xref: /qemu/target/ppc/kvm.c (revision e995d5cc)
1 /*
2  * PowerPC implementation of KVM hooks
3  *
4  * Copyright IBM Corp. 2007
5  * Copyright (C) 2011 Freescale Semiconductor, Inc.
6  *
7  * Authors:
8  *  Jerone Young <jyoung5@us.ibm.com>
9  *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10  *  Hollis Blanchard <hollisb@us.ibm.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2 or later.
13  * See the COPYING file in the top-level directory.
14  *
15  */
16 
17 #include "qemu/osdep.h"
18 #include <dirent.h>
19 #include <sys/ioctl.h>
20 #include <sys/vfs.h>
21 
22 #include <linux/kvm.h>
23 
24 #include "qapi/error.h"
25 #include "qemu/error-report.h"
26 #include "cpu.h"
27 #include "cpu-models.h"
28 #include "qemu/timer.h"
29 #include "sysemu/hw_accel.h"
30 #include "kvm_ppc.h"
31 #include "sysemu/cpus.h"
32 #include "sysemu/device_tree.h"
33 #include "mmu-hash64.h"
34 
35 #include "hw/ppc/spapr.h"
36 #include "hw/ppc/spapr_cpu_core.h"
37 #include "hw/hw.h"
38 #include "hw/ppc/ppc.h"
39 #include "migration/qemu-file-types.h"
40 #include "sysemu/watchdog.h"
41 #include "trace.h"
42 #include "exec/gdbstub.h"
43 #include "exec/memattrs.h"
44 #include "exec/ram_addr.h"
45 #include "sysemu/hostmem.h"
46 #include "qemu/cutils.h"
47 #include "qemu/main-loop.h"
48 #include "qemu/mmap-alloc.h"
49 #include "elf.h"
50 #include "sysemu/kvm_int.h"
51 
52 #define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"
53 
54 #define DEBUG_RETURN_GUEST 0
55 #define DEBUG_RETURN_GDB   1
56 
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58     KVM_CAP_LAST_INFO
59 };
60 
61 static int cap_interrupt_unset;
62 static int cap_segstate;
63 static int cap_booke_sregs;
64 static int cap_ppc_smt;
65 static int cap_ppc_smt_possible;
66 static int cap_spapr_tce;
67 static int cap_spapr_tce_64;
68 static int cap_spapr_multitce;
69 static int cap_spapr_vfio;
70 static int cap_hior;
71 static int cap_one_reg;
72 static int cap_epr;
73 static int cap_ppc_watchdog;
74 static int cap_papr;
75 static int cap_htab_fd;
76 static int cap_fixup_hcalls;
77 static int cap_htm;             /* Hardware transactional memory support */
78 static int cap_mmu_radix;
79 static int cap_mmu_hash_v3;
80 static int cap_xive;
81 static int cap_resize_hpt;
82 static int cap_ppc_pvr_compat;
83 static int cap_ppc_safe_cache;
84 static int cap_ppc_safe_bounds_check;
85 static int cap_ppc_safe_indirect_branch;
86 static int cap_ppc_count_cache_flush_assist;
87 static int cap_ppc_nested_kvm_hv;
88 static int cap_large_decr;
89 static int cap_fwnmi;
90 static int cap_rpt_invalidate;
91 
92 static uint32_t debug_inst_opcode;
93 
94 /*
95  * Check whether we are running with KVM-PR (instead of KVM-HV).  This
96  * should only be used for fallback tests - generally we should use
97  * explicit capabilities for the features we want, rather than
98  * assuming what is/isn't available depending on the KVM variant.
99  */
100 static bool kvmppc_is_pr(KVMState *ks)
101 {
102     /* Assume KVM-PR if the GET_PVINFO capability is available */
103     return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
104 }
105 
106 static int kvm_ppc_register_host_cpu_type(void);
107 static void kvmppc_get_cpu_characteristics(KVMState *s);
108 static int kvmppc_get_dec_bits(void);
109 
110 int kvm_arch_init(MachineState *ms, KVMState *s)
111 {
112     cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
113     cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
114     cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
115     cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
116     cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
117     cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
118     cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
119     cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
120     cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
121     cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
122     cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
123     cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
124     /*
125      * Note: we don't set cap_papr here, because this capability is
126      * only activated after this by kvmppc_set_papr()
127      */
128     cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
129     cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
130     cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
131     cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
132     cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
133     cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
134     cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
135     cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
136     kvmppc_get_cpu_characteristics(s);
137     cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
138     cap_large_decr = kvmppc_get_dec_bits();
139     cap_fwnmi = kvm_vm_check_extension(s, KVM_CAP_PPC_FWNMI);
140     /*
141      * Note: setting it to false because there is not such capability
142      * in KVM at this moment.
143      *
144      * TODO: call kvm_vm_check_extension() with the right capability
145      * after the kernel starts implementing it.
146      */
147     cap_ppc_pvr_compat = false;
148 
149     if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) {
150         error_report("KVM: Host kernel doesn't have level irq capability");
151         exit(1);
152     }
153 
154     cap_rpt_invalidate = kvm_vm_check_extension(s, KVM_CAP_PPC_RPT_INVALIDATE);
155     kvm_ppc_register_host_cpu_type();
156 
157     return 0;
158 }
159 
160 int kvm_arch_irqchip_create(KVMState *s)
161 {
162     return 0;
163 }
164 
165 static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
166 {
167     CPUPPCState *cenv = &cpu->env;
168     CPUState *cs = CPU(cpu);
169     struct kvm_sregs sregs;
170     int ret;
171 
172     if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
173         /*
174          * What we're really trying to say is "if we're on BookE, we
175          * use the native PVR for now". This is the only sane way to
176          * check it though, so we potentially confuse users that they
177          * can run BookE guests on BookS. Let's hope nobody dares
178          * enough :)
179          */
180         return 0;
181     } else {
182         if (!cap_segstate) {
183             fprintf(stderr, "kvm error: missing PVR setting capability\n");
184             return -ENOSYS;
185         }
186     }
187 
188     ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
189     if (ret) {
190         return ret;
191     }
192 
193     sregs.pvr = cenv->spr[SPR_PVR];
194     return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
195 }
196 
197 /* Set up a shared TLB array with KVM */
198 static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
199 {
200     CPUPPCState *env = &cpu->env;
201     CPUState *cs = CPU(cpu);
202     struct kvm_book3e_206_tlb_params params = {};
203     struct kvm_config_tlb cfg = {};
204     unsigned int entries = 0;
205     int ret, i;
206 
207     if (!kvm_enabled() ||
208         !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
209         return 0;
210     }
211 
212     assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
213 
214     for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
215         params.tlb_sizes[i] = booke206_tlb_size(env, i);
216         params.tlb_ways[i] = booke206_tlb_ways(env, i);
217         entries += params.tlb_sizes[i];
218     }
219 
220     assert(entries == env->nb_tlb);
221     assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
222 
223     env->tlb_dirty = true;
224 
225     cfg.array = (uintptr_t)env->tlb.tlbm;
226     cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
227     cfg.params = (uintptr_t)&params;
228     cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
229 
230     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
231     if (ret < 0) {
232         fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
233                 __func__, strerror(-ret));
234         return ret;
235     }
236 
237     env->kvm_sw_tlb = true;
238     return 0;
239 }
240 
241 
242 #if defined(TARGET_PPC64)
243 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
244 {
245     int ret;
246 
247     assert(kvm_state != NULL);
248 
249     if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
250         error_setg(errp, "KVM doesn't expose the MMU features it supports");
251         error_append_hint(errp, "Consider switching to a newer KVM\n");
252         return;
253     }
254 
255     ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
256     if (ret == 0) {
257         return;
258     }
259 
260     error_setg_errno(errp, -ret,
261                      "KVM failed to provide the MMU features it supports");
262 }
263 
264 struct ppc_radix_page_info *kvm_get_radix_page_info(void)
265 {
266     KVMState *s = KVM_STATE(current_accel());
267     struct ppc_radix_page_info *radix_page_info;
268     struct kvm_ppc_rmmu_info rmmu_info = { };
269     int i;
270 
271     if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
272         return NULL;
273     }
274     if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
275         return NULL;
276     }
277     radix_page_info = g_malloc0(sizeof(*radix_page_info));
278     radix_page_info->count = 0;
279     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
280         if (rmmu_info.ap_encodings[i]) {
281             radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
282             radix_page_info->count++;
283         }
284     }
285     return radix_page_info;
286 }
287 
288 target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
289                                      bool radix, bool gtse,
290                                      uint64_t proc_tbl)
291 {
292     CPUState *cs = CPU(cpu);
293     int ret;
294     uint64_t flags = 0;
295     struct kvm_ppc_mmuv3_cfg cfg = {
296         .process_table = proc_tbl,
297     };
298 
299     if (radix) {
300         flags |= KVM_PPC_MMUV3_RADIX;
301     }
302     if (gtse) {
303         flags |= KVM_PPC_MMUV3_GTSE;
304     }
305     cfg.flags = flags;
306     ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
307     switch (ret) {
308     case 0:
309         return H_SUCCESS;
310     case -EINVAL:
311         return H_PARAMETER;
312     case -ENODEV:
313         return H_NOT_AVAILABLE;
314     default:
315         return H_HARDWARE;
316     }
317 }
318 
319 bool kvmppc_hpt_needs_host_contiguous_pages(void)
320 {
321     static struct kvm_ppc_smmu_info smmu_info;
322 
323     if (!kvm_enabled()) {
324         return false;
325     }
326 
327     kvm_get_smmu_info(&smmu_info, &error_fatal);
328     return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
329 }
330 
331 void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
332 {
333     struct kvm_ppc_smmu_info smmu_info;
334     int iq, ik, jq, jk;
335     Error *local_err = NULL;
336 
337     /* For now, we only have anything to check on hash64 MMUs */
338     if (!cpu->hash64_opts || !kvm_enabled()) {
339         return;
340     }
341 
342     kvm_get_smmu_info(&smmu_info, &local_err);
343     if (local_err) {
344         error_propagate(errp, local_err);
345         return;
346     }
347 
348     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
349         && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
350         error_setg(errp,
351                    "KVM does not support 1TiB segments which guest expects");
352         return;
353     }
354 
355     if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
356         error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
357                    smmu_info.slb_size, cpu->hash64_opts->slb_size);
358         return;
359     }
360 
361     /*
362      * Verify that every pagesize supported by the cpu model is
363      * supported by KVM with the same encodings
364      */
365     for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
366         PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
367         struct kvm_ppc_one_seg_page_size *ksps;
368 
369         for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
370             if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
371                 break;
372             }
373         }
374         if (ik >= ARRAY_SIZE(smmu_info.sps)) {
375             error_setg(errp, "KVM doesn't support for base page shift %u",
376                        qsps->page_shift);
377             return;
378         }
379 
380         ksps = &smmu_info.sps[ik];
381         if (ksps->slb_enc != qsps->slb_enc) {
382             error_setg(errp,
383 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
384                        ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
385             return;
386         }
387 
388         for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
389             for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
390                 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
391                     break;
392                 }
393             }
394 
395             if (jk >= ARRAY_SIZE(ksps->enc)) {
396                 error_setg(errp, "KVM doesn't support page shift %u/%u",
397                            qsps->enc[jq].page_shift, qsps->page_shift);
398                 return;
399             }
400             if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
401                 error_setg(errp,
402 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
403                            ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
404                            qsps->page_shift, qsps->enc[jq].pte_enc);
405                 return;
406             }
407         }
408     }
409 
410     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
411         /*
412          * Mostly what guest pagesizes we can use are related to the
413          * host pages used to map guest RAM, which is handled in the
414          * platform code. Cache-Inhibited largepages (64k) however are
415          * used for I/O, so if they're mapped to the host at all it
416          * will be a normal mapping, not a special hugepage one used
417          * for RAM.
