xref: /qemu/target/m68k/helper.c (revision 208b2d24)
1 /*
2  *  m68k op helpers
3  *
4  *  Copyright (c) 2006-2007 CodeSourcery
5  *  Written by Paul Brook
6  *
7  * This library is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * This library is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/gdbstub.h"
25 #include "exec/helper-proto.h"
26 #include "fpu/softfloat.h"
27 #include "qemu/qemu-print.h"
28 
29 #define SIGNBIT (1u << 31)
30 
31 /* Sort alphabetically, except for "any". */
32 static gint m68k_cpu_list_compare(gconstpointer a, gconstpointer b)
33 {
34     ObjectClass *class_a = (ObjectClass *)a;
35     ObjectClass *class_b = (ObjectClass *)b;
36     const char *name_a, *name_b;
37 
38     name_a = object_class_get_name(class_a);
39     name_b = object_class_get_name(class_b);
40     if (strcmp(name_a, "any-" TYPE_M68K_CPU) == 0) {
41         return 1;
42     } else if (strcmp(name_b, "any-" TYPE_M68K_CPU) == 0) {
43         return -1;
44     } else {
45         return strcasecmp(name_a, name_b);
46     }
47 }
48 
49 static void m68k_cpu_list_entry(gpointer data, gpointer user_data)
50 {
51     ObjectClass *c = data;
52     const char *typename;
53     char *name;
54 
55     typename = object_class_get_name(c);
56     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_M68K_CPU));
57     qemu_printf("%s\n", name);
58     g_free(name);
59 }
60 
61 void m68k_cpu_list(void)
62 {
63     GSList *list;
64 
65     list = object_class_get_list(TYPE_M68K_CPU, false);
66     list = g_slist_sort(list, m68k_cpu_list_compare);
67     g_slist_foreach(list, m68k_cpu_list_entry, NULL);
68     g_slist_free(list);
69 }
70 
71 static int cf_fpu_gdb_get_reg(CPUM68KState *env, uint8_t *mem_buf, int n)
72 {
73     if (n < 8) {
74         float_status s;
75         stfq_p(mem_buf, floatx80_to_float64(env->fregs[n].d, &s));
76         return 8;
77     }
78     switch (n) {
79     case 8: /* fpcontrol */
80         stl_be_p(mem_buf, env->fpcr);
81         return 4;
82     case 9: /* fpstatus */
83         stl_be_p(mem_buf, env->fpsr);
84         return 4;
85     case 10: /* fpiar, not implemented */
86         memset(mem_buf, 0, 4);
87         return 4;
88     }
89     return 0;
90 }
91 
92 static int cf_fpu_gdb_set_reg(CPUM68KState *env, uint8_t *mem_buf, int n)
93 {
94     if (n < 8) {
95         float_status s;
96         env->fregs[n].d = float64_to_floatx80(ldfq_p(mem_buf), &s);
97         return 8;
98     }
99     switch (n) {
100     case 8: /* fpcontrol */
101         cpu_m68k_set_fpcr(env, ldl_p(mem_buf));
102         return 4;
103     case 9: /* fpstatus */
104         env->fpsr = ldl_p(mem_buf);
105         return 4;
106     case 10: /* fpiar, not implemented */
107         return 4;
108     }
109     return 0;
110 }
111 
112 static int m68k_fpu_gdb_get_reg(CPUM68KState *env, uint8_t *mem_buf, int n)
113 {
114     if (n < 8) {
115         stw_be_p(mem_buf, env->fregs[n].l.upper);
116         memset(mem_buf + 2, 0, 2);
117         stq_be_p(mem_buf + 4, env->fregs[n].l.lower);
118         return 12;
119     }
120     switch (n) {
121     case 8: /* fpcontrol */
122         stl_be_p(mem_buf, env->fpcr);
123         return 4;
124     case 9: /* fpstatus */
125         stl_be_p(mem_buf, env->fpsr);
126         return 4;
127     case 10: /* fpiar, not implemented */
128         memset(mem_buf, 0, 4);
129         return 4;
130     }
131     return 0;
132 }
133 
134 static int m68k_fpu_gdb_set_reg(CPUM68KState *env, uint8_t *mem_buf, int n)
135 {
136     if (n < 8) {
137         env->fregs[n].l.upper = lduw_be_p(mem_buf);
138         env->fregs[n].l.lower = ldq_be_p(mem_buf + 4);
139         return 12;
140     }
141     switch (n) {
142     case 8: /* fpcontrol */
143         cpu_m68k_set_fpcr(env, ldl_p(mem_buf));
144         return 4;
145     case 9: /* fpstatus */
146         env->fpsr = ldl_p(mem_buf);
147         return 4;
148     case 10: /* fpiar, not implemented */
149         return 4;
150     }
151     return 0;
152 }
153 
154 void m68k_cpu_init_gdb(M68kCPU *cpu)
155 {
156     CPUState *cs = CPU(cpu);
157     CPUM68KState *env = &cpu->env;
158 
159     if (m68k_feature(env, M68K_FEATURE_CF_FPU)) {
160         gdb_register_coprocessor(cs, cf_fpu_gdb_get_reg, cf_fpu_gdb_set_reg,
161                                  11, "cf-fp.xml", 18);
162     } else if (m68k_feature(env, M68K_FEATURE_FPU)) {
163         gdb_register_coprocessor(cs, m68k_fpu_gdb_get_reg,
164                                  m68k_fpu_gdb_set_reg, 11, "m68k-fp.xml", 18);
165     }
166     /* TODO: Add [E]MAC registers.  */
167 }
168 
169 void HELPER(cf_movec_to)(CPUM68KState *env, uint32_t reg, uint32_t val)
170 {
171     switch (reg) {
172     case M68K_CR_CACR:
173         env->cacr = val;
174         m68k_switch_sp(env);
175         break;
176     case M68K_CR_ACR0:
177     case M68K_CR_ACR1:
178     case M68K_CR_ACR2:
179     case M68K_CR_ACR3:
180         /* TODO: Implement Access Control Registers.  */
181         break;
182     case M68K_CR_VBR:
183         env->vbr = val;
184         break;
185     /* TODO: Implement control registers.  */
186     default:
187         cpu_abort(env_cpu(env),
188                   "Unimplemented control register write 0x%x = 0x%x\n",
189                   reg, val);
190     }
191 }
192 
193 void HELPER(m68k_movec_to)(CPUM68KState *env, uint32_t reg, uint32_t val)
194 {
195     switch (reg) {
