xref: /qemu/target/ppc/kvm.c (revision ec6f3fc3)
1 /*
2  * PowerPC implementation of KVM hooks
3  *
4  * Copyright IBM Corp. 2007
5  * Copyright (C) 2011 Freescale Semiconductor, Inc.
6  *
7  * Authors:
8  *  Jerone Young <jyoung5@us.ibm.com>
9  *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10  *  Hollis Blanchard <hollisb@us.ibm.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2 or later.
13  * See the COPYING file in the top-level directory.
14  *
15  */
16 
17 #include "qemu/osdep.h"
18 #include <dirent.h>
19 #include <sys/ioctl.h>
20 #include <sys/vfs.h>
21 
22 #include <linux/kvm.h>
23 
24 #include "qapi/error.h"
25 #include "qemu/error-report.h"
26 #include "cpu.h"
27 #include "cpu-models.h"
28 #include "qemu/timer.h"
29 #include "sysemu/hw_accel.h"
30 #include "kvm_ppc.h"
31 #include "sysemu/cpus.h"
32 #include "sysemu/device_tree.h"
33 #include "mmu-hash64.h"
34 
35 #include "hw/ppc/spapr.h"
36 #include "hw/ppc/spapr_cpu_core.h"
37 #include "hw/hw.h"
38 #include "hw/ppc/ppc.h"
39 #include "migration/qemu-file-types.h"
40 #include "sysemu/watchdog.h"
41 #include "trace.h"
42 #include "exec/gdbstub.h"
43 #include "exec/memattrs.h"
44 #include "exec/ram_addr.h"
45 #include "sysemu/hostmem.h"
46 #include "qemu/cutils.h"
47 #include "qemu/main-loop.h"
48 #include "qemu/mmap-alloc.h"
49 #include "elf.h"
50 #include "sysemu/kvm_int.h"
51 
52 #define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"
53 
54 #define DEBUG_RETURN_GUEST 0
55 #define DEBUG_RETURN_GDB   1
56 
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58     KVM_CAP_LAST_INFO
59 };
60 
61 static int cap_interrupt_unset;
62 static int cap_segstate;
63 static int cap_booke_sregs;
64 static int cap_ppc_smt;
65 static int cap_ppc_smt_possible;
66 static int cap_spapr_tce;
67 static int cap_spapr_tce_64;
68 static int cap_spapr_multitce;
69 static int cap_spapr_vfio;
70 static int cap_hior;
71 static int cap_one_reg;
72 static int cap_epr;
73 static int cap_ppc_watchdog;
74 static int cap_papr;
75 static int cap_htab_fd;
76 static int cap_fixup_hcalls;
77 static int cap_htm;             /* Hardware transactional memory support */
78 static int cap_mmu_radix;
79 static int cap_mmu_hash_v3;
80 static int cap_xive;
81 static int cap_resize_hpt;
82 static int cap_ppc_pvr_compat;
83 static int cap_ppc_safe_cache;
84 static int cap_ppc_safe_bounds_check;
85 static int cap_ppc_safe_indirect_branch;
86 static int cap_ppc_count_cache_flush_assist;
87 static int cap_ppc_nested_kvm_hv;
88 static int cap_large_decr;
89 static int cap_fwnmi;
90 static int cap_rpt_invalidate;
91 static int cap_ail_mode_3;
92 
93 static uint32_t debug_inst_opcode;
94 
95 /*
96  * Check whether we are running with KVM-PR (instead of KVM-HV).  This
97  * should only be used for fallback tests - generally we should use
98  * explicit capabilities for the features we want, rather than
99  * assuming what is/isn't available depending on the KVM variant.
100  */
101 static bool kvmppc_is_pr(KVMState *ks)
102 {
103     /* Assume KVM-PR if the GET_PVINFO capability is available */
104     return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
105 }
106 
107 static int kvm_ppc_register_host_cpu_type(void);
108 static void kvmppc_get_cpu_characteristics(KVMState *s);
109 static int kvmppc_get_dec_bits(void);
110 
111 int kvm_arch_get_default_type(MachineState *ms)
112 {
113     return 0;
114 }
115 
116 int kvm_arch_init(MachineState *ms, KVMState *s)
117 {
118     cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
119     cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
120     cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
121     cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
122     cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
123     cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
124     cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
125     cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
126     cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
127     cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
128     cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
129     cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
130     /*
131      * Note: we don't set cap_papr here, because this capability is
132      * only activated after this by kvmppc_set_papr()
133      */
134     cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
135     cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
136     cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
137     cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
138     cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
139     cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
140     cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
141     cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
142     kvmppc_get_cpu_characteristics(s);
143     cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
144     cap_large_decr = kvmppc_get_dec_bits();
145     cap_fwnmi = kvm_vm_check_extension(s, KVM_CAP_PPC_FWNMI);
146     /*
147      * Note: setting it to false because there is not such capability
148      * in KVM at this moment.
149      *
150      * TODO: call kvm_vm_check_extension() with the right capability
151      * after the kernel starts implementing it.
152      */
153     cap_ppc_pvr_compat = false;
154 
155     if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) {
156         error_report("KVM: Host kernel doesn't have level irq capability");
157         exit(1);
158     }
159 
160     cap_rpt_invalidate = kvm_vm_check_extension(s, KVM_CAP_PPC_RPT_INVALIDATE);
161     cap_ail_mode_3 = kvm_vm_check_extension(s, KVM_CAP_PPC_AIL_MODE_3);
162     kvm_ppc_register_host_cpu_type();
163 
164     return 0;
165 }
166 
167 int kvm_arch_irqchip_create(KVMState *s)
168 {
169     return 0;
170 }
171 
172 static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
173 {
174     CPUPPCState *cenv = &cpu->env;
175     CPUState *cs = CPU(cpu);
176     struct kvm_sregs sregs;
177     int ret;
178 
179     if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
180         /*
181          * What we're really trying to say is "if we're on BookE, we
182          * use the native PVR for now". This is the only sane way to
183          * check it though, so we potentially confuse users that they
184          * can run BookE guests on BookS. Let's hope nobody dares
185          * enough :)
186          */
187         return 0;
188     } else {
189         if (!cap_segstate) {
190             fprintf(stderr, "kvm error: missing PVR setting capability\n");
191             return -ENOSYS;
192         }
193     }
194 
195     ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
196     if (ret) {
197         return ret;
198     }
199 
200     sregs.pvr = cenv->spr[SPR_PVR];
201     return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
202 }
203 
204 /* Set up a shared TLB array with KVM */
205 static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
206 {
207     CPUPPCState *env = &cpu->env;
208     CPUState *cs = CPU(cpu);
209     struct kvm_book3e_206_tlb_params params = {};
210     struct kvm_config_tlb cfg = {};
211     unsigned int entries = 0;
212     int ret, i;
213 
214     if (!kvm_enabled() ||
215         !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
216         return 0;
217     }
218 
219     assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
220 
221     for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
222         params.tlb_sizes[i] = booke206_tlb_size(env, i);
223         params.tlb_ways[i] = booke206_tlb_ways(env, i);
224         entries += params.tlb_sizes[i];
225     }
226 
227     assert(entries == env->nb_tlb);
228     assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
229 
230     env->tlb_dirty = true;
231 
232     cfg.array = (uintptr_t)env->tlb.tlbm;
233     cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
234     cfg.params = (uintptr_t)&params;
235     cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
236 
237     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
238     if (ret < 0) {
239         fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
240                 __func__, strerror(-ret));
241         return ret;
242     }
243 
244     env->kvm_sw_tlb = true;
245     return 0;
246 }
247 
248 
249 #if defined(TARGET_PPC64)
250 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
251 {
252     int ret;
253 
254     assert(kvm_state != NULL);
255 
256     if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
257         error_setg(errp, "KVM doesn't expose the MMU features it supports");
258         error_append_hint(errp, "Consider switching to a newer KVM\n");
259         return;
260     }
261 
262     ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
263     if (ret == 0) {
264         return;
265     }
266 
267     error_setg_errno(errp, -ret,
268                      "KVM failed to provide the MMU features it supports");
269 }
270 
271 static struct ppc_radix_page_info *kvmppc_get_radix_page_info(void)
272 {
273     KVMState *s = KVM_STATE(current_accel());
274     struct ppc_radix_page_info *radix_page_info;
275     struct kvm_ppc_rmmu_info rmmu_info = { };
276     int i;
277 
278     if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
279         return NULL;
280     }
281     if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
282         return NULL;
283     }
284     radix_page_info = g_malloc0(sizeof(*radix_page_info));
285     radix_page_info->count = 0;
286     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
287         if (rmmu_info.ap_encodings[i]) {
288             radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
289             radix_page_info->count++;
290         }
291     }
292     return radix_page_info;
293 }
294 
295 target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
296                                      bool radix, bool gtse,
297                                      uint64_t proc_tbl)
298 {
299     CPUState *cs = CPU(cpu);
300     int ret;
301     uint64_t flags = 0;
302     struct kvm_ppc_mmuv3_cfg cfg = {
303         .process_table = proc_tbl,
304     };
305 
306     if (radix) {
307         flags |= KVM_PPC_MMUV3_RADIX;
308     }
309     if (gtse) {
310         flags |= KVM_PPC_MMUV3_GTSE;
311     }
312     cfg.flags = flags;
313     ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
314     switch (ret) {
