xref: /qemu/target/ppc/kvm.c (revision b88651cb)
1 /*
2  * PowerPC implementation of KVM hooks
3  *
4  * Copyright IBM Corp. 2007
5  * Copyright (C) 2011 Freescale Semiconductor, Inc.
6  *
7  * Authors:
8  *  Jerone Young <jyoung5@us.ibm.com>
9  *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10  *  Hollis Blanchard <hollisb@us.ibm.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2 or later.
13  * See the COPYING file in the top-level directory.
14  *
15  */
16 
17 #include "qemu/osdep.h"
18 #include <dirent.h>
19 #include <sys/ioctl.h>
20 #include <sys/vfs.h>
21 
22 #include <linux/kvm.h>
23 
24 #include "qapi/error.h"
25 #include "qemu/error-report.h"
26 #include "cpu.h"
27 #include "cpu-models.h"
28 #include "qemu/timer.h"
29 #include "sysemu/hw_accel.h"
30 #include "kvm_ppc.h"
31 #include "sysemu/cpus.h"
32 #include "sysemu/device_tree.h"
33 #include "mmu-hash64.h"
34 
35 #include "hw/sysbus.h"
36 #include "hw/ppc/spapr.h"
37 #include "hw/ppc/spapr_cpu_core.h"
38 #include "hw/hw.h"
39 #include "hw/ppc/ppc.h"
40 #include "migration/qemu-file-types.h"
41 #include "sysemu/watchdog.h"
42 #include "trace.h"
43 #include "exec/gdbstub.h"
44 #include "exec/memattrs.h"
45 #include "exec/ram_addr.h"
46 #include "sysemu/hostmem.h"
47 #include "qemu/cutils.h"
48 #include "qemu/main-loop.h"
49 #include "qemu/mmap-alloc.h"
50 #include "elf.h"
51 #include "sysemu/kvm_int.h"
52 
53 #define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"
54 
55 #define DEBUG_RETURN_GUEST 0
56 #define DEBUG_RETURN_GDB   1
57 
58 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
59     KVM_CAP_LAST_INFO
60 };
61 
62 static int cap_interrupt_unset;
63 static int cap_segstate;
64 static int cap_booke_sregs;
65 static int cap_ppc_smt;
66 static int cap_ppc_smt_possible;
67 static int cap_spapr_tce;
68 static int cap_spapr_tce_64;
69 static int cap_spapr_multitce;
70 static int cap_spapr_vfio;
71 static int cap_hior;
72 static int cap_one_reg;
73 static int cap_epr;
74 static int cap_ppc_watchdog;
75 static int cap_papr;
76 static int cap_htab_fd;
77 static int cap_fixup_hcalls;
78 static int cap_htm;             /* Hardware transactional memory support */
79 static int cap_mmu_radix;
80 static int cap_mmu_hash_v3;
81 static int cap_xive;
82 static int cap_resize_hpt;
83 static int cap_ppc_pvr_compat;
84 static int cap_ppc_safe_cache;
85 static int cap_ppc_safe_bounds_check;
86 static int cap_ppc_safe_indirect_branch;
87 static int cap_ppc_count_cache_flush_assist;
88 static int cap_ppc_nested_kvm_hv;
89 static int cap_large_decr;
90 static int cap_fwnmi;
91 static int cap_rpt_invalidate;
92 
93 static uint32_t debug_inst_opcode;
94 
95 /*
96  * Check whether we are running with KVM-PR (instead of KVM-HV).  This
97  * should only be used for fallback tests - generally we should use
98  * explicit capabilities for the features we want, rather than
99  * assuming what is/isn't available depending on the KVM variant.
100  */
101 static bool kvmppc_is_pr(KVMState *ks)
102 {
103     /* Assume KVM-PR if the GET_PVINFO capability is available */
104     return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
105 }
106 
107 static int kvm_ppc_register_host_cpu_type(void);
108 static void kvmppc_get_cpu_characteristics(KVMState *s);
109 static int kvmppc_get_dec_bits(void);
110 
111 int kvm_arch_init(MachineState *ms, KVMState *s)
112 {
113     cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
114     cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
115     cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
116     cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
117     cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
118     cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
119     cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
120     cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
121     cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
122     cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
123     cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
124     cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
125     /*
126      * Note: we don't set cap_papr here, because this capability is
127      * only activated after this by kvmppc_set_papr()
128      */
129     cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
130     cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
131     cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
132     cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
133     cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
134     cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
135     cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
136     cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
137     kvmppc_get_cpu_characteristics(s);
138     cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
139     cap_large_decr = kvmppc_get_dec_bits();
140     cap_fwnmi = kvm_vm_check_extension(s, KVM_CAP_PPC_FWNMI);
141     /*
142      * Note: setting it to false because there is not such capability
143      * in KVM at this moment.
144      *
145      * TODO: call kvm_vm_check_extension() with the right capability
146      * after the kernel starts implementing it.
147      */
148     cap_ppc_pvr_compat = false;
149 
150     if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) {
151         error_report("KVM: Host kernel doesn't have level irq capability");
152         exit(1);
153     }
154 
155     cap_rpt_invalidate = kvm_vm_check_extension(s, KVM_CAP_PPC_RPT_INVALIDATE);
156     kvm_ppc_register_host_cpu_type();
157 
158     return 0;
159 }
160 
161 int kvm_arch_irqchip_create(KVMState *s)
162 {
163     return 0;
164 }
165 
166 static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
167 {
168     CPUPPCState *cenv = &cpu->env;
169     CPUState *cs = CPU(cpu);
170     struct kvm_sregs sregs;
171     int ret;
172 
173     if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
174         /*
175          * What we're really trying to say is "if we're on BookE, we
176          * use the native PVR for now". This is the only sane way to
177          * check it though, so we potentially confuse users that they
178          * can run BookE guests on BookS. Let's hope nobody dares
179          * enough :)
180          */
181         return 0;
182     } else {
183         if (!cap_segstate) {
184             fprintf(stderr, "kvm error: missing PVR setting capability\n");
185             return -ENOSYS;
186         }
187     }
188 
189     ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
190     if (ret) {
191         return ret;
192     }
193 
194     sregs.pvr = cenv->spr[SPR_PVR];
195     return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
196 }
197 
198 /* Set up a shared TLB array with KVM */
199 static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
200 {
201     CPUPPCState *env = &cpu->env;
202     CPUState *cs = CPU(cpu);
203     struct kvm_book3e_206_tlb_params params = {};
204     struct kvm_config_tlb cfg = {};
205     unsigned int entries = 0;
206     int ret, i;
207 
208     if (!kvm_enabled() ||
209         !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
210         return 0;
211     }
212 
213     assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
214 
215     for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
216         params.tlb_sizes[i] = booke206_tlb_size(env, i);
217         params.tlb_ways[i] = booke206_tlb_ways(env, i);
218         entries += params.tlb_sizes[i];
219     }
220 
221     assert(entries == env->nb_tlb);
222     assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
223 
224     env->tlb_dirty = true;
225 
226     cfg.array = (uintptr_t)env->tlb.tlbm;
227     cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
228     cfg.params = (uintptr_t)&params;
229     cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
230 
231     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
232     if (ret < 0) {
233         fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
234                 __func__, strerror(-ret));
235         return ret;
236     }
237 
238     env->kvm_sw_tlb = true;
239     return 0;
240 }
241 
242 
243 #if defined(TARGET_PPC64)
244 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
245 {
246     int ret;
247 
248     assert(kvm_state != NULL);
249 
250     if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
251         error_setg(errp, "KVM doesn't expose the MMU features it supports");
252         error_append_hint(errp, "Consider switching to a newer KVM\n");
253         return;
254     }
255 
256     ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
257     if (ret == 0) {
258         return;
259     }
260 
261     error_setg_errno(errp, -ret,
262                      "KVM failed to provide the MMU features it supports");
263 }
264 
265 struct ppc_radix_page_info *kvm_get_radix_page_info(void)
266 {
267     KVMState *s = KVM_STATE(current_accel());
268     struct ppc_radix_page_info *radix_page_info;
269     struct kvm_ppc_rmmu_info rmmu_info = { };
270     int i;
271 
272     if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
273         return NULL;
274     }
275     if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
276         return NULL;
277     }
278     radix_page_info = g_malloc0(sizeof(*radix_page_info));
279     radix_page_info->count = 0;
280     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
281         if (rmmu_info.ap_encodings[i]) {
282             radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
283             radix_page_info->count++;
284         }
285     }
286     return radix_page_info;
287 }
288 
289 target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
290                                      bool radix, bool gtse,
291                                      uint64_t proc_tbl)
292 {
293     CPUState *cs = CPU(cpu);
294     int ret;
295     uint64_t flags = 0;
296     struct kvm_ppc_mmuv3_cfg cfg = {
297         .process_table = proc_tbl,
298     };
299 
300     if (radix) {
301         flags |= KVM_PPC_MMUV3_RADIX;
302     }
303     if (gtse) {
304         flags |= KVM_PPC_MMUV3_GTSE;
305     }
306     cfg.flags = flags;
307     ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
308     switch (ret) {
309     case 0:
310         return H_SUCCESS;
311     case -EINVAL:
312         return H_PARAMETER;
313     case -ENODEV:
314         return H_NOT_AVAILABLE;
315     default:
316         return H_HARDWARE;
317     }
318 }
319 
320 bool kvmppc_hpt_needs_host_contiguous_pages(void)
321 {
322     static struct kvm_ppc_smmu_info smmu_info;
323 
324     if (!kvm_enabled()) {
325         return false;
326     }
327 
328     kvm_get_smmu_info(&smmu_info, &error_fatal);
329     return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
330 }
331 
332 void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
333 {
334     struct kvm_ppc_smmu_info smmu_info;
335     int iq, ik, jq, jk;
336     Error *local_err = NULL;
337 
338     /* For now, we only have anything to check on hash64 MMUs */
339     if (!cpu->hash64_opts || !kvm_enabled()) {
340         return;
341     }
342 
343     kvm_get_smmu_info(&smmu_info, &local_err);
344     if (local_err) {
345         error_propagate(errp, local_err);
346         return;
347     }
348 
349     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
350         && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
351         error_setg(errp,
352                    "KVM does not support 1TiB segments which guest expects");
353         return;
354     }
355 
356     if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
357         error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
358                    smmu_info.slb_size, cpu->hash64_opts->slb_size);
359         return;
360     }
361 
362     /*
363      * Verify that every pagesize supported by the cpu model is
364      * supported by KVM with the same encodings
365      */
366     for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
367         PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
368         struct kvm_ppc_one_seg_page_size *ksps;
369 
370         for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
371             if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
372                 break;
373             }
374         }
375         if (ik >= ARRAY_SIZE(smmu_info.sps)) {
376             error_setg(errp, "KVM doesn't support for base page shift %u",
377                        qsps->page_shift);
378             return;
379         }
380 
381         ksps = &smmu_info.sps[ik];
382         if (ksps->slb_enc != qsps->slb_enc) {
383             error_setg(errp,
384 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
385                        ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
386             return;
387         }
388 
389         for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
390             for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
391                 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
392                     break;
393                 }
394             }
395 
396             if (jk >= ARRAY_SIZE(ksps->enc)) {
397                 error_setg(errp, "KVM doesn't support page shift %u/%u",
398                            qsps->enc[jq].page_shift, qsps->page_shift);
399                 return;
400             }
401             if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
402                 error_setg(errp,
403 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
404                            ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
405                            qsps->page_shift, qsps->enc[jq].pte_enc);
406                 return;
407             }
408         }
409     }
410 
411     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
412         /*
413          * Mostly what guest pagesizes we can use are related to the
414          * host pages used to map guest RAM, which is handled in the
415          * platform code. Cache-Inhibited largepages (64k) however are
416          * used for I/O, so if they're mapped to the host at all it
417          * will be a normal mapping, not a special hugepage one used
418          * for RAM.