196     /* MC680[1234]0 */
197     case M68K_CR_SFC:
198         env->sfc = val & 7;
199         return;
200     case M68K_CR_DFC:
201         env->dfc = val & 7;
202         return;
203     case M68K_CR_VBR:
204         env->vbr = val;
205         return;
206     /* MC680[2346]0 */
207     case M68K_CR_CACR:
208         if (m68k_feature(env, M68K_FEATURE_M68020)) {
209             env->cacr = val & 0x0000000f;
210         } else if (m68k_feature(env, M68K_FEATURE_M68030)) {
211             env->cacr = val & 0x00003f1f;
212         } else if (m68k_feature(env, M68K_FEATURE_M68040)) {
213             env->cacr = val & 0x80008000;
214         } else if (m68k_feature(env, M68K_FEATURE_M68060)) {
215             env->cacr = val & 0xf8e0e000;
216         }
217         m68k_switch_sp(env);
218         return;
219     /* MC680[34]0 */
220     case M68K_CR_TC:
221         env->mmu.tcr = val;
222         return;
223     case M68K_CR_MMUSR:
224         env->mmu.mmusr = val;
225         return;
226     case M68K_CR_SRP:
227         env->mmu.srp = val;
228         return;
229     case M68K_CR_URP:
230         env->mmu.urp = val;
231         return;
232     case M68K_CR_USP:
233         env->sp[M68K_USP] = val;
234         return;
235     case M68K_CR_MSP:
236         env->sp[M68K_SSP] = val;
237         return;
238     case M68K_CR_ISP:
239         env->sp[M68K_ISP] = val;
240         return;
241     /* MC68040/MC68LC040 */
242     case M68K_CR_ITT0:
243         env->mmu.ttr[M68K_ITTR0] = val;
244         return;
245     case M68K_CR_ITT1:
246          env->mmu.ttr[M68K_ITTR1] = val;
247         return;
248     case M68K_CR_DTT0:
249         env->mmu.ttr[M68K_DTTR0] = val;
250         return;
251     case M68K_CR_DTT1:
252         env->mmu.ttr[M68K_DTTR1] = val;
253         return;
254     }
255     cpu_abort(env_cpu(env),
256               "Unimplemented control register write 0x%x = 0x%x\n",
257               reg, val);
258 }
259 
260 uint32_t HELPER(m68k_movec_from)(CPUM68KState *env, uint32_t reg)
261 {
262     switch (reg) {
263     /* MC680[1234]0 */
264     case M68K_CR_SFC:
265         return env->sfc;
266     case M68K_CR_DFC:
267         return env->dfc;
268     case M68K_CR_VBR:
269         return env->vbr;
270     /* MC680[234]0 */
271     case M68K_CR_CACR:
272         return env->cacr;
273     /* MC680[34]0 */
274     case M68K_CR_TC:
275         return env->mmu.tcr;
276     case M68K_CR_MMUSR:
277         return env->mmu.mmusr;
278     case M68K_CR_SRP:
279         return env->mmu.srp;
280     case M68K_CR_USP:
281         return env->sp[M68K_USP];
282     case M68K_CR_MSP:
283         return env->sp[M68K_SSP];
284     case M68K_CR_ISP:
285         return env->sp[M68K_ISP];
286     /* MC68040/MC68LC040 */
287     case M68K_CR_URP:
288         return env->mmu.urp;
289     case M68K_CR_ITT0:
290         return env->mmu.ttr[M68K_ITTR0];
291     case M68K_CR_ITT1:
292         return env->mmu.ttr[M68K_ITTR1];
293     case M68K_CR_DTT0:
294         return env->mmu.ttr[M68K_DTTR0];
295     case M68K_CR_DTT1:
296         return env->mmu.ttr[M68K_DTTR1];
297     }
298     cpu_abort(env_cpu(env), "Unimplemented control register read 0x%x\n",
299               reg);
300 }
301 
302 void HELPER(set_macsr)(CPUM68KState *env, uint32_t val)
303 {
304     uint32_t acc;
305     int8_t exthigh;
306     uint8_t extlow;
307     uint64_t regval;
308     int i;
309     if ((env->macsr ^ val) & (MACSR_FI | MACSR_SU)) {
310         for (i = 0; i < 4; i++) {
311             regval = env->macc[i];
312             exthigh = regval >> 40;
313             if (env->macsr & MACSR_FI) {
314                 acc = regval >> 8;
315                 extlow = regval;
316             } else {
317                 acc = regval;
318                 extlow = regval >> 32;
319             }
320             if (env->macsr & MACSR_FI) {
321                 regval = (((uint64_t)acc) << 8) | extlow;
322                 regval |= ((int64_t)exthigh) << 40;
323             } else if (env->macsr & MACSR_SU) {
324                 regval = acc | (((int64_t)extlow) << 32);
325                 regval |= ((int64_t)exthigh) << 40;
326             } else {
327                 regval = acc | (((uint64_t)extlow) << 32);
328                 regval |= ((uint64_t)(uint8_t)exthigh) << 40;
329             }
330             env->macc[i] = regval;
331         }
332     }
333     env->macsr = val;
334 }
335 
336 void m68k_switch_sp(CPUM68KState *env)
337 {
338     int new_sp;
339 
340     env->sp[env->current_sp] = env->aregs[7];
341     if (m68k_feature(env, M68K_FEATURE_M68000)) {
342         if (env->sr & SR_S) {
343             if (env->sr & SR_M) {
344                 new_sp = M68K_SSP;
345             } else {
346                 new_sp = M68K_ISP;
347             }
348         } else {
349             new_sp = M68K_USP;
350         }
351     } else {
352         new_sp = (env->sr & SR_S && env->cacr & M68K_CACR_EUSP)
353                  ? M68K_SSP : M68K_USP;
354     }
355     env->aregs[7] = env->sp[new_sp];
356     env->current_sp = new_sp;
357 }
358 
359 #if !defined(CONFIG_USER_ONLY)
360 /* MMU: 68040 only */
361 
362 static void print_address_zone(uint32_t logical, uint32_t physical,
363                                uint32_t size, int attr)
364 {
365     qemu_printf("%08x - %08x -> %08x - %08x %c ",
366                 logical, logical + size - 1,