315     case 0:
316         return H_SUCCESS;
317     case -EINVAL:
318         return H_PARAMETER;
319     case -ENODEV:
320         return H_NOT_AVAILABLE;
321     default:
322         return H_HARDWARE;
323     }
324 }
325 
326 bool kvmppc_hpt_needs_host_contiguous_pages(void)
327 {
328     static struct kvm_ppc_smmu_info smmu_info;
329 
330     if (!kvm_enabled()) {
331         return false;
332     }
333 
334     kvm_get_smmu_info(&smmu_info, &error_fatal);
335     return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
336 }
337 
338 void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
339 {
340     struct kvm_ppc_smmu_info smmu_info;
341     int iq, ik, jq, jk;
342     Error *local_err = NULL;
343 
344     /* For now, we only have anything to check on hash64 MMUs */
345     if (!cpu->hash64_opts || !kvm_enabled()) {
346         return;
347     }
348 
349     kvm_get_smmu_info(&smmu_info, &local_err);
350     if (local_err) {
351         error_propagate(errp, local_err);
352         return;
353     }
354 
355     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
356         && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
357         error_setg(errp,
358                    "KVM does not support 1TiB segments which guest expects");
359         return;
360     }
361 
362     if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
363         error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
364                    smmu_info.slb_size, cpu->hash64_opts->slb_size);
365         return;
366     }
367 
368     /*
369      * Verify that every pagesize supported by the cpu model is
370      * supported by KVM with the same encodings
371      */
372     for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
373         PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
374         struct kvm_ppc_one_seg_page_size *ksps;
375 
376         for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
377             if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
378                 break;
379             }
380         }
381         if (ik >= ARRAY_SIZE(smmu_info.sps)) {
382             error_setg(errp, "KVM doesn't support for base page shift %u",
383                        qsps->page_shift);
384             return;
385         }
386 
387         ksps = &smmu_info.sps[ik];
388         if (ksps->slb_enc != qsps->slb_enc) {
389             error_setg(errp,
390 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
391                        ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
392             return;
393         }
394 
395         for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
396             for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
397                 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
398                     break;
399                 }
400             }
401 
402             if (jk >= ARRAY_SIZE(ksps->enc)) {
403                 error_setg(errp, "KVM doesn't support page shift %u/%u",
404                            qsps->enc[jq].page_shift, qsps->page_shift);
405                 return;
406             }
407             if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
408                 error_setg(errp,
409 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
410                            ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
411                            qsps->page_shift, qsps->enc[jq].pte_enc);
412                 return;
413             }
414         }
415     }
416 
417     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
418         /*
419          * Mostly what guest pagesizes we can use are related to the
420          * host pages used to map guest RAM, which is handled in the
421          * platform code. Cache-Inhibited largepages (64k) however are
422          * used for I/O, so if they're mapped to the host at all it
423          * will be a normal mapping, not a special hugepage one used
424          * for RAM.
425          */
426         if (qemu_real_host_page_size() < 0x10000) {
427             error_setg(errp,
428                        "KVM can't supply 64kiB CI pages, which guest expects");
429         }
430     }
431 }
432 #endif /* !defined (TARGET_PPC64) */
433 
434 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
435 {
436     return POWERPC_CPU(cpu)->vcpu_id;
437 }
438 
439 /*
440  * e500 supports 2 h/w breakpoint and 2 watchpoint.  book3s supports
441  * only 1 watchpoint, so array size of 4 is sufficient for now.
442  */
443 #define MAX_HW_BKPTS 4
444 
445 static struct HWBreakpoint {
446     target_ulong addr;
447     int type;
448 } hw_debug_points[MAX_HW_BKPTS];
449 
450 static CPUWatchpoint hw_watchpoint;
451 
452 /* Default there is no breakpoint and watchpoint supported */
453 static int max_hw_breakpoint;
454 static int max_hw_watchpoint;
455 static int nb_hw_breakpoint;
456 static int nb_hw_watchpoint;
457 
458 static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
459 {
460     if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
461         max_hw_breakpoint = 2;
462         max_hw_watchpoint = 2;
463     }
464 
465     if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
466         fprintf(stderr, "Error initializing h/w breakpoints\n");
467         return;
468     }
469 }
470 
471 int kvm_arch_init_vcpu(CPUState *cs)
472 {
473     PowerPCCPU *cpu = POWERPC_CPU(cs);
474     CPUPPCState *cenv = &cpu->env;
475     int ret;
476 
477     /* Synchronize sregs with kvm */
478     ret = kvm_arch_sync_sregs(cpu);
479     if (ret) {
480         if (ret == -EINVAL) {
481             error_report("Register sync failed... If you're using kvm-hv.ko,"
482                          " only \"-cpu host\" is possible");
483         }
484         return ret;
485     }
486 
487     switch (cenv->mmu_model) {
488     case POWERPC_MMU_BOOKE206:
489         /* This target supports access to KVM's guest TLB */
490         ret = kvm_booke206_tlb_init(cpu);
491         break;
492     case POWERPC_MMU_2_07:
493         if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
494             /*
495              * KVM-HV has transactional memory on POWER8 also without
496              * the KVM_CAP_PPC_HTM extension, so enable it here
497              * instead as long as it's available to userspace on the
498              * host.
499              */
500             if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
501                 cap_htm = true;
502             }
503         }
504         break;
505     default:
506         break;
507     }
508 
509     kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
510     kvmppc_hw_debug_points_init(cenv);
511 
512     return ret;
513 }
514 
515 int kvm_arch_destroy_vcpu(CPUState *cs)
516 {
517     return 0;
518 }
519 
520 static void kvm_sw_tlb_put(PowerPCCPU *cpu)
521 {
522     CPUPPCState *env = &cpu->env;
523     CPUState *cs = CPU(cpu);
524     struct kvm_dirty_tlb dirty_tlb;
525     unsigned char *bitmap;
526     int ret;
527 
528     if (!env->kvm_sw_tlb) {
529         return;
530     }
531 
532     bitmap = g_malloc((env->nb_tlb + 7) / 8);
533     memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
534 
535     dirty_tlb.bitmap = (uintptr_t)bitmap;
536     dirty_tlb.num_dirty = env->nb_tlb;
537 
538     ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
539     if (ret) {
540         fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
541                 __func__, strerror(-ret));
542     }
543 
544     g_free(bitmap);
545 }
546 
547 static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
548 {
549     PowerPCCPU *cpu = POWERPC_CPU(cs);
550     CPUPPCState *env = &cpu->env;
551     /* Init 'val' to avoid "uninitialised value" Valgrind warnings */
552     union {
553         uint32_t u32;
554         uint64_t u64;
555     } val = { };
556     struct kvm_one_reg reg = {
557         .id = id,
558         .addr = (uintptr_t) &val,
559     };
560     int ret;
561 
562     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
563     if (ret != 0) {
564         trace_kvm_failed_spr_get(spr, strerror(errno));
565     } else {
566         switch (id & KVM_REG_SIZE_MASK) {
567         case KVM_REG_SIZE_U32:
568             env->spr[spr] = val.u32;
569             break;
570 
571         case KVM_REG_SIZE_U64:
572             env->spr[spr] = val.u64;
573             break;
574 
575         default:
576             /* Don't handle this size yet */
577             abort();
578         }
579     }
580 }
581 
582 static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
583 {
584     PowerPCCPU *cpu = POWERPC_CPU(cs);
585     CPUPPCState *env = &cpu->env;
586     union {
587         uint32_t u32;
588         uint64_t u64;
589     } val;
590     struct kvm_one_reg reg = {
591         .id = id,
592         .addr = (uintptr_t) &val,
593     };
594     int ret;
595 
596     switch (id & KVM_REG_SIZE_MASK) {
597     case KVM_REG_SIZE_U32:
598         val.u32 = env->spr[spr];
599         break;
600 
601     case KVM_REG_SIZE_U64:
602         val.u64 = env->spr[spr];
603         break;
604 
605     default:
606         /* Don't handle this size yet */
607         abort();
608     }
609 
610     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
611     if (ret != 0) {
612         trace_kvm_failed_spr_set(spr, strerror(errno));
613     }
614 }
615 
616 static int kvm_put_fp(CPUState *cs)
617 {
618     PowerPCCPU *cpu = POWERPC_CPU(cs);
619     CPUPPCState *env = &cpu->env;
620     struct kvm_one_reg reg;
621     int i;
622     int ret;
623 
624     if (env->insns_flags & PPC_FLOAT) {
625         uint64_t fpscr = env->fpscr;
626         bool vsx = !!(env->insns_flags2 & PPC2_VSX);
627 
628         reg.id = KVM_REG_PPC_FPSCR;
629         reg.addr = (uintptr_t)&fpscr;
630         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
631         if (ret < 0) {
632             trace_kvm_failed_fpscr_set(strerror(errno));
633             return ret;
634         }
635 
636         for (i = 0; i < 32; i++) {
637             uint64_t vsr[2];
638             uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
639             uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
640 
641 #if HOST_BIG_ENDIAN
642             vsr[0] = float64_val(*fpr);
643             vsr[1] = *vsrl;
644 #else
645             vsr[0] = *vsrl;
646             vsr[1] = float64_val(*fpr);
647 #endif
648             reg.addr = (uintptr_t) &vsr;
