idx;
30     int ptw_idx;
31     MMUAccessType access_type;
32 } TranslateParams;
33 
34 typedef struct TranslateResult {
35     hwaddr paddr;
36     int prot;
37     int page_size;
38 } TranslateResult;
39 
40 typedef enum TranslateFaultStage2 {
41     S2_NONE,
42     S2_GPA,
43     S2_GPT,
44 } TranslateFaultStage2;
45 
46 typedef struct TranslateFault {
47     int exception_index;
48     int error_code;
49     target_ulong cr2;
50     TranslateFaultStage2 stage2;
51 } TranslateFault;
52 
53 typedef struct PTETranslate {
54     CPUX86State *env;
55     TranslateFault *err;
56     int ptw_idx;
57     void *haddr;
58     hwaddr gaddr;
59 } PTETranslate;
60 
61 static bool ptw_translate(PTETranslate *inout, hwaddr addr)
62 {
63     CPUTLBEntryFull *full;
64     int flags;
65 
66     inout->gaddr = addr;
67     flags = probe_access_full(inout->env, addr, 0, MMU_DATA_STORE,
68                               inout->ptw_idx, true, &inout->haddr, &full, 0);
69 
70     if (unlikely(flags & TLB_INVALID_MASK)) {
71         TranslateFault *err = inout->err;
72 
73         assert(inout->ptw_idx == MMU_NESTED_IDX);
74         *err = (TranslateFault){
75             .error_code = inout->env->error_code,
76             .cr2 = addr,
77             .stage2 = S2_GPT,
78         };
79         return false;
80     }
81     return true;
82 }
83 
84 static inline uint32_t ptw_ldl(const PTETranslate *in)
85 {
86     if (likely(in->haddr)) {
87         return ldl_p(in->haddr);
88     }
89     return cpu_ldl_mmuidx_ra(in->env, in->gaddr, in->ptw_idx, 0);
90 }
91 
92 static inline uint64_t ptw_ldq(const PTETranslate *in)
93 {
94     if (likely(in->haddr)) {
95         return ldq_p(in->haddr);
96     }
97     return cpu_ldq_mmuidx_ra(in->env, in->gaddr, in->ptw_idx, 0);
98 }
99 
100 /*
101  * Note that we can use a 32-bit cmpxchg for all page table entries,
102  * even 64-bit ones, because PG_PRESENT_MASK, PG_ACCESSED_MASK and
103  * PG_DIRTY_MASK are all in the low 32 bits.
104  */
105 static bool ptw_setl_slow(const PTETranslate *in, uint32_t old, uint32_t new)
106 {
107     uint32_t cmp;
108 
109     /* Does x86 really perform a rmw cycle on mmio for ptw? */
110     start_exclusive();
111     cmp = cpu_ldl_mmuidx_ra(in->env, in->gaddr, in->ptw_idx, 0);
112     if (cmp == old) {
113         cpu_stl_mmuidx_ra(in->env, in->gaddr, new, in->ptw_idx, 0);
114     }
115     end_exclusive();
116     return cmp == old;
117 }
118 
119 static inline bool ptw_setl(const PTETranslate *in, uint32_t old, uint32_t set)
120 {
121     if (set & ~old) {
122         uint32_t new = old | set;
123         if (likely(in->haddr)) {
124             old = cpu_to_le32(old);
125             new = cpu_to_le32(new);
126             return qatomic_cmpxchg((uint32_t *)in->haddr, old, new) == old;
127         }
128         return ptw_setl_slow(in, old, new);
129     }
130     return true;
131 }
132 
133 static bool mmu_translate(CPUX86State *env, const TranslateParams *in,
134                           TranslateResult *out, TranslateFault *err)
135 {
136     const int32_t a20_mask = x86_get_a20_mask(env);
137     const target_ulong addr = in->addr;
138     const int pg_mode = in->pg_mode;
139     const bool is_user = (in->mmu_idx == MMU_USER_IDX);
140     const MMUAccessType access_type = in->access_type;
141     uint64_t ptep, pte, rsvd_mask;
142     PTETranslate pte_trans = {
143         .env = env,
144         .err = err,
145         .ptw_idx = in->ptw_idx,
146     };
147     hwaddr pte_addr, paddr;
148     uint32_t pkr;
149     int page_size;
150     int error_code;
151 
152  restart_all:
153     rsvd_mask = ~MAKE_64BIT_MASK(0, env_archcpu(env)->phys_bits);
154     rsvd_mask &= PG_ADDRESS_MASK;
155     if (!(pg_mode & PG_MODE_NXE)) {
156         rsvd_mask |= PG_NX_MASK;
157     }
158 
159     if (pg_mode & PG_MODE_PAE) {
160 #ifdef TARGET_X86_64
161         if (pg_mode & PG_MODE_LMA) {
162             if (pg_mode & PG_MODE_LA57) {
163                 /*
164                  * Page table level 5
165                  */
166                 pte_addr = ((in->cr3 & ~0xfff) +
167                             (((addr >> 48) & 0x1ff) << 3)) & a20_mask;
168                 if (!ptw_translate(&pte_trans, pte_addr)) {
169                     return false;