418          */
419         if (qemu_real_host_page_size() < 0x10000) {
420             error_setg(errp,
421                        "KVM can't supply 64kiB CI pages, which guest expects");
422         }
423     }
424 }
425 #endif /* !defined (TARGET_PPC64) */
426 
427 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
428 {
429     return POWERPC_CPU(cpu)->vcpu_id;
430 }
431 
432 /*
433  * e500 supports 2 h/w breakpoint and 2 watchpoint.  book3s supports
434  * only 1 watchpoint, so array size of 4 is sufficient for now.
435  */
436 #define MAX_HW_BKPTS 4
437 
438 static struct HWBreakpoint {
439     target_ulong addr;
440     int type;
441 } hw_debug_points[MAX_HW_BKPTS];
442 
443 static CPUWatchpoint hw_watchpoint;
444 
445 /* Default there is no breakpoint and watchpoint supported */
446 static int max_hw_breakpoint;
447 static int max_hw_watchpoint;
448 static int nb_hw_breakpoint;
449 static int nb_hw_watchpoint;
450 
451 static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
452 {
453     if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
454         max_hw_breakpoint = 2;
455         max_hw_watchpoint = 2;
456     }
457 
458     if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
459         fprintf(stderr, "Error initializing h/w breakpoints\n");
460         return;
461     }
462 }
463 
464 int kvm_arch_init_vcpu(CPUState *cs)
465 {
466     PowerPCCPU *cpu = POWERPC_CPU(cs);
467     CPUPPCState *cenv = &cpu->env;
468     int ret;
469 
470     /* Synchronize sregs with kvm */
471     ret = kvm_arch_sync_sregs(cpu);
472     if (ret) {
473         if (ret == -EINVAL) {
474             error_report("Register sync failed... If you're using kvm-hv.ko,"
475                          " only \"-cpu host\" is possible");
476         }
477         return ret;
478     }
479 
480     switch (cenv->mmu_model) {
481     case POWERPC_MMU_BOOKE206:
482         /* This target supports access to KVM's guest TLB */
483         ret = kvm_booke206_tlb_init(cpu);
484         break;
485     case POWERPC_MMU_2_07:
486         if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
487             /*
488              * KVM-HV has transactional memory on POWER8 also without
489              * the KVM_CAP_PPC_HTM extension, so enable it here
490              * instead as long as it's available to userspace on the
491              * host.
492              */
493             if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
494                 cap_htm = true;
495             }
496         }
497         break;
498     default:
499         break;
500     }
501 
502     kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
503     kvmppc_hw_debug_points_init(cenv);
504 
505     return ret;
506 }
507 
508 int kvm_arch_destroy_vcpu(CPUState *cs)
509 {
510     return 0;
511 }
512 
513 static void kvm_sw_tlb_put(PowerPCCPU *cpu)
514 {
515     CPUPPCState *env = &cpu->env;
516     CPUState *cs = CPU(cpu);
517     struct kvm_dirty_tlb dirty_tlb;
518     unsigned char *bitmap;
519     int ret;
520 
521     if (!env->kvm_sw_tlb) {
522         return;
523     }
524 
525     bitmap = g_malloc((env->nb_tlb + 7) / 8);
526     memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
527 
528     dirty_tlb.bitmap = (uintptr_t)bitmap;
529     dirty_tlb.num_dirty = env->nb_tlb;
530 
531     ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
532     if (ret) {
533         fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
534                 __func__, strerror(-ret));
535     }
536 
537     g_free(bitmap);
538 }
539 
540 static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
541 {
542     PowerPCCPU *cpu = POWERPC_CPU(cs);
543     CPUPPCState *env = &cpu->env;
544     /* Init 'val' to avoid "uninitialised value" Valgrind warnings */
545     union {
546         uint32_t u32;
547         uint64_t u64;
548     } val = { };
549     struct kvm_one_reg reg = {
550         .id = id,
551         .addr = (uintptr_t) &val,
552     };
553     int ret;
554 
555     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
556     if (ret != 0) {
557         trace_kvm_failed_spr_get(spr, strerror(errno));
558     } else {
559         switch (id & KVM_REG_SIZE_MASK) {
560         case KVM_REG_SIZE_U32:
561             env->spr[spr] = val.u32;
562             break;
563 
564         case KVM_REG_SIZE_U64:
565             env->spr[spr] = val.u64;
566             break;
567 
568         default:
569             /* Don't handle this size yet */
570             abort();
571         }
572     }
573 }
574 
575 static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
576 {
577     PowerPCCPU *cpu = POWERPC_CPU(cs);
578     CPUPPCState *env = &cpu->env;
579     union {
580         uint32_t u32;
581         uint64_t u64;
582     } val;
583     struct kvm_one_reg reg = {
584         .id = id,
585         .addr = (uintptr_t) &val,
586     };
587     int ret;
588 
589     switch (id & KVM_REG_SIZE_MASK) {
590     case KVM_REG_SIZE_U32:
591         val.u32 = env->spr[spr];
592         break;
593 
594     case KVM_REG_SIZE_U64:
595         val.u64 = env->spr[spr];
596         break;
597 
598     default:
599         /* Don't handle this size yet */
600         abort();
601     }
602 
603     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
604     if (ret != 0) {
605         trace_kvm_failed_spr_set(spr, strerror(errno));
606     }
607 }
608 
609 static int kvm_put_fp(CPUState *cs)
610 {
611     PowerPCCPU *cpu = POWERPC_CPU(cs);
612     CPUPPCState *env = &cpu->env;
613     struct kvm_one_reg reg;
614     int i;
615     int ret;
616 
617     if (env->insns_flags & PPC_FLOAT) {
618         uint64_t fpscr = env->fpscr;
619         bool vsx = !!(env->insns_flags2 & PPC2_VSX);
620 
621         reg.id = KVM_REG_PPC_FPSCR;
622         reg.addr = (uintptr_t)&fpscr;
623         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
624         if (ret < 0) {
625             trace_kvm_failed_fpscr_set(strerror(errno));
626             return ret;
627         }
628 
629         for (i = 0; i < 32; i++) {
630             uint64_t vsr[2];
631             uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
632             uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
633 
634 #if HOST_BIG_ENDIAN
635             vsr[0] = float64_val(*fpr);
636             vsr[1] = *vsrl;
637 #else
638             vsr[0] = *vsrl;
639             vsr[1] = float64_val(*fpr);
640 #endif
641             reg.addr = (uintptr_t) &vsr;
642             reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
643 
644             ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
645             if (ret < 0) {
646                 trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
647                                         strerror(errno));
648                 return ret;
649             }
650         }
651     }
652 
653     if (env->insns_flags & PPC_ALTIVEC) {
654         reg.id = KVM_REG_PPC_VSCR;
655         reg.addr = (uintptr_t)&env->vscr;
656         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
657         if (ret < 0) {
658             trace_kvm_failed_vscr_set(strerror(errno));
659             return ret;
660         }
661 
662         for (i = 0; i < 32; i++) {
663             reg.id = KVM_REG_PPC_VR(i);
664             reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
665             ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
666             if (ret < 0) {
667                 trace_kvm_failed_vr_set(i, strerror(errno));
668                 return ret;
669             }
670         }
671     }
672 
673     return 0;
674 }
675 
676 static int kvm_get_fp(CPUState *cs)
677 {
678     PowerPCCPU *cpu = POWERPC_CPU(cs);
679     CPUPPCState *env = &cpu->env;
680     struct kvm_one_reg reg;
681     int i;
682     int ret;
683 
684     if (env->insns_flags & PPC_FLOAT) {
685         uint64_t fpscr;
686         bool vsx = !!(env->insns_flags2 & PPC2_VSX);
687 
688         reg.id = KVM_REG_PPC_FPSCR;
689         reg.addr = (uintptr_t)&fpscr;
690         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
691         if (ret < 0) {
692             trace_kvm_failed_fpscr_get(strerror(errno));
693             return ret;
694         } else {
695             env->fpscr = fpscr;
696         }
697 
698         for (i = 0; i < 32; i++) {
699             uint64_t vsr[2];
700             uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
701             uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
702 
703             reg.addr = (uintptr_t) &vsr;
704             reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
705 
706             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
707             if (ret < 0) {
708                 trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
709                                         strerror(errno));
710                 return ret;
711             } else {
712 #if HOST_BIG_ENDIAN
713                 *fpr = vsr[0];
714                 if (vsx) {
715                     *vsrl = vsr[1];
716                 }
717 #else
718                 *fpr = vsr[1];
719                 if (vsx) {
720                     *vsrl = vsr[0];
721                 }
722 #endif
723             }
724         }
725     }
726 
727     if (env->insns_flags & PPC_ALTIVEC) {
728         reg.id = KVM_REG_PPC_VSCR;
729         reg.addr = (uintptr_t)&env->vscr;
730         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
731         if (ret < 0) {
732             trace_kvm_failed_vscr_get(strerror(errno));
733             return ret;
734         }
735 
736         for (i = 0; i < 32; i++) {
737             reg.id = KVM_REG_PPC_VR(i);
738             reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
739             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
740             if (ret < 0) {
741                 trace_kvm_failed_vr_get(i, strerror(errno));
742                 return ret;
743             }
744         }
745     }
746 
747     return 0;
748 }
749 
750 #if defined(TARGET_PPC64)
751 static int kvm_get_vpa(CPUState *cs)
752 {
753     PowerPCCPU *cpu = POWERPC_CPU(cs);
754     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
755     struct kvm_one_reg reg;
756     int ret;
757 
758     reg.id = KVM_REG_PPC_VPA_ADDR;
759     reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
760     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
761     if (ret < 0) {
762         trace_kvm_failed_vpa_addr_get(strerror(errno));
763         return ret;
764     }
765 
766     assert((uintptr_t)&spapr_cpu->slb_shadow_size
767            == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
768     reg.id = KVM_REG_PPC_VPA_SLB;
769     reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
770     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
771     if (ret < 0) {
772         trace_kvm_failed_slb_get(strerror(errno));
773         return ret;
774     }
775 
776     assert((uintptr_t)&spapr_cpu->dtl_size
777            == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
778     reg.id = KVM_REG_PPC_VPA_DTL;
779     reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
780     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
781     if (ret < 0) {
782         trace_kvm_failed_dtl_get(strerror(errno));
783         return ret;
784     }
785 
786     return 0;
787 }
788 
789 static int kvm_put_vpa(CPUState *cs)
790 {
791     PowerPCCPU *cpu = POWERPC_CPU(cs);
792     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
793     struct kvm_one_reg reg;
794     int ret;
795 
796     /*
797      * SLB shadow or DTL can't be registered unless a master VPA is
798      * registered.  That means when restoring state, if a VPA *is*
799      * registered, we need to set that up first.  If not, we need to
800      * deregister the others before deregistering the master VPA
801      */
802     assert(spapr_cpu->vpa_addr
803            || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
804 
805     if (spapr_cpu->vpa_addr) {
806         reg.id = KVM_REG_PPC_VPA_ADDR;
807         reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
808         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
809         if (ret < 0) {
810             trace_kvm_failed_vpa_addr_set(strerror(errno));
811             return ret;
812         }
813     }
814 
815     assert((uintptr_t)&spapr_cpu->slb_shadow_size
816            == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
817     reg.id = KVM_REG_PPC_VPA_SLB;
818     reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
819     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
820     if (ret < 0) {
821         trace_kvm_failed_slb_set(strerror(errno));
822         return ret;
823     }
824 
825     assert((uintptr_t)&spapr_cpu->dtl_size
826            == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
827     reg.id = KVM_REG_PPC_VPA_DTL;
828     reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
829     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
830     if (ret < 0) {
831         trace_kvm_failed_dtl_set(strerror(errno));
832         return ret;
833     }
834 
835     if (!spapr_cpu->vpa_addr) {
836         reg.id = KVM_REG_PPC_VPA_ADDR;
837         reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
838         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