649             reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
650 
651             ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
652             if (ret < 0) {
653                 trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
654                                         strerror(errno));
655                 return ret;
656             }
657         }
658     }
659 
660     if (env->insns_flags & PPC_ALTIVEC) {
661         reg.id = KVM_REG_PPC_VSCR;
662         reg.addr = (uintptr_t)&env->vscr;
663         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
664         if (ret < 0) {
665             trace_kvm_failed_vscr_set(strerror(errno));
666             return ret;
667         }
668 
669         for (i = 0; i < 32; i++) {
670             reg.id = KVM_REG_PPC_VR(i);
671             reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
672             ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
673             if (ret < 0) {
674                 trace_kvm_failed_vr_set(i, strerror(errno));
675                 return ret;
676             }
677         }
678     }
679 
680     return 0;
681 }
682 
683 static int kvm_get_fp(CPUState *cs)
684 {
685     PowerPCCPU *cpu = POWERPC_CPU(cs);
686     CPUPPCState *env = &cpu->env;
687     struct kvm_one_reg reg;
688     int i;
689     int ret;
690 
691     if (env->insns_flags & PPC_FLOAT) {
692         uint64_t fpscr;
693         bool vsx = !!(env->insns_flags2 & PPC2_VSX);
694 
695         reg.id = KVM_REG_PPC_FPSCR;
696         reg.addr = (uintptr_t)&fpscr;
697         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
698         if (ret < 0) {
699             trace_kvm_failed_fpscr_get(strerror(errno));
700             return ret;
701         } else {
702             env->fpscr = fpscr;
703         }
704 
705         for (i = 0; i < 32; i++) {
706             uint64_t vsr[2];
707             uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
708             uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
709 
710             reg.addr = (uintptr_t) &vsr;
711             reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
712 
713             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
714             if (ret < 0) {
715                 trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
716                                         strerror(errno));
717                 return ret;
718             } else {
719 #if HOST_BIG_ENDIAN
720                 *fpr = vsr[0];
721                 if (vsx) {
722                     *vsrl = vsr[1];
723                 }
724 #else
725                 *fpr = vsr[1];
726                 if (vsx) {
727                     *vsrl = vsr[0];
728                 }
729 #endif
730             }
731         }
732     }
733 
734     if (env->insns_flags & PPC_ALTIVEC) {
735         reg.id = KVM_REG_PPC_VSCR;
736         reg.addr = (uintptr_t)&env->vscr;
737         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
738         if (ret < 0) {
739             trace_kvm_failed_vscr_get(strerror(errno));
740             return ret;
741         }
742 
743         for (i = 0; i < 32; i++) {
744             reg.id = KVM_REG_PPC_VR(i);
745             reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
746             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
747             if (ret < 0) {
748                 trace_kvm_failed_vr_get(i, strerror(errno));
749                 return ret;
750             }
751         }
752     }
753 
754     return 0;
755 }
756 
757 #if defined(TARGET_PPC64)
758 static int kvm_get_vpa(CPUState *cs)
759 {
760     PowerPCCPU *cpu = POWERPC_CPU(cs);
761     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
762     struct kvm_one_reg reg;
763     int ret;
764 
765     reg.id = KVM_REG_PPC_VPA_ADDR;
766     reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
767     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
768     if (ret < 0) {
769         trace_kvm_failed_vpa_addr_get(strerror(errno));
770         return ret;
771     }
772 
773     assert((uintptr_t)&spapr_cpu->slb_shadow_size
774            == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
775     reg.id = KVM_REG_PPC_VPA_SLB;
776     reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
777     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
778     if (ret < 0) {
779         trace_kvm_failed_slb_get(strerror(errno));
780         return ret;
781     }
782 
783     assert((uintptr_t)&spapr_cpu->dtl_size
784            == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
785     reg.id = KVM_REG_PPC_VPA_DTL;
786     reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
787     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
788     if (ret < 0) {
789         trace_kvm_failed_dtl_get(strerror(errno));
790         return ret;
791     }
792 
793     return 0;
794 }
795 
796 static int kvm_put_vpa(CPUState *cs)
797 {
798     PowerPCCPU *cpu = POWERPC_CPU(cs);
799     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
800     struct kvm_one_reg reg;
801     int ret;
802 
803     /*
804      * SLB shadow or DTL can't be registered unless a master VPA is
805      * registered.  That means when restoring state, if a VPA *is*
806      * registered, we need to set that up first.  If not, we need to
807      * deregister the others before deregistering the master VPA
808      */
809     assert(spapr_cpu->vpa_addr
810            || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
811 
812     if (spapr_cpu->vpa_addr) {
813         reg.id = KVM_REG_PPC_VPA_ADDR;
814         reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
815         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
816         if (ret < 0) {
817             trace_kvm_failed_vpa_addr_set(strerror(errno));
818             return ret;
819         }
820     }
821 
822     assert((uintptr_t)&spapr_cpu->slb_shadow_size
823            == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
824     reg.id = KVM_REG_PPC_VPA_SLB;
825     reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
826     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
827     if (ret < 0) {
828         trace_kvm_failed_slb_set(strerror(errno));
829         return ret;
830     }
831 
832     assert((uintptr_t)&spapr_cpu->dtl_size
833            == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
834     reg.id = KVM_REG_PPC_VPA_DTL;
835     reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
836     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
837     if (ret < 0) {
838         trace_kvm_failed_dtl_set(strerror(errno));
839         return ret;
840     }
841 
842     if (!spapr_cpu->vpa_addr) {
843         reg.id = KVM_REG_PPC_VPA_ADDR;
844         reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
845         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
846         if (ret < 0) {
847             trace_kvm_failed_null_vpa_addr_set(strerror(errno));
848             return ret;
849         }
850     }
851 
852     return 0;
853 }
854 #endif /* TARGET_PPC64 */
855 
856 int kvmppc_put_books_sregs(PowerPCCPU *cpu)
857 {
858     CPUPPCState *env = &cpu->env;
859     struct kvm_sregs sregs = { };
860     int i;
861 
862     sregs.pvr = env->spr[SPR_PVR];
863 
864     if (cpu->vhyp) {
865         PPCVirtualHypervisorClass *vhc =
866             PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
867         sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp);
868     } else {
869         sregs.u.s.sdr1 = env->spr[SPR_SDR1];
870     }
871 
872     /* Sync SLB */
873 #ifdef TARGET_PPC64
874     for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
875         sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
876         if (env->slb[i].esid & SLB_ESID_V) {
877             sregs.u.s.ppc64.slb[i].slbe |= i;
878         }
879         sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
880     }
881 #endif
882 
883     /* Sync SRs */
884     for (i = 0; i < 16; i++) {
885         sregs.u.s.ppc32.sr[i] = env->sr[i];
886     }
887 
888     /* Sync BATs */
889     for (i = 0; i < 8; i++) {
890         /* Beware. We have to swap upper and lower bits here */
891         sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
892             | env->DBAT[1][i];
893         sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
894             | env->IBAT[1][i];
895     }
896 
897     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
898 }
899 
900 int kvm_arch_put_registers(CPUState *cs, int level)
901 {
902     PowerPCCPU *cpu = POWERPC_CPU(cs);
903     CPUPPCState *env = &cpu->env;
904     struct kvm_regs regs;
905     int ret;
906     int i;
907 
908     ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
909     if (ret < 0) {
910         return ret;
911     }
912 
913     regs.ctr = env->ctr;
914     regs.lr  = env->lr;
915     regs.xer = cpu_read_xer(env);
916     regs.msr = env->msr;
917     regs.pc = env->nip;
918 
919     regs.srr0 = env->spr[SPR_SRR0];
920     regs.srr1 = env->spr[SPR_SRR1];
921 
922     regs.sprg0 = env->spr[SPR_SPRG0];
923     regs.sprg1 = env->spr[SPR_SPRG1];
924     regs.sprg2 = env->spr[SPR_SPRG2];
925     regs.sprg3 = env->spr[SPR_SPRG3];
926     regs.sprg4 = env->spr[SPR_SPRG4];
927     regs.sprg5 = env->spr[SPR_SPRG5];
928     regs.sprg6 = env->spr[SPR_SPRG6];
929     regs.sprg7 = env->spr[SPR_SPRG7];
930 
931     regs.pid = env->spr[SPR_BOOKE_PID];
932 
933     for (i = 0; i < 32; i++) {
934         regs.gpr[i] = env->gpr[i];
935     }
936 
937     regs.cr = ppc_get_cr(env);
938 
939     ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
940     if (ret < 0) {
941         return ret;
942     }
943 
944     kvm_put_fp(cs);
945 
946     if (env->tlb_dirty) {
947         kvm_sw_tlb_put(cpu);
948         env->tlb_dirty = false;
949     }
950 
951     if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
952         ret = kvmppc_put_books_sregs(cpu);
953         if (ret < 0) {
954             return ret;
955         }
956     }
957 
958     if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
959         kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
960     }
961 
962     if (cap_one_reg) {
963         /*
964          * We deliberately ignore errors here, for kernels which have
965          * the ONE_REG calls, but don't support the specific
966          * registers, there's a reasonable chance things will still
967          * work, at least until we try to migrate.