170                 }
171             restart_5:
172                 pte = ptw_ldq(&pte_trans);
173                 if (!(pte & PG_PRESENT_MASK)) {
174                     goto do_fault;
175                 }
176                 if (pte & (rsvd_mask | PG_PSE_MASK)) {
177                     goto do_fault_rsvd;
178                 }
179                 if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) {
180                     goto restart_5;
181                 }
182                 ptep = pte ^ PG_NX_MASK;
183             } else {
184                 pte = in->cr3;
185                 ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
186             }
187 
188             /*
189              * Page table level 4
190              */
191             pte_addr = ((pte & PG_ADDRESS_MASK) +
192                         (((addr >> 39) & 0x1ff) << 3)) & a20_mask;
193             if (!ptw_translate(&pte_trans, pte_addr)) {
194                 return false;
195             }
196         restart_4:
197             pte = ptw_ldq(&pte_trans);
198             if (!(pte & PG_PRESENT_MASK)) {
199                 goto do_fault;
200             }
201             if (pte & (rsvd_mask | PG_PSE_MASK)) {
202                 goto do_fault_rsvd;
203             }
204             if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) {
205                 goto restart_4;
206             }
207             ptep &= pte ^ PG_NX_MASK;
208 
209             /*
210              * Page table level 3
211              */
212             pte_addr = ((pte & PG_ADDRESS_MASK) +
213                         (((addr >> 30) & 0x1ff) << 3)) & a20_mask;
214             if (!ptw_translate(&pte_trans, pte_addr)) {
215                 return false;
216             }
217         restart_3_lma:
218             pte = ptw_ldq(&pte_trans);
219             if (!(pte & PG_PRESENT_MASK)) {
220                 goto do_fault;
221             }
222             if (pte & rsvd_mask) {
223                 goto do_fault_rsvd;
224             }
225             if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) {
226                 goto restart_3_lma;
227             }
228             ptep &= pte ^ PG_NX_MASK;
229             if (pte & PG_PSE_MASK) {
230                 /* 1 GB page */
231                 page_size = 1024 * 1024 * 1024;
232                 goto do_check_protect;
233             }
234         } else
235 #endif
236         {
237             /*
238              * Page table level 3
239              */
240             pte_addr = ((in->cr3 & ~0x1f) + ((addr >> 27) & 0x18)) & a20_mask;
241             if (!ptw_translate(&pte_trans, pte_addr)) {
242                 return false;
243             }
244             rsvd_mask |= PG_HI_USER_MASK;
245         restart_3_nolma:
246             pte = ptw_ldq(&pte_trans);
247             if (!(pte & PG_PRESENT_MASK)) {
248                 goto do_fault;
249             }
250             if (pte & (rsvd_mask | PG_NX_MASK)) {
251                 goto do_fault_rsvd;
252             }
253             if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) {
254                 goto restart_3_nolma;
255             }
256             ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
257         }
258 
259         /*
260          * Page table level 2
261          */
262         pte_addr = ((pte & PG_ADDRESS_MASK) +
263                     (((addr >> 21) & 0x1ff) << 3)) & a20_mask;
264         if (!ptw_translate(&pte_trans, pte_addr)) {
265             return false;
266         }
267     restart_2_pae:
268         pte = ptw_ldq(&pte_trans);
269         if (!(pte & PG_PRESENT_MASK)) {
270             goto do_fault;
271         }
272         if (pte & rsvd_mask) {
273             goto do_fault_rsvd;
274         }
275         if (pte & PG_PSE_MASK) {
276             /* 2 MB page */
277             page_size = 2048 * 1024;
278             ptep &= pte ^ PG_NX_MASK;
279             goto do_check_protect;
280         }
281         if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) {
282             goto restart_2_pae;
283         }
284         ptep &= pte ^ PG_NX_MASK;
285 
286         /*
287          * Page table level 1
288          */
289         pte_addr = ((pte & PG_ADDRESS_MASK) +