419          */
420         if (qemu_real_host_page_size() < 0x10000) {
421             error_setg(errp,
422                        "KVM can't supply 64kiB CI pages, which guest expects");
423         }
424     }
425 }
426 #endif /* !defined (TARGET_PPC64) */
427 
428 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
429 {
430     return POWERPC_CPU(cpu)->vcpu_id;
431 }
432 
433 /*
434  * e500 supports 2 h/w breakpoint and 2 watchpoint.  book3s supports
435  * only 1 watchpoint, so array size of 4 is sufficient for now.
436  */
437 #define MAX_HW_BKPTS 4
438 
439 static struct HWBreakpoint {
440     target_ulong addr;
441     int type;
442 } hw_debug_points[MAX_HW_BKPTS];
443 
444 static CPUWatchpoint hw_watchpoint;
445 
446 /* Default there is no breakpoint and watchpoint supported */
447 static int max_hw_breakpoint;
448 static int max_hw_watchpoint;
449 static int nb_hw_breakpoint;
450 static int nb_hw_watchpoint;
451 
452 static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
453 {
454     if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
455         max_hw_breakpoint = 2;
456         max_hw_watchpoint = 2;
457     }
458 
459     if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
460         fprintf(stderr, "Error initializing h/w breakpoints\n");
461         return;
462     }
463 }
464 
465 int kvm_arch_init_vcpu(CPUState *cs)
466 {
467     PowerPCCPU *cpu = POWERPC_CPU(cs);
468     CPUPPCState *cenv = &cpu->env;
469     int ret;
470 
471     /* Synchronize sregs with kvm */
472     ret = kvm_arch_sync_sregs(cpu);
473     if (ret) {
474         if (ret == -EINVAL) {
475             error_report("Register sync failed... If you're using kvm-hv.ko,"
476                          " only \"-cpu host\" is possible");
477         }
478         return ret;
479     }
480 
481     switch (cenv->mmu_model) {
482     case POWERPC_MMU_BOOKE206:
483         /* This target supports access to KVM's guest TLB */
484         ret = kvm_booke206_tlb_init(cpu);
485         break;
486     case POWERPC_MMU_2_07:
487         if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
488             /*
489              * KVM-HV has transactional memory on POWER8 also without
490              * the KVM_CAP_PPC_HTM extension, so enable it here
491              * instead as long as it's available to userspace on the
492              * host.
493              */
494             if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
495                 cap_htm = true;
496             }
497         }
498         break;
499     default:
500         break;
501     }
502 
503     kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
504     kvmppc_hw_debug_points_init(cenv);
505 
506     return ret;
507 }
508 
509 int kvm_arch_destroy_vcpu(CPUState *cs)
510 {
511     return 0;
512 }
513 
514 static void kvm_sw_tlb_put(PowerPCCPU *cpu)
515 {
516     CPUPPCState *env = &cpu->env;
517     CPUState *cs = CPU(cpu);
518     struct kvm_dirty_tlb dirty_tlb;
519     unsigned char *bitmap;
520     int ret;
521 
522     if (!env->kvm_sw_tlb) {
523         return;
524     }
525 
526     bitmap = g_malloc((env->nb_tlb + 7) / 8);
527     memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
528 
529     dirty_tlb.bitmap = (uintptr_t)bitmap;
530     dirty_tlb.num_dirty = env->nb_tlb;
531 
532     ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
533     if (ret) {
534         fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
535                 __func__, strerror(-ret));
536     }
537 
538     g_free(bitmap);
539 }
540 
541 static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
542 {
543     PowerPCCPU *cpu = POWERPC_CPU(cs);
544     CPUPPCState *env = &cpu->env;
545     /* Init 'val' to avoid "uninitialised value" Valgrind warnings */
546     union {
547         uint32_t u32;
548         uint64_t u64;
549     } val = { };
550     struct kvm_one_reg reg = {
551         .id = id,
552         .addr = (uintptr_t) &val,
553     };
554     int ret;
555 
556     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
557     if (ret != 0) {
558         trace_kvm_failed_spr_get(spr, strerror(errno));
559     } else {
560         switch (id & KVM_REG_SIZE_MASK) {
561         case KVM_REG_SIZE_U32:
562             env->spr[spr] = val.u32;
563             break;
564 
565         case KVM_REG_SIZE_U64:
566             env->spr[spr] = val.u64;
567             break;
568 
569         default:
570             /* Don't handle this size yet */
571             abort();
572         }
573     }
574 }
575 
576 static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
577 {
578     PowerPCCPU *cpu = POWERPC_CPU(cs);
579     CPUPPCState *env = &cpu->env;
580     union {
581         uint32_t u32;
582         uint64_t u64;
583     } val;
584     struct kvm_one_reg reg = {
585         .id = id,
586         .addr = (uintptr_t) &val,
587     };
588     int ret;
589 
590     switch (id & KVM_REG_SIZE_MASK) {
591     case KVM_REG_SIZE_U32:
592         val.u32 = env->spr[spr];
593         break;
594 
595     case KVM_REG_SIZE_U64:
596         val.u64 = env->spr[spr];
597         break;
598 
599     default:
600         /* Don't handle this size yet */
601         abort();
602     }
603 
604     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
605     if (ret != 0) {
606         trace_kvm_failed_spr_set(spr, strerror(errno));
607     }
608 }
609 
610 static int kvm_put_fp(CPUState *cs)
611 {
612     PowerPCCPU *cpu = POWERPC_CPU(cs);
613     CPUPPCState *env = &cpu->env;
614     struct kvm_one_reg reg;
615     int i;
616     int ret;
617 
618     if (env->insns_flags & PPC_FLOAT) {
619         uint64_t fpscr = env->fpscr;
620         bool vsx = !!(env->insns_flags2 & PPC2_VSX);
621 
622         reg.id = KVM_REG_PPC_FPSCR;
623         reg.addr = (uintptr_t)&fpscr;
624         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
625         if (ret < 0) {
626             trace_kvm_failed_fpscr_set(strerror(errno));
627             return ret;
628         }
629 
630         for (i = 0; i < 32; i++) {
631             uint64_t vsr[2];
632             uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
633             uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
634 
635 #if HOST_BIG_ENDIAN
636             vsr[0] = float64_val(*fpr);
637             vsr[1] = *vsrl;
638 #else
639             vsr[0] = *vsrl;
640             vsr[1] = float64_val(*fpr);
641 #endif
642             reg.addr = (uintptr_t) &vsr;
643             reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
644 
645             ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
646             if (ret < 0) {
647                 trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
648                                         strerror(errno));
649                 return ret;
650             }
651         }
652     }
653 
654     if (env->insns_flags & PPC_ALTIVEC) {
655         reg.id = KVM_REG_PPC_VSCR;
656         reg.addr = (uintptr_t)&env->vscr;
657         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
658         if (ret < 0) {
659             trace_kvm_failed_vscr_set(strerror(errno));
660             return ret;
661         }
662 
663         for (i = 0; i < 32; i++) {
664             reg.id = KVM_REG_PPC_VR(i);
665             reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
666             ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
667             if (ret < 0) {
668                 trace_kvm_failed_vr_set(i, strerror(errno));
669                 return ret;
670             }
671         }
672     }
673 
674     return 0;
675 }
676 
677 static int kvm_get_fp(CPUState *cs)
678 {
679     PowerPCCPU *cpu = POWERPC_CPU(cs);
680     CPUPPCState *env = &cpu->env;
681     struct kvm_one_reg reg;
682     int i;
683     int ret;
684 
685     if (env->insns_flags & PPC_FLOAT) {
686         uint64_t fpscr;
687         bool vsx = !!(env->insns_flags2 & PPC2_VSX);
688 
689         reg.id = KVM_REG_PPC_FPSCR;
690         reg.addr = (uintptr_t)&fpscr;
691         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
692         if (ret < 0) {
693             trace_kvm_failed_fpscr_get(strerror(errno));
694             return ret;
695         } else {
696             env->fpscr = fpscr;
697         }
698 
699         for (i = 0; i < 32; i++) {
700             uint64_t vsr[2];
701             uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
702             uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
703 
704             reg.addr = (uintptr_t) &vsr;
705             reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
706 
707             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
708             if (ret < 0) {
709                 trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
710                                         strerror(errno));
711                 return ret;
712             } else {
713 #if HOST_BIG_ENDIAN
714                 *fpr = vsr[0];
715                 if (vsx) {
716                     *vsrl = vsr[1];
717                 }
718 #else
719                 *fpr = vsr[1];
720                 if (vsx) {
721                     *vsrl = vsr[0];
722                 }
723 #endif
724             }
725         }
726     }
727 
728     if (env->insns_flags & PPC_ALTIVEC) {
729         reg.id = KVM_REG_PPC_VSCR;
730         reg.addr = (uintptr_t)&env->vscr;
731         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
732         if (ret < 0) {
733             trace_kvm_failed_vscr_get(strerror(errno));
734             return ret;
735         }
736 
737         for (i = 0; i < 32; i++) {
738             reg.id = KVM_REG_PPC_VR(i);
739             reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
740             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
741             if (ret < 0) {
742                 trace_kvm_failed_vr_get(i, strerror(errno));
743                 return ret;
744             }
745         }
746     }
747 
748     return 0;
749 }
750 
751 #if defined(TARGET_PPC64)
752 static int kvm_get_vpa(CPUState *cs)
753 {
754     PowerPCCPU *cpu = POWERPC_CPU(cs);
755     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
756     struct kvm_one_reg reg;
757     int ret;
758 
759     reg.id = KVM_REG_PPC_VPA_ADDR;
760     reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
761     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
762     if (ret < 0) {
763         trace_kvm_failed_vpa_addr_get(strerror(errno));
764         return ret;
765     }
766 
767     assert((uintptr_t)&spapr_cpu->slb_shadow_size
768            == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
769     reg.id = KVM_REG_PPC_VPA_SLB;
770     reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
771     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
772     if (ret < 0) {
773         trace_kvm_failed_slb_get(strerror(errno));
774         return ret;
775     }
776 
777     assert((uintptr_t)&spapr_cpu->dtl_size
778            == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
779     reg.id = KVM_REG_PPC_VPA_DTL;
780     reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
781     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
782     if (ret < 0) {
783         trace_kvm_failed_dtl_get(strerror(errno));
784         return ret;
785     }
786 
787     return 0;
788 }
789 
790 static int kvm_put_vpa(CPUState *cs)
791 {
792     PowerPCCPU *cpu = POWERPC_CPU(cs);
793     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
794     struct kvm_one_reg reg;
795     int ret;
796 
797     /*
798      * SLB shadow or DTL can't be registered unless a master VPA is
799      * registered.  That means when restoring state, if a VPA *is*
800      * registered, we need to set that up first.  If not, we need to
801      * deregister the others before deregistering the master VPA
802      */
803     assert(spapr_cpu->vpa_addr
804            || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
805 
806     if (spapr_cpu->vpa_addr) {
807         reg.id = KVM_REG_PPC_VPA_ADDR;
808         reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
809         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
810         if (ret < 0) {
811             trace_kvm_failed_vpa_addr_set(strerror(errno));
812             return ret;
813         }
814     }
815 
816     assert((uintptr_t)&spapr_cpu->slb_shadow_size
817            == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
818     reg.id = KVM_REG_PPC_VPA_SLB;
819     reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
820     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
821     if (ret < 0) {
822         trace_kvm_failed_slb_set(strerror(errno));
823         return ret;
824     }
825 
826     assert((uintptr_t)&spapr_cpu->dtl_size
827            == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
828     reg.id = KVM_REG_PPC_VPA_DTL;
829     reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
830     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
831     if (ret < 0) {
832         trace_kvm_failed_dtl_set(strerror(errno));
833         return ret;
834     }
835 
836     if (!spapr_cpu->vpa_addr) {
837         reg.id = KVM_REG_PPC_VPA_ADDR;
838         reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
839         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