968          */
969         for (i = 0; i < 1024; i++) {
970             uint64_t id = env->spr_cb[i].one_reg_id;
971 
972             if (id != 0) {
973                 kvm_put_one_spr(cs, id, i);
974             }
975         }
976 
977 #ifdef TARGET_PPC64
978         if (FIELD_EX64(env->msr, MSR, TS)) {
979             for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
980                 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
981             }
982             for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
983                 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
984             }
985             kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
986             kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
987             kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
988             kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
989             kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
990             kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
991             kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
992             kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
993             kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
994             kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
995         }
996 
997         if (cap_papr) {
998             if (kvm_put_vpa(cs) < 0) {
999                 trace_kvm_failed_put_vpa();
1000             }
1001         }
1002 
1003         kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1004 
1005         if (level > KVM_PUT_RUNTIME_STATE) {
1006             kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1007         }
1008 #endif /* TARGET_PPC64 */
1009     }
1010 
1011     return ret;
1012 }
1013 
1014 static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1015 {
1016      env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1017 }
1018 
1019 static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1020 {
1021     CPUPPCState *env = &cpu->env;
1022     struct kvm_sregs sregs;
1023     int ret;
1024 
1025     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1026     if (ret < 0) {
1027         return ret;
1028     }
1029 
1030     if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1031         env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1032         env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1033         env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1034         env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1035         env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1036         env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1037         env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1038         env->spr[SPR_DECR] = sregs.u.e.dec;
1039         env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1040         env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1041         env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1042     }
1043 
1044     if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1045         env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1046         env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1047         env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1048         env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1049         env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1050     }
1051 
1052     if (sregs.u.e.features & KVM_SREGS_E_64) {
1053         env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1054     }
1055 
1056     if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1057         env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1058     }
1059 
1060     if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1061         env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1062         kvm_sync_excp(env, POWERPC_EXCP_CRITICAL,  SPR_BOOKE_IVOR0);
1063         env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1064         kvm_sync_excp(env, POWERPC_EXCP_MCHECK,  SPR_BOOKE_IVOR1);
1065         env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1066         kvm_sync_excp(env, POWERPC_EXCP_DSI,  SPR_BOOKE_IVOR2);
1067         env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1068         kvm_sync_excp(env, POWERPC_EXCP_ISI,  SPR_BOOKE_IVOR3);
1069         env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1070         kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL,  SPR_BOOKE_IVOR4);
1071         env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1072         kvm_sync_excp(env, POWERPC_EXCP_ALIGN,  SPR_BOOKE_IVOR5);
1073         env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1074         kvm_sync_excp(env, POWERPC_EXCP_PROGRAM,  SPR_BOOKE_IVOR6);
1075         env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1076         kvm_sync_excp(env, POWERPC_EXCP_FPU,  SPR_BOOKE_IVOR7);
1077         env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1078         kvm_sync_excp(env, POWERPC_EXCP_SYSCALL,  SPR_BOOKE_IVOR8);
1079         env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1080         kvm_sync_excp(env, POWERPC_EXCP_APU,  SPR_BOOKE_IVOR9);
1081         env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1082         kvm_sync_excp(env, POWERPC_EXCP_DECR,  SPR_BOOKE_IVOR10);
1083         env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1084         kvm_sync_excp(env, POWERPC_EXCP_FIT,  SPR_BOOKE_IVOR11);
1085         env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1086         kvm_sync_excp(env, POWERPC_EXCP_WDT,  SPR_BOOKE_IVOR12);
1087         env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1088         kvm_sync_excp(env, POWERPC_EXCP_DTLB,  SPR_BOOKE_IVOR13);
1089         env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1090         kvm_sync_excp(env, POWERPC_EXCP_ITLB,  SPR_BOOKE_IVOR14);
1091         env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1092         kvm_sync_excp(env, POWERPC_EXCP_DEBUG,  SPR_BOOKE_IVOR15);
1093 
1094         if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1095             env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1096             kvm_sync_excp(env, POWERPC_EXCP_SPEU,  SPR_BOOKE_IVOR32);
1097             env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1098             kvm_sync_excp(env, POWERPC_EXCP_EFPDI,  SPR_BOOKE_IVOR33);
1099             env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1100             kvm_sync_excp(env, POWERPC_EXCP_EFPRI,  SPR_BOOKE_IVOR34);
1101         }
1102 
1103         if (sregs.u.e.features & KVM_SREGS_E_PM) {
1104             env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1105             kvm_sync_excp(env, POWERPC_EXCP_EPERFM,  SPR_BOOKE_IVOR35);
1106         }
1107 
1108         if (sregs.u.e.features & KVM_SREGS_E_PC) {
1109             env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1110             kvm_sync_excp(env, POWERPC_EXCP_DOORI,  SPR_BOOKE_IVOR36);
1111             env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1112             kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1113         }
1114     }
1115 
1116     if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1117         env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1118         env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1119         env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1120         env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1121         env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1122         env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1123         env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1124         env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1125         env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1126         env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1127     }
1128 
1129     if (sregs.u.e.features & KVM_SREGS_EXP) {
1130         env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1131     }
1132 
1133     if (sregs.u.e.features & KVM_SREGS_E_PD) {
1134         env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1135         env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1136     }
1137 
1138     if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1139         env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1140         env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1141         env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1142 
1143         if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1144             env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1145             env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1146         }
1147     }
1148 
1149     return 0;
1150 }
1151 
1152 static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1153 {
1154     CPUPPCState *env = &cpu->env;
1155     struct kvm_sregs sregs;
1156     int ret;
1157     int i;
1158 
1159     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1160     if (ret < 0) {
1161         return ret;
1162     }
1163 
1164     if (!cpu->vhyp) {
1165         ppc_store_sdr1(env, sregs.u.s.sdr1);
1166     }
1167 
1168     /* Sync SLB */
1169 #ifdef TARGET_PPC64
1170     /*
1171      * The packed SLB array we get from KVM_GET_SREGS only contains
1172      * information about valid entries. So we flush our internal copy
1173      * to get rid of stale ones, then put all valid SLB entries back
1174      * in.
1175      */
1176     memset(env->slb, 0, sizeof(env->slb));
1177     for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1178         target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1179         target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1180         /*
1181          * Only restore valid entries
1182          */
1183         if (rb & SLB_ESID_V) {
1184             ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1185         }
1186     }
1187 #endif
1188 
1189     /* Sync SRs */
1190     for (i = 0; i < 16; i++) {
1191         env->sr[i] = sregs.u.s.ppc32.sr[i];
1192     }
1193 
1194     /* Sync BATs */
1195     for (i = 0; i < 8; i++) {
1196         env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1197         env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1198         env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1199         env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1200     }
1201 
1202     return 0;
1203 }
1204 
1205 int kvm_arch_get_registers(CPUState *cs)
1206 {
1207     PowerPCCPU *cpu = POWERPC_CPU(cs);
1208     CPUPPCState *env = &cpu->env;
1209     struct kvm_regs regs;
1210     int i, ret;
1211 
1212     ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
1213     if (ret < 0) {
1214         return ret;
1215     }
1216 
1217     ppc_set_cr(env, regs.cr);
1218     env->ctr = regs.ctr;
1219     env->lr = regs.lr;
1220     cpu_write_xer(env, regs.xer);
1221     env->msr = regs.msr;
1222     env->nip = regs.pc;
1223 
1224     env->spr[SPR_SRR0] = regs.srr0;
1225     env->spr[SPR_SRR1] = regs.srr1;
1226 
1227     env->spr[SPR_SPRG0] = regs.sprg0;
1228     env->spr[SPR_SPRG1] = regs.sprg1;
1229     env->spr[SPR_SPRG2] = regs.sprg2;
1230     env->spr[SPR_SPRG3] = regs.sprg3;
1231     env->spr[SPR_SPRG4] = regs.sprg4;
1232     env->spr[SPR_SPRG5] = regs.sprg5;
1233     env->spr[SPR_SPRG6] = regs.sprg6;
1234     env->spr[SPR_SPRG7] = regs.sprg7;
1235 
1236     env->spr[SPR_BOOKE_PID] = regs.pid;
1237 
1238     for (i = 0; i < 32; i++) {
1239         env->gpr[i] = regs.gpr[i];
1240     }
1241 
1242     kvm_get_fp(cs);
1243 
1244     if (cap_booke_sregs) {
1245         ret = kvmppc_get_booke_sregs(cpu);
1246         if (ret < 0) {
1247             return ret;
1248         }
1249     }
1250 
1251     if (cap_segstate) {
1252         ret = kvmppc_get_books_sregs(cpu);
1253         if (ret < 0) {
1254             return ret;
1255         }
1256     }
1257 
1258     if (cap_hior) {
1259         kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1260     }
1261 
1262     if (cap_one_reg) {
1263         /*
1264          * We deliberately ignore errors here, for kernels which have
1265          * the ONE_REG calls, but don't support the specific
1266          * registers, there's a reasonable chance things will still
1267          * work, at least until we try to migrate.