839         if (ret < 0) {
840             trace_kvm_failed_null_vpa_addr_set(strerror(errno));
841             return ret;
842         }
843     }
844 
845     return 0;
846 }
847 #endif /* TARGET_PPC64 */
848 
849 int kvmppc_put_books_sregs(PowerPCCPU *cpu)
850 {
851     CPUPPCState *env = &cpu->env;
852     struct kvm_sregs sregs = { };
853     int i;
854 
855     sregs.pvr = env->spr[SPR_PVR];
856 
857     if (cpu->vhyp) {
858         PPCVirtualHypervisorClass *vhc =
859             PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
860         sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp);
861     } else {
862         sregs.u.s.sdr1 = env->spr[SPR_SDR1];
863     }
864 
865     /* Sync SLB */
866 #ifdef TARGET_PPC64
867     for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
868         sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
869         if (env->slb[i].esid & SLB_ESID_V) {
870             sregs.u.s.ppc64.slb[i].slbe |= i;
871         }
872         sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
873     }
874 #endif
875 
876     /* Sync SRs */
877     for (i = 0; i < 16; i++) {
878         sregs.u.s.ppc32.sr[i] = env->sr[i];
879     }
880 
881     /* Sync BATs */
882     for (i = 0; i < 8; i++) {
883         /* Beware. We have to swap upper and lower bits here */
884         sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
885             | env->DBAT[1][i];
886         sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
887             | env->IBAT[1][i];
888     }
889 
890     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
891 }
892 
893 int kvm_arch_put_registers(CPUState *cs, int level)
894 {
895     PowerPCCPU *cpu = POWERPC_CPU(cs);
896     CPUPPCState *env = &cpu->env;
897     struct kvm_regs regs;
898     int ret;
899     int i;
900 
901     ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
902     if (ret < 0) {
903         return ret;
904     }
905 
906     regs.ctr = env->ctr;
907     regs.lr  = env->lr;
908     regs.xer = cpu_read_xer(env);
909     regs.msr = env->msr;
910     regs.pc = env->nip;
911 
912     regs.srr0 = env->spr[SPR_SRR0];
913     regs.srr1 = env->spr[SPR_SRR1];
914 
915     regs.sprg0 = env->spr[SPR_SPRG0];
916     regs.sprg1 = env->spr[SPR_SPRG1];
917     regs.sprg2 = env->spr[SPR_SPRG2];
918     regs.sprg3 = env->spr[SPR_SPRG3];
919     regs.sprg4 = env->spr[SPR_SPRG4];
920     regs.sprg5 = env->spr[SPR_SPRG5];
921     regs.sprg6 = env->spr[SPR_SPRG6];
922     regs.sprg7 = env->spr[SPR_SPRG7];
923 
924     regs.pid = env->spr[SPR_BOOKE_PID];
925 
926     for (i = 0; i < 32; i++) {
927         regs.gpr[i] = env->gpr[i];
928     }
929 
930     regs.cr = 0;
931     for (i = 0; i < 8; i++) {
932         regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
933     }
934 
935     ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
936     if (ret < 0) {
937         return ret;
938     }
939 
940     kvm_put_fp(cs);
941 
942     if (env->tlb_dirty) {
943         kvm_sw_tlb_put(cpu);
944         env->tlb_dirty = false;
945     }
946 
947     if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
948         ret = kvmppc_put_books_sregs(cpu);
949         if (ret < 0) {
950             return ret;
951         }
952     }
953 
954     if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
955         kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
956     }
957 
958     if (cap_one_reg) {
959         int i;
960 
961         /*
962          * We deliberately ignore errors here, for kernels which have
963          * the ONE_REG calls, but don't support the specific
964          * registers, there's a reasonable chance things will still
965          * work, at least until we try to migrate.
966          */
967         for (i = 0; i < 1024; i++) {
968             uint64_t id = env->spr_cb[i].one_reg_id;
969 
970             if (id != 0) {
971                 kvm_put_one_spr(cs, id, i);
972             }
973         }
974 
975 #ifdef TARGET_PPC64
976         if (FIELD_EX64(env->msr, MSR, TS)) {
977             for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
978                 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
979             }
980             for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
981                 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
982             }
983             kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
984             kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
985             kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
986             kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
987             kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
988             kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
989             kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
990             kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
991             kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
992             kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
993         }
994 
995         if (cap_papr) {
996             if (kvm_put_vpa(cs) < 0) {
997                 trace_kvm_failed_put_vpa();
998             }
999         }
1000 
1001         kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1002 
1003         if (level > KVM_PUT_RUNTIME_STATE) {
1004             kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1005         }
1006 #endif /* TARGET_PPC64 */
1007     }
1008 
1009     return ret;
1010 }
1011 
1012 static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1013 {
1014      env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1015 }
1016 
1017 static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1018 {
1019     CPUPPCState *env = &cpu->env;
1020     struct kvm_sregs sregs;
1021     int ret;
1022 
1023     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1024     if (ret < 0) {
1025         return ret;
1026     }
1027 
1028     if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1029         env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1030         env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1031         env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1032         env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1033         env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1034         env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1035         env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1036         env->spr[SPR_DECR] = sregs.u.e.dec;
1037         env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1038         env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1039         env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1040     }
1041 
1042     if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1043         env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1044         env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1045         env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1046         env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1047         env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1048     }
1049 
1050     if (sregs.u.e.features & KVM_SREGS_E_64) {
1051         env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1052     }
1053 
1054     if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1055         env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1056     }
1057 
1058     if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1059         env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1060         kvm_sync_excp(env, POWERPC_EXCP_CRITICAL,  SPR_BOOKE_IVOR0);
1061         env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1062         kvm_sync_excp(env, POWERPC_EXCP_MCHECK,  SPR_BOOKE_IVOR1);
1063         env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1064         kvm_sync_excp(env, POWERPC_EXCP_DSI,  SPR_BOOKE_IVOR2);
1065         env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1066         kvm_sync_excp(env, POWERPC_EXCP_ISI,  SPR_BOOKE_IVOR3);
1067         env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1068         kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL,  SPR_BOOKE_IVOR4);
1069         env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1070         kvm_sync_excp(env, POWERPC_EXCP_ALIGN,  SPR_BOOKE_IVOR5);
1071         env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1072         kvm_sync_excp(env, POWERPC_EXCP_PROGRAM,  SPR_BOOKE_IVOR6);
1073         env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1074         kvm_sync_excp(env, POWERPC_EXCP_FPU,  SPR_BOOKE_IVOR7);
1075         env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1076         kvm_sync_excp(env, POWERPC_EXCP_SYSCALL,  SPR_BOOKE_IVOR8);
1077         env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1078         kvm_sync_excp(env, POWERPC_EXCP_APU,  SPR_BOOKE_IVOR9);
1079         env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1080         kvm_sync_excp(env, POWERPC_EXCP_DECR,  SPR_BOOKE_IVOR10);
1081         env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1082         kvm_sync_excp(env, POWERPC_EXCP_FIT,  SPR_BOOKE_IVOR11);
1083         env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1084         kvm_sync_excp(env, POWERPC_EXCP_WDT,  SPR_BOOKE_IVOR12);
1085         env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1086         kvm_sync_excp(env, POWERPC_EXCP_DTLB,  SPR_BOOKE_IVOR13);
1087         env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1088         kvm_sync_excp(env, POWERPC_EXCP_ITLB,  SPR_BOOKE_IVOR14);
1089         env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1090         kvm_sync_excp(env, POWERPC_EXCP_DEBUG,  SPR_BOOKE_IVOR15);
1091 
1092         if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1093             env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1094             kvm_sync_excp(env, POWERPC_EXCP_SPEU,  SPR_BOOKE_IVOR32);
1095             env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1096             kvm_sync_excp(env, POWERPC_EXCP_EFPDI,  SPR_BOOKE_IVOR33);
1097             env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1098             kvm_sync_excp(env, POWERPC_EXCP_EFPRI,  SPR_BOOKE_IVOR34);
1099         }
1100 
1101         if (sregs.u.e.features & KVM_SREGS_E_PM) {
1102             env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1103             kvm_sync_excp(env, POWERPC_EXCP_EPERFM,  SPR_BOOKE_IVOR35);
1104         }
1105 
1106         if (sregs.u.e.features & KVM_SREGS_E_PC) {
1107             env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1108             kvm_sync_excp(env, POWERPC_EXCP_DOORI,  SPR_BOOKE_IVOR36);
1109             env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1110             kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1111         }
1112     }
1113 
1114     if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1115         env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1116         env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1117         env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1118         env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1119         env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1120         env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1121         env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1122         env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1123         env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1124         env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1125     }
1126 
1127     if (sregs.u.e.features & KVM_SREGS_EXP) {
1128         env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1129     }
1130 
1131     if (sregs.u.e.features & KVM_SREGS_E_PD) {
1132         env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1133         env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1134     }
1135 
1136     if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1137         env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1138         env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1139         env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1140 
1141         if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1142             env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1143             env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1144         }
1145     }
1146 
1147     return 0;
1148 }
1149 
1150 static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1151 {
1152     CPUPPCState *env = &cpu->env;
1153     struct kvm_sregs sregs;
1154     int ret;
1155     int i;
1156 
1157     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1158     if (ret < 0) {
1159         return ret;
1160     }
1161 
1162     if (!cpu->vhyp) {
1163         ppc_store_sdr1(env, sregs.u.s.sdr1);
1164     }
1165 
1166     /* Sync SLB */
1167 #ifdef TARGET_PPC64
1168     /*
1169      * The packed SLB array we get from KVM_GET_SREGS only contains
1170      * information about valid entries. So we flush our internal copy
1171      * to get rid of stale ones, then put all valid SLB entries back
1172      * in.