290                     (((addr >> 12) & 0x1ff) << 3)) & a20_mask;
291         if (!ptw_translate(&pte_trans, pte_addr)) {
292             return false;
293         }
294         pte = ptw_ldq(&pte_trans);
295         if (!(pte & PG_PRESENT_MASK)) {
296             goto do_fault;
297         }
298         if (pte & rsvd_mask) {
299             goto do_fault_rsvd;
300         }
301         /* combine pde and pte nx, user and rw protections */
302         ptep &= pte ^ PG_NX_MASK;
303         page_size = 4096;
304     } else {
305         /*
306          * Page table level 2
307          */
308         pte_addr = ((in->cr3 & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask;
309         if (!ptw_translate(&pte_trans, pte_addr)) {
310             return false;
311         }
312     restart_2_nopae:
313         pte = ptw_ldl(&pte_trans);
314         if (!(pte & PG_PRESENT_MASK)) {
315             goto do_fault;
316         }
317         ptep = pte | PG_NX_MASK;
318 
319         /* if PSE bit is set, then we use a 4MB page */
320         if ((pte & PG_PSE_MASK) && (pg_mode & PG_MODE_PSE)) {
321             page_size = 4096 * 1024;
322             /*
323              * Bits 20-13 provide bits 39-32 of the address, bit 21 is reserved.
324              * Leave bits 20-13 in place for setting accessed/dirty bits below.
325              */
326             pte = (uint32_t)pte | ((pte & 0x1fe000LL) << (32 - 13));
327             rsvd_mask = 0x200000;
328             goto do_check_protect_pse36;
329         }
330         if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) {
331             goto restart_2_nopae;
332         }
333 
334         /*
335          * Page table level 1
336          */
337         pte_addr = ((pte & ~0xfffu) + ((addr >> 10) & 0xffc)) & a20_mask;
338         if (!ptw_translate(&pte_trans, pte_addr)) {
339             return false;
340         }
341         pte = ptw_ldl(&pte_trans);
342         if (!(pte & PG_PRESENT_MASK)) {
343             goto do_fault;
344         }
345         /* combine pde and pte user and rw protections */
346         ptep &= pte | PG_NX_MASK;
347         page_size = 4096;
348         rsvd_mask = 0;
349     }
350 
351 do_check_protect:
352     rsvd_mask |= (page_size - 1) & PG_ADDRESS_MASK & ~PG_PSE_PAT_MASK;
353 do_check_protect_pse36:
354     if (pte & rsvd_mask) {
355         goto do_fault_rsvd;
356     }
357     ptep ^= PG_NX_MASK;
358 
359     /* can the page can be put in the TLB?  prot will tell us */
360     if (is_user && !(ptep & PG_USER_MASK)) {
361         goto do_fault_protect;
362     }
363 
364     int prot = 0;
365     if (in->mmu_idx != MMU_KSMAP_IDX || !(ptep & PG_USER_MASK)) {
366         prot |= PAGE_READ;
367         if ((ptep & PG_RW_MASK) || !(is_user || (pg_mode & PG_MODE_WP))) {
368             prot |= PAGE_WRITE;
369         }
370     }
371     if (!(ptep & PG_NX_MASK) &&
372         (is_user ||
373          !((pg_mode & PG_MODE_SMEP) && (ptep & PG_USER_MASK)))) {
374         prot |= PAGE_EXEC;
375     }
376 
377     if (ptep & PG_USER_MASK) {
378         pkr = pg_mode & PG_MODE_PKE ? env->pkru : 0;
379     } else {
380         pkr = pg_mode & PG_MODE_PKS ? env->pkrs : 0;
381     }
382     if (pkr) {
383         uint32_t pk = (pte & PG_PKRU_MASK) >> PG_PKRU_BIT;
384         uint32_t pkr_ad = (pkr >> pk * 2) & 1;
385         uint32_t pkr_wd = (pkr >> pk * 2) & 2;
386         uint32_t pkr_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
387 
388         if (pkr_ad) {
389             pkr_prot &= ~(PAGE_READ | PAGE_WRITE);
390         } else if (pkr_wd && (is_user || (pg_mode & PG_MODE_WP))) {
391             pkr_prot &= ~PAGE_WRITE;
392         }
393         if ((pkr_prot & (1 << access_type)) == 0) {
394             goto do_fault_pk_protect;
395         }
396         prot &= pkr_prot;
397     }
398 
399     if ((prot & (1 << access_type)) == 0) {
400         goto do_fault_protect;
401     }
402 
403     /* yes, it can! */
404     {
405         uint32_t set = PG_ACCESSED_MASK;
406         if (access_type == MMU_DATA_STORE) {
407             set |= PG_DIRTY_MASK;
408         } else if (!(pte & PG_DIRTY_MASK)) {
409             /*
410              * Only set write access if already dirty...