1268          */
1269         for (i = 0; i < 1024; i++) {
1270             uint64_t id = env->spr_cb[i].one_reg_id;
1271 
1272             if (id != 0) {
1273                 kvm_get_one_spr(cs, id, i);
1274             }
1275         }
1276 
1277 #ifdef TARGET_PPC64
1278         if (FIELD_EX64(env->msr, MSR, TS)) {
1279             for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1280                 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1281             }
1282             for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1283                 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1284             }
1285             kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1286             kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1287             kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1288             kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1289             kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1290             kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1291             kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1292             kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1293             kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1294             kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1295         }
1296 
1297         if (cap_papr) {
1298             if (kvm_get_vpa(cs) < 0) {
1299                 trace_kvm_failed_get_vpa();
1300             }
1301         }
1302 
1303         kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1304         kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1305 #endif
1306     }
1307 
1308     return 0;
1309 }
1310 
1311 int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1312 {
1313     unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1314 
1315     if (irq != PPC_INTERRUPT_EXT) {
1316         return 0;
1317     }
1318 
1319     if (!cap_interrupt_unset) {
1320         return 0;
1321     }
1322 
1323     kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1324 
1325     return 0;
1326 }
1327 
1328 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1329 {
1330     return;
1331 }
1332 
1333 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1334 {
1335     return MEMTXATTRS_UNSPECIFIED;
1336 }
1337 
1338 int kvm_arch_process_async_events(CPUState *cs)
1339 {
1340     return cs->halted;
1341 }
1342 
1343 static int kvmppc_handle_halt(PowerPCCPU *cpu)
1344 {
1345     CPUState *cs = CPU(cpu);
1346     CPUPPCState *env = &cpu->env;
1347 
1348     if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1349         FIELD_EX64(env->msr, MSR, EE)) {
1350         cs->halted = 1;
1351         cs->exception_index = EXCP_HLT;
1352     }
1353 
1354     return 0;
1355 }
1356 
1357 /* map dcr access to existing qemu dcr emulation */
1358 static int kvmppc_handle_dcr_read(CPUPPCState *env,
1359                                   uint32_t dcrn, uint32_t *data)
1360 {
1361     if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
1362         fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1363     }
1364 
1365     return 0;
1366 }
1367 
1368 static int kvmppc_handle_dcr_write(CPUPPCState *env,
1369                                    uint32_t dcrn, uint32_t data)
1370 {
1371     if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
1372         fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1373     }
1374 
1375     return 0;
1376 }
1377 
1378 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1379 {
1380     /* Mixed endian case is not handled */
1381     uint32_t sc = debug_inst_opcode;
1382 
1383     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1384                             sizeof(sc), 0) ||
1385         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1386         return -EINVAL;
1387     }
1388 
1389     return 0;
1390 }
1391 
1392 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1393 {
1394     uint32_t sc;
1395 
1396     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1397         sc != debug_inst_opcode ||
1398         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1399                             sizeof(sc), 1)) {
1400         return -EINVAL;
1401     }
1402 
1403     return 0;
1404 }
1405 
1406 static int find_hw_breakpoint(target_ulong addr, int type)
1407 {
1408     int n;
1409 
1410     assert((nb_hw_breakpoint + nb_hw_watchpoint)
1411            <= ARRAY_SIZE(hw_debug_points));
1412 
1413     for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1414         if (hw_debug_points[n].addr == addr &&
1415              hw_debug_points[n].type == type) {
1416             return n;
1417         }
1418     }
1419 
1420     return -1;
1421 }
1422 
1423 static int find_hw_watchpoint(target_ulong addr, int *flag)
1424 {
1425     int n;
1426 
1427     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1428     if (n >= 0) {
1429         *flag = BP_MEM_ACCESS;
1430         return n;
1431     }
1432 
1433     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1434     if (n >= 0) {
1435         *flag = BP_MEM_WRITE;
1436         return n;
1437     }
1438 
1439     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1440     if (n >= 0) {
1441         *flag = BP_MEM_READ;
1442         return n;
1443     }
1444 
1445     return -1;
1446 }
1447 
1448 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
1449 {
1450     const unsigned breakpoint_index = nb_hw_breakpoint + nb_hw_watchpoint;
1451     if (breakpoint_index >= ARRAY_SIZE(hw_debug_points)) {
1452         return -ENOBUFS;
1453     }
1454 
1455     hw_debug_points[breakpoint_index].addr = addr;
1456     hw_debug_points[breakpoint_index].type = type;
1457 
1458     switch (type) {
1459     case GDB_BREAKPOINT_HW:
1460         if (nb_hw_breakpoint >= max_hw_breakpoint) {
1461             return -ENOBUFS;
1462         }
1463 
1464         if (find_hw_breakpoint(addr, type) >= 0) {
1465             return -EEXIST;
1466         }
1467 
1468         nb_hw_breakpoint++;
1469         break;
1470 
1471     case GDB_WATCHPOINT_WRITE:
1472     case GDB_WATCHPOINT_READ:
1473     case GDB_WATCHPOINT_ACCESS:
1474         if (nb_hw_watchpoint >= max_hw_watchpoint) {
1475             return -ENOBUFS;
1476         }
1477 
1478         if (find_hw_breakpoint(addr, type) >= 0) {
1479             return -EEXIST;
1480         }
1481 
1482         nb_hw_watchpoint++;
1483         break;
1484 
1485     default:
1486         return -ENOSYS;
1487     }
1488 
1489     return 0;
1490 }
1491 
1492 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
1493 {
1494     int n;
1495 
1496     n = find_hw_breakpoint(addr, type);
1497     if (n < 0) {
1498         return -ENOENT;
1499     }
1500 
1501     switch (type) {
1502     case GDB_BREAKPOINT_HW:
1503         nb_hw_breakpoint--;
1504         break;
1505 
1506     case GDB_WATCHPOINT_WRITE:
1507     case GDB_WATCHPOINT_READ:
1508     case GDB_WATCHPOINT_ACCESS:
1509         nb_hw_watchpoint--;
1510         break;
1511 
1512     default:
1513         return -ENOSYS;
1514     }
1515     hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1516 
1517     return 0;
1518 }
1519 
1520 void kvm_arch_remove_all_hw_breakpoints(void)
1521 {
1522     nb_hw_breakpoint = nb_hw_watchpoint = 0;
1523 }
1524 
1525 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1526 {
1527     int n;
1528 
1529     /* Software Breakpoint updates */
1530     if (kvm_sw_breakpoints_active(cs)) {
1531         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1532     }
1533 
1534     assert((nb_hw_breakpoint + nb_hw_watchpoint)
1535            <= ARRAY_SIZE(hw_debug_points));
1536     assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1537 
1538     if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1539         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1540         memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1541         for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1542             switch (hw_debug_points[n].type) {
1543             case GDB_BREAKPOINT_HW:
1544                 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1545                 break;
1546             case GDB_WATCHPOINT_WRITE:
1547                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1548                 break;
1549             case GDB_WATCHPOINT_READ:
1550                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1551                 break;
1552             case GDB_WATCHPOINT_ACCESS:
1553                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1554                                         KVMPPC_DEBUG_WATCH_READ;
1555                 break;
1556             default:
1557                 cpu_abort(cs, "Unsupported breakpoint type\n");
1558             }
1559             dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1560         }
1561     }
1562 }
1563 
1564 static int kvm_handle_hw_breakpoint(CPUState *cs,
1565                                     struct kvm_debug_exit_arch *arch_info)
1566 {
1567     int handle = DEBUG_RETURN_GUEST;
1568     int n;
1569     int flag = 0;
1570 
1571     if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1572         if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1573             n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1574             if (n >= 0) {
1575                 handle = DEBUG_RETURN_GDB;
1576             }
1577         } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1578                                         KVMPPC_DEBUG_WATCH_WRITE)) {
1579             n = find_hw_watchpoint(arch_info->address,  &flag);
1580             if (n >= 0) {
1581                 handle = DEBUG_RETURN_GDB;
1582                 cs->watchpoint_hit = &hw_watchpoint;
1583                 hw_watchpoint.vaddr = hw_debug_points[n].addr;
1584                 hw_watchpoint.flags = flag;
1585             }
1586         }
1587     }
1588     return handle;
1589 }
1590 
1591 static int kvm_handle_singlestep(void)
1592 {
1593     return DEBUG_RETURN_GDB;
1594 }
1595 
1596 static int kvm_handle_sw_breakpoint(void)
1597 {
1598     return DEBUG_RETURN_GDB;
1599 }
1600 
1601 static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1602 {
1603     CPUState *cs = CPU(cpu);
1604     CPUPPCState *env = &cpu->env;
1605     struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1606 
1607     if (cs->singlestep_enabled) {
1608         return kvm_handle_singlestep();
1609     }
1610 
1611     if (arch_info->status) {
1612         return kvm_handle_hw_breakpoint(cs, arch_info);
1613     }
1614 
1615     if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1616         return kvm_handle_sw_breakpoint();
1617     }
1618 
1619     /*
1620      * QEMU is not able to handle debug exception, so inject
1621      * program exception to guest;
1622      * Yes program exception NOT debug exception !!