1173      */
1174     memset(env->slb, 0, sizeof(env->slb));
1175     for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1176         target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1177         target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1178         /*
1179          * Only restore valid entries
1180          */
1181         if (rb & SLB_ESID_V) {
1182             ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1183         }
1184     }
1185 #endif
1186 
1187     /* Sync SRs */
1188     for (i = 0; i < 16; i++) {
1189         env->sr[i] = sregs.u.s.ppc32.sr[i];
1190     }
1191 
1192     /* Sync BATs */
1193     for (i = 0; i < 8; i++) {
1194         env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1195         env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1196         env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1197         env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1198     }
1199 
1200     return 0;
1201 }
1202 
1203 int kvm_arch_get_registers(CPUState *cs)
1204 {
1205     PowerPCCPU *cpu = POWERPC_CPU(cs);
1206     CPUPPCState *env = &cpu->env;
1207     struct kvm_regs regs;
1208     uint32_t cr;
1209     int i, ret;
1210 
1211     ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
1212     if (ret < 0) {
1213         return ret;
1214     }
1215 
1216     cr = regs.cr;
1217     for (i = 7; i >= 0; i--) {
1218         env->crf[i] = cr & 15;
1219         cr >>= 4;
1220     }
1221 
1222     env->ctr = regs.ctr;
1223     env->lr = regs.lr;
1224     cpu_write_xer(env, regs.xer);
1225     env->msr = regs.msr;
1226     env->nip = regs.pc;
1227 
1228     env->spr[SPR_SRR0] = regs.srr0;
1229     env->spr[SPR_SRR1] = regs.srr1;
1230 
1231     env->spr[SPR_SPRG0] = regs.sprg0;
1232     env->spr[SPR_SPRG1] = regs.sprg1;
1233     env->spr[SPR_SPRG2] = regs.sprg2;
1234     env->spr[SPR_SPRG3] = regs.sprg3;
1235     env->spr[SPR_SPRG4] = regs.sprg4;
1236     env->spr[SPR_SPRG5] = regs.sprg5;
1237     env->spr[SPR_SPRG6] = regs.sprg6;
1238     env->spr[SPR_SPRG7] = regs.sprg7;
1239 
1240     env->spr[SPR_BOOKE_PID] = regs.pid;
1241 
1242     for (i = 0; i < 32; i++) {
1243         env->gpr[i] = regs.gpr[i];
1244     }
1245 
1246     kvm_get_fp(cs);
1247 
1248     if (cap_booke_sregs) {
1249         ret = kvmppc_get_booke_sregs(cpu);
1250         if (ret < 0) {
1251             return ret;
1252         }
1253     }
1254 
1255     if (cap_segstate) {
1256         ret = kvmppc_get_books_sregs(cpu);
1257         if (ret < 0) {
1258             return ret;
1259         }
1260     }
1261 
1262     if (cap_hior) {
1263         kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1264     }
1265 
1266     if (cap_one_reg) {
1267         int i;
1268 
1269         /*
1270          * We deliberately ignore errors here, for kernels which have
1271          * the ONE_REG calls, but don't support the specific
1272          * registers, there's a reasonable chance things will still
1273          * work, at least until we try to migrate.
1274          */
1275         for (i = 0; i < 1024; i++) {
1276             uint64_t id = env->spr_cb[i].one_reg_id;
1277 
1278             if (id != 0) {
1279                 kvm_get_one_spr(cs, id, i);
1280             }
1281         }
1282 
1283 #ifdef TARGET_PPC64
1284         if (FIELD_EX64(env->msr, MSR, TS)) {
1285             for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1286                 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1287             }
1288             for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1289                 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1290             }
1291             kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1292             kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1293             kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1294             kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1295             kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1296             kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1297             kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1298             kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1299             kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1300             kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1301         }
1302 
1303         if (cap_papr) {
1304             if (kvm_get_vpa(cs) < 0) {
1305                 trace_kvm_failed_get_vpa();
1306             }
1307         }
1308 
1309         kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1310         kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1311 #endif
1312     }
1313 
1314     return 0;
1315 }
1316 
1317 int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1318 {
1319     unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1320 
1321     if (irq != PPC_INTERRUPT_EXT) {
1322         return 0;
1323     }
1324 
1325     if (!kvm_enabled() || !cap_interrupt_unset) {
1326         return 0;
1327     }
1328 
1329     kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1330 
1331     return 0;
1332 }
1333 
1334 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1335 {
1336     return;
1337 }
1338 
1339 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1340 {
1341     return MEMTXATTRS_UNSPECIFIED;
1342 }
1343 
1344 int kvm_arch_process_async_events(CPUState *cs)
1345 {
1346     return cs->halted;
1347 }
1348 
1349 static int kvmppc_handle_halt(PowerPCCPU *cpu)
1350 {
1351     CPUState *cs = CPU(cpu);
1352     CPUPPCState *env = &cpu->env;
1353 
1354     if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1355         FIELD_EX64(env->msr, MSR, EE)) {
1356         cs->halted = 1;
1357         cs->exception_index = EXCP_HLT;
1358     }
1359 
1360     return 0;
1361 }
1362 
1363 /* map dcr access to existing qemu dcr emulation */
1364 static int kvmppc_handle_dcr_read(CPUPPCState *env,
1365                                   uint32_t dcrn, uint32_t *data)
1366 {
1367     if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
1368         fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1369     }
1370 
1371     return 0;
1372 }
1373 
1374 static int kvmppc_handle_dcr_write(CPUPPCState *env,
1375                                    uint32_t dcrn, uint32_t data)
1376 {
1377     if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
1378         fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1379     }
1380 
1381     return 0;
1382 }
1383 
1384 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1385 {
1386     /* Mixed endian case is not handled */
1387     uint32_t sc = debug_inst_opcode;
1388 
1389     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1390                             sizeof(sc), 0) ||
1391         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1392         return -EINVAL;
1393     }
1394 
1395     return 0;
1396 }
1397 
1398 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1399 {
1400     uint32_t sc;
1401 
1402     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1403         sc != debug_inst_opcode ||
1404         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1405                             sizeof(sc), 1)) {
1406         return -EINVAL;
1407     }
1408 
1409     return 0;
1410 }
1411 
1412 static int find_hw_breakpoint(target_ulong addr, int type)
1413 {
1414     int n;
1415 
1416     assert((nb_hw_breakpoint + nb_hw_watchpoint)
1417            <= ARRAY_SIZE(hw_debug_points));
1418 
1419     for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1420         if (hw_debug_points[n].addr == addr &&
1421              hw_debug_points[n].type == type) {
1422             return n;
1423         }
1424     }
1425 
1426     return -1;
1427 }
1428 
1429 static int find_hw_watchpoint(target_ulong addr, int *flag)
1430 {
1431     int n;
1432 
1433     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1434     if (n >= 0) {
1435         *flag = BP_MEM_ACCESS;
1436         return n;
1437     }
1438 
1439     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1440     if (n >= 0) {
1441         *flag = BP_MEM_WRITE;
1442         return n;
1443     }
1444 
1445     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1446     if (n >= 0) {
1447         *flag = BP_MEM_READ;
1448         return n;
1449     }
1450 
1451     return -1;
1452 }
1453 
1454 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1455                                   target_ulong len, int type)
1456 {
1457     if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
1458         return -ENOBUFS;
1459     }
1460 
1461     hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
1462     hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
1463 
1464     switch (type) {
1465     case GDB_BREAKPOINT_HW:
1466         if (nb_hw_breakpoint >= max_hw_breakpoint) {
1467             return -ENOBUFS;
1468         }
1469 
1470         if (find_hw_breakpoint(addr, type) >= 0) {
1471             return -EEXIST;
1472         }
1473 
1474         nb_hw_breakpoint++;
1475         break;
1476 
1477     case GDB_WATCHPOINT_WRITE:
1478     case GDB_WATCHPOINT_READ:
1479     case GDB_WATCHPOINT_ACCESS:
1480         if (nb_hw_watchpoint >= max_hw_watchpoint) {
1481             return -ENOBUFS;
1482         }
1483 
1484         if (find_hw_breakpoint(addr, type) >= 0) {
1485             return -EEXIST;
1486         }
1487 
1488         nb_hw_watchpoint++;
1489         break;
1490 
1491     default:
1492         return -ENOSYS;
1493     }
1494 
1495     return 0;
1496 }
1497 
1498 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1499                                   target_ulong len, int type)
1500 {
1501     int n;
1502 
1503     n = find_hw_breakpoint(addr, type);
1504     if (n < 0) {
1505         return -ENOENT;
1506     }
1507 
1508     switch (type) {
1509     case GDB_BREAKPOINT_HW:
1510         nb_hw_breakpoint--;
1511         break;
1512 
1513     case GDB_WATCHPOINT_WRITE:
1514     case GDB_WATCHPOINT_READ:
1515     case GDB_WATCHPOINT_ACCESS:
1516         nb_hw_watchpoint--;
1517         break;
1518 
1519     default:
1520         return -ENOSYS;
1521     }
1522     hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1523 
1524     return 0;
1525 }
1526 
1527 void kvm_arch_remove_all_hw_breakpoints(void)
1528 {
1529     nb_hw_breakpoint = nb_hw_watchpoint = 0;
1530 }
1531 
1532 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1533 {
1534     int n;
1535 
1536     /* Software Breakpoint updates */
1537     if (kvm_sw_breakpoints_active(cs)) {
1538         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1539     }
1540 
1541     assert((nb_hw_breakpoint + nb_hw_watchpoint)
1542            <= ARRAY_SIZE(hw_debug_points));
1543     assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1544 
1545     if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1546         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1547         memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1548         for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1549             switch (hw_debug_points[n].type) {