411              * otherwise wait for dirty access.
412              */
413             prot &= ~PAGE_WRITE;
414         }
415         if (!ptw_setl(&pte_trans, pte, set)) {
416             /*
417              * We can arrive here from any of 3 levels and 2 formats.
418              * The only safe thing is to restart the entire lookup.
419              */
420             goto restart_all;
421         }
422     }
423 
424     /* align to page_size */
425     paddr = (pte & a20_mask & PG_ADDRESS_MASK & ~(page_size - 1))
426           | (addr & (page_size - 1));
427 
428     if (in->ptw_idx == MMU_NESTED_IDX) {
429         CPUTLBEntryFull *full;
430         int flags, nested_page_size;
431 
432         flags = probe_access_full(env, paddr, 0, access_type,
433                                   MMU_NESTED_IDX, true,
434                                   &pte_trans.haddr, &full, 0);
435         if (unlikely(flags & TLB_INVALID_MASK)) {
436             *err = (TranslateFault){
437                 .error_code = env->error_code,
438                 .cr2 = paddr,
439                 .stage2 = S2_GPA,
440             };
441             return false;
442         }
443 
444         /* Merge stage1 & stage2 protection bits. */
445         prot &= full->prot;
446 
447         /* Re-verify resulting protection. */
448         if ((prot & (1 << access_type)) == 0) {
449             goto do_fault_protect;
450         }
451 
452         /* Merge stage1 & stage2 addresses to final physical address. */
453         nested_page_size = 1 << full->lg_page_size;
454         paddr = (full->phys_addr & ~(nested_page_size - 1))
455               | (paddr & (nested_page_size - 1));
456 
457         /*
458          * Use the larger of stage1 & stage2 page sizes, so that
459          * invalidation works.
460          */
461         if (nested_page_size > page_size) {
462             page_size = nested_page_size;
463         }
464     }
465 
466     out->paddr = paddr;
467     out->prot = prot;
468     out->page_size = page_size;
469     return true;
470 
471  do_fault_rsvd:
472     error_code = PG_ERROR_RSVD_MASK;
473     goto do_fault_cont;
474  do_fault_protect:
475     error_code = PG_ERROR_P_MASK;
476     goto do_fault_cont;
477  do_fault_pk_protect:
478     assert(access_type != MMU_INST_FETCH);
479     error_code = PG_ERROR_PK_MASK | PG_ERROR_P_MASK;
480     goto do_fault_cont;
481  do_fault:
482     error_code = 0;
483  do_fault_cont:
484     if (is_user) {
485         error_code |= PG_ERROR_U_MASK;
486     }
487     switch (access_type) {
488     case MMU_DATA_LOAD:
489         break;
490     case MMU_DATA_STORE:
491         error_code |= PG_ERROR_W_MASK;
492         break;
493     case MMU_INST_FETCH:
494         if (pg_mode & (PG_MODE_NXE | PG_MODE_SMEP)) {
495             error_code |= PG_ERROR_I_D_MASK;
496         }
497         break;
498     }
499     *err = (TranslateFault){
500         .exception_index = EXCP0E_PAGE,
501         .error_code = error_code,
502         .cr2 = addr,
503     };
504     return false;
505 }
506 
507 static G_NORETURN void raise_stage2(CPUX86State *env, TranslateFault *err,
508                                     uintptr_t retaddr)
509 {
510     uint64_t exit_info_1 = err->error_code;
511 
512     switch (err->stage2) {
513     case S2_GPT:
514         exit_info_1 |= SVM_NPTEXIT_GPT;
515         break;
516     case S2_GPA:
517         exit_info_1 |= SVM_NPTEXIT_GPA;
518         break;
519     default:
520         g_assert_not_reached();
521     }
522 
523     x86_stq_phys(env_cpu(env),
524                  env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2),
525                  err->cr2);
526     cpu_vmexit(env, SVM_EXIT_NPF, exit_info_1, retaddr);
527 }
528 
529 static bool get_physical_address(CPUX86State *env, vaddr addr,
530                                  MMUAccessType access_type, int mmu_idx,
531                                  TranslateResult *out, TranslateFault *err)
532 {
533     TranslateParams in;