1623      * When QEMU is using debug resources then debug exception must
1624      * be always set. To achieve this we set MSR_DE and also set
1625      * MSRP_DEP so guest cannot change MSR_DE.
1626      * When emulating debug resource for guest we want guest
1627      * to control MSR_DE (enable/disable debug interrupt on need).
1628      * Supporting both configurations are NOT possible.
1629      * So the result is that we cannot share debug resources
1630      * between QEMU and Guest on BOOKE architecture.
1631      * In the current design QEMU gets the priority over guest,
1632      * this means that if QEMU is using debug resources then guest
1633      * cannot use them;
1634      * For software breakpoint QEMU uses a privileged instruction;
1635      * So there cannot be any reason that we are here for guest
1636      * set debug exception, only possibility is guest executed a
1637      * privileged / illegal instruction and that's why we are
1638      * injecting a program interrupt.
1639      */
1640     cpu_synchronize_state(cs);
1641     /*
1642      * env->nip is PC, so increment this by 4 to use
1643      * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1644      */
1645     env->nip += 4;
1646     cs->exception_index = POWERPC_EXCP_PROGRAM;
1647     env->error_code = POWERPC_EXCP_INVAL;
1648     ppc_cpu_do_interrupt(cs);
1649 
1650     return DEBUG_RETURN_GUEST;
1651 }
1652 
1653 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1654 {
1655     PowerPCCPU *cpu = POWERPC_CPU(cs);
1656     CPUPPCState *env = &cpu->env;
1657     int ret;
1658 
1659     qemu_mutex_lock_iothread();
1660 
1661     switch (run->exit_reason) {
1662     case KVM_EXIT_DCR:
1663         if (run->dcr.is_write) {
1664             trace_kvm_handle_dcr_write();
1665             ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1666         } else {
1667             trace_kvm_handle_dcr_read();
1668             ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1669         }
1670         break;
1671     case KVM_EXIT_HLT:
1672         trace_kvm_handle_halt();
1673         ret = kvmppc_handle_halt(cpu);
1674         break;
1675 #if defined(TARGET_PPC64)
1676     case KVM_EXIT_PAPR_HCALL:
1677         trace_kvm_handle_papr_hcall(run->papr_hcall.nr);
1678         run->papr_hcall.ret = spapr_hypercall(cpu,
1679                                               run->papr_hcall.nr,
1680                                               run->papr_hcall.args);
1681         ret = 0;
1682         break;
1683 #endif
1684     case KVM_EXIT_EPR:
1685         trace_kvm_handle_epr();
1686         run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1687         ret = 0;
1688         break;
1689     case KVM_EXIT_WATCHDOG:
1690         trace_kvm_handle_watchdog_expiry();
1691         watchdog_perform_action();
1692         ret = 0;
1693         break;
1694 
1695     case KVM_EXIT_DEBUG:
1696         trace_kvm_handle_debug_exception();
1697         if (kvm_handle_debug(cpu, run)) {
1698             ret = EXCP_DEBUG;
1699             break;
1700         }
1701         /* re-enter, this exception was guest-internal */
1702         ret = 0;
1703         break;
1704 
1705 #if defined(TARGET_PPC64)
1706     case KVM_EXIT_NMI:
1707         trace_kvm_handle_nmi_exception();
1708         ret = kvm_handle_nmi(cpu, run);
1709         break;
1710 #endif
1711 
1712     default:
1713         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1714         ret = -1;
1715         break;
1716     }
1717 
1718     qemu_mutex_unlock_iothread();
1719     return ret;
1720 }
1721 
1722 int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1723 {
1724     CPUState *cs = CPU(cpu);
1725     uint32_t bits = tsr_bits;
1726     struct kvm_one_reg reg = {
1727         .id = KVM_REG_PPC_OR_TSR,
1728         .addr = (uintptr_t) &bits,
1729     };
1730 
1731     if (!kvm_enabled()) {
1732         return 0;
1733     }
1734 
1735     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1736 }
1737 
1738 int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1739 {
1740 
1741     CPUState *cs = CPU(cpu);
1742     uint32_t bits = tsr_bits;
1743     struct kvm_one_reg reg = {
1744         .id = KVM_REG_PPC_CLEAR_TSR,
1745         .addr = (uintptr_t) &bits,
1746     };
1747 
1748     if (!kvm_enabled()) {
1749         return 0;
1750     }
1751 
1752     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1753 }
1754 
1755 int kvmppc_set_tcr(PowerPCCPU *cpu)
1756 {
1757     CPUState *cs = CPU(cpu);
1758     CPUPPCState *env = &cpu->env;
1759     uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1760 
1761     struct kvm_one_reg reg = {
1762         .id = KVM_REG_PPC_TCR,
1763         .addr = (uintptr_t) &tcr,
1764     };
1765 
1766     if (!kvm_enabled()) {
1767         return 0;
1768     }
1769 
1770     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1771 }
1772 
1773 int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1774 {
1775     CPUState *cs = CPU(cpu);
1776     int ret;
1777 
1778     if (!kvm_enabled()) {
1779         return -1;
1780     }
1781 
1782     if (!cap_ppc_watchdog) {
1783         printf("warning: KVM does not support watchdog");
1784         return -1;
1785     }
1786 
1787     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
1788     if (ret < 0) {
1789         fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1790                 __func__, strerror(-ret));
1791         return ret;
1792     }
1793 
1794     return ret;
1795 }
1796 
1797 static int read_cpuinfo(const char *field, char *value, int len)
1798 {
1799     FILE *f;
1800     int ret = -1;
1801     int field_len = strlen(field);
1802     char line[512];
1803 
1804     f = fopen("/proc/cpuinfo", "r");
1805     if (!f) {
1806         return -1;
1807     }
1808 
1809     do {
1810         if (!fgets(line, sizeof(line), f)) {
1811             break;
1812         }
1813         if (!strncmp(line, field, field_len)) {
1814             pstrcpy(value, len, line);
1815             ret = 0;
1816             break;
1817         }
1818     } while (*line);
1819 
1820     fclose(f);
1821 
1822     return ret;
1823 }
1824 
1825 static uint32_t kvmppc_get_tbfreq_procfs(void)
1826 {
1827     char line[512];
1828     char *ns;
1829     uint32_t tbfreq_fallback = NANOSECONDS_PER_SECOND;
1830     uint32_t tbfreq_procfs;
1831 
1832     if (read_cpuinfo("timebase", line, sizeof(line))) {
1833         return tbfreq_fallback;
1834     }
1835 
1836     ns = strchr(line, ':');
1837     if (!ns) {
1838         return tbfreq_fallback;
1839     }
1840 
1841     tbfreq_procfs = atoi(++ns);
1842 
1843     /* 0 is certainly not acceptable by the guest, return fallback value */
1844     return tbfreq_procfs ? tbfreq_procfs : tbfreq_fallback;
1845 }
1846 
1847 uint32_t kvmppc_get_tbfreq(void)
1848 {
1849     static uint32_t cached_tbfreq;
1850 
1851     if (!cached_tbfreq) {
1852         cached_tbfreq = kvmppc_get_tbfreq_procfs();
1853     }
1854 
1855     return cached_tbfreq;
1856 }
1857 
1858 bool kvmppc_get_host_serial(char **value)
1859 {
1860     return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1861                                NULL);
1862 }
1863 
1864 bool kvmppc_get_host_model(char **value)
1865 {
1866     return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1867 }
1868 
1869 /* Try to find a device tree node for a CPU with clock-frequency property */
1870 static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1871 {
1872     struct dirent *dirp;
1873     DIR *dp;
1874 
1875     dp = opendir(PROC_DEVTREE_CPU);
1876     if (!dp) {
1877         printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1878         return -1;
1879     }
1880 
1881     buf[0] = '\0';
1882     while ((dirp = readdir(dp)) != NULL) {
1883         FILE *f;
1884 
1885         /* Don't accidentally read from the current and parent directories */
1886         if (strcmp(dirp->d_name, ".") == 0 || strcmp(dirp->d_name, "..") == 0) {
1887             continue;
1888         }
1889 
1890         snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1891                  dirp->d_name);
1892         f = fopen(buf, "r");
1893         if (f) {
1894             snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1895             fclose(f);
1896             break;
1897         }
1898         buf[0] = '\0';
1899     }
1900     closedir(dp);
1901     if (buf[0] == '\0') {
1902         printf("Unknown host!\n");
1903         return -1;
1904     }
1905 
1906     return 0;
1907 }
1908 
1909 static uint64_t kvmppc_read_int_dt(const char *filename)
1910 {
1911     union {
1912         uint32_t v32;
1913         uint64_t v64;
1914     } u;
1915     FILE *f;
1916     int len;
1917 
1918     f = fopen(filename, "rb");
1919     if (!f) {
1920         return -1;
1921     }
1922 
1923     len = fread(&u, 1, sizeof(u), f);
1924     fclose(f);
1925     switch (len) {
1926     case 4:
1927         /* property is a 32-bit quantity */
1928         return be32_to_cpu(u.v32);
1929     case 8:
1930         return be64_to_cpu(u.v64);
1931     }
1932 
1933     return 0;
1934 }
1935 
1936 /*
1937  * Read a CPU node property from the host device tree that's a single
1938  * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
1939  * (can't find or open the property, or doesn't understand the format)
1940  */
1941 static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1942 {
1943     char buf[PATH_MAX], *tmp;
1944     uint64_t val;
1945 
1946     if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1947         return -1;
1948     }
1949 
1950     tmp = g_strdup_printf("%s/%s", buf, propname);
1951     val = kvmppc_read_int_dt(tmp);
1952     g_free(tmp);
1953 
1954     return val;
1955 }
1956 
1957 uint64_t kvmppc_get_clockfreq(void)
1958 {
1959     return kvmppc_read_int_cpu_dt("clock-frequency");
1960 }
1961 
1962 static int kvmppc_get_dec_bits(void)