367                 physical, physical + size - 1,
368                 attr & 4 ? 'W' : '-');
369     size >>= 10;
370     if (size < 1024) {
371         qemu_printf("(%d KiB)\n", size);
372     } else {
373         size >>= 10;
374         if (size < 1024) {
375             qemu_printf("(%d MiB)\n", size);
376         } else {
377             size >>= 10;
378             qemu_printf("(%d GiB)\n", size);
379         }
380     }
381 }
382 
383 static void dump_address_map(CPUM68KState *env, uint32_t root_pointer)
384 {
385     int i, j, k;
386     int tic_size, tic_shift;
387     uint32_t tib_mask;
388     uint32_t tia, tib, tic;
389     uint32_t logical = 0xffffffff, physical = 0xffffffff;
390     uint32_t first_logical = 0xffffffff, first_physical = 0xffffffff;
391     uint32_t last_logical, last_physical;
392     int32_t size;
393     int last_attr = -1, attr = -1;
394     CPUState *cs = env_cpu(env);
395     MemTxResult txres;
396 
397     if (env->mmu.tcr & M68K_TCR_PAGE_8K) {
398         /* 8k page */
399         tic_size = 32;
400         tic_shift = 13;
401         tib_mask = M68K_8K_PAGE_MASK;
402     } else {
403         /* 4k page */
404         tic_size = 64;
405         tic_shift = 12;
406         tib_mask = M68K_4K_PAGE_MASK;
407     }
408     for (i = 0; i < M68K_ROOT_POINTER_ENTRIES; i++) {
409         tia = address_space_ldl(cs->as, M68K_POINTER_BASE(root_pointer) + i * 4,
410                                 MEMTXATTRS_UNSPECIFIED, &txres);
411         if (txres != MEMTX_OK || !M68K_UDT_VALID(tia)) {
412             continue;
413         }
414         for (j = 0; j < M68K_ROOT_POINTER_ENTRIES; j++) {
415             tib = address_space_ldl(cs->as, M68K_POINTER_BASE(tia) + j * 4,
416                                     MEMTXATTRS_UNSPECIFIED, &txres);
417             if (txres != MEMTX_OK || !M68K_UDT_VALID(tib)) {
418                 continue;
419             }
420             for (k = 0; k < tic_size; k++) {
421                 tic = address_space_ldl(cs->as, (tib & tib_mask) + k * 4,
422                                         MEMTXATTRS_UNSPECIFIED, &txres);
423                 if (txres != MEMTX_OK || !M68K_PDT_VALID(tic)) {
424                     continue;
425                 }
426                 if (M68K_PDT_INDIRECT(tic)) {
427                     tic = address_space_ldl(cs->as, M68K_INDIRECT_POINTER(tic),
428                                             MEMTXATTRS_UNSPECIFIED, &txres);
429                     if (txres != MEMTX_OK) {
430                         continue;
431                     }
432                 }
433 
434                 last_logical = logical;
435                 logical = (i << M68K_TTS_ROOT_SHIFT) |
436                           (j << M68K_TTS_POINTER_SHIFT) |
437                           (k << tic_shift);
438 
439                 last_physical = physical;
440                 physical = tic & ~((1 << tic_shift) - 1);
441 
442                 last_attr = attr;
443                 attr = tic & ((1 << tic_shift) - 1);
444 
445                 if ((logical != (last_logical + (1 << tic_shift))) ||
446                     (physical != (last_physical + (1 << tic_shift))) ||
447                     (attr & 4) != (last_attr & 4)) {
448 
449                     if (first_logical != 0xffffffff) {
450                         size = last_logical + (1 << tic_shift) -
451                                first_logical;
452                         print_address_zone(first_logical,
453                                            first_physical, size, last_attr);
454                     }
455                     first_logical = logical;
456                     first_physical = physical;
457                 }
458             }
459         }
460     }
461     if (first_logical != logical || (attr & 4) != (last_attr & 4)) {
462         size = logical + (1 << tic_shift) - first_logical;
463         print_address_zone(first_logical, first_physical, size, last_attr);
464     }
465 }
466 
467 #define DUMP_CACHEFLAGS(a) \
468     switch (a & M68K_DESC_CACHEMODE) { \
469     case M68K_DESC_CM_WRTHRU: /* cachable, write-through */ \
470         qemu_printf("T"); \
471         break; \
472     case M68K_DESC_CM_COPYBK: /* cachable, copyback */ \
473         qemu_printf("C"); \
474         break; \
475     case M68K_DESC_CM_SERIAL: /* noncachable, serialized */ \
476         qemu_printf("S"); \
477         break; \
478     case M68K_DESC_CM_NCACHE: /* noncachable */ \
479         qemu_printf("N"); \
480         break; \
481     }
482 
483 static void dump_ttr(uint32_t ttr)
484 {
485     if ((ttr & M68K_TTR_ENABLED) == 0) {
486         qemu_printf("disabled\n");
487         return;
488     }
489     qemu_printf("Base: 0x%08x Mask: 0x%08x Control: ",
490                 ttr & M68K_TTR_ADDR_BASE,
491                 (ttr & M68K_TTR_ADDR_MASK) << M68K_TTR_ADDR_MASK_SHIFT);
492     switch (ttr & M68K_TTR_SFIELD) {
493     case M68K_TTR_SFIELD_USER:
494         qemu_printf("U");
495         break;
496     case M68K_TTR_SFIELD_SUPER:
497         qemu_printf("S");
498         break;
499     default:
500         qemu_printf("*");
501         break;
502     }
503     DUMP_CACHEFLAGS(ttr);
504     if (ttr & M68K_DESC_WRITEPROT) {
505         qemu_printf("R");
506     } else {
507         qemu_printf("W");
508     }
509     qemu_printf(" U: %d\n", (ttr & M68K_DESC_USERATTR) >>
510                                M68K_DESC_USERATTR_SHIFT);