840         if (ret < 0) {
841             trace_kvm_failed_null_vpa_addr_set(strerror(errno));
842             return ret;
843         }
844     }
845 
846     return 0;
847 }
848 #endif /* TARGET_PPC64 */
849 
850 int kvmppc_put_books_sregs(PowerPCCPU *cpu)
851 {
852     CPUPPCState *env = &cpu->env;
853     struct kvm_sregs sregs = { };
854     int i;
855 
856     sregs.pvr = env->spr[SPR_PVR];
857 
858     if (cpu->vhyp) {
859         PPCVirtualHypervisorClass *vhc =
860             PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
861         sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp);
862     } else {
863         sregs.u.s.sdr1 = env->spr[SPR_SDR1];
864     }
865 
866     /* Sync SLB */
867 #ifdef TARGET_PPC64
868     for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
869         sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
870         if (env->slb[i].esid & SLB_ESID_V) {
871             sregs.u.s.ppc64.slb[i].slbe |= i;
872         }
873         sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
874     }
875 #endif
876 
877     /* Sync SRs */
878     for (i = 0; i < 16; i++) {
879         sregs.u.s.ppc32.sr[i] = env->sr[i];
880     }
881 
882     /* Sync BATs */
883     for (i = 0; i < 8; i++) {
884         /* Beware. We have to swap upper and lower bits here */
885         sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
886             | env->DBAT[1][i];
887         sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
888             | env->IBAT[1][i];
889     }
890 
891     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
892 }
893 
894 int kvm_arch_put_registers(CPUState *cs, int level)
895 {
896     PowerPCCPU *cpu = POWERPC_CPU(cs);
897     CPUPPCState *env = &cpu->env;
898     struct kvm_regs regs;
899     int ret;
900     int i;
901 
902     ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
903     if (ret < 0) {
904         return ret;
905     }
906 
907     regs.ctr = env->ctr;
908     regs.lr  = env->lr;
909     regs.xer = cpu_read_xer(env);
910     regs.msr = env->msr;
911     regs.pc = env->nip;
912 
913     regs.srr0 = env->spr[SPR_SRR0];
914     regs.srr1 = env->spr[SPR_SRR1];
915 
916     regs.sprg0 = env->spr[SPR_SPRG0];
917     regs.sprg1 = env->spr[SPR_SPRG1];
918     regs.sprg2 = env->spr[SPR_SPRG2];
919     regs.sprg3 = env->spr[SPR_SPRG3];
920     regs.sprg4 = env->spr[SPR_SPRG4];
921     regs.sprg5 = env->spr[SPR_SPRG5];
922     regs.sprg6 = env->spr[SPR_SPRG6];
923     regs.sprg7 = env->spr[SPR_SPRG7];
924 
925     regs.pid = env->spr[SPR_BOOKE_PID];
926 
927     for (i = 0; i < 32; i++) {
928         regs.gpr[i] = env->gpr[i];
929     }
930 
931     regs.cr = 0;
932     for (i = 0; i < 8; i++) {
933         regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
934     }
935 
936     ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
937     if (ret < 0) {
938         return ret;
939     }
940 
941     kvm_put_fp(cs);
942 
943     if (env->tlb_dirty) {
944         kvm_sw_tlb_put(cpu);
945         env->tlb_dirty = false;
946     }
947 
948     if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
949         ret = kvmppc_put_books_sregs(cpu);
950         if (ret < 0) {
951             return ret;
952         }
953     }
954 
955     if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
956         kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
957     }
958 
959     if (cap_one_reg) {
960         int i;
961 
962         /*
963          * We deliberately ignore errors here, for kernels which have
964          * the ONE_REG calls, but don't support the specific
965          * registers, there's a reasonable chance things will still
966          * work, at least until we try to migrate.
967          */
968         for (i = 0; i < 1024; i++) {
969             uint64_t id = env->spr_cb[i].one_reg_id;
970 
971             if (id != 0) {
972                 kvm_put_one_spr(cs, id, i);
973             }
974         }
975 
976 #ifdef TARGET_PPC64
977         if (FIELD_EX64(env->msr, MSR, TS)) {
978             for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
979                 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
980             }
981             for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
982                 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
983             }
984             kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
985             kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
986             kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
987             kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
988             kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
989             kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
990             kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
991             kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
992             kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
993             kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
994         }
995 
996         if (cap_papr) {
997             if (kvm_put_vpa(cs) < 0) {
998                 trace_kvm_failed_put_vpa();
999             }
1000         }
1001 
1002         kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1003 
1004         if (level > KVM_PUT_RUNTIME_STATE) {
1005             kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1006         }
1007 #endif /* TARGET_PPC64 */
1008     }
1009 
1010     return ret;
1011 }
1012 
1013 static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1014 {
1015      env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1016 }
1017 
1018 static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1019 {
1020     CPUPPCState *env = &cpu->env;
1021     struct kvm_sregs sregs;
1022     int ret;
1023 
1024     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1025     if (ret < 0) {
1026         return ret;
1027     }
1028 
1029     if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1030         env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1031         env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1032         env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1033         env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1034         env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1035         env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1036         env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1037         env->spr[SPR_DECR] = sregs.u.e.dec;
1038         env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1039         env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1040         env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1041     }
1042 
1043     if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1044         env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1045         env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1046         env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1047         env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1048         env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1049     }
1050 
1051     if (sregs.u.e.features & KVM_SREGS_E_64) {
1052         env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1053     }
1054 
1055     if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1056         env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1057     }
1058 
1059     if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1060         env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1061         kvm_sync_excp(env, POWERPC_EXCP_CRITICAL,  SPR_BOOKE_IVOR0);
1062         env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1063         kvm_sync_excp(env, POWERPC_EXCP_MCHECK,  SPR_BOOKE_IVOR1);
1064         env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1065         kvm_sync_excp(env, POWERPC_EXCP_DSI,  SPR_BOOKE_IVOR2);
1066         env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1067         kvm_sync_excp(env, POWERPC_EXCP_ISI,  SPR_BOOKE_IVOR3);
1068         env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1069         kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL,  SPR_BOOKE_IVOR4);
1070         env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1071         kvm_sync_excp(env, POWERPC_EXCP_ALIGN,  SPR_BOOKE_IVOR5);
1072         env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1073         kvm_sync_excp(env, POWERPC_EXCP_PROGRAM,  SPR_BOOKE_IVOR6);
1074         env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1075         kvm_sync_excp(env, POWERPC_EXCP_FPU,  SPR_BOOKE_IVOR7);
1076         env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1077         kvm_sync_excp(env, POWERPC_EXCP_SYSCALL,  SPR_BOOKE_IVOR8);
1078         env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1079         kvm_sync_excp(env, POWERPC_EXCP_APU,  SPR_BOOKE_IVOR9);
1080         env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1081         kvm_sync_excp(env, POWERPC_EXCP_DECR,  SPR_BOOKE_IVOR10);
1082         env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1083         kvm_sync_excp(env, POWERPC_EXCP_FIT,  SPR_BOOKE_IVOR11);
1084         env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1085         kvm_sync_excp(env, POWERPC_EXCP_WDT,  SPR_BOOKE_IVOR12);
1086         env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1087         kvm_sync_excp(env, POWERPC_EXCP_DTLB,  SPR_BOOKE_IVOR13);
1088         env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1089         kvm_sync_excp(env, POWERPC_EXCP_ITLB,  SPR_BOOKE_IVOR14);
1090         env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1091         kvm_sync_excp(env, POWERPC_EXCP_DEBUG,  SPR_BOOKE_IVOR15);
1092 
1093         if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1094             env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1095             kvm_sync_excp(env, POWERPC_EXCP_SPEU,  SPR_BOOKE_IVOR32);
1096             env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1097             kvm_sync_excp(env, POWERPC_EXCP_EFPDI,  SPR_BOOKE_IVOR33);
1098             env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1099             kvm_sync_excp(env, POWERPC_EXCP_EFPRI,  SPR_BOOKE_IVOR34);
1100         }
1101 
1102         if (sregs.u.e.features & KVM_SREGS_E_PM) {
1103             env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1104             kvm_sync_excp(env, POWERPC_EXCP_EPERFM,  SPR_BOOKE_IVOR35);
1105         }
1106 
1107         if (sregs.u.e.features & KVM_SREGS_E_PC) {
1108             env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1109             kvm_sync_excp(env, POWERPC_EXCP_DOORI,  SPR_BOOKE_IVOR36);
1110             env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1111             kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1112         }
1113     }
1114 
1115     if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1116         env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1117         env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1118         env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1119         env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1120         env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1121         env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1122         env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1123         env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1124         env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1125         env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1126     }
1127 
1128     if (sregs.u.e.features & KVM_SREGS_EXP) {
1129         env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1130     }
1131 
1132     if (sregs.u.e.features & KVM_SREGS_E_PD) {
1133         env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1134         env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1135     }
1136 
1137     if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1138         env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1139         env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1140         env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1141 
1142         if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1143             env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1144             env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1145         }
1146     }
1147 
1148     return 0;
1149 }
1150 
1151 static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1152 {
1153     CPUPPCState *env = &cpu->env;
1154     struct kvm_sregs sregs;
1155     int ret;
1156     int i;
1157 
1158     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1159     if (ret < 0) {
1160         return ret;
1161     }
1162 
1163     if (!cpu->vhyp) {
1164         ppc_store_sdr1(env, sregs.u.s.sdr1);
1165     }
1166 
1167     /* Sync SLB */
1168 #ifdef TARGET_PPC64
1169     /*
1170      * The packed SLB array we get from KVM_GET_SREGS only contains
1171      * information about valid entries. So we flush our internal copy
1172      * to get rid of stale ones, then put all valid SLB entries back
1173      * in.
