xref: /qemu/target/mips/internal.h (revision d0fb9657)
1 /*
2  * MIPS internal definitions and helpers
3  *
4  * This work is licensed under the terms of the GNU GPL, version 2 or later.
5  * See the COPYING file in the top-level directory.
6  */
7 
8 #ifndef MIPS_INTERNAL_H
9 #define MIPS_INTERNAL_H
10 
11 #include "exec/memattrs.h"
12 #ifdef CONFIG_TCG
13 #include "tcg/tcg-internal.h"
14 #endif
15 
16 /*
17  * MMU types, the first four entries have the same layout as the
18  * CP0C0_MT field.
19  */
20 enum mips_mmu_types {
21     MMU_TYPE_NONE       = 0,
22     MMU_TYPE_R4000      = 1,    /* Standard TLB */
23     MMU_TYPE_BAT        = 2,    /* Block Address Translation */
24     MMU_TYPE_FMT        = 3,    /* Fixed Mapping */
25     MMU_TYPE_DVF        = 4,    /* Dual VTLB and FTLB */
26     MMU_TYPE_R3000,
27     MMU_TYPE_R6000,
28     MMU_TYPE_R8000
29 };
30 
31 struct mips_def_t {
32     const char *name;
33     int32_t CP0_PRid;
34     int32_t CP0_Config0;
35     int32_t CP0_Config1;
36     int32_t CP0_Config2;
37     int32_t CP0_Config3;
38     int32_t CP0_Config4;
39     int32_t CP0_Config4_rw_bitmask;
40     int32_t CP0_Config5;
41     int32_t CP0_Config5_rw_bitmask;
42     int32_t CP0_Config6;
43     int32_t CP0_Config6_rw_bitmask;
44     int32_t CP0_Config7;
45     int32_t CP0_Config7_rw_bitmask;
46     target_ulong CP0_LLAddr_rw_bitmask;
47     int CP0_LLAddr_shift;
48     int32_t SYNCI_Step;
49     int32_t CCRes;
50     int32_t CP0_Status_rw_bitmask;
51     int32_t CP0_TCStatus_rw_bitmask;
52     int32_t CP0_SRSCtl;
53     int32_t CP1_fcr0;
54     int32_t CP1_fcr31_rw_bitmask;
55     int32_t CP1_fcr31;
56     int32_t MSAIR;
57     int32_t SEGBITS;
58     int32_t PABITS;
59     int32_t CP0_SRSConf0_rw_bitmask;
60     int32_t CP0_SRSConf0;
61     int32_t CP0_SRSConf1_rw_bitmask;
62     int32_t CP0_SRSConf1;
63     int32_t CP0_SRSConf2_rw_bitmask;
64     int32_t CP0_SRSConf2;
65     int32_t CP0_SRSConf3_rw_bitmask;
66     int32_t CP0_SRSConf3;
67     int32_t CP0_SRSConf4_rw_bitmask;
68     int32_t CP0_SRSConf4;
69     int32_t CP0_PageGrain_rw_bitmask;
70     int32_t CP0_PageGrain;
71     target_ulong CP0_EBaseWG_rw_bitmask;
72     uint64_t insn_flags;
73     enum mips_mmu_types mmu_type;
74     int32_t SAARP;
75 };
76 
77 extern const char regnames[32][4];
78 extern const char fregnames[32][4];
79 
80 extern const struct mips_def_t mips_defs[];
81 extern const int mips_defs_number;
82 
83 int mips_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
84 int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85 
86 #define USEG_LIMIT      ((target_ulong)(int32_t)0x7FFFFFFFUL)
87 #define KSEG0_BASE      ((target_ulong)(int32_t)0x80000000UL)
88 #define KSEG1_BASE      ((target_ulong)(int32_t)0xA0000000UL)
89 #define KSEG2_BASE      ((target_ulong)(int32_t)0xC0000000UL)
90 #define KSEG3_BASE      ((target_ulong)(int32_t)0xE0000000UL)
91 
92 #define KVM_KSEG0_BASE  ((target_ulong)(int32_t)0x40000000UL)
93 #define KVM_KSEG2_BASE  ((target_ulong)(int32_t)0x60000000UL)
94 
95 #if !defined(CONFIG_USER_ONLY)
96 
97 enum {
98     TLBRET_XI = -6,
99     TLBRET_RI = -5,
100     TLBRET_DIRTY = -4,
101     TLBRET_INVALID = -3,
102     TLBRET_NOMATCH = -2,
103     TLBRET_BADADDR = -1,
104     TLBRET_MATCH = 0
105 };
106 
107 int get_physical_address(CPUMIPSState *env, hwaddr *physical,
108                          int *prot, target_ulong real_address,
109                          MMUAccessType access_type, int mmu_idx);
110 hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
111 
112 typedef struct r4k_tlb_t r4k_tlb_t;
113 struct r4k_tlb_t {
114     target_ulong VPN;
115     uint32_t PageMask;
116     uint16_t ASID;
117     uint32_t MMID;
118     unsigned int G:1;
119     unsigned int C0:3;
120     unsigned int C1:3;
121     unsigned int V0:1;
122     unsigned int V1:1;
123     unsigned int D0:1;
124     unsigned int D1:1;
125     unsigned int XI0:1;
126     unsigned int XI1:1;
127     unsigned int RI0:1;
128     unsigned int RI1:1;
129     unsigned int EHINV:1;
130     uint64_t PFN[2];
131 };
132 
133 struct CPUMIPSTLBContext {
134     uint32_t nb_tlb;
135     uint32_t tlb_in_use;