511 }
512 
513 void dump_mmu(CPUM68KState *env)
514 {
515     if ((env->mmu.tcr & M68K_TCR_ENABLED) == 0) {
516         qemu_printf("Translation disabled\n");
517         return;
518     }
519     qemu_printf("Page Size: ");
520     if (env->mmu.tcr & M68K_TCR_PAGE_8K) {
521         qemu_printf("8kB\n");
522     } else {
523         qemu_printf("4kB\n");
524     }
525 
526     qemu_printf("MMUSR: ");
527     if (env->mmu.mmusr & M68K_MMU_B_040) {
528         qemu_printf("BUS ERROR\n");
529     } else {
530         qemu_printf("Phy=%08x Flags: ", env->mmu.mmusr & 0xfffff000);
531         /* flags found on the page descriptor */
532         if (env->mmu.mmusr & M68K_MMU_G_040) {
533             qemu_printf("G"); /* Global */
534         } else {
535             qemu_printf(".");
536         }
537         if (env->mmu.mmusr & M68K_MMU_S_040) {
538             qemu_printf("S"); /* Supervisor */
539         } else {
540             qemu_printf(".");
541         }
542         if (env->mmu.mmusr & M68K_MMU_M_040) {
543             qemu_printf("M"); /* Modified */
544         } else {
545             qemu_printf(".");
546         }
547         if (env->mmu.mmusr & M68K_MMU_WP_040) {
548             qemu_printf("W"); /* Write protect */
549         } else {
550             qemu_printf(".");
551         }
552         if (env->mmu.mmusr & M68K_MMU_T_040) {
553             qemu_printf("T"); /* Transparent */
554         } else {
555             qemu_printf(".");
556         }
557         if (env->mmu.mmusr & M68K_MMU_R_040) {
558             qemu_printf("R"); /* Resident */
559         } else {
560             qemu_printf(".");
561         }
562         qemu_printf(" Cache: ");
563         DUMP_CACHEFLAGS(env->mmu.mmusr);
564         qemu_printf(" U: %d\n", (env->mmu.mmusr >> 8) & 3);
565         qemu_printf("\n");
566     }
567 
568     qemu_printf("ITTR0: ");
569     dump_ttr(env->mmu.ttr[M68K_ITTR0]);
570     qemu_printf("ITTR1: ");
571     dump_ttr(env->mmu.ttr[M68K_ITTR1]);
572     qemu_printf("DTTR0: ");
573     dump_ttr(env->mmu.ttr[M68K_DTTR0]);
574     qemu_printf("DTTR1: ");
575     dump_ttr(env->mmu.ttr[M68K_DTTR1]);
576 
577     qemu_printf("SRP: 0x%08x\n", env->mmu.srp);
578     dump_address_map(env, env->mmu.srp);
579 
580     qemu_printf("URP: 0x%08x\n", env->mmu.urp);
581     dump_address_map(env, env->mmu.urp);
582 }
583 
584 static int check_TTR(uint32_t ttr, int *prot, target_ulong addr,
585                      int access_type)
586 {
587     uint32_t base, mask;
588 
589     /* check if transparent translation is enabled */
590     if ((ttr & M68K_TTR_ENABLED) == 0) {
591         return 0;
592     }
593 
594     /* check mode access */
595     switch (ttr & M68K_TTR_SFIELD) {
596     case M68K_TTR_SFIELD_USER:
597         /* match only if user */
598         if ((access_type & ACCESS_SUPER) != 0) {
599             return 0;
600         }
601         break;
602     case M68K_TTR_SFIELD_SUPER:
603         /* match only if supervisor */
604         if ((access_type & ACCESS_SUPER) == 0) {
605             return 0;
606         }
607         break;
608     default:
609         /* all other values disable mode matching (FC2) */
610         break;
611     }
612 
613     /* check address matching */
614 
615     base = ttr & M68K_TTR_ADDR_BASE;
616     mask = (ttr & M68K_TTR_ADDR_MASK) ^ M68K_TTR_ADDR_MASK;
617     mask <<= M68K_TTR_ADDR_MASK_SHIFT;
618 
619     if ((addr & mask) != (base & mask)) {
620         return 0;
621     }
622 
623     *prot = PAGE_READ | PAGE_EXEC;
624     if ((ttr & M68K_DESC_WRITEPROT) == 0) {
625         *prot |= PAGE_WRITE;
626     }
627 
628     return 1;
629 }
630 
631 static int get_physical_address(CPUM68KState *env, hwaddr *physical,
632                                 int *prot, target_ulong address,
633                                 int access_type, target_ulong *page_size)
634 {
635     CPUState *cs = env_cpu(env);
636     uint32_t entry;
637     uint32_t next;
638     target_ulong page_mask;
639     bool debug = access_type & ACCESS_DEBUG;
640     int page_bits;
641     int i;
642     MemTxResult txres;
643 
644     /* Transparent Translation (physical = logical) */
645     for (i = 0; i < M68K_MAX_TTR; i++) {
646         if (check_TTR(env->mmu.TTR(access_type, i),
647                       prot, address, access_type)) {
648             if (access_type & ACCESS_PTEST) {
649                 /* Transparent Translation Register bit */
650                 env->mmu.mmusr = M68K_MMU_T_040 | M68K_MMU_R_040;
651             }
652             *physical = address & TARGET_PAGE_MASK;
653             *page_size = TARGET_PAGE_SIZE;
654             return 0;
655         }
656     }
657 
658     /* Page Table Root Pointer */
659     *prot = PAGE_READ | PAGE_WRITE;
660     if (access_type & ACCESS_CODE) {
661         *prot |= PAGE_EXEC;
662     }
663     if (access_type & ACCESS_SUPER) {
664         next = env->mmu.srp;
665     } else {
666         next = env->mmu.urp;
667     }
668 
669     /* Root Index */
670     entry = M68K_POINTER_BASE(next) | M68K_ROOT_INDEX(address);
671 
672     next = address_space_ldl(cs->as, entry, MEMTXATTRS_UNSPECIFIED, &txres);
673     if (txres != MEMTX_OK) {
674         goto txfail;
675     }
676     if (!M68K_UDT_VALID(next)) {
677         return -1;
678     }
679     if (!(next & M68K_DESC_USED) && !debug) {