1174      */
1175     memset(env->slb, 0, sizeof(env->slb));
1176     for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1177         target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1178         target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1179         /*
1180          * Only restore valid entries
1181          */
1182         if (rb & SLB_ESID_V) {
1183             ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1184         }
1185     }
1186 #endif
1187 
1188     /* Sync SRs */
1189     for (i = 0; i < 16; i++) {
1190         env->sr[i] = sregs.u.s.ppc32.sr[i];
1191     }
1192 
1193     /* Sync BATs */
1194     for (i = 0; i < 8; i++) {
1195         env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1196         env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1197         env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1198         env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1199     }
1200 
1201     return 0;
1202 }
1203 
1204 int kvm_arch_get_registers(CPUState *cs)
1205 {
1206     PowerPCCPU *cpu = POWERPC_CPU(cs);
1207     CPUPPCState *env = &cpu->env;
1208     struct kvm_regs regs;
1209     uint32_t cr;
1210     int i, ret;
1211 
1212     ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
1213     if (ret < 0) {
1214         return ret;
1215     }
1216 
1217     cr = regs.cr;
1218     for (i = 7; i >= 0; i--) {
1219         env->crf[i] = cr & 15;
1220         cr >>= 4;
1221     }
1222 
1223     env->ctr = regs.ctr;
1224     env->lr = regs.lr;
1225     cpu_write_xer(env, regs.xer);
1226     env->msr = regs.msr;
1227     env->nip = regs.pc;
1228 
1229     env->spr[SPR_SRR0] = regs.srr0;
1230     env->spr[SPR_SRR1] = regs.srr1;
1231 
1232     env->spr[SPR_SPRG0] = regs.sprg0;
1233     env->spr[SPR_SPRG1] = regs.sprg1;
1234     env->spr[SPR_SPRG2] = regs.sprg2;
1235     env->spr[SPR_SPRG3] = regs.sprg3;
1236     env->spr[SPR_SPRG4] = regs.sprg4;
1237     env->spr[SPR_SPRG5] = regs.sprg5;
1238     env->spr[SPR_SPRG6] = regs.sprg6;
1239     env->spr[SPR_SPRG7] = regs.sprg7;
1240 
1241     env->spr[SPR_BOOKE_PID] = regs.pid;
1242 
1243     for (i = 0; i < 32; i++) {
1244         env->gpr[i] = regs.gpr[i];
1245     }
1246 
1247     kvm_get_fp(cs);
1248 
1249     if (cap_booke_sregs) {
1250         ret = kvmppc_get_booke_sregs(cpu);
1251         if (ret < 0) {
1252             return ret;
1253         }
1254     }
1255 
1256     if (cap_segstate) {
1257         ret = kvmppc_get_books_sregs(cpu);
1258         if (ret < 0) {
1259             return ret;
1260         }
1261     }
1262 
1263     if (cap_hior) {
1264         kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1265     }
1266 
1267     if (cap_one_reg) {
1268         int i;
1269 
1270         /*
1271          * We deliberately ignore errors here, for kernels which have
1272          * the ONE_REG calls, but don't support the specific
1273          * registers, there's a reasonable chance things will still
1274          * work, at least until we try to migrate.
1275          */
1276         for (i = 0; i < 1024; i++) {
1277             uint64_t id = env->spr_cb[i].one_reg_id;
1278 
1279             if (id != 0) {
1280                 kvm_get_one_spr(cs, id, i);
1281             }
1282         }
1283 
1284 #ifdef TARGET_PPC64
1285         if (FIELD_EX64(env->msr, MSR, TS)) {
1286             for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1287                 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1288             }
1289             for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1290                 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1291             }
1292             kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1293             kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1294             kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1295             kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1296             kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1297             kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1298             kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1299             kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1300             kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1301             kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1302         }
1303 
1304         if (cap_papr) {
1305             if (kvm_get_vpa(cs) < 0) {
1306                 trace_kvm_failed_get_vpa();
1307             }
1308         }
1309 
1310         kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1311         kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1312 #endif
1313     }
1314 
1315     return 0;
1316 }
1317 
1318 int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1319 {
1320     unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1321 
1322     if (irq != PPC_INTERRUPT_EXT) {
1323         return 0;
1324     }
1325 
1326     if (!kvm_enabled() || !cap_interrupt_unset) {
1327         return 0;
1328     }
1329 
1330     kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1331 
1332     return 0;
1333 }
1334 
1335 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1336 {
1337     return;
1338 }
1339 
1340 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1341 {
1342     return MEMTXATTRS_UNSPECIFIED;
1343 }
1344 
1345 int kvm_arch_process_async_events(CPUState *cs)
1346 {
1347     return cs->halted;
1348 }
1349 
1350 static int kvmppc_handle_halt(PowerPCCPU *cpu)
1351 {
1352     CPUState *cs = CPU(cpu);
1353     CPUPPCState *env = &cpu->env;
1354 
1355     if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1356         FIELD_EX64(env->msr, MSR, EE)) {
1357         cs->halted = 1;
1358         cs->exception_index = EXCP_HLT;
1359     }
1360 
1361     return 0;
1362 }
1363 
1364 /* map dcr access to existing qemu dcr emulation */
1365 static int kvmppc_handle_dcr_read(CPUPPCState *env,
1366                                   uint32_t dcrn, uint32_t *data)
1367 {
1368     if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
1369         fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1370     }
1371 
1372     return 0;
1373 }
1374 
1375 static int kvmppc_handle_dcr_write(CPUPPCState *env,
1376                                    uint32_t dcrn, uint32_t data)
1377 {
1378     if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
1379         fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1380     }
1381 
1382     return 0;
1383 }
1384 
1385 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1386 {
1387     /* Mixed endian case is not handled */
1388     uint32_t sc = debug_inst_opcode;
1389 
1390     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1391                             sizeof(sc), 0) ||
1392         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1393         return -EINVAL;
1394     }
1395 
1396     return 0;
1397 }
1398 
1399 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1400 {
1401     uint32_t sc;
1402 
1403     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1404         sc != debug_inst_opcode ||
1405         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1406                             sizeof(sc), 1)) {
1407         return -EINVAL;
1408     }
1409 
1410     return 0;
1411 }
1412 
1413 static int find_hw_breakpoint(target_ulong addr, int type)
1414 {
1415     int n;
1416 
1417     assert((nb_hw_breakpoint + nb_hw_watchpoint)
1418            <= ARRAY_SIZE(hw_debug_points));
1419 
1420     for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1421         if (hw_debug_points[n].addr == addr &&
1422              hw_debug_points[n].type == type) {
1423             return n;
1424         }
1425     }
1426 
1427     return -1;
1428 }
1429 
1430 static int find_hw_watchpoint(target_ulong addr, int *flag)
1431 {
1432     int n;
1433 
1434     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1435     if (n >= 0) {
1436         *flag = BP_MEM_ACCESS;
1437         return n;
1438     }
1439 
1440     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1441     if (n >= 0) {
1442         *flag = BP_MEM_WRITE;
1443         return n;
1444     }
1445 
1446     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1447     if (n >= 0) {
1448         *flag = BP_MEM_READ;
1449         return n;
1450     }
1451 
1452     return -1;
1453 }
1454 
1455 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1456                                   target_ulong len, int type)
1457 {
1458     if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
1459         return -ENOBUFS;
1460     }
1461 
1462     hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
1463     hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
1464 
1465     switch (type) {
1466     case GDB_BREAKPOINT_HW:
1467         if (nb_hw_breakpoint >= max_hw_breakpoint) {
1468             return -ENOBUFS;
1469         }
1470 
1471         if (find_hw_breakpoint(addr, type) >= 0) {
1472             return -EEXIST;
1473         }
1474 
1475         nb_hw_breakpoint++;
1476         break;
1477 
1478     case GDB_WATCHPOINT_WRITE:
1479     case GDB_WATCHPOINT_READ:
1480     case GDB_WATCHPOINT_ACCESS:
1481         if (nb_hw_watchpoint >= max_hw_watchpoint) {
1482             return -ENOBUFS;
1483         }
1484 
1485         if (find_hw_breakpoint(addr, type) >= 0) {
1486             return -EEXIST;
1487         }
1488 
1489         nb_hw_watchpoint++;
1490         break;
1491 
1492     default:
1493         return -ENOSYS;
1494     }
1495 
1496     return 0;
1497 }
1498 
1499 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1500                                   target_ulong len, int type)
1501 {
1502     int n;
1503 
1504     n = find_hw_breakpoint(addr, type);
1505     if (n < 0) {
1506         return -ENOENT;
1507     }
1508 
1509     switch (type) {
1510     case GDB_BREAKPOINT_HW:
1511         nb_hw_breakpoint--;
1512         break;
1513 
1514     case GDB_WATCHPOINT_WRITE:
1515     case GDB_WATCHPOINT_READ:
1516     case GDB_WATCHPOINT_ACCESS:
1517         nb_hw_watchpoint--;
1518         break;
1519 
1520     default:
1521         return -ENOSYS;
1522     }
1523     hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1524 
1525     return 0;
1526 }
1527 
1528 void kvm_arch_remove_all_hw_breakpoints(void)
1529 {
1530     nb_hw_breakpoint = nb_hw_watchpoint = 0;
1531 }
1532 
1533 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1534 {
1535     int n;
1536 
1537     /* Software Breakpoint updates */
1538     if (kvm_sw_breakpoints_active(cs)) {
1539         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1540     }
1541 
1542     assert((nb_hw_breakpoint + nb_hw_watchpoint)
1543            <= ARRAY_SIZE(hw_debug_points));
1544     assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1545 
1546     if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1547         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1548         memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1549         for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1550             switch (hw_debug_points[n].type) {