1550             case GDB_BREAKPOINT_HW:
1551                 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1552                 break;
1553             case GDB_WATCHPOINT_WRITE:
1554                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1555                 break;
1556             case GDB_WATCHPOINT_READ:
1557                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1558                 break;
1559             case GDB_WATCHPOINT_ACCESS:
1560                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1561                                         KVMPPC_DEBUG_WATCH_READ;
1562                 break;
1563             default:
1564                 cpu_abort(cs, "Unsupported breakpoint type\n");
1565             }
1566             dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1567         }
1568     }
1569 }
1570 
1571 static int kvm_handle_hw_breakpoint(CPUState *cs,
1572                                     struct kvm_debug_exit_arch *arch_info)
1573 {
1574     int handle = DEBUG_RETURN_GUEST;
1575     int n;
1576     int flag = 0;
1577 
1578     if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1579         if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1580             n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1581             if (n >= 0) {
1582                 handle = DEBUG_RETURN_GDB;
1583             }
1584         } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1585                                         KVMPPC_DEBUG_WATCH_WRITE)) {
1586             n = find_hw_watchpoint(arch_info->address,  &flag);
1587             if (n >= 0) {
1588                 handle = DEBUG_RETURN_GDB;
1589                 cs->watchpoint_hit = &hw_watchpoint;
1590                 hw_watchpoint.vaddr = hw_debug_points[n].addr;
1591                 hw_watchpoint.flags = flag;
1592             }
1593         }
1594     }
1595     return handle;
1596 }
1597 
1598 static int kvm_handle_singlestep(void)
1599 {
1600     return DEBUG_RETURN_GDB;
1601 }
1602 
1603 static int kvm_handle_sw_breakpoint(void)
1604 {
1605     return DEBUG_RETURN_GDB;
1606 }
1607 
1608 static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1609 {
1610     CPUState *cs = CPU(cpu);
1611     CPUPPCState *env = &cpu->env;
1612     struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1613 
1614     if (cs->singlestep_enabled) {
1615         return kvm_handle_singlestep();
1616     }
1617 
1618     if (arch_info->status) {
1619         return kvm_handle_hw_breakpoint(cs, arch_info);
1620     }
1621 
1622     if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1623         return kvm_handle_sw_breakpoint();
1624     }
1625 
1626     /*
1627      * QEMU is not able to handle debug exception, so inject
1628      * program exception to guest;
1629      * Yes program exception NOT debug exception !!
1630      * When QEMU is using debug resources then debug exception must
1631      * be always set. To achieve this we set MSR_DE and also set
1632      * MSRP_DEP so guest cannot change MSR_DE.
1633      * When emulating debug resource for guest we want guest
1634      * to control MSR_DE (enable/disable debug interrupt on need).
1635      * Supporting both configurations are NOT possible.
1636      * So the result is that we cannot share debug resources
1637      * between QEMU and Guest on BOOKE architecture.
1638      * In the current design QEMU gets the priority over guest,
1639      * this means that if QEMU is using debug resources then guest
1640      * cannot use them;
1641      * For software breakpoint QEMU uses a privileged instruction;
1642      * So there cannot be any reason that we are here for guest
1643      * set debug exception, only possibility is guest executed a
1644      * privileged / illegal instruction and that's why we are
1645      * injecting a program interrupt.
1646      */
1647     cpu_synchronize_state(cs);
1648     /*
1649      * env->nip is PC, so increment this by 4 to use
1650      * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1651      */
1652     env->nip += 4;
1653     cs->exception_index = POWERPC_EXCP_PROGRAM;
1654     env->error_code = POWERPC_EXCP_INVAL;
1655     ppc_cpu_do_interrupt(cs);
1656 
1657     return DEBUG_RETURN_GUEST;
1658 }
1659 
1660 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1661 {
1662     PowerPCCPU *cpu = POWERPC_CPU(cs);
1663     CPUPPCState *env = &cpu->env;
1664     int ret;
1665 
1666     qemu_mutex_lock_iothread();
1667 
1668     switch (run->exit_reason) {
1669     case KVM_EXIT_DCR:
1670         if (run->dcr.is_write) {
1671             trace_kvm_handle_dcr_write();
1672             ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1673         } else {
1674             trace_kvm_handle_dcr_read();
1675             ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1676         }
1677         break;
1678     case KVM_EXIT_HLT:
1679         trace_kvm_handle_halt();
1680         ret = kvmppc_handle_halt(cpu);
1681         break;
1682 #if defined(TARGET_PPC64)
1683     case KVM_EXIT_PAPR_HCALL:
1684         trace_kvm_handle_papr_hcall(run->papr_hcall.nr);
1685         run->papr_hcall.ret = spapr_hypercall(cpu,
1686                                               run->papr_hcall.nr,
1687                                               run->papr_hcall.args);
1688         ret = 0;
1689         break;
1690 #endif
1691     case KVM_EXIT_EPR:
1692         trace_kvm_handle_epr();
1693         run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1694         ret = 0;
1695         break;
1696     case KVM_EXIT_WATCHDOG:
1697         trace_kvm_handle_watchdog_expiry();
1698         watchdog_perform_action();
1699         ret = 0;
1700         break;
1701 
1702     case KVM_EXIT_DEBUG:
1703         trace_kvm_handle_debug_exception();
1704         if (kvm_handle_debug(cpu, run)) {
1705             ret = EXCP_DEBUG;
1706             break;
1707         }
1708         /* re-enter, this exception was guest-internal */
1709         ret = 0;
1710         break;
1711 
1712 #if defined(TARGET_PPC64)
1713     case KVM_EXIT_NMI:
1714         trace_kvm_handle_nmi_exception();
1715         ret = kvm_handle_nmi(cpu, run);
1716         break;
1717 #endif
1718 
1719     default:
1720         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1721         ret = -1;
1722         break;
1723     }
1724 
1725     qemu_mutex_unlock_iothread();
1726     return ret;
1727 }
1728 
1729 int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1730 {
1731     CPUState *cs = CPU(cpu);
1732     uint32_t bits = tsr_bits;
1733     struct kvm_one_reg reg = {
1734         .id = KVM_REG_PPC_OR_TSR,
1735         .addr = (uintptr_t) &bits,
1736     };
1737 
1738     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1739 }
1740 
1741 int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1742 {
1743 
1744     CPUState *cs = CPU(cpu);
1745     uint32_t bits = tsr_bits;
1746     struct kvm_one_reg reg = {
1747         .id = KVM_REG_PPC_CLEAR_TSR,
1748         .addr = (uintptr_t) &bits,
1749     };
1750 
1751     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1752 }
1753 
1754 int kvmppc_set_tcr(PowerPCCPU *cpu)
1755 {
1756     CPUState *cs = CPU(cpu);
1757     CPUPPCState *env = &cpu->env;
1758     uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1759 
1760     struct kvm_one_reg reg = {
1761         .id = KVM_REG_PPC_TCR,
1762         .addr = (uintptr_t) &tcr,
1763     };
1764 
1765     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1766 }
1767 
1768 int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1769 {
1770     CPUState *cs = CPU(cpu);
1771     int ret;
1772 
1773     if (!kvm_enabled()) {
1774         return -1;
1775     }
1776 
1777     if (!cap_ppc_watchdog) {
1778         printf("warning: KVM does not support watchdog");
1779         return -1;
1780     }
1781 
1782     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
1783     if (ret < 0) {
1784         fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1785                 __func__, strerror(-ret));
1786         return ret;
1787     }
1788 
1789     return ret;
1790 }
1791 
1792 static int read_cpuinfo(const char *field, char *value, int len)
1793 {
1794     FILE *f;
1795     int ret = -1;
1796     int field_len = strlen(field);
1797     char line[512];
1798 
1799     f = fopen("/proc/cpuinfo", "r");
1800     if (!f) {
1801         return -1;
1802     }
1803 
1804     do {
1805         if (!fgets(line, sizeof(line), f)) {
1806             break;
1807         }
1808         if (!strncmp(line, field, field_len)) {
1809             pstrcpy(value, len, line);
1810             ret = 0;
1811             break;
1812         }
1813     } while (*line);
1814 
1815     fclose(f);
1816 
1817     return ret;
1818 }
1819 
1820 static uint32_t kvmppc_get_tbfreq_procfs(void)
1821 {
1822     char line[512];
1823     char *ns;
1824     uint32_t tbfreq_fallback = NANOSECONDS_PER_SECOND;
1825     uint32_t tbfreq_procfs;
1826 
1827     if (read_cpuinfo("timebase", line, sizeof(line))) {
1828         return tbfreq_fallback;
1829     }
1830 
1831     ns = strchr(line, ':');
1832     if (!ns) {
1833         return tbfreq_fallback;
1834     }
1835 
1836     tbfreq_procfs = atoi(++ns);
1837 
1838     /* 0 is certainly not acceptable by the guest, return fallback value */
1839     return tbfreq_procfs ? tbfreq_procfs : tbfreq_fallback;
1840 }
1841 
1842 uint32_t kvmppc_get_tbfreq(void)
1843 {
1844     static uint32_t cached_tbfreq;
1845 
1846     if (!cached_tbfreq) {
1847         cached_tbfreq = kvmppc_get_tbfreq_procfs();
1848     }
1849 
1850     return cached_tbfreq;
1851 }
1852 
1853 bool kvmppc_get_host_serial(char **value)
1854 {
1855     return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1856                                NULL);
1857 }
1858 
1859 bool kvmppc_get_host_model(char **value)
1860 {
1861     return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1862 }
1863 
1864 /* Try to find a device tree node for a CPU with clock-frequency property */
1865 static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1866 {
1867     struct dirent *dirp;
1868     DIR *dp;
1869 
1870     dp = opendir(PROC_DEVTREE_CPU);
1871     if (!dp) {
1872         printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1873         return -1;
1874     }
1875 
1876     buf[0] = '\0';
1877     while ((dirp = readdir(dp)) != NULL) {
1878         FILE *f;
1879 
1880         /* Don't accidentally read from the current and parent directories */
1881         if (strcmp(dirp->d_name, ".") == 0 || strcmp(dirp->d_name, "..") == 0) {
1882             continue;
1883         }
1884 
1885         snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1886                  dirp->d_name);
1887         f = fopen(buf, "r");
1888         if (f) {
1889             snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1890             fclose(f);
1891             break;
1892         }
1893         buf[0] = '\0';
1894     }
1895     closedir(dp);
1896     if (buf[0] == '\0') {
1897         printf("Unknown host!\n");
1898         return -1;
1899     }
1900 
1901     return 0;
1902 }
1903 
1904 static uint64_t kvmppc_read_int_dt(const char *filename)