534     bool use_stage2 = env->hflags2 & HF2_NPT_MASK;
535 
536     in.addr = addr;
537     in.access_type = access_type;
538 
539     switch (mmu_idx) {
540     case MMU_PHYS_IDX:
541         break;
542 
543     case MMU_NESTED_IDX:
544         if (likely(use_stage2)) {
545             in.cr3 = env->nested_cr3;
546             in.pg_mode = env->nested_pg_mode;
547             in.mmu_idx = MMU_USER_IDX;
548             in.ptw_idx = MMU_PHYS_IDX;
549 
550             if (!mmu_translate(env, &in, out, err)) {
551                 err->stage2 = S2_GPA;
552                 return false;
553             }
554             return true;
555         }
556         break;
557 
558     default:
559         if (likely(env->cr[0] & CR0_PG_MASK)) {
560             in.cr3 = env->cr[3];
561             in.mmu_idx = mmu_idx;
562             in.ptw_idx = use_stage2 ? MMU_NESTED_IDX : MMU_PHYS_IDX;
563             in.pg_mode = get_pg_mode(env);
564 
565             if (in.pg_mode & PG_MODE_LMA) {
566                 /* test virtual address sign extension */
567                 int shift = in.pg_mode & PG_MODE_LA57 ? 56 : 47;
568                 int64_t sext = (int64_t)addr >> shift;
569                 if (sext != 0 && sext != -1) {
570                     *err = (TranslateFault){
571                         .exception_index = EXCP0D_GPF,
572                         .cr2 = addr,
573                     };
574                     return false;
575                 }
576             }
577             return mmu_translate(env, &in, out, err);
578         }
579         break;
580     }
581 
582     /* Translation disabled. */
583     out->paddr = addr & x86_get_a20_mask(env);
584 #ifdef TARGET_X86_64
585     if (!(env->hflags & HF_LMA_MASK)) {
586         /* Without long mode we can only address 32bits in real mode */
587         out->paddr = (uint32_t)out->paddr;
588     }
589 #endif
590     out->prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
591     out->page_size = TARGET_PAGE_SIZE;
592     return true;
593 }
594 
595 bool x86_cpu_tlb_fill(CPUState *cs, vaddr addr, int size,
596                       MMUAccessType access_type, int mmu_idx,
597                       bool probe, uintptr_t retaddr)
598 {
599     CPUX86State *env = cs->env_ptr;
600     TranslateResult out;
601     TranslateFault err;
602 
603     if (get_physical_address(env, addr, access_type, mmu_idx, &out, &err)) {
604         /*
605          * Even if 4MB pages, we map only one 4KB page in the cache to
606          * avoid filling it too fast.
607          */
608         assert(out.prot & (1 << access_type));
609         tlb_set_page_with_attrs(cs, addr & TARGET_PAGE_MASK,
610                                 out.paddr & TARGET_PAGE_MASK,
611                                 cpu_get_mem_attrs(env),
612                                 out.prot, mmu_idx, out.page_size);
613         return true;
614     }
615 
616     if (probe) {
617         /* This will be used if recursing for stage2 translation. */
618         env->error_code = err.error_code;
619         return false;
620     }
621 
622     if (err.stage2 != S2_NONE) {
623         raise_stage2(env, &err, retaddr);
624     }
625 
626     if (env->intercept_exceptions & (1 << err.exception_index)) {
627         /* cr2 is not modified in case of exceptions */
628         x86_stq_phys(cs, env->vm_vmcb +
629                      offsetof(struct vmcb, control.exit_info_2),
630                      err.cr2);
631     } else {
632         env->cr[2] = err.cr2;
633     }
634     raise_exception_err_ra(env, err.exception_index, err.error_code, retaddr);
635 }
636 
637 G_NORETURN void x86_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
638                                             MMUAccessType access_type,
639                                             int mmu_idx, uintptr_t retaddr)
640 {
641     X86CPU *cpu = X86_CPU(cs);
642     handle_unaligned_access(&cpu->env, vaddr, access_type, retaddr);
643 }
644