136     int (*map_address)(struct CPUMIPSState *env, hwaddr *physical, int *prot,
137                        target_ulong address, MMUAccessType access_type);
138     void (*helper_tlbwi)(struct CPUMIPSState *env);
139     void (*helper_tlbwr)(struct CPUMIPSState *env);
140     void (*helper_tlbp)(struct CPUMIPSState *env);
141     void (*helper_tlbr)(struct CPUMIPSState *env);
142     void (*helper_tlbinv)(struct CPUMIPSState *env);
143     void (*helper_tlbinvf)(struct CPUMIPSState *env);
144     union {
145         struct {
146             r4k_tlb_t tlb[MIPS_TLB_MAX];
147         } r4k;
148     } mmu;
149 };
150 
151 void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
152 void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
153 void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
154 
155 extern const VMStateDescription vmstate_mips_cpu;
156 
157 #endif /* !CONFIG_USER_ONLY */
158 
159 #define cpu_signal_handler cpu_mips_signal_handler
160 
161 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
162 {
163     return (env->CP0_Status & (1 << CP0St_IE)) &&
164         !(env->CP0_Status & (1 << CP0St_EXL)) &&
165         !(env->CP0_Status & (1 << CP0St_ERL)) &&
166         !(env->hflags & MIPS_HFLAG_DM) &&
167         /*
168          * Note that the TCStatus IXMT field is initialized to zero,
169          * and only MT capable cores can set it to one. So we don't
170          * need to check for MT capabilities here.
171          */
172         !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
173 }
174 
175 /* Check if there is pending and not masked out interrupt */
176 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
177 {
178     int32_t pending;
179     int32_t status;
180     bool r;
181 
182     pending = env->CP0_Cause & CP0Ca_IP_mask;
183     status = env->CP0_Status & CP0Ca_IP_mask;
184 
185     if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
186         /*
187          * A MIPS configured with a vectorizing external interrupt controller
188          * will feed a vector into the Cause pending lines. The core treats
189          * the status lines as a vector level, not as individual masks.
190          */
191         r = pending > status;
192     } else {
193         /*
194          * A MIPS configured with compatibility or VInt (Vectored Interrupts)
195          * treats the pending lines as individual interrupt lines, the status
196          * lines are individual masks.
197          */
198         r = (pending & status) != 0;
199     }
200     return r;
201 }
202 
203 void msa_reset(CPUMIPSState *env);
204 
205 /* cp0_timer.c */
206 uint32_t cpu_mips_get_count(CPUMIPSState *env);
207 void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
208 void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
209 void cpu_mips_start_count(CPUMIPSState *env);
210 void cpu_mips_stop_count(CPUMIPSState *env);
211 
212 static inline void mips_env_set_pc(CPUMIPSState *env, target_ulong value)
213 {
214     env->active_tc.PC = value & ~(target_ulong)1;
215     if (value & 1) {
216         env->hflags |= MIPS_HFLAG_M16;
217     } else {
218         env->hflags &= ~(MIPS_HFLAG_M16);
219     }
220 }
221 
222 static inline void restore_pamask(CPUMIPSState *env)
223 {
224     if (env->hflags & MIPS_HFLAG_ELPA) {
225         env->PAMask = (1ULL << env->PABITS) - 1;
226     } else {
227         env->PAMask = PAMASK_BASE;
228     }
229 }
230 
231 static inline int mips_vpe_active(CPUMIPSState *env)
232 {
233     int active = 1;
234 
235     /* Check that the VPE is enabled.  */
236     if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
237         active = 0;
238     }
239     /* Check that the VPE is activated.  */
240     if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
241         active = 0;
242     }
243 
244     /*
245      * Now verify that there are active thread contexts in the VPE.
246      *
247      * This assumes the CPU model will internally reschedule threads
248      * if the active one goes to sleep. If there are no threads available
249      * the active one will be in a sleeping state, and we can turn off
250      * the entire VPE.