1551             case GDB_BREAKPOINT_HW:
1552                 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1553                 break;
1554             case GDB_WATCHPOINT_WRITE:
1555                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1556                 break;
1557             case GDB_WATCHPOINT_READ:
1558                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1559                 break;
1560             case GDB_WATCHPOINT_ACCESS:
1561                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1562                                         KVMPPC_DEBUG_WATCH_READ;
1563                 break;
1564             default:
1565                 cpu_abort(cs, "Unsupported breakpoint type\n");
1566             }
1567             dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1568         }
1569     }
1570 }
1571 
1572 static int kvm_handle_hw_breakpoint(CPUState *cs,
1573                                     struct kvm_debug_exit_arch *arch_info)
1574 {
1575     int handle = DEBUG_RETURN_GUEST;
1576     int n;
1577     int flag = 0;
1578 
1579     if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1580         if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1581             n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1582             if (n >= 0) {
1583                 handle = DEBUG_RETURN_GDB;
1584             }
1585         } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1586                                         KVMPPC_DEBUG_WATCH_WRITE)) {
1587             n = find_hw_watchpoint(arch_info->address,  &flag);
1588             if (n >= 0) {
1589                 handle = DEBUG_RETURN_GDB;
1590                 cs->watchpoint_hit = &hw_watchpoint;
1591                 hw_watchpoint.vaddr = hw_debug_points[n].addr;
1592                 hw_watchpoint.flags = flag;
1593             }
1594         }
1595     }
1596     return handle;
1597 }
1598 
1599 static int kvm_handle_singlestep(void)
1600 {
1601     return DEBUG_RETURN_GDB;
1602 }
1603 
1604 static int kvm_handle_sw_breakpoint(void)
1605 {
1606     return DEBUG_RETURN_GDB;
1607 }
1608 
1609 static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1610 {
1611     CPUState *cs = CPU(cpu);
1612     CPUPPCState *env = &cpu->env;
1613     struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1614 
1615     if (cs->singlestep_enabled) {
1616         return kvm_handle_singlestep();
1617     }
1618 
1619     if (arch_info->status) {
1620         return kvm_handle_hw_breakpoint(cs, arch_info);
1621     }
1622 
1623     if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1624         return kvm_handle_sw_breakpoint();
1625     }
1626 
1627     /*
1628      * QEMU is not able to handle debug exception, so inject
1629      * program exception to guest;
1630      * Yes program exception NOT debug exception !!
1631      * When QEMU is using debug resources then debug exception must
1632      * be always set. To achieve this we set MSR_DE and also set
1633      * MSRP_DEP so guest cannot change MSR_DE.
1634      * When emulating debug resource for guest we want guest
1635      * to control MSR_DE (enable/disable debug interrupt on need).
1636      * Supporting both configurations are NOT possible.
1637      * So the result is that we cannot share debug resources
1638      * between QEMU and Guest on BOOKE architecture.
1639      * In the current design QEMU gets the priority over guest,
1640      * this means that if QEMU is using debug resources then guest
1641      * cannot use them;
1642      * For software breakpoint QEMU uses a privileged instruction;
1643      * So there cannot be any reason that we are here for guest
1644      * set debug exception, only possibility is guest executed a
1645      * privileged / illegal instruction and that's why we are
1646      * injecting a program interrupt.
1647      */
1648     cpu_synchronize_state(cs);
1649     /*
1650      * env->nip is PC, so increment this by 4 to use
1651      * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1652      */
1653     env->nip += 4;
1654     cs->exception_index = POWERPC_EXCP_PROGRAM;
1655     env->error_code = POWERPC_EXCP_INVAL;
1656     ppc_cpu_do_interrupt(cs);
1657 
1658     return DEBUG_RETURN_GUEST;
1659 }
1660 
1661 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1662 {
1663     PowerPCCPU *cpu = POWERPC_CPU(cs);
1664     CPUPPCState *env = &cpu->env;
1665     int ret;
1666 
1667     qemu_mutex_lock_iothread();
1668 
1669     switch (run->exit_reason) {
1670     case KVM_EXIT_DCR:
1671         if (run->dcr.is_write) {
1672             trace_kvm_handle_dcr_write();
1673             ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1674         } else {
1675             trace_kvm_handle_dcr_read();
1676             ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1677         }
1678         break;
1679     case KVM_EXIT_HLT:
1680         trace_kvm_handle_halt();
1681         ret = kvmppc_handle_halt(cpu);
1682         break;
1683 #if defined(TARGET_PPC64)
1684     case KVM_EXIT_PAPR_HCALL:
1685         trace_kvm_handle_papr_hcall(run->papr_hcall.nr);
1686         run->papr_hcall.ret = spapr_hypercall(cpu,
1687                                               run->papr_hcall.nr,
1688                                               run->papr_hcall.args);
1689         ret = 0;
1690         break;
1691 #endif
1692     case KVM_EXIT_EPR:
1693         trace_kvm_handle_epr();
1694         run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1695         ret = 0;
1696         break;
1697     case KVM_EXIT_WATCHDOG:
1698         trace_kvm_handle_watchdog_expiry();
1699         watchdog_perform_action();
1700         ret = 0;
1701         break;
1702 
1703     case KVM_EXIT_DEBUG:
1704         trace_kvm_handle_debug_exception();
1705         if (kvm_handle_debug(cpu, run)) {
1706             ret = EXCP_DEBUG;
1707             break;
1708         }
1709         /* re-enter, this exception was guest-internal */
1710         ret = 0;
1711         break;
1712 
1713 #if defined(TARGET_PPC64)
1714     case KVM_EXIT_NMI:
1715         trace_kvm_handle_nmi_exception();
1716         ret = kvm_handle_nmi(cpu, run);
1717         break;
1718 #endif
1719 
1720     default:
1721         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1722         ret = -1;
1723         break;
1724     }
1725 
1726     qemu_mutex_unlock_iothread();
1727     return ret;
1728 }
1729 
1730 int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1731 {
1732     CPUState *cs = CPU(cpu);
1733     uint32_t bits = tsr_bits;
1734     struct kvm_one_reg reg = {
1735         .id = KVM_REG_PPC_OR_TSR,
1736         .addr = (uintptr_t) &bits,
1737     };
1738 
1739     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1740 }
1741 
1742 int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1743 {
1744 
1745     CPUState *cs = CPU(cpu);
1746     uint32_t bits = tsr_bits;
1747     struct kvm_one_reg reg = {
1748         .id = KVM_REG_PPC_CLEAR_TSR,
1749         .addr = (uintptr_t) &bits,
1750     };
1751 
1752     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1753 }
1754 
1755 int kvmppc_set_tcr(PowerPCCPU *cpu)
1756 {
1757     CPUState *cs = CPU(cpu);
1758     CPUPPCState *env = &cpu->env;
1759     uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1760 
1761     struct kvm_one_reg reg = {
1762         .id = KVM_REG_PPC_TCR,
1763         .addr = (uintptr_t) &tcr,
1764     };
1765 
1766     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1767 }
1768 
1769 int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1770 {
1771     CPUState *cs = CPU(cpu);
1772     int ret;
1773 
1774     if (!kvm_enabled()) {
1775         return -1;
1776     }
1777 
1778     if (!cap_ppc_watchdog) {
1779         printf("warning: KVM does not support watchdog");
1780         return -1;
1781     }
1782 
1783     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
1784     if (ret < 0) {
1785         fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1786                 __func__, strerror(-ret));
1787         return ret;
1788     }
1789 
1790     return ret;
1791 }
1792 
1793 static int read_cpuinfo(const char *field, char *value, int len)
1794 {
1795     FILE *f;
1796     int ret = -1;
1797     int field_len = strlen(field);
1798     char line[512];
1799 
1800     f = fopen("/proc/cpuinfo", "r");
1801     if (!f) {
1802         return -1;
1803     }
1804 
1805     do {
1806         if (!fgets(line, sizeof(line), f)) {
1807             break;
1808         }
1809         if (!strncmp(line, field, field_len)) {
1810             pstrcpy(value, len, line);
1811             ret = 0;
1812             break;
1813         }
1814     } while (*line);
1815 
1816     fclose(f);
1817 
1818     return ret;
1819 }
1820 
1821 static uint32_t kvmppc_get_tbfreq_procfs(void)
1822 {
1823     char line[512];
1824     char *ns;
1825     uint32_t tbfreq_fallback = NANOSECONDS_PER_SECOND;
1826     uint32_t tbfreq_procfs;
1827 
1828     if (read_cpuinfo("timebase", line, sizeof(line))) {
1829         return tbfreq_fallback;
1830     }
1831 
1832     ns = strchr(line, ':');
1833     if (!ns) {
1834         return tbfreq_fallback;
1835     }
1836 
1837     tbfreq_procfs = atoi(++ns);
1838 
1839     /* 0 is certainly not acceptable by the guest, return fallback value */
1840     return tbfreq_procfs ? tbfreq_procfs : tbfreq_fallback;
1841 }
1842 
1843 uint32_t kvmppc_get_tbfreq(void)
1844 {
1845     static uint32_t cached_tbfreq;
1846 
1847     if (!cached_tbfreq) {
1848         cached_tbfreq = kvmppc_get_tbfreq_procfs();
1849     }
1850 
1851     return cached_tbfreq;
1852 }
1853 
1854 bool kvmppc_get_host_serial(char **value)
1855 {
1856     return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1857                                NULL);
1858 }
1859 
1860 bool kvmppc_get_host_model(char **value)
1861 {
1862     return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1863 }
1864 
1865 /* Try to find a device tree node for a CPU with clock-frequency property */
1866 static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1867 {
1868     struct dirent *dirp;
1869     DIR *dp;
1870 
1871     dp = opendir(PROC_DEVTREE_CPU);
1872     if (!dp) {
1873         printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1874         return -1;
1875     }
1876 
1877     buf[0] = '\0';
1878     while ((dirp = readdir(dp)) != NULL) {
1879         FILE *f;
1880         snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1881                  dirp->d_name);
1882         f = fopen(buf, "r");
1883         if (f) {
1884             snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1885             fclose(f);
1886             break;
1887         }
1888         buf[0] = '\0';
1889     }
1890     closedir(dp);
1891     if (buf[0] == '\0') {
1892         printf("Unknown host!\n");
1893         return -1;
1894     }
1895 
1896     return 0;
1897 }
1898 
1899 static uint64_t kvmppc_read_int_dt(const char *filename)
1900 {
1901     union {
1902         uint32_t v32;