1963 {
1964     int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
1965 
1966     if (nr_bits > 0) {
1967         return nr_bits;
1968     }
1969     return 0;
1970 }
1971 
1972 static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
1973 {
1974     CPUState *cs = env_cpu(env);
1975 
1976     if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1977         !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
1978         return 0;
1979     }
1980 
1981     return 1;
1982 }
1983 
1984 int kvmppc_get_hasidle(CPUPPCState *env)
1985 {
1986     struct kvm_ppc_pvinfo pvinfo;
1987 
1988     if (!kvmppc_get_pvinfo(env, &pvinfo) &&
1989         (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
1990         return 1;
1991     }
1992 
1993     return 0;
1994 }
1995 
1996 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
1997 {
1998     uint32_t *hc = (uint32_t *)buf;
1999     struct kvm_ppc_pvinfo pvinfo;
2000 
2001     if (!kvmppc_get_pvinfo(env, &pvinfo)) {
2002         memcpy(buf, pvinfo.hcall, buf_len);
2003         return 0;
2004     }
2005 
2006     /*
2007      * Fallback to always fail hypercalls regardless of endianness:
2008      *
2009      *     tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
2010      *     li r3, -1
2011      *     b .+8       (becomes nop in wrong endian)
2012      *     bswap32(li r3, -1)
2013      */
2014 
2015     hc[0] = cpu_to_be32(0x08000048);
2016     hc[1] = cpu_to_be32(0x3860ffff);
2017     hc[2] = cpu_to_be32(0x48000008);
2018     hc[3] = cpu_to_be32(bswap32(0x3860ffff));
2019 
2020     return 1;
2021 }
2022 
2023 static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
2024 {
2025     return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
2026 }
2027 
2028 void kvmppc_enable_logical_ci_hcalls(void)
2029 {
2030     /*
2031      * FIXME: it would be nice if we could detect the cases where
2032      * we're using a device which requires the in kernel
2033      * implementation of these hcalls, but the kernel lacks them and
2034      * produce a warning.
2035      */
2036     kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2037     kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2038 }
2039 
2040 void kvmppc_enable_set_mode_hcall(void)
2041 {
2042     kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2043 }
2044 
2045 void kvmppc_enable_clear_ref_mod_hcalls(void)
2046 {
2047     kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2048     kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2049 }
2050 
2051 void kvmppc_enable_h_page_init(void)
2052 {
2053     kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
2054 }
2055 
2056 void kvmppc_enable_h_rpt_invalidate(void)
2057 {
2058     kvmppc_enable_hcall(kvm_state, H_RPT_INVALIDATE);
2059 }
2060 
2061 void kvmppc_set_papr(PowerPCCPU *cpu)
2062 {
2063     CPUState *cs = CPU(cpu);
2064     int ret;
2065 
2066     if (!kvm_enabled()) {
2067         return;
2068     }
2069 
2070     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
2071     if (ret) {
2072         error_report("This vCPU type or KVM version does not support PAPR");
2073         exit(1);
2074     }
2075 
2076     /*
2077      * Update the capability flag so we sync the right information
2078      * with kvm
2079      */
2080     cap_papr = 1;
2081 }
2082 
2083 int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
2084 {
2085     return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
2086 }
2087 
2088 void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2089 {
2090     CPUState *cs = CPU(cpu);
2091     int ret;
2092 
2093     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
2094     if (ret && mpic_proxy) {
2095         error_report("This KVM version does not support EPR");
2096         exit(1);
2097     }
2098 }
2099 
2100 bool kvmppc_get_fwnmi(void)
2101 {
2102     return cap_fwnmi;
2103 }
2104 
2105 int kvmppc_set_fwnmi(PowerPCCPU *cpu)
2106 {
2107     CPUState *cs = CPU(cpu);
2108 
2109     return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0);
2110 }
2111 
2112 int kvmppc_smt_threads(void)
2113 {
2114     return cap_ppc_smt ? cap_ppc_smt : 1;
2115 }
2116 
2117 int kvmppc_set_smt_threads(int smt)
2118 {
2119     int ret;
2120 
2121     ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
2122     if (!ret) {
2123         cap_ppc_smt = smt;
2124     }
2125     return ret;
2126 }
2127 
2128 void kvmppc_error_append_smt_possible_hint(Error *const *errp)
2129 {
2130     int i;
2131     GString *g;
2132     char *s;
2133 
2134     assert(kvm_enabled());
2135     if (cap_ppc_smt_possible) {
2136         g = g_string_new("Available VSMT modes:");
2137         for (i = 63; i >= 0; i--) {
2138             if ((1UL << i) & cap_ppc_smt_possible) {
2139                 g_string_append_printf(g, " %lu", (1UL << i));
2140             }
2141         }
2142         s = g_string_free(g, false);
2143         error_append_hint(errp, "%s.\n", s);
2144         g_free(s);
2145     } else {
2146         error_append_hint(errp,
2147                           "This KVM seems to be too old to support VSMT.\n");
2148     }
2149 }
2150 
2151 
2152 #ifdef TARGET_PPC64
2153 uint64_t kvmppc_vrma_limit(unsigned int hash_shift)
2154 {
2155     struct kvm_ppc_smmu_info info;
2156     long rampagesize, best_page_shift;
2157     int i;
2158 
2159     /*
2160      * Find the largest hardware supported page size that's less than
2161      * or equal to the (logical) backing page size of guest RAM
2162      */
2163     kvm_get_smmu_info(&info, &error_fatal);
2164     rampagesize = qemu_minrampagesize();
2165     best_page_shift = 0;
2166 
2167     for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2168         struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2169 
2170         if (!sps->page_shift) {
2171             continue;
2172         }
2173 
2174         if ((sps->page_shift > best_page_shift)
2175             && ((1UL << sps->page_shift) <= rampagesize)) {
2176             best_page_shift = sps->page_shift;
2177         }
2178     }
2179 
2180     return 1ULL << (best_page_shift + hash_shift - 7);
2181 }
2182 #endif
2183 
2184 bool kvmppc_spapr_use_multitce(void)
2185 {
2186     return cap_spapr_multitce;
2187 }
2188 
2189 int kvmppc_spapr_enable_inkernel_multitce(void)
2190 {
2191     int ret;
2192 
2193     ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2194                             H_PUT_TCE_INDIRECT, 1);
2195     if (!ret) {
2196         ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2197                                 H_STUFF_TCE, 1);
2198     }
2199 
2200     return ret;
2201 }
2202 
2203 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2204                               uint64_t bus_offset, uint32_t nb_table,
2205                               int *pfd, bool need_vfio)
2206 {
2207     long len;
2208     int fd;
2209     void *table;
2210 
2211     /*
2212      * Must set fd to -1 so we don't try to munmap when called for
2213      * destroying the table, which the upper layers -will- do
2214      */
2215     *pfd = -1;
2216     if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
2217         return NULL;
2218     }
2219 
2220     if (cap_spapr_tce_64) {
2221         struct kvm_create_spapr_tce_64 args = {
2222             .liobn = liobn,
2223             .page_shift = page_shift,
2224             .offset = bus_offset >> page_shift,
2225             .size = nb_table,
2226             .flags = 0
2227         };
2228         fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2229         if (fd < 0) {
2230             fprintf(stderr,
2231                     "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2232                     liobn);
2233             return NULL;
2234         }
2235     } else if (cap_spapr_tce) {
2236         uint64_t window_size = (uint64_t) nb_table << page_shift;
2237         struct kvm_create_spapr_tce args = {
2238             .liobn = liobn,
2239             .window_size = window_size,
2240         };
2241         if ((window_size != args.window_size) || bus_offset) {
2242             return NULL;
2243         }
2244         fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2245         if (fd < 0) {
2246             fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2247                     liobn);
2248             return NULL;
2249         }
2250     } else {
2251         return NULL;
2252     }
2253 
2254     len = nb_table * sizeof(uint64_t);
2255     /* FIXME: round this up to page size */
2256 
2257     table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
2258     if (table == MAP_FAILED) {
2259         fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2260                 liobn);
2261         close(fd);
2262         return NULL;
2263     }
2264 
2265     *pfd = fd;
2266     return table;
2267 }
2268 
2269 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2270 {
2271     long len;
2272 
2273     if (fd < 0) {
2274         return -1;
2275     }
2276 
2277     len = nb_table * sizeof(uint64_t);
2278     if ((munmap(table, len) < 0) ||
2279         (close(fd) < 0)) {
2280         fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2281                 strerror(errno));
2282         /* Leak the table */
2283     }
2284 
2285     return 0;
2286 }
2287 
2288 int kvmppc_reset_htab(int shift_hint)
2289 {
2290     uint32_t shift = shift_hint;
2291 
2292     if (!kvm_enabled()) {
2293         /* Full emulation, tell caller to allocate htab itself */
2294         return 0;
2295     }
2296     if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2297         int ret;
2298         ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2299         if (ret == -ENOTTY) {
2300             /*
2301              * At least some versions of PR KVM advertise the
2302              * capability, but don't implement the ioctl().  Oops.