1905 {
1906     union {
1907         uint32_t v32;
1908         uint64_t v64;
1909     } u;
1910     FILE *f;
1911     int len;
1912 
1913     f = fopen(filename, "rb");
1914     if (!f) {
1915         return -1;
1916     }
1917 
1918     len = fread(&u, 1, sizeof(u), f);
1919     fclose(f);
1920     switch (len) {
1921     case 4:
1922         /* property is a 32-bit quantity */
1923         return be32_to_cpu(u.v32);
1924     case 8:
1925         return be64_to_cpu(u.v64);
1926     }
1927 
1928     return 0;
1929 }
1930 
1931 /*
1932  * Read a CPU node property from the host device tree that's a single
1933  * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
1934  * (can't find or open the property, or doesn't understand the format)
1935  */
1936 static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1937 {
1938     char buf[PATH_MAX], *tmp;
1939     uint64_t val;
1940 
1941     if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1942         return -1;
1943     }
1944 
1945     tmp = g_strdup_printf("%s/%s", buf, propname);
1946     val = kvmppc_read_int_dt(tmp);
1947     g_free(tmp);
1948 
1949     return val;
1950 }
1951 
1952 uint64_t kvmppc_get_clockfreq(void)
1953 {
1954     return kvmppc_read_int_cpu_dt("clock-frequency");
1955 }
1956 
1957 static int kvmppc_get_dec_bits(void)
1958 {
1959     int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
1960 
1961     if (nr_bits > 0) {
1962         return nr_bits;
1963     }
1964     return 0;
1965 }
1966 
1967 static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
1968 {
1969     CPUState *cs = env_cpu(env);
1970 
1971     if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1972         !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
1973         return 0;
1974     }
1975 
1976     return 1;
1977 }
1978 
1979 int kvmppc_get_hasidle(CPUPPCState *env)
1980 {
1981     struct kvm_ppc_pvinfo pvinfo;
1982 
1983     if (!kvmppc_get_pvinfo(env, &pvinfo) &&
1984         (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
1985         return 1;
1986     }
1987 
1988     return 0;
1989 }
1990 
1991 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
1992 {
1993     uint32_t *hc = (uint32_t *)buf;
1994     struct kvm_ppc_pvinfo pvinfo;
1995 
1996     if (!kvmppc_get_pvinfo(env, &pvinfo)) {
1997         memcpy(buf, pvinfo.hcall, buf_len);
1998         return 0;
1999     }
2000 
2001     /*
2002      * Fallback to always fail hypercalls regardless of endianness:
2003      *
2004      *     tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
2005      *     li r3, -1
2006      *     b .+8       (becomes nop in wrong endian)
2007      *     bswap32(li r3, -1)
2008      */
2009 
2010     hc[0] = cpu_to_be32(0x08000048);
2011     hc[1] = cpu_to_be32(0x3860ffff);
2012     hc[2] = cpu_to_be32(0x48000008);
2013     hc[3] = cpu_to_be32(bswap32(0x3860ffff));
2014 
2015     return 1;
2016 }
2017 
2018 static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
2019 {
2020     return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
2021 }
2022 
2023 void kvmppc_enable_logical_ci_hcalls(void)
2024 {
2025     /*
2026      * FIXME: it would be nice if we could detect the cases where
2027      * we're using a device which requires the in kernel
2028      * implementation of these hcalls, but the kernel lacks them and
2029      * produce a warning.
2030      */
2031     kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2032     kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2033 }
2034 
2035 void kvmppc_enable_set_mode_hcall(void)
2036 {
2037     kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2038 }
2039 
2040 void kvmppc_enable_clear_ref_mod_hcalls(void)
2041 {
2042     kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2043     kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2044 }
2045 
2046 void kvmppc_enable_h_page_init(void)
2047 {
2048     kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
2049 }
2050 
2051 void kvmppc_enable_h_rpt_invalidate(void)
2052 {
2053     kvmppc_enable_hcall(kvm_state, H_RPT_INVALIDATE);
2054 }
2055 
2056 void kvmppc_set_papr(PowerPCCPU *cpu)
2057 {
2058     CPUState *cs = CPU(cpu);
2059     int ret;
2060 
2061     if (!kvm_enabled()) {
2062         return;
2063     }
2064 
2065     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
2066     if (ret) {
2067         error_report("This vCPU type or KVM version does not support PAPR");
2068         exit(1);
2069     }
2070 
2071     /*
2072      * Update the capability flag so we sync the right information
2073      * with kvm
2074      */
2075     cap_papr = 1;
2076 }
2077 
2078 int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
2079 {
2080     return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
2081 }
2082 
2083 void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2084 {
2085     CPUState *cs = CPU(cpu);
2086     int ret;
2087 
2088     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
2089     if (ret && mpic_proxy) {
2090         error_report("This KVM version does not support EPR");
2091         exit(1);
2092     }
2093 }
2094 
2095 bool kvmppc_get_fwnmi(void)
2096 {
2097     return cap_fwnmi;
2098 }
2099 
2100 int kvmppc_set_fwnmi(PowerPCCPU *cpu)
2101 {
2102     CPUState *cs = CPU(cpu);
2103 
2104     return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0);
2105 }
2106 
2107 int kvmppc_smt_threads(void)
2108 {
2109     return cap_ppc_smt ? cap_ppc_smt : 1;
2110 }
2111 
2112 int kvmppc_set_smt_threads(int smt)
2113 {
2114     int ret;
2115 
2116     ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
2117     if (!ret) {
2118         cap_ppc_smt = smt;
2119     }
2120     return ret;
2121 }
2122 
2123 void kvmppc_error_append_smt_possible_hint(Error *const *errp)
2124 {
2125     int i;
2126     GString *g;
2127     char *s;
2128 
2129     assert(kvm_enabled());
2130     if (cap_ppc_smt_possible) {
2131         g = g_string_new("Available VSMT modes:");
2132         for (i = 63; i >= 0; i--) {
2133             if ((1UL << i) & cap_ppc_smt_possible) {
2134                 g_string_append_printf(g, " %lu", (1UL << i));
2135             }
2136         }
2137         s = g_string_free(g, false);
2138         error_append_hint(errp, "%s.\n", s);
2139         g_free(s);
2140     } else {
2141         error_append_hint(errp,
2142                           "This KVM seems to be too old to support VSMT.\n");
2143     }
2144 }
2145 
2146 
2147 #ifdef TARGET_PPC64
2148 uint64_t kvmppc_vrma_limit(unsigned int hash_shift)
2149 {
2150     struct kvm_ppc_smmu_info info;
2151     long rampagesize, best_page_shift;
2152     int i;
2153 
2154     /*
2155      * Find the largest hardware supported page size that's less than
2156      * or equal to the (logical) backing page size of guest RAM
2157      */
2158     kvm_get_smmu_info(&info, &error_fatal);
2159     rampagesize = qemu_minrampagesize();
2160     best_page_shift = 0;
2161 
2162     for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2163         struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2164 
2165         if (!sps->page_shift) {
2166             continue;
2167         }
2168 
2169         if ((sps->page_shift > best_page_shift)
2170             && ((1UL << sps->page_shift) <= rampagesize)) {
2171             best_page_shift = sps->page_shift;
2172         }
2173     }
2174 
2175     return 1ULL << (best_page_shift + hash_shift - 7);
2176 }
2177 #endif
2178 
2179 bool kvmppc_spapr_use_multitce(void)
2180 {
2181     return cap_spapr_multitce;
2182 }
2183 
2184 int kvmppc_spapr_enable_inkernel_multitce(void)
2185 {
2186     int ret;
2187 
2188     ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2189                             H_PUT_TCE_INDIRECT, 1);
2190     if (!ret) {
2191         ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2192                                 H_STUFF_TCE, 1);
2193     }
2194 
2195     return ret;
2196 }
2197 
2198 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2199                               uint64_t bus_offset, uint32_t nb_table,
2200                               int *pfd, bool need_vfio)
2201 {
2202     long len;
2203     int fd;
2204     void *table;
2205 
2206     /*
2207      * Must set fd to -1 so we don't try to munmap when called for
2208      * destroying the table, which the upper layers -will- do
2209      */
2210     *pfd = -1;
2211     if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
2212         return NULL;
2213     }
2214 
2215     if (cap_spapr_tce_64) {
2216         struct kvm_create_spapr_tce_64 args = {
2217             .liobn = liobn,
2218             .page_shift = page_shift,
2219             .offset = bus_offset >> page_shift,
2220             .size = nb_table,
2221             .flags = 0
2222         };
2223         fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2224         if (fd < 0) {
2225             fprintf(stderr,
2226                     "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2227                     liobn);
2228             return NULL;
2229         }
2230     } else if (cap_spapr_tce) {
2231         uint64_t window_size = (uint64_t) nb_table << page_shift;
2232         struct kvm_create_spapr_tce args = {
2233             .liobn = liobn,
2234             .window_size = window_size,
2235         };
2236         if ((window_size != args.window_size) || bus_offset) {
2237             return NULL;
2238         }
2239         fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2240         if (fd < 0) {
2241             fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2242                     liobn);
2243             return NULL;
2244         }
2245     } else {
2246         return NULL;
2247     }
2248 
2249     len = nb_table * sizeof(uint64_t);
2250     /* FIXME: round this up to page size */
2251 
2252     table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
2253     if (table == MAP_FAILED) {
2254         fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2255                 liobn);
2256         close(fd);
2257         return NULL;
2258     }
2259 
2260     *pfd = fd;
2261     return table;
2262 }
2263 
2264 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2265 {
2266     long len;
2267 
2268     if (fd < 0) {
2269         return -1;
2270     }
2271 
2272     len = nb_table * sizeof(uint64_t);
2273     if ((munmap(table, len) < 0) ||
2274         (close(fd) < 0)) {
2275         fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2276                 strerror(errno));
2277         /* Leak the table */
2278     }
2279 
2280     return 0;
2281 }
2282 
2283 int kvmppc_reset_htab(int shift_hint)
2284 {
2285     uint32_t shift = shift_hint;
2286 
2287     if (!kvm_enabled()) {
2288         /* Full emulation, tell caller to allocate htab itself */
2289         return 0;
2290     }
2291     if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2292         int ret;
2293         ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2294         if (ret == -ENOTTY) {
2295             /*
2296              * At least some versions of PR KVM advertise the
2297              * capability, but don't implement the ioctl().  Oops.