1903         uint64_t v64;
1904     } u;
1905     FILE *f;
1906     int len;
1907 
1908     f = fopen(filename, "rb");
1909     if (!f) {
1910         return -1;
1911     }
1912 
1913     len = fread(&u, 1, sizeof(u), f);
1914     fclose(f);
1915     switch (len) {
1916     case 4:
1917         /* property is a 32-bit quantity */
1918         return be32_to_cpu(u.v32);
1919     case 8:
1920         return be64_to_cpu(u.v64);
1921     }
1922 
1923     return 0;
1924 }
1925 
1926 /*
1927  * Read a CPU node property from the host device tree that's a single
1928  * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
1929  * (can't find or open the property, or doesn't understand the format)
1930  */
1931 static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1932 {
1933     char buf[PATH_MAX], *tmp;
1934     uint64_t val;
1935 
1936     if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1937         return -1;
1938     }
1939 
1940     tmp = g_strdup_printf("%s/%s", buf, propname);
1941     val = kvmppc_read_int_dt(tmp);
1942     g_free(tmp);
1943 
1944     return val;
1945 }
1946 
1947 uint64_t kvmppc_get_clockfreq(void)
1948 {
1949     return kvmppc_read_int_cpu_dt("clock-frequency");
1950 }
1951 
1952 static int kvmppc_get_dec_bits(void)
1953 {
1954     int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
1955 
1956     if (nr_bits > 0) {
1957         return nr_bits;
1958     }
1959     return 0;
1960 }
1961 
1962 static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
1963 {
1964     CPUState *cs = env_cpu(env);
1965 
1966     if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1967         !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
1968         return 0;
1969     }
1970 
1971     return 1;
1972 }
1973 
1974 int kvmppc_get_hasidle(CPUPPCState *env)
1975 {
1976     struct kvm_ppc_pvinfo pvinfo;
1977 
1978     if (!kvmppc_get_pvinfo(env, &pvinfo) &&
1979         (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
1980         return 1;
1981     }
1982 
1983     return 0;
1984 }
1985 
1986 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
1987 {
1988     uint32_t *hc = (uint32_t *)buf;
1989     struct kvm_ppc_pvinfo pvinfo;
1990 
1991     if (!kvmppc_get_pvinfo(env, &pvinfo)) {
1992         memcpy(buf, pvinfo.hcall, buf_len);
1993         return 0;
1994     }
1995 
1996     /*
1997      * Fallback to always fail hypercalls regardless of endianness:
1998      *
1999      *     tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
2000      *     li r3, -1
2001      *     b .+8       (becomes nop in wrong endian)
2002      *     bswap32(li r3, -1)
2003      */
2004 
2005     hc[0] = cpu_to_be32(0x08000048);
2006     hc[1] = cpu_to_be32(0x3860ffff);
2007     hc[2] = cpu_to_be32(0x48000008);
2008     hc[3] = cpu_to_be32(bswap32(0x3860ffff));
2009 
2010     return 1;
2011 }
2012 
2013 static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
2014 {
2015     return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
2016 }
2017 
2018 void kvmppc_enable_logical_ci_hcalls(void)
2019 {
2020     /*
2021      * FIXME: it would be nice if we could detect the cases where
2022      * we're using a device which requires the in kernel
2023      * implementation of these hcalls, but the kernel lacks them and
2024      * produce a warning.
2025      */
2026     kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2027     kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2028 }
2029 
2030 void kvmppc_enable_set_mode_hcall(void)
2031 {
2032     kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2033 }
2034 
2035 void kvmppc_enable_clear_ref_mod_hcalls(void)
2036 {
2037     kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2038     kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2039 }
2040 
2041 void kvmppc_enable_h_page_init(void)
2042 {
2043     kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
2044 }
2045 
2046 void kvmppc_enable_h_rpt_invalidate(void)
2047 {
2048     kvmppc_enable_hcall(kvm_state, H_RPT_INVALIDATE);
2049 }
2050 
2051 void kvmppc_set_papr(PowerPCCPU *cpu)
2052 {
2053     CPUState *cs = CPU(cpu);
2054     int ret;
2055 
2056     if (!kvm_enabled()) {
2057         return;
2058     }
2059 
2060     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
2061     if (ret) {
2062         error_report("This vCPU type or KVM version does not support PAPR");
2063         exit(1);
2064     }
2065 
2066     /*
2067      * Update the capability flag so we sync the right information
2068      * with kvm
2069      */
2070     cap_papr = 1;
2071 }
2072 
2073 int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
2074 {
2075     return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
2076 }
2077 
2078 void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2079 {
2080     CPUState *cs = CPU(cpu);
2081     int ret;
2082 
2083     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
2084     if (ret && mpic_proxy) {
2085         error_report("This KVM version does not support EPR");
2086         exit(1);
2087     }
2088 }
2089 
2090 bool kvmppc_get_fwnmi(void)
2091 {
2092     return cap_fwnmi;
2093 }
2094 
2095 int kvmppc_set_fwnmi(PowerPCCPU *cpu)
2096 {
2097     CPUState *cs = CPU(cpu);
2098 
2099     return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0);
2100 }
2101 
2102 int kvmppc_smt_threads(void)
2103 {
2104     return cap_ppc_smt ? cap_ppc_smt : 1;
2105 }
2106 
2107 int kvmppc_set_smt_threads(int smt)
2108 {
2109     int ret;
2110 
2111     ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
2112     if (!ret) {
2113         cap_ppc_smt = smt;
2114     }
2115     return ret;
2116 }
2117 
2118 void kvmppc_error_append_smt_possible_hint(Error *const *errp)
2119 {
2120     int i;
2121     GString *g;
2122     char *s;
2123 
2124     assert(kvm_enabled());
2125     if (cap_ppc_smt_possible) {
2126         g = g_string_new("Available VSMT modes:");
2127         for (i = 63; i >= 0; i--) {
2128             if ((1UL << i) & cap_ppc_smt_possible) {
2129                 g_string_append_printf(g, " %lu", (1UL << i));
2130             }
2131         }
2132         s = g_string_free(g, false);
2133         error_append_hint(errp, "%s.\n", s);
2134         g_free(s);
2135     } else {
2136         error_append_hint(errp,
2137                           "This KVM seems to be too old to support VSMT.\n");
2138     }
2139 }
2140 
2141 
2142 #ifdef TARGET_PPC64
2143 uint64_t kvmppc_vrma_limit(unsigned int hash_shift)
2144 {
2145     struct kvm_ppc_smmu_info info;
2146     long rampagesize, best_page_shift;
2147     int i;
2148 
2149     /*
2150      * Find the largest hardware supported page size that's less than
2151      * or equal to the (logical) backing page size of guest RAM
2152      */
2153     kvm_get_smmu_info(&info, &error_fatal);
2154     rampagesize = qemu_minrampagesize();
2155     best_page_shift = 0;
2156 
2157     for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2158         struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2159 
2160         if (!sps->page_shift) {
2161             continue;
2162         }
2163 
2164         if ((sps->page_shift > best_page_shift)
2165             && ((1UL << sps->page_shift) <= rampagesize)) {
2166             best_page_shift = sps->page_shift;
2167         }
2168     }
2169 
2170     return 1ULL << (best_page_shift + hash_shift - 7);
2171 }
2172 #endif
2173 
2174 bool kvmppc_spapr_use_multitce(void)
2175 {
2176     return cap_spapr_multitce;
2177 }
2178 
2179 int kvmppc_spapr_enable_inkernel_multitce(void)
2180 {
2181     int ret;
2182 
2183     ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2184                             H_PUT_TCE_INDIRECT, 1);
2185     if (!ret) {
2186         ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2187                                 H_STUFF_TCE, 1);
2188     }
2189 
2190     return ret;
2191 }
2192 
2193 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2194                               uint64_t bus_offset, uint32_t nb_table,
2195                               int *pfd, bool need_vfio)
2196 {
2197     long len;
2198     int fd;
2199     void *table;
2200 
2201     /*
2202      * Must set fd to -1 so we don't try to munmap when called for
2203      * destroying the table, which the upper layers -will- do
2204      */
2205     *pfd = -1;
2206     if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
2207         return NULL;
2208     }
2209 
2210     if (cap_spapr_tce_64) {
2211         struct kvm_create_spapr_tce_64 args = {
2212             .liobn = liobn,
2213             .page_shift = page_shift,
2214             .offset = bus_offset >> page_shift,
2215             .size = nb_table,
2216             .flags = 0
2217         };
2218         fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2219         if (fd < 0) {
2220             fprintf(stderr,
2221                     "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2222                     liobn);
2223             return NULL;
2224         }
2225     } else if (cap_spapr_tce) {
2226         uint64_t window_size = (uint64_t) nb_table << page_shift;
2227         struct kvm_create_spapr_tce args = {
2228             .liobn = liobn,
2229             .window_size = window_size,
2230         };
2231         if ((window_size != args.window_size) || bus_offset) {
2232             return NULL;
2233         }
2234         fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2235         if (fd < 0) {
2236             fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2237                     liobn);
2238             return NULL;
2239         }
2240     } else {
2241         return NULL;
2242     }
2243 
2244     len = nb_table * sizeof(uint64_t);
2245     /* FIXME: round this up to page size */
2246 
2247     table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
2248     if (table == MAP_FAILED) {
2249         fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2250                 liobn);
2251         close(fd);
2252         return NULL;
2253     }
2254 
2255     *pfd = fd;
2256     return table;
2257 }
2258 
2259 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2260 {
2261     long len;
2262 
2263     if (fd < 0) {
2264         return -1;
2265     }
2266 
2267     len = nb_table * sizeof(uint64_t);
2268     if ((munmap(table, len) < 0) ||
2269         (close(fd) < 0)) {
2270         fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2271                 strerror(errno));
2272         /* Leak the table */
2273     }
2274 
2275     return 0;
2276 }
2277 
2278 int kvmppc_reset_htab(int shift_hint)
2279 {
2280     uint32_t shift = shift_hint;
2281 
2282     if (!kvm_enabled()) {
2283         /* Full emulation, tell caller to allocate htab itself */
2284         return 0;
2285     }
2286     if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2287         int ret;
2288         ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2289         if (ret == -ENOTTY) {
2290             /*
2291              * At least some versions of PR KVM advertise the
2292              * capability, but don't implement the ioctl().  Oops.