251      */
252     if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
253         /* TC is not activated.  */
254         active = 0;
255     }
256     if (env->active_tc.CP0_TCHalt & 1) {
257         /* TC is in halt state.  */
258         active = 0;
259     }
260 
261     return active;
262 }
263 
264 static inline int mips_vp_active(CPUMIPSState *env)
265 {
266     CPUState *other_cs = first_cpu;
267 
268     /* Check if the VP disabled other VPs (which means the VP is enabled) */
269     if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
270         return 1;
271     }
272 
273     /* Check if the virtual processor is disabled due to a DVP */
274     CPU_FOREACH(other_cs) {
275         MIPSCPU *other_cpu = MIPS_CPU(other_cs);
276         if ((&other_cpu->env != env) &&
277             ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
278             return 0;
279         }
280     }
281     return 1;
282 }
283 
284 static inline void compute_hflags(CPUMIPSState *env)
285 {
286     env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
287                      MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
288                      MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
289                      MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA |
290                      MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
291     if (env->CP0_Status & (1 << CP0St_ERL)) {
292         env->hflags |= MIPS_HFLAG_ERL;
293     }
294     if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
295         !(env->CP0_Status & (1 << CP0St_ERL)) &&
296         !(env->hflags & MIPS_HFLAG_DM)) {
297         env->hflags |= (env->CP0_Status >> CP0St_KSU) &
298                        MIPS_HFLAG_KSU;
299     }
300 #if defined(TARGET_MIPS64)
301     if ((env->insn_flags & ISA_MIPS3) &&
302         (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
303          (env->CP0_Status & (1 << CP0St_PX)) ||
304          (env->CP0_Status & (1 << CP0St_UX)))) {
305         env->hflags |= MIPS_HFLAG_64;
306     }
307 
308     if (!(env->insn_flags & ISA_MIPS3)) {
309         env->hflags |= MIPS_HFLAG_AWRAP;
310     } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
311                !(env->CP0_Status & (1 << CP0St_UX))) {
312         env->hflags |= MIPS_HFLAG_AWRAP;
313     } else if (env->insn_flags & ISA_MIPS_R6) {
314         /* Address wrapping for Supervisor and Kernel is specified in R6 */
315         if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
316              !(env->CP0_Status & (1 << CP0St_SX))) ||
317             (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
318              !(env->CP0_Status & (1 << CP0St_KX)))) {
319             env->hflags |= MIPS_HFLAG_AWRAP;
320         }
321     }
322 #endif
323     if (((env->CP0_Status & (1 << CP0St_CU0)) &&
324          !(env->insn_flags & ISA_MIPS_R6)) ||
325         !(env->hflags & MIPS_HFLAG_KSU)) {
326         env->hflags |= MIPS_HFLAG_CP0;
327     }
328     if (env->CP0_Status & (1 << CP0St_CU1)) {
329         env->hflags |= MIPS_HFLAG_FPU;
330     }
331     if (env->CP0_Status & (1 << CP0St_FR)) {
332         env->hflags |= MIPS_HFLAG_F64;
333     }
334     if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
335         (env->CP0_Config5 & (1 << CP0C5_SBRI))) {
336         env->hflags |= MIPS_HFLAG_SBRI;
337     }
338     if (env->insn_flags & ASE_DSP_R3) {
339         /*
340          * Our cpu supports DSP R3 ASE, so enable
341          * access to DSP R3 resources.
342          */
343         if (env->CP0_Status & (1 << CP0St_MX)) {
344             env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
345                            MIPS_HFLAG_DSP_R3;
346         }
347     } else if (env->insn_flags & ASE_DSP_R2) {
348         /*
349          * Our cpu supports DSP R2 ASE, so enable
350          * access to DSP R2 resources.
351          */
352         if (env->CP0_Status & (1 << CP0St_MX)) {
353             env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2;
354         }
355 
356     } else if (env->insn_flags & ASE_DSP) {
357         /*
358          * Our cpu supports DSP ASE, so enable
359          * access to DSP resources.
360          */
361         if (env->CP0_Status & (1 << CP0St_MX)) {
362             env->hflags |= MIPS_HFLAG_DSP;
363         }
364 
365     }
366     if (env->insn_flags & ISA_MIPS_R2) {
367         if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
368             env->hflags |= MIPS_HFLAG_COP1X;
369         }
370     } else if (env->insn_flags & ISA_MIPS_R1) {
371         if (env->hflags & MIPS_HFLAG_64) {
372             env->hflags |= MIPS_HFLAG_COP1X;
373         }
374     } else if (env->insn_flags & ISA_MIPS4) {
375         /*
376          * All supported MIPS IV CPUs use the XX (CU3) to enable
377          * and disable the MIPS IV extensions to the MIPS III ISA.
378          * Some other MIPS IV CPUs ignore the bit, so the check here
379          * would be too restrictive for them.
380          */
381         if (env->CP0_Status & (1U << CP0St_CU3)) {
382             env->hflags |= MIPS_HFLAG_COP1X;
383         }
384     }
385     if (ase_msa_available(env)) {
386         if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
387             env->hflags |= MIPS_HFLAG_MSA;
388         }
389     }
390     if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
391         if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
392             env->hflags |= MIPS_HFLAG_FRE;
393         }
394     }
395     if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
396         if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
397             env->hflags |= MIPS_HFLAG_ELPA;
398         }
399     }
400 }
401 
402 #endif
403