2298              * Return 0 so that we allocate the htab in qemu, as is
2299              * correct for PR.
2300              */
2301             return 0;
2302         } else if (ret < 0) {
2303             return ret;
2304         }
2305         return shift;
2306     }
2307 
2308     /*
2309      * We have a kernel that predates the htab reset calls.  For PR
2310      * KVM, we need to allocate the htab ourselves, for an HV KVM of
2311      * this era, it has allocated a 16MB fixed size hash table
2312      * already.
2313      */
2314     if (kvmppc_is_pr(kvm_state)) {
2315         /* PR - tell caller to allocate htab */
2316         return 0;
2317     } else {
2318         /* HV - assume 16MB kernel allocated htab */
2319         return 24;
2320     }
2321 }
2322 
2323 static inline uint32_t mfpvr(void)
2324 {
2325     uint32_t pvr;
2326 
2327     asm ("mfpvr %0"
2328          : "=r"(pvr));
2329     return pvr;
2330 }
2331 
2332 static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2333 {
2334     if (on) {
2335         *word |= flags;
2336     } else {
2337         *word &= ~flags;
2338     }
2339 }
2340 
2341 static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
2342 {
2343     PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2344     uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2345     uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2346 
2347     /* Now fix up the class with information we can query from the host */
2348     pcc->pvr = mfpvr();
2349 
2350     alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
2351                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
2352     alter_insns(&pcc->insns_flags2, PPC2_VSX,
2353                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
2354     alter_insns(&pcc->insns_flags2, PPC2_DFP,
2355                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
2356 
2357     if (dcache_size != -1) {
2358         pcc->l1_dcache_size = dcache_size;
2359     }
2360 
2361     if (icache_size != -1) {
2362         pcc->l1_icache_size = icache_size;
2363     }
2364 
2365 #if defined(TARGET_PPC64)
2366     pcc->radix_page_info = kvm_get_radix_page_info();
2367 
2368     if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
2369         /*
2370          * POWER9 DD1 has some bugs which make it not really ISA 3.00
2371          * compliant.  More importantly, advertising ISA 3.00
2372          * architected mode may prevent guests from activating
2373          * necessary DD1 workarounds.
2374          */
2375         pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
2376                                 | PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
2377     }
2378 #endif /* defined(TARGET_PPC64) */
2379 }
2380 
2381 bool kvmppc_has_cap_epr(void)
2382 {
2383     return cap_epr;
2384 }
2385 
2386 bool kvmppc_has_cap_fixup_hcalls(void)
2387 {
2388     return cap_fixup_hcalls;
2389 }
2390 
2391 bool kvmppc_has_cap_htm(void)
2392 {
2393     return cap_htm;
2394 }
2395 
2396 bool kvmppc_has_cap_mmu_radix(void)
2397 {
2398     return cap_mmu_radix;
2399 }
2400 
2401 bool kvmppc_has_cap_mmu_hash_v3(void)
2402 {
2403     return cap_mmu_hash_v3;
2404 }
2405 
2406 static bool kvmppc_power8_host(void)
2407 {
2408     bool ret = false;
2409 #ifdef TARGET_PPC64
2410     {
2411         uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
2412         ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
2413               (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
2414               (base_pvr == CPU_POWERPC_POWER8_BASE);
2415     }
2416 #endif /* TARGET_PPC64 */
2417     return ret;
2418 }
2419 
2420 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
2421 {
2422     bool l1d_thread_priv_req = !kvmppc_power8_host();
2423 
2424     if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
2425         return 2;
2426     } else if ((!l1d_thread_priv_req ||
2427                 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
2428                (c.character & c.character_mask
2429                 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
2430         return 1;
2431     }
2432 
2433     return 0;
2434 }
2435 
2436 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
2437 {
2438     if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
2439         return 2;
2440     } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
2441         return 1;
2442     }
2443 
2444     return 0;
2445 }
2446 
2447 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
2448 {
2449     if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
2450         (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
2451         (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
2452         return SPAPR_CAP_FIXED_NA;
2453     } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
2454         return SPAPR_CAP_WORKAROUND;
2455     } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
2456         return  SPAPR_CAP_FIXED_CCD;
2457     } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
2458         return SPAPR_CAP_FIXED_IBS;
2459     }
2460 
2461     return 0;
2462 }
2463 
2464 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
2465 {
2466     if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
2467         return 1;
2468     }
2469     return 0;
2470 }
2471 
2472 bool kvmppc_has_cap_xive(void)
2473 {
2474     return cap_xive;
2475 }
2476 
2477 static void kvmppc_get_cpu_characteristics(KVMState *s)
2478 {
2479     struct kvm_ppc_cpu_char c;
2480     int ret;
2481 
2482     /* Assume broken */
2483     cap_ppc_safe_cache = 0;
2484     cap_ppc_safe_bounds_check = 0;
2485     cap_ppc_safe_indirect_branch = 0;
2486 
2487     ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
2488     if (!ret) {
2489         return;
2490     }
2491     ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
2492     if (ret < 0) {
2493         return;
2494     }
2495 
2496     cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
2497     cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
2498     cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
2499     cap_ppc_count_cache_flush_assist =
2500         parse_cap_ppc_count_cache_flush_assist(c);
2501 }
2502 
2503 int kvmppc_get_cap_safe_cache(void)
2504 {
2505     return cap_ppc_safe_cache;
2506 }
2507 
2508 int kvmppc_get_cap_safe_bounds_check(void)
2509 {
2510     return cap_ppc_safe_bounds_check;
2511 }
2512 
2513 int kvmppc_get_cap_safe_indirect_branch(void)
2514 {
2515     return cap_ppc_safe_indirect_branch;
2516 }
2517 
2518 int kvmppc_get_cap_count_cache_flush_assist(void)
2519 {
2520     return cap_ppc_count_cache_flush_assist;
2521 }
2522 
2523 bool kvmppc_has_cap_nested_kvm_hv(void)
2524 {
2525     return !!cap_ppc_nested_kvm_hv;
2526 }
2527 
2528 int kvmppc_set_cap_nested_kvm_hv(int enable)
2529 {
2530     return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
2531 }
2532 
2533 bool kvmppc_has_cap_spapr_vfio(void)
2534 {
2535     return cap_spapr_vfio;
2536 }
2537 
2538 int kvmppc_get_cap_large_decr(void)
2539 {
2540     return cap_large_decr;
2541 }
2542 
2543 int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
2544 {
2545     CPUState *cs = CPU(cpu);
2546     uint64_t lpcr = 0;
2547 
2548     kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2549     /* Do we need to modify the LPCR? */
2550     if (!!(lpcr & LPCR_LD) != !!enable) {
2551         if (enable) {
2552             lpcr |= LPCR_LD;
2553         } else {
2554             lpcr &= ~LPCR_LD;
2555         }
2556         kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2557         kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2558 
2559         if (!!(lpcr & LPCR_LD) != !!enable) {
2560             return -1;
2561         }
2562     }
2563 
2564     return 0;
2565 }
2566 
2567 int kvmppc_has_cap_rpt_invalidate(void)
2568 {
2569     return cap_rpt_invalidate;
2570 }
2571 
2572 PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2573 {
2574     uint32_t host_pvr = mfpvr();
2575     PowerPCCPUClass *pvr_pcc;
2576 
2577     pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2578     if (pvr_pcc == NULL) {
2579         pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2580     }
2581 
2582     return pvr_pcc;
2583 }
2584 
2585 static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque)
2586 {
2587     MachineClass *mc = MACHINE_CLASS(oc);
2588 
2589     mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
2590 }
2591 
2592 static int kvm_ppc_register_host_cpu_type(void)
2593 {
2594     TypeInfo type_info = {
2595         .name = TYPE_HOST_POWERPC_CPU,
2596         .class_init = kvmppc_host_cpu_class_init,
2597     };
2598     PowerPCCPUClass *pvr_pcc;
2599     ObjectClass *oc;
2600     DeviceClass *dc;
2601     int i;
2602 
2603     pvr_pcc = kvm_ppc_get_host_cpu_class();
2604     if (pvr_pcc == NULL) {
2605         return -1;
2606     }
2607     type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2608     type_register(&type_info);
2609     /* override TCG default cpu type with 'host' cpu model */
2610     object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE,
2611                          false, NULL);
2612 
2613     oc = object_class_by_name(type_info.name);
2614     g_assert(oc);
2615 
2616     /*
2617      * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2618      * we want "POWER8" to be a "family" alias that points to the current
2619      * host CPU type, too)
2620      */
2621     dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2622     for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
2623         if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
2624             char *suffix;
2625 
2626             ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
2627             suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
2628             if (suffix) {
2629                 *suffix = 0;
2630             }
2631             break;
2632         }
2633     }
2634 