2293              * Return 0 so that we allocate the htab in qemu, as is
2294              * correct for PR.
2295              */
2296             return 0;
2297         } else if (ret < 0) {
2298             return ret;
2299         }
2300         return shift;
2301     }
2302 
2303     /*
2304      * We have a kernel that predates the htab reset calls.  For PR
2305      * KVM, we need to allocate the htab ourselves, for an HV KVM of
2306      * this era, it has allocated a 16MB fixed size hash table
2307      * already.
2308      */
2309     if (kvmppc_is_pr(kvm_state)) {
2310         /* PR - tell caller to allocate htab */
2311         return 0;
2312     } else {
2313         /* HV - assume 16MB kernel allocated htab */
2314         return 24;
2315     }
2316 }
2317 
2318 static inline uint32_t mfpvr(void)
2319 {
2320     uint32_t pvr;
2321 
2322     asm ("mfpvr %0"
2323          : "=r"(pvr));
2324     return pvr;
2325 }
2326 
2327 static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2328 {
2329     if (on) {
2330         *word |= flags;
2331     } else {
2332         *word &= ~flags;
2333     }
2334 }
2335 
2336 static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
2337 {
2338     PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2339     uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2340     uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2341 
2342     /* Now fix up the class with information we can query from the host */
2343     pcc->pvr = mfpvr();
2344 
2345     alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
2346                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
2347     alter_insns(&pcc->insns_flags2, PPC2_VSX,
2348                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
2349     alter_insns(&pcc->insns_flags2, PPC2_DFP,
2350                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
2351 
2352     if (dcache_size != -1) {
2353         pcc->l1_dcache_size = dcache_size;
2354     }
2355 
2356     if (icache_size != -1) {
2357         pcc->l1_icache_size = icache_size;
2358     }
2359 
2360 #if defined(TARGET_PPC64)
2361     pcc->radix_page_info = kvm_get_radix_page_info();
2362 
2363     if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
2364         /*
2365          * POWER9 DD1 has some bugs which make it not really ISA 3.00
2366          * compliant.  More importantly, advertising ISA 3.00
2367          * architected mode may prevent guests from activating
2368          * necessary DD1 workarounds.
2369          */
2370         pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
2371                                 | PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
2372     }
2373 #endif /* defined(TARGET_PPC64) */
2374 }
2375 
2376 bool kvmppc_has_cap_epr(void)
2377 {
2378     return cap_epr;
2379 }
2380 
2381 bool kvmppc_has_cap_fixup_hcalls(void)
2382 {
2383     return cap_fixup_hcalls;
2384 }
2385 
2386 bool kvmppc_has_cap_htm(void)
2387 {
2388     return cap_htm;
2389 }
2390 
2391 bool kvmppc_has_cap_mmu_radix(void)
2392 {
2393     return cap_mmu_radix;
2394 }
2395 
2396 bool kvmppc_has_cap_mmu_hash_v3(void)
2397 {
2398     return cap_mmu_hash_v3;
2399 }
2400 
2401 static bool kvmppc_power8_host(void)
2402 {
2403     bool ret = false;
2404 #ifdef TARGET_PPC64
2405     {
2406         uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
2407         ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
2408               (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
2409               (base_pvr == CPU_POWERPC_POWER8_BASE);
2410     }
2411 #endif /* TARGET_PPC64 */
2412     return ret;
2413 }
2414 
2415 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
2416 {
2417     bool l1d_thread_priv_req = !kvmppc_power8_host();
2418 
2419     if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
2420         return 2;
2421     } else if ((!l1d_thread_priv_req ||
2422                 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
2423                (c.character & c.character_mask
2424                 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
2425         return 1;
2426     }
2427 
2428     return 0;
2429 }
2430 
2431 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
2432 {
2433     if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
2434         return 2;
2435     } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
2436         return 1;
2437     }
2438 
2439     return 0;
2440 }
2441 
2442 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
2443 {
2444     if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
2445         (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
2446         (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
2447         return SPAPR_CAP_FIXED_NA;
2448     } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
2449         return SPAPR_CAP_WORKAROUND;
2450     } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
2451         return  SPAPR_CAP_FIXED_CCD;
2452     } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
2453         return SPAPR_CAP_FIXED_IBS;
2454     }
2455 
2456     return 0;
2457 }
2458 
2459 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
2460 {
2461     if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
2462         return 1;
2463     }
2464     return 0;
2465 }
2466 
2467 bool kvmppc_has_cap_xive(void)
2468 {
2469     return cap_xive;
2470 }
2471 
2472 static void kvmppc_get_cpu_characteristics(KVMState *s)
2473 {
2474     struct kvm_ppc_cpu_char c;
2475     int ret;
2476 
2477     /* Assume broken */
2478     cap_ppc_safe_cache = 0;
2479     cap_ppc_safe_bounds_check = 0;
2480     cap_ppc_safe_indirect_branch = 0;
2481 
2482     ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
2483     if (!ret) {
2484         return;
2485     }
2486     ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
2487     if (ret < 0) {
2488         return;
2489     }
2490 
2491     cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
2492     cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
2493     cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
2494     cap_ppc_count_cache_flush_assist =
2495         parse_cap_ppc_count_cache_flush_assist(c);
2496 }
2497 
2498 int kvmppc_get_cap_safe_cache(void)
2499 {
2500     return cap_ppc_safe_cache;
2501 }
2502 
2503 int kvmppc_get_cap_safe_bounds_check(void)
2504 {
2505     return cap_ppc_safe_bounds_check;
2506 }
2507 
2508 int kvmppc_get_cap_safe_indirect_branch(void)
2509 {
2510     return cap_ppc_safe_indirect_branch;
2511 }
2512 
2513 int kvmppc_get_cap_count_cache_flush_assist(void)
2514 {
2515     return cap_ppc_count_cache_flush_assist;
2516 }
2517 
2518 bool kvmppc_has_cap_nested_kvm_hv(void)
2519 {
2520     return !!cap_ppc_nested_kvm_hv;
2521 }
2522 
2523 int kvmppc_set_cap_nested_kvm_hv(int enable)
2524 {
2525     return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
2526 }
2527 
2528 bool kvmppc_has_cap_spapr_vfio(void)
2529 {
2530     return cap_spapr_vfio;
2531 }
2532 
2533 int kvmppc_get_cap_large_decr(void)
2534 {
2535     return cap_large_decr;
2536 }
2537 
2538 int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
2539 {
2540     CPUState *cs = CPU(cpu);
2541     uint64_t lpcr = 0;
2542 
2543     kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2544     /* Do we need to modify the LPCR? */
2545     if (!!(lpcr & LPCR_LD) != !!enable) {
2546         if (enable) {
2547             lpcr |= LPCR_LD;
2548         } else {
2549             lpcr &= ~LPCR_LD;
2550         }
2551         kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2552         kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2553 
2554         if (!!(lpcr & LPCR_LD) != !!enable) {
2555             return -1;
2556         }
2557     }
2558 
2559     return 0;
2560 }
2561 
2562 int kvmppc_has_cap_rpt_invalidate(void)
2563 {
2564     return cap_rpt_invalidate;
2565 }
2566 
2567 PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2568 {
2569     uint32_t host_pvr = mfpvr();
2570     PowerPCCPUClass *pvr_pcc;
2571 
2572     pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2573     if (pvr_pcc == NULL) {
2574         pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2575     }
2576 
2577     return pvr_pcc;
2578 }
2579 
2580 static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque)
2581 {
2582     MachineClass *mc = MACHINE_CLASS(oc);
2583 
2584     mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
2585 }
2586 
2587 static int kvm_ppc_register_host_cpu_type(void)
2588 {
2589     TypeInfo type_info = {
2590         .name = TYPE_HOST_POWERPC_CPU,
2591         .class_init = kvmppc_host_cpu_class_init,
2592     };
2593     PowerPCCPUClass *pvr_pcc;
2594     ObjectClass *oc;
2595     DeviceClass *dc;
2596     int i;
2597 
2598     pvr_pcc = kvm_ppc_get_host_cpu_class();
2599     if (pvr_pcc == NULL) {
2600         return -1;
2601     }
2602     type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2603     type_register(&type_info);
2604     /* override TCG default cpu type with 'host' cpu model */
2605     object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE,
2606                          false, NULL);
2607 
2608     oc = object_class_by_name(type_info.name);
2609     g_assert(oc);
2610 
2611     /*
2612      * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2613      * we want "POWER8" to be a "family" alias that points to the current
2614      * host CPU type, too)
2615      */
2616     dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2617     for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
2618         if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
2619             char *suffix;
2620 
2621             ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
2622             suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
2623             if (suffix) {
2624                 *suffix = 0;
2625             }
2626             break;