680         address_space_stl(cs->as, entry, next | M68K_DESC_USED,
681                           MEMTXATTRS_UNSPECIFIED, &txres);
682         if (txres != MEMTX_OK) {
683             goto txfail;
684         }
685     }
686     if (next & M68K_DESC_WRITEPROT) {
687         if (access_type & ACCESS_PTEST) {
688             env->mmu.mmusr |= M68K_MMU_WP_040;
689         }
690         *prot &= ~PAGE_WRITE;
691         if (access_type & ACCESS_STORE) {
692             return -1;
693         }
694     }
695 
696     /* Pointer Index */
697     entry = M68K_POINTER_BASE(next) | M68K_POINTER_INDEX(address);
698 
699     next = address_space_ldl(cs->as, entry, MEMTXATTRS_UNSPECIFIED, &txres);
700     if (txres != MEMTX_OK) {
701         goto txfail;
702     }
703     if (!M68K_UDT_VALID(next)) {
704         return -1;
705     }
706     if (!(next & M68K_DESC_USED) && !debug) {
707         address_space_stl(cs->as, entry, next | M68K_DESC_USED,
708                           MEMTXATTRS_UNSPECIFIED, &txres);
709         if (txres != MEMTX_OK) {
710             goto txfail;
711         }
712     }
713     if (next & M68K_DESC_WRITEPROT) {
714         if (access_type & ACCESS_PTEST) {
715             env->mmu.mmusr |= M68K_MMU_WP_040;
716         }
717         *prot &= ~PAGE_WRITE;
718         if (access_type & ACCESS_STORE) {
719             return -1;
720         }
721     }
722 
723     /* Page Index */
724     if (env->mmu.tcr & M68K_TCR_PAGE_8K) {
725         entry = M68K_8K_PAGE_BASE(next) | M68K_8K_PAGE_INDEX(address);
726     } else {
727         entry = M68K_4K_PAGE_BASE(next) | M68K_4K_PAGE_INDEX(address);
728     }
729 
730     next = address_space_ldl(cs->as, entry, MEMTXATTRS_UNSPECIFIED, &txres);
731     if (txres != MEMTX_OK) {
732         goto txfail;
733     }
734 
735     if (!M68K_PDT_VALID(next)) {
736         return -1;
737     }
738     if (M68K_PDT_INDIRECT(next)) {
739         next = address_space_ldl(cs->as, M68K_INDIRECT_POINTER(next),
740                                  MEMTXATTRS_UNSPECIFIED, &txres);
741         if (txres != MEMTX_OK) {
742             goto txfail;
743         }
744     }
745     if (access_type & ACCESS_STORE) {
746         if (next & M68K_DESC_WRITEPROT) {
747             if (!(next & M68K_DESC_USED) && !debug) {
748                 address_space_stl(cs->as, entry, next | M68K_DESC_USED,
749                                   MEMTXATTRS_UNSPECIFIED, &txres);
750                 if (txres != MEMTX_OK) {
751                     goto txfail;
752                 }
753             }
754         } else if ((next & (M68K_DESC_MODIFIED | M68K_DESC_USED)) !=
755                            (M68K_DESC_MODIFIED | M68K_DESC_USED) && !debug) {
756             address_space_stl(cs->as, entry,
757                               next | (M68K_DESC_MODIFIED | M68K_DESC_USED),
758                               MEMTXATTRS_UNSPECIFIED, &txres);
759             if (txres != MEMTX_OK) {
760                 goto txfail;
761             }
762         }
763     } else {
764         if (!(next & M68K_DESC_USED) && !debug) {
765             address_space_stl(cs->as, entry, next | M68K_DESC_USED,
766                               MEMTXATTRS_UNSPECIFIED, &txres);
767             if (txres != MEMTX_OK) {
768                 goto txfail;
769             }
770         }
771     }
772 
773     if (env->mmu.tcr & M68K_TCR_PAGE_8K) {
774         page_bits = 13;
775     } else {
776         page_bits = 12;
777     }
778     *page_size = 1 << page_bits;
779     page_mask = ~(*page_size - 1);
780     *physical = next & page_mask;
781 
782     if (access_type & ACCESS_PTEST) {
783         env->mmu.mmusr |= next & M68K_MMU_SR_MASK_040;
784         env->mmu.mmusr |= *physical & 0xfffff000;
785         env->mmu.mmusr |= M68K_MMU_R_040;
786     }
787 
788     if (next & M68K_DESC_WRITEPROT) {
789         *prot &= ~PAGE_WRITE;
790         if (access_type & ACCESS_STORE) {
791             return -1;
792         }
793     }
794     if (next & M68K_DESC_SUPERONLY) {
795         if ((access_type & ACCESS_SUPER) == 0) {
796             return -1;
797         }
798     }
799 
800     return 0;
801 
802 txfail:
803     /*
804      * A page table load/store failed. TODO: we should really raise a
805      * suitable guest fault here if this is not a debug access.
806      * For now just return that the translation failed.
807      */
808     return -1;
809 }
810 
811 hwaddr m68k_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
812 {
813     M68kCPU *cpu = M68K_CPU(cs);
814     CPUM68KState *env = &cpu->env;
815     hwaddr phys_addr;
816     int prot;
817     int access_type;
818     target_ulong page_size;
819 
820     if ((env->mmu.tcr & M68K_TCR_ENABLED) == 0) {
821         /* MMU disabled */
822         return addr;
823     }
824 
825     access_type = ACCESS_DATA | ACCESS_DEBUG;
826     if (env->sr & SR_S) {
827         access_type |= ACCESS_SUPER;
828     }
829     if (get_physical_address(env, &phys_addr, &prot,
830                              addr, access_type, &page_size) != 0) {
831         return -1;
832     }
833     return phys_addr;
834 }
835 
836 /*
837  * Notify CPU of a pending interrupt.  Prioritization and vectoring should
838  * be handled by the interrupt controller.  Real hardware only requests
839  * the vector when the interrupt is acknowledged by the CPU.  For
840  * simplicity we calculate it when the interrupt is signalled.