2635     return 0;
2636 }
2637 
2638 int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2639 {
2640     struct kvm_rtas_token_args args = {
2641         .token = token,
2642     };
2643 
2644     if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2645         return -ENOENT;
2646     }
2647 
2648     strncpy(args.name, function, sizeof(args.name) - 1);
2649 
2650     return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2651 }
2652 
2653 int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
2654 {
2655     struct kvm_get_htab_fd s = {
2656         .flags = write ? KVM_GET_HTAB_WRITE : 0,
2657         .start_index = index,
2658     };
2659     int ret;
2660 
2661     if (!cap_htab_fd) {
2662         error_setg(errp, "KVM version doesn't support %s the HPT",
2663                    write ? "writing" : "reading");
2664         return -ENOTSUP;
2665     }
2666 
2667     ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2668     if (ret < 0) {
2669         error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
2670                    write ? "writing" : "reading", write ? "to" : "from",
2671                    strerror(errno));
2672         return -errno;
2673     }
2674 
2675     return ret;
2676 }
2677 
2678 int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2679 {
2680     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2681     uint8_t buf[bufsize];
2682     ssize_t rc;
2683 
2684     do {
2685         rc = read(fd, buf, bufsize);
2686         if (rc < 0) {
2687             fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2688                     strerror(errno));
2689             return rc;
2690         } else if (rc) {
2691             uint8_t *buffer = buf;
2692             ssize_t n = rc;
2693             while (n) {
2694                 struct kvm_get_htab_header *head =
2695                     (struct kvm_get_htab_header *) buffer;
2696                 size_t chunksize = sizeof(*head) +
2697                      HASH_PTE_SIZE_64 * head->n_valid;
2698 
2699                 qemu_put_be32(f, head->index);
2700                 qemu_put_be16(f, head->n_valid);
2701                 qemu_put_be16(f, head->n_invalid);
2702                 qemu_put_buffer(f, (void *)(head + 1),
2703                                 HASH_PTE_SIZE_64 * head->n_valid);
2704 
2705                 buffer += chunksize;
2706                 n -= chunksize;
2707             }
2708         }
2709     } while ((rc != 0)
2710              && ((max_ns < 0) ||
2711                  ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2712 
2713     return (rc == 0) ? 1 : 0;
2714 }
2715 
2716 int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2717                            uint16_t n_valid, uint16_t n_invalid, Error **errp)
2718 {
2719     struct kvm_get_htab_header *buf;
2720     size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
2721     ssize_t rc;
2722 
2723     buf = alloca(chunksize);
2724     buf->index = index;
2725     buf->n_valid = n_valid;
2726     buf->n_invalid = n_invalid;
2727 
2728     qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
2729 
2730     rc = write(fd, buf, chunksize);
2731     if (rc < 0) {
2732         error_setg_errno(errp, errno, "Error writing the KVM hash table");
2733         return -errno;
2734     }
2735     if (rc != chunksize) {
2736         /* We should never get a short write on a single chunk */
2737         error_setg(errp, "Short write while restoring the KVM hash table");
2738         return -ENOSPC;
2739     }
2740     return 0;
2741 }
2742 
2743 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2744 {
2745     return true;
2746 }
2747 
2748 void kvm_arch_init_irq_routing(KVMState *s)
2749 {
2750 }
2751 
2752 void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
2753 {
2754     int fd, rc;
2755     int i;
2756 
2757     fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
2758 
2759     i = 0;
2760     while (i < n) {
2761         struct kvm_get_htab_header *hdr;
2762         int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2763         char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
2764 
2765         rc = read(fd, buf, sizeof(buf));
2766         if (rc < 0) {
2767             hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2768         }
2769 
2770         hdr = (struct kvm_get_htab_header *)buf;
2771         while ((i < n) && ((char *)hdr < (buf + rc))) {
2772             int invalid = hdr->n_invalid, valid = hdr->n_valid;
2773 
2774             if (hdr->index != (ptex + i)) {
2775                 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2776                          " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2777             }
2778 
2779             if (n - i < valid) {
2780                 valid = n - i;
2781             }
2782             memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
2783             i += valid;
2784 
2785             if ((n - i) < invalid) {
2786                 invalid = n - i;
2787             }
2788             memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
2789             i += invalid;
2790 
2791             hdr = (struct kvm_get_htab_header *)
2792                 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2793         }
2794     }
2795 
2796     close(fd);
2797 }
2798 
2799 void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
2800 {
2801     int fd, rc;
2802     struct {
2803         struct kvm_get_htab_header hdr;
2804         uint64_t pte0;
2805         uint64_t pte1;
2806     } buf;
2807 
2808     fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
2809 
2810     buf.hdr.n_valid = 1;
2811     buf.hdr.n_invalid = 0;
2812     buf.hdr.index = ptex;
2813     buf.pte0 = cpu_to_be64(pte0);
2814     buf.pte1 = cpu_to_be64(pte1);
2815 
2816     rc = write(fd, &buf, sizeof(buf));
2817     if (rc != sizeof(buf)) {
2818         hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2819     }
2820     close(fd);
2821 }
2822 
2823 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2824                              uint64_t address, uint32_t data, PCIDevice *dev)
2825 {
2826     return 0;
2827 }
2828 
2829 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2830                                 int vector, PCIDevice *dev)
2831 {
2832     return 0;
2833 }
2834 
2835 int kvm_arch_release_virq_post(int virq)
2836 {
2837     return 0;
2838 }
2839 
2840 int kvm_arch_msi_data_to_gsi(uint32_t data)
2841 {
2842     return data & 0xffff;
2843 }
2844 
2845 #if defined(TARGET_PPC64)
2846 int kvm_handle_nmi(PowerPCCPU *cpu, struct kvm_run *run)
2847 {
2848     uint16_t flags = run->flags & KVM_RUN_PPC_NMI_DISP_MASK;
2849 
2850     cpu_synchronize_state(CPU(cpu));
2851 
2852     spapr_mce_req_event(cpu, flags == KVM_RUN_PPC_NMI_DISP_FULLY_RECOV);
2853 
2854     return 0;
2855 }
2856 #endif
2857 
2858 int kvmppc_enable_hwrng(void)
2859 {
2860     if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2861         return -1;
2862     }
2863 
2864     return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2865 }
2866 
2867 void kvmppc_check_papr_resize_hpt(Error **errp)
2868 {
2869     if (!kvm_enabled()) {
2870         return; /* No KVM, we're good */
2871     }
2872 
2873     if (cap_resize_hpt) {
2874         return; /* Kernel has explicit support, we're good */
2875     }
2876 
2877     /* Otherwise fallback on looking for PR KVM */
2878     if (kvmppc_is_pr(kvm_state)) {
2879         return;
2880     }
2881 
2882     error_setg(errp,
2883                "Hash page table resizing not available with this KVM version");
2884 }
2885 
2886 int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2887 {
2888     CPUState *cs = CPU(cpu);
2889     struct kvm_ppc_resize_hpt rhpt = {
2890         .flags = flags,
2891         .shift = shift,
2892     };
2893 
2894     if (!cap_resize_hpt) {
2895         return -ENOSYS;
2896     }
2897 
2898     return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2899 }
2900 
2901 int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2902 {
2903     CPUState *cs = CPU(cpu);
2904     struct kvm_ppc_resize_hpt rhpt = {
2905         .flags = flags,
2906         .shift = shift,
2907     };
2908 
2909     if (!cap_resize_hpt) {
2910         return -ENOSYS;
2911     }
2912 
2913     return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2914 }
2915 
2916 /*
2917  * This is a helper function to detect a post migration scenario
2918  * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2919  * the guest kernel can't handle a PVR value other than the actual host
2920  * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2921  *
2922  * If we don't have cap_ppc_pvr_compat and we're not running in PR
2923  * (so, we're HV), return true. The workaround itself is done in
2924  * cpu_post_load.
2925  *
2926  * The order here is important: we'll only check for KVM PR as a
2927  * fallback if the guest kernel can't handle the situation itself.
2928  * We need to avoid as much as possible querying the running KVM type
2929  * in QEMU level.
2930  */
2931 bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2932 {
2933     CPUState *cs = CPU(cpu);
2934 
2935     if (!kvm_enabled()) {
2936         return false;
2937     }
2938 
2939     if (cap_ppc_pvr_compat) {
2940         return false;
2941     }
2942 
2943     return !kvmppc_is_pr(cs->kvm_state);
2944 }
2945 
2946 void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
2947 {
2948     CPUState *cs = CPU(cpu);
2949 
2950     if (kvm_enabled()) {
2951         kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
2952     }
2953 }
2954 
2955 void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
2956 {
2957     CPUState *cs = CPU(cpu);
2958 
2959     if (kvm_enabled()) {
2960         kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);
2961     }
2962 }
2963 
2964 bool kvm_arch_cpu_check_are_resettable(void)
2965 {
2966     return true;
2967 }
2968 
2969 void kvm_arch_accel_class_init(ObjectClass *oc)
2970 {
2971 }
2972