2627         }
2628     }
2629 
2630     return 0;
2631 }
2632 
2633 int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2634 {
2635     struct kvm_rtas_token_args args = {
2636         .token = token,
2637     };
2638 
2639     if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2640         return -ENOENT;
2641     }
2642 
2643     strncpy(args.name, function, sizeof(args.name) - 1);
2644 
2645     return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2646 }
2647 
2648 int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
2649 {
2650     struct kvm_get_htab_fd s = {
2651         .flags = write ? KVM_GET_HTAB_WRITE : 0,
2652         .start_index = index,
2653     };
2654     int ret;
2655 
2656     if (!cap_htab_fd) {
2657         error_setg(errp, "KVM version doesn't support %s the HPT",
2658                    write ? "writing" : "reading");
2659         return -ENOTSUP;
2660     }
2661 
2662     ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2663     if (ret < 0) {
2664         error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
2665                    write ? "writing" : "reading", write ? "to" : "from",
2666                    strerror(errno));
2667         return -errno;
2668     }
2669 
2670     return ret;
2671 }
2672 
2673 int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2674 {
2675     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2676     uint8_t buf[bufsize];
2677     ssize_t rc;
2678 
2679     do {
2680         rc = read(fd, buf, bufsize);
2681         if (rc < 0) {
2682             fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2683                     strerror(errno));
2684             return rc;
2685         } else if (rc) {
2686             uint8_t *buffer = buf;
2687             ssize_t n = rc;
2688             while (n) {
2689                 struct kvm_get_htab_header *head =
2690                     (struct kvm_get_htab_header *) buffer;
2691                 size_t chunksize = sizeof(*head) +
2692                      HASH_PTE_SIZE_64 * head->n_valid;
2693 
2694                 qemu_put_be32(f, head->index);
2695                 qemu_put_be16(f, head->n_valid);
2696                 qemu_put_be16(f, head->n_invalid);
2697                 qemu_put_buffer(f, (void *)(head + 1),
2698                                 HASH_PTE_SIZE_64 * head->n_valid);
2699 
2700                 buffer += chunksize;
2701                 n -= chunksize;
2702             }
2703         }
2704     } while ((rc != 0)
2705              && ((max_ns < 0) ||
2706                  ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2707 
2708     return (rc == 0) ? 1 : 0;
2709 }
2710 
2711 int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2712                            uint16_t n_valid, uint16_t n_invalid, Error **errp)
2713 {
2714     struct kvm_get_htab_header *buf;
2715     size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
2716     ssize_t rc;
2717 
2718     buf = alloca(chunksize);
2719     buf->index = index;
2720     buf->n_valid = n_valid;
2721     buf->n_invalid = n_invalid;
2722 
2723     qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
2724 
2725     rc = write(fd, buf, chunksize);
2726     if (rc < 0) {
2727         error_setg_errno(errp, errno, "Error writing the KVM hash table");
2728         return -errno;
2729     }
2730     if (rc != chunksize) {
2731         /* We should never get a short write on a single chunk */
2732         error_setg(errp, "Short write while restoring the KVM hash table");
2733         return -ENOSPC;
2734     }
2735     return 0;
2736 }
2737 
2738 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2739 {
2740     return true;
2741 }
2742 
2743 void kvm_arch_init_irq_routing(KVMState *s)
2744 {
2745 }
2746 
2747 void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
2748 {
2749     int fd, rc;
2750     int i;
2751 
2752     fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
2753 
2754     i = 0;
2755     while (i < n) {
2756         struct kvm_get_htab_header *hdr;
2757         int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2758         char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
2759 
2760         rc = read(fd, buf, sizeof(buf));
2761         if (rc < 0) {
2762             hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2763         }
2764 
2765         hdr = (struct kvm_get_htab_header *)buf;
2766         while ((i < n) && ((char *)hdr < (buf + rc))) {
2767             int invalid = hdr->n_invalid, valid = hdr->n_valid;
2768 
2769             if (hdr->index != (ptex + i)) {
2770                 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2771                          " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2772             }
2773 
2774             if (n - i < valid) {
2775                 valid = n - i;
2776             }
2777             memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
2778             i += valid;
2779 
2780             if ((n - i) < invalid) {
2781                 invalid = n - i;
2782             }
2783             memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
2784             i += invalid;
2785 
2786             hdr = (struct kvm_get_htab_header *)
2787                 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2788         }
2789     }
2790 
2791     close(fd);
2792 }
2793 
2794 void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
2795 {
2796     int fd, rc;
2797     struct {
2798         struct kvm_get_htab_header hdr;
2799         uint64_t pte0;
2800         uint64_t pte1;
2801     } buf;
2802 
2803     fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
2804 
2805     buf.hdr.n_valid = 1;
2806     buf.hdr.n_invalid = 0;
2807     buf.hdr.index = ptex;
2808     buf.pte0 = cpu_to_be64(pte0);
2809     buf.pte1 = cpu_to_be64(pte1);
2810 
2811     rc = write(fd, &buf, sizeof(buf));
2812     if (rc != sizeof(buf)) {
2813         hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2814     }
2815     close(fd);
2816 }
2817 
2818 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2819                              uint64_t address, uint32_t data, PCIDevice *dev)
2820 {
2821     return 0;
2822 }
2823 
2824 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2825                                 int vector, PCIDevice *dev)
2826 {
2827     return 0;
2828 }
2829 
2830 int kvm_arch_release_virq_post(int virq)
2831 {
2832     return 0;
2833 }
2834 
2835 int kvm_arch_msi_data_to_gsi(uint32_t data)
2836 {
2837     return data & 0xffff;
2838 }
2839 
2840 #if defined(TARGET_PPC64)
2841 int kvm_handle_nmi(PowerPCCPU *cpu, struct kvm_run *run)
2842 {
2843     uint16_t flags = run->flags & KVM_RUN_PPC_NMI_DISP_MASK;
2844 
2845     cpu_synchronize_state(CPU(cpu));
2846 
2847     spapr_mce_req_event(cpu, flags == KVM_RUN_PPC_NMI_DISP_FULLY_RECOV);
2848 
2849     return 0;
2850 }
2851 #endif
2852 
2853 int kvmppc_enable_hwrng(void)
2854 {
2855     if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2856         return -1;
2857     }
2858 
2859     return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2860 }
2861 
2862 void kvmppc_check_papr_resize_hpt(Error **errp)
2863 {
2864     if (!kvm_enabled()) {
2865         return; /* No KVM, we're good */
2866     }
2867 
2868     if (cap_resize_hpt) {
2869         return; /* Kernel has explicit support, we're good */
2870     }
2871 
2872     /* Otherwise fallback on looking for PR KVM */
2873     if (kvmppc_is_pr(kvm_state)) {
2874         return;
2875     }
2876 
2877     error_setg(errp,
2878                "Hash page table resizing not available with this KVM version");
2879 }
2880 
2881 int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2882 {
2883     CPUState *cs = CPU(cpu);
2884     struct kvm_ppc_resize_hpt rhpt = {
2885         .flags = flags,
2886         .shift = shift,
2887     };
2888 
2889     if (!cap_resize_hpt) {
2890         return -ENOSYS;
2891     }
2892 
2893     return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2894 }
2895 
2896 int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2897 {
2898     CPUState *cs = CPU(cpu);
2899     struct kvm_ppc_resize_hpt rhpt = {
2900         .flags = flags,
2901         .shift = shift,
2902     };
2903 
2904     if (!cap_resize_hpt) {
2905         return -ENOSYS;
2906     }
2907 
2908     return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2909 }
2910 
2911 /*
2912  * This is a helper function to detect a post migration scenario
2913  * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2914  * the guest kernel can't handle a PVR value other than the actual host
2915  * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2916  *
2917  * If we don't have cap_ppc_pvr_compat and we're not running in PR
2918  * (so, we're HV), return true. The workaround itself is done in
2919  * cpu_post_load.
2920  *
2921  * The order here is important: we'll only check for KVM PR as a
2922  * fallback if the guest kernel can't handle the situation itself.
2923  * We need to avoid as much as possible querying the running KVM type
2924  * in QEMU level.
2925  */
2926 bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2927 {
2928     CPUState *cs = CPU(cpu);
2929 
2930     if (!kvm_enabled()) {
2931         return false;
2932     }
2933 
2934     if (cap_ppc_pvr_compat) {
2935         return false;
2936     }
2937 
2938     return !kvmppc_is_pr(cs->kvm_state);
2939 }
2940 
2941 void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
2942 {
2943     CPUState *cs = CPU(cpu);
2944 
2945     if (kvm_enabled()) {
2946         kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
2947     }
2948 }
2949 
2950 void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
2951 {
2952     CPUState *cs = CPU(cpu);
2953 
2954     if (kvm_enabled()) {
2955         kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);
2956     }
2957 }
2958 
2959 bool kvm_arch_cpu_check_are_resettable(void)
2960 {
2961     return true;
2962 }
2963