841  */
842 void m68k_set_irq_level(M68kCPU *cpu, int level, uint8_t vector)
843 {
844     CPUState *cs = CPU(cpu);
845     CPUM68KState *env = &cpu->env;
846 
847     env->pending_level = level;
848     env->pending_vector = vector;
849     if (level) {
850         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
851     } else {
852         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
853     }
854 }
855 
856 #endif
857 
858 bool m68k_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
859                        MMUAccessType qemu_access_type, int mmu_idx,
860                        bool probe, uintptr_t retaddr)
861 {
862     M68kCPU *cpu = M68K_CPU(cs);
863     CPUM68KState *env = &cpu->env;
864 
865 #ifndef CONFIG_USER_ONLY
866     hwaddr physical;
867     int prot;
868     int access_type;
869     int ret;
870     target_ulong page_size;
871 
872     if ((env->mmu.tcr & M68K_TCR_ENABLED) == 0) {
873         /* MMU disabled */
874         tlb_set_page(cs, address & TARGET_PAGE_MASK,
875                      address & TARGET_PAGE_MASK,
876                      PAGE_READ | PAGE_WRITE | PAGE_EXEC,
877                      mmu_idx, TARGET_PAGE_SIZE);
878         return true;
879     }
880 
881     if (qemu_access_type == MMU_INST_FETCH) {
882         access_type = ACCESS_CODE;
883     } else {
884         access_type = ACCESS_DATA;
885         if (qemu_access_type == MMU_DATA_STORE) {
886             access_type |= ACCESS_STORE;
887         }
888     }
889     if (mmu_idx != MMU_USER_IDX) {
890         access_type |= ACCESS_SUPER;
891     }
892 
893     ret = get_physical_address(&cpu->env, &physical, &prot,
894                                address, access_type, &page_size);
895     if (likely(ret == 0)) {
896         address &= TARGET_PAGE_MASK;
897         physical += address & (page_size - 1);
898         tlb_set_page(cs, address, physical,
899                      prot, mmu_idx, TARGET_PAGE_SIZE);
900         return true;
901     }
902 
903     if (probe) {
904         return false;
905     }
906 
907     /* page fault */
908     env->mmu.ssw = M68K_ATC_040;
909     switch (size) {
910     case 1:
911         env->mmu.ssw |= M68K_BA_SIZE_BYTE;
912         break;
913     case 2:
914         env->mmu.ssw |= M68K_BA_SIZE_WORD;
915         break;
916     case 4:
917         env->mmu.ssw |= M68K_BA_SIZE_LONG;
918         break;
919     }
920     if (access_type & ACCESS_SUPER) {
921         env->mmu.ssw |= M68K_TM_040_SUPER;
922     }
923     if (access_type & ACCESS_CODE) {
924         env->mmu.ssw |= M68K_TM_040_CODE;
925     } else {
926         env->mmu.ssw |= M68K_TM_040_DATA;
927     }
928     if (!(access_type & ACCESS_STORE)) {
929         env->mmu.ssw |= M68K_RW_040;
930     }
931 #endif
932 
933     cs->exception_index = EXCP_ACCESS;
934     env->mmu.ar = address;
935     cpu_loop_exit_restore(cs, retaddr);
936 }
937 
938 uint32_t HELPER(bitrev)(uint32_t x)
939 {
940     x = ((x >> 1) & 0x55555555u) | ((x << 1) & 0xaaaaaaaau);
941     x = ((x >> 2) & 0x33333333u) | ((x << 2) & 0xccccccccu);
942     x = ((x >> 4) & 0x0f0f0f0fu) | ((x << 4) & 0xf0f0f0f0u);
943     return bswap32(x);
944 }
945 
946 uint32_t HELPER(ff1)(uint32_t x)
947 {
948     int n;
949     for (n = 32; x; n--)
950         x >>= 1;
951     return n;
952 }
953 
954 uint32_t HELPER(sats)(uint32_t val, uint32_t v)
955 {
956     /* The result has the opposite sign to the original value.  */
957     if ((int32_t)v < 0) {
958         val = (((int32_t)val) >> 31) ^ SIGNBIT;
959     }
960     return val;
961 }
962 
963 void cpu_m68k_set_sr(CPUM68KState *env, uint32_t sr)
964 {
965     env->sr = sr & 0xffe0;
966     cpu_m68k_set_ccr(env, sr);
967     m68k_switch_sp(env);
968 }
969 
970 void HELPER(set_sr)(CPUM68KState *env, uint32_t val)
971 {
972     cpu_m68k_set_sr(env, val);
973 }
974 
975 /* MAC unit.  */
976 /*
977  * FIXME: The MAC unit implementation is a bit of a mess.  Some helpers
978  * take values,  others take register numbers and manipulate the contents
979  * in-place.
980  */
981 void HELPER(mac_move)(CPUM68KState *env, uint32_t dest, uint32_t src)
982 {
983     uint32_t mask;
984     env->macc[dest] = env->macc[src];
985     mask = MACSR_PAV0 << dest;
986     if (env->macsr & (MACSR_PAV0 << src))
987         env->macsr |= mask;
988     else
989         env->macsr &= ~mask;
990 }
991 
992 uint64_t HELPER(macmuls)(CPUM68KState *env, uint32_t op1, uint32_t op2)
993 {
994     int64_t product;
995     int64_t res;
996 
997     product = (uint64_t)op1 * op2;
998     res = (product << 24) >> 24;
999     if (res != product) {
1000         env->macsr |= MACSR_V;
1001         if (env->macsr & MACSR_OMC) {
1002             /* Make sure the accumulate operation overflows.  */
1003             if (product < 0)
1004                 res = ~(1ll << 50);
1005             else
1006                 res = 1ll << 50;
1007         }
1008     }
1009     return res;
1010 }
1011 
1012 uint64_t HELPER(macmulu)(CPUM68KState *env, uint32_t op1, uint32_t op2)
1013 {
1014     uint64_t product;
1015 
1016     product = (uint64_t)op1 * op2;
1017     if (product & (0xffffffull << 40)) {
1018         env->macsr |= MACSR_V;
1019         if (env->macsr & MACSR_OMC) {
1020             /* Make sure the accumulate operation overflows.  */
1021             product = 1ll << 50;
1022         } else {
1023             product &= ((1ull << 40) - 1);
1024         }
1025     }
1026     return product;
1027 }
1028 
1029 uint64_t HELPER(macmulf)(CPUM68KState *env, uint32_t op1, uint32_t op2)
1030 {
1031     uint64_t product;
1032     uint32_t remainder;
1033 
1034     product = (uint64_t)op1 * op2;
1035     if (env->macsr & MACSR_RT) {
1036         remainder = product & 0xffffff;
1037         product >>= 24;
1038         if (remainder > 0x800000)
1039             product++;
1040         else if (remainder == 0x800000)
1041             product += (product & 1);
1042     } else {
1043         product >>= 24;
1044     }
1045     return product;
1046 }
1047 
1048 void HELPER(macsats)(CPUM68KState *env, uint32_t acc)
1049 {
1050     int64_t tmp;
1051     int64_t result;
1052     tmp = env->macc[acc];
1053     result = ((tmp << 16) >> 16);
1054     if (result != tmp) {
1055         env->macsr |= MACSR_V;
1056     }
1057     if (env->macsr & MACSR_V) {
1058         env->macsr |= MACSR_PAV0 << acc;
1059         if (env->macsr & MACSR_OMC) {
1060             /*
1061              * The result is saturated to 32 bits, despite overflow occurring
1062              * at 48 bits.  Seems weird, but that's what the hardware docs
1063              * say.
1064              */
1065             result = (result >> 63) ^ 0x7fffffff;
1066         }
1067     }
1068     env->macc[acc] = result;
1069 }
1070 
1071 void HELPER(macsatu)(CPUM68KState *env, uint32_t acc)
1072 {
1073     uint64_t val;
1074 
1075     val = env->macc[acc];
1076     if (val & (0xffffull << 48)) {
1077         env->macsr |= MACSR_V;
1078     }
1079     if (env->macsr & MACSR_V) {
1080         env->macsr |= MACSR_PAV0 << acc;
1081         if (env->macsr & MACSR_OMC) {
1082             if (val > (1ull << 53))
1083                 val = 0;
1084             else
1085                 val = (1ull << 48) - 1;
1086         } else {
1087             val &= ((1ull << 48) - 1);
1088         }
1089     }
1090     env->macc[acc] = val;
1091 }
1092 
1093 void HELPER(macsatf)(CPUM68KState *env, uint32_t acc)
1094 {
1095     int64_t sum;
1096     int64_t result;
1097 
1098     sum = env->macc[acc];
1099     result = (sum << 16) >> 16;
1100     if (result != sum) {
1101         env->macsr |= MACSR_V;
1102     }
1103     if (env->macsr & MACSR_V) {
1104         env->macsr |= MACSR_PAV0 << acc;
1105         if (env->macsr & MACSR_OMC) {
1106             result = (result >> 63) ^ 0x7fffffffffffll;
1107         }
1108     }
1109     env->macc[acc] = result;
1110 }
1111 
1112 void HELPER(mac_set_flags)(CPUM68KState *env, uint32_t acc)
1113 {
1114     uint64_t val;
1115     val = env->macc[acc];
1116     if (val == 0) {
1117         env->macsr |= MACSR_Z;
1118     } else if (val & (1ull << 47)) {
1119         env->macsr |= MACSR_N;
1120     }
1121     if (env->macsr & (MACSR_PAV0 << acc)) {
1122         env->macsr |= MACSR_V;
1123     }
1124     if (env->macsr & MACSR_FI) {
1125         val = ((int64_t)val) >> 40;
1126         if (val != 0 && val != -1)
1127             env->macsr |= MACSR_EV;
1128     } else if (env->macsr & MACSR_SU) {
1129         val = ((int64_t)val) >> 32;
1130         if (val != 0 && val != -1)
1131             env->macsr |= MACSR_EV;
1132     } else {
1133         if ((val >> 32) != 0)
1134             env->macsr |= MACSR_EV;
1135     }
1136 }
1137 
1138 #define EXTSIGN(val, index) (     \
1139     (index == 0) ? (int8_t)(val) : ((index == 1) ? (int16_t)(val) : (val)) \
1140 )
1141 
1142 #define COMPUTE_CCR(op, x, n, z, v, c) {                                   \
1143     switch (op) {                                                          \
1144     case CC_OP_FLAGS:                                                      \
1145         /* Everything in place.  */                                        \
1146         break;                                                             \
1147     case CC_OP_ADDB:                                                       \
1148     case CC_OP_ADDW:                                                       \
1149     case CC_OP_ADDL:                                                       \
1150         res = n;                                                           \
1151         src2 = v;                                                          \
1152         src1 = EXTSIGN(res - src2, op - CC_OP_ADDB);                       \
1153         c = x;                                                             \
1154         z = n;                                                             \
1155         v = (res ^ src1) & ~(src1 ^ src2);                                 \
1156         break;                                                             \
1157     case CC_OP_SUBB:                                                       \
1158     case CC_OP_SUBW:                                                       \
1159     case CC_OP_SUBL:                                                       \
1160         res = n;                                                           \
1161         src2 = v;                                                          \
1162         src1 = EXTSIGN(res + src2, op - CC_OP_SUBB);                       \
1163         c = x;                                                             \
1164         z = n;                                                             \
1165         v = (res ^ src1) & (src1 ^ src2);                                  \
1166         break;                                                             \
1167     case CC_OP_CMPB:                                                       \
1168     case CC_OP_CMPW:                                                       \
1169     case CC_OP_CMPL:                                                       \
1170         src1 = n;                                                          \
1171         src2 = v;                                                          \
1172         res = EXTSIGN(src1 - src2, op - CC_OP_CMPB);                       \
1173         n = res;                                                           \
1174         z = res;                                                           \
1175         c = src1 < src2;                                                   \
1176         v = (res ^ src1) & (src1 ^ src2);                                  \
1177         break;                                                             \
1178     case CC_OP_LOGIC:                                                      \
1179         c = v = 0;                                                         \
1180         z = n;                                                             \
1181         break;                                                             \
1182     default:                                                               \
1183         cpu_abort(env_cpu(env), "Bad CC_OP %d", op);                       \
1184     }                                                                      \
1185 } while (0)
1186 
1187 uint32_t cpu_m68k_get_ccr(CPUM68KState *env)
1188 {
1189     uint32_t x, c, n, z, v;
1190     uint32_t res, src1, src2;
1191 
1192     x = env->cc_x;
1193     n = env->cc_n;
1194     z = env->cc_z;
1195     v = env->cc_v;
1196     c = env->cc_c;
1197 
1198     COMPUTE_CCR(env->cc_op, x, n, z, v, c);
1199 
1200     n = n >> 31;
1201     z = (z == 0);
1202     v = v >> 31;
1203 
1204     return x * CCF_X + n * CCF_N + z * CCF_Z + v * CCF_V + c * CCF_C;
1205 }
1206 
1207 uint32_t HELPER(get_ccr)(CPUM68KState *env)
1208 {
1209     return cpu_m68k_get_ccr(env);
1210 }
1211 
1212 void cpu_m68k_set_ccr(CPUM68KState *env, uint32_t ccr)
1213 {
1214     env->cc_x = (ccr & CCF_X ? 1 : 0);
1215     env->cc_n = (ccr & CCF_N ? -1 : 0);
1216     env->cc_z = (ccr & CCF_Z ? 0 : 1);
1217     env->cc_v = (ccr & CCF_V ? -1 : 0);
1218     env->cc_c = (ccr & CCF_C ? 1 : 0);
1219     env->cc_op = CC_OP_FLAGS;
1220 }
1221 
1222 void HELPER(set_ccr)(CPUM68KState *env, uint32_t ccr)
1223 {
1224     cpu_m68k_set_ccr(env, ccr);
1225 }
1226 
1227 void HELPER(flush_flags)(CPUM68KState *env, uint32_t cc_op)
1228 {
1229     uint32_t res, src1, src2;
1230 
1231     COMPUTE_CCR(cc_op, env->cc_x, env->cc_n, env->cc_z, env->cc_v, env->cc_c);
1232     env->cc_op = CC_OP_FLAGS;
1233 }
1234 
1235 uint32_t HELPER(get_macf)(CPUM68KState *env, uint64_t val)
1236 {
1237     int rem;
1238     uint32_t result;
1239 
1240     if (env->macsr & MACSR_SU) {
1241         /* 16-bit rounding.  */
1242         rem = val & 0xffffff;
1243         val = (val >> 24) & 0xffffu;
1244         if (rem > 0x800000)
1245             val++;
1246         else if (rem == 0x800000)
1247             val += (val & 1);
1248     } else if (env->macsr & MACSR_RT) {
1249         /* 32-bit rounding.  */
1250         rem = val & 0xff;
1251         val >>= 8;
1252         if (rem > 0x80)
1253             val++;
1254         else if (rem == 0x80)
1255             val += (val & 1);
1256     } else {
1257         /* No rounding.  */
1258         val >>= 8;
1259     }
1260     if (env->macsr & MACSR_OMC) {
1261         /* Saturate.  */
1262         if (env->macsr & MACSR_SU) {
1263             if (val != (uint16_t) val) {
1264                 result = ((val >> 63) ^ 0x7fff) & 0xffff;
1265             } else {
1266                 result = val & 0xffff;
1267             }
1268         } else {
1269             if (val != (uint32_t)val) {
1270                 result = ((uint32_t)(val >> 63) & 0x7fffffff);
1271             } else {
1272                 result = (uint32_t)val;
1273             }
1274         }
1275     } else {
1276         /* No saturation.  */
1277         if (env->macsr & MACSR_SU) {
1278             result = val & 0xffff;
1279         } else {
1280             result = (uint32_t)val;
1281         }
1282     }
1283     return result;
1284 }
1285 
1286 uint32_t HELPER(get_macs)(uint64_t val)
1287 {
1288     if (val == (int32_t)val) {
1289         return (int32_t)val;
1290     } else {
1291         return (val >> 61) ^ ~SIGNBIT;
1292     }
1293 }
1294 
1295 uint32_t HELPER(get_macu)(uint64_t val)
1296 {
1297     if ((val >> 32) == 0) {
1298         return (uint32_t)val;
1299     } else {
1300         return 0xffffffffu;
1301     }
1302 }
1303 
1304 uint32_t HELPER(get_mac_extf)(CPUM68KState *env, uint32_t acc)
1305 {
1306     uint32_t val;
1307     val = env->macc[acc] & 0x00ff;
1308     val |= (env->macc[acc] >> 32) & 0xff00;
1309     val |= (env->macc[acc + 1] << 16) & 0x00ff0000;
1310     val |= (env->macc[acc + 1] >> 16) & 0xff000000;
1311     return val;
1312 }
1313 
1314 uint32_t HELPER(get_mac_exti)(CPUM68KState *env, uint32_t acc)
1315 {
1316     uint32_t val;
1317     val = (env->macc[acc] >> 32) & 0xffff;
1318     val |= (env->macc[acc + 1] >> 16) & 0xffff0000;
1319     return val;
1320 }
1321 
1322 void HELPER(set_mac_extf)(CPUM68KState *env, uint32_t val, uint32_t acc)
1323 {
1324     int64_t res;
1325     int32_t tmp;
1326     res = env->macc[acc] & 0xffffffff00ull;
1327     tmp = (int16_t)(val & 0xff00);
1328     res |= ((int64_t)tmp) << 32;
1329     res |= val & 0xff;
1330     env->macc[acc] = res;
1331     res = env->macc[acc + 1] & 0xffffffff00ull;
1332     tmp = (val & 0xff000000);
1333     res |= ((int64_t)tmp) << 16;
1334     res |= (val >> 16) & 0xff;
1335     env->macc[acc + 1] = res;
1336 }
1337 
1338 void HELPER(set_mac_exts)(CPUM68KState *env, uint32_t val, uint32_t acc)
1339 {
1340     int64_t res;
1341     int32_t tmp;
1342     res = (uint32_t)env->macc[acc];
1343     tmp = (int16_t)val;
1344     res |= ((int64_t)tmp) << 32;
1345     env->macc[acc] = res;
1346     res = (uint32_t)env->macc[acc + 1];
1347     tmp = val & 0xffff0000;
1348     res |= (int64_t)tmp << 16;
1349     env->macc[acc + 1] = res;
1350 }
1351 
1352 void HELPER(set_mac_extu)(CPUM68KState *env, uint32_t val, uint32_t acc)
1353 {
1354     uint64_t res;
1355     res = (uint32_t)env->macc[acc];
1356     res |= ((uint64_t)(val & 0xffff)) << 32;
1357     env->macc[acc] = res;
1358     res = (uint32_t)env->macc[acc + 1];
1359     res |= (uint64_t)(val & 0xffff0000) << 16;
1360     env->macc[acc + 1] = res;
1361 }
1362 
1363 #if defined(CONFIG_SOFTMMU)
1364 void HELPER(ptest)(CPUM68KState *env, uint32_t addr, uint32_t is_read)
1365 {
1366     hwaddr physical;
1367     int access_type;
1368     int prot;
1369     int ret;
1370     target_ulong page_size;
1371 
1372     access_type = ACCESS_PTEST;
1373     if (env->dfc & 4) {
1374         access_type |= ACCESS_SUPER;
1375     }
1376     if ((env->dfc & 3) == 2) {
1377         access_type |= ACCESS_CODE;
1378     }
1379     if (!is_read) {
1380         access_type |= ACCESS_STORE;
1381     }
1382 
1383     env->mmu.mmusr = 0;
1384     env->mmu.ssw = 0;
1385     ret = get_physical_address(env, &physical, &prot, addr,
1386                                access_type, &page_size);
1387     if (ret == 0) {
1388         addr &= TARGET_PAGE_MASK;
1389         physical += addr & (page_size - 1);
1390         tlb_set_page(env_cpu(env), addr, physical,
1391                      prot, access_type & ACCESS_SUPER ?
1392                      MMU_KERNEL_IDX : MMU_USER_IDX, page_size);
1393     }
1394 }
1395 
1396 void HELPER(pflush)(CPUM68KState *env, uint32_t addr, uint32_t opmode)
1397 {
1398     CPUState *cs = env_cpu(env);
1399 
1400     switch (opmode) {
1401     case 0: /* Flush page entry if not global */
1402     case 1: /* Flush page entry */
1403         tlb_flush_page(cs, addr);
1404         break;
1405     case 2: /* Flush all except global entries */
1406         tlb_flush(cs);
1407         break;
1408     case 3: /* Flush all entries */
1409         tlb_flush(cs);
1410         break;
1411     }
1412 }
1413 
1414 void HELPER(reset)(CPUM68KState *env)
1415 {
1416     /* FIXME: reset all except CPU */
1417 }
1418 #endif
1419