2303              * Return 0 so that we allocate the htab in qemu, as is
2304              * correct for PR.
2305              */
2306             return 0;
2307         } else if (ret < 0) {
2308             return ret;
2309         }
2310         return shift;
2311     }
2312 
2313     /*
2314      * We have a kernel that predates the htab reset calls.  For PR
2315      * KVM, we need to allocate the htab ourselves, for an HV KVM of
2316      * this era, it has allocated a 16MB fixed size hash table
2317      * already.
2318      */
2319     if (kvmppc_is_pr(kvm_state)) {
2320         /* PR - tell caller to allocate htab */
2321         return 0;
2322     } else {
2323         /* HV - assume 16MB kernel allocated htab */
2324         return 24;
2325     }
2326 }
2327 
2328 static inline uint32_t mfpvr(void)
2329 {
2330     uint32_t pvr;
2331 
2332     asm ("mfpvr %0"
2333          : "=r"(pvr));
2334     return pvr;
2335 }
2336 
2337 static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2338 {
2339     if (on) {
2340         *word |= flags;
2341     } else {
2342         *word &= ~flags;
2343     }
2344 }
2345 
2346 static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
2347 {
2348     PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2349     uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2350     uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2351 
2352     /* Now fix up the class with information we can query from the host */
2353     pcc->pvr = mfpvr();
2354 
2355     alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
2356                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
2357     alter_insns(&pcc->insns_flags2, PPC2_VSX,
2358                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
2359     alter_insns(&pcc->insns_flags2, PPC2_DFP,
2360                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
2361 
2362     if (dcache_size != -1) {
2363         pcc->l1_dcache_size = dcache_size;
2364     }
2365 
2366     if (icache_size != -1) {
2367         pcc->l1_icache_size = icache_size;
2368     }
2369 
2370 #if defined(TARGET_PPC64)
2371     pcc->radix_page_info = kvmppc_get_radix_page_info();
2372 
2373     if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
2374         /*
2375          * POWER9 DD1 has some bugs which make it not really ISA 3.00
2376          * compliant.  More importantly, advertising ISA 3.00
2377          * architected mode may prevent guests from activating
2378          * necessary DD1 workarounds.
2379          */
2380         pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
2381                                 | PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
2382     }
2383 #endif /* defined(TARGET_PPC64) */
2384 }
2385 
2386 bool kvmppc_has_cap_epr(void)
2387 {
2388     return cap_epr;
2389 }
2390 
2391 bool kvmppc_has_cap_fixup_hcalls(void)
2392 {
2393     return cap_fixup_hcalls;
2394 }
2395 
2396 bool kvmppc_has_cap_htm(void)
2397 {
2398     return cap_htm;
2399 }
2400 
2401 bool kvmppc_has_cap_mmu_radix(void)
2402 {
2403     return cap_mmu_radix;
2404 }
2405 
2406 bool kvmppc_has_cap_mmu_hash_v3(void)
2407 {
2408     return cap_mmu_hash_v3;
2409 }
2410 
2411 static bool kvmppc_power8_host(void)
2412 {
2413     bool ret = false;
2414 #ifdef TARGET_PPC64
2415     {
2416         uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
2417         ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
2418               (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
2419               (base_pvr == CPU_POWERPC_POWER8_BASE);
2420     }
2421 #endif /* TARGET_PPC64 */
2422     return ret;
2423 }
2424 
2425 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
2426 {
2427     bool l1d_thread_priv_req = !kvmppc_power8_host();
2428 
2429     if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
2430         return 2;
2431     } else if ((!l1d_thread_priv_req ||
2432                 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
2433                (c.character & c.character_mask
2434                 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
2435         return 1;
2436     }
2437 
2438     return 0;
2439 }
2440 
2441 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
2442 {
2443     if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
2444         return 2;
2445     } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
2446         return 1;
2447     }
2448 
2449     return 0;
2450 }
2451 
2452 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
2453 {
2454     if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
2455         (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
2456         (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
2457         return SPAPR_CAP_FIXED_NA;
2458     } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
2459         return SPAPR_CAP_WORKAROUND;
2460     } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
2461         return  SPAPR_CAP_FIXED_CCD;
2462     } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
2463         return SPAPR_CAP_FIXED_IBS;
2464     }
2465 
2466     return 0;
2467 }
2468 
2469 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
2470 {
2471     if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
2472         return 1;
2473     }
2474     return 0;
2475 }
2476 
2477 bool kvmppc_has_cap_xive(void)
2478 {
2479     return cap_xive;
2480 }
2481 
2482 static void kvmppc_get_cpu_characteristics(KVMState *s)
2483 {
2484     struct kvm_ppc_cpu_char c;
2485     int ret;
2486 
2487     /* Assume broken */
2488     cap_ppc_safe_cache = 0;
2489     cap_ppc_safe_bounds_check = 0;
2490     cap_ppc_safe_indirect_branch = 0;
2491 
2492     ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
2493     if (!ret) {
2494         return;
2495     }
2496     ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
2497     if (ret < 0) {
2498         return;
2499     }
2500 
2501     cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
2502     cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
2503     cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
2504     cap_ppc_count_cache_flush_assist =
2505         parse_cap_ppc_count_cache_flush_assist(c);
2506 }
2507 
2508 int kvmppc_get_cap_safe_cache(void)
2509 {
2510     return cap_ppc_safe_cache;
2511 }
2512 
2513 int kvmppc_get_cap_safe_bounds_check(void)
2514 {
2515     return cap_ppc_safe_bounds_check;
2516 }
2517 
2518 int kvmppc_get_cap_safe_indirect_branch(void)
2519 {
2520     return cap_ppc_safe_indirect_branch;
2521 }
2522 
2523 int kvmppc_get_cap_count_cache_flush_assist(void)
2524 {
2525     return cap_ppc_count_cache_flush_assist;
2526 }
2527 
2528 bool kvmppc_has_cap_nested_kvm_hv(void)
2529 {
2530     return !!cap_ppc_nested_kvm_hv;
2531 }
2532 
2533 int kvmppc_set_cap_nested_kvm_hv(int enable)
2534 {
2535     return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
2536 }
2537 
2538 bool kvmppc_has_cap_spapr_vfio(void)
2539 {
2540     return cap_spapr_vfio;
2541 }
2542 
2543 int kvmppc_get_cap_large_decr(void)
2544 {
2545     return cap_large_decr;
2546 }
2547 
2548 int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
2549 {
2550     CPUState *cs = CPU(cpu);
2551     uint64_t lpcr = 0;
2552 
2553     kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2554     /* Do we need to modify the LPCR? */
2555     if (!!(lpcr & LPCR_LD) != !!enable) {
2556         if (enable) {
2557             lpcr |= LPCR_LD;
2558         } else {
2559             lpcr &= ~LPCR_LD;
2560         }
2561         kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2562         kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2563 
2564         if (!!(lpcr & LPCR_LD) != !!enable) {
2565             return -1;
2566         }
2567     }
2568 
2569     return 0;
2570 }
2571 
2572 int kvmppc_has_cap_rpt_invalidate(void)
2573 {
2574     return cap_rpt_invalidate;
2575 }
2576 
2577 bool kvmppc_supports_ail_3(void)
2578 {
2579     return cap_ail_mode_3;
2580 }
2581 
2582 PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2583 {
2584     uint32_t host_pvr = mfpvr();
2585     PowerPCCPUClass *pvr_pcc;
2586 
2587     pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2588     if (pvr_pcc == NULL) {
2589         pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2590     }
2591 
2592     return pvr_pcc;
2593 }
2594 
2595 static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque)
2596 {
2597     MachineClass *mc = MACHINE_CLASS(oc);
2598 
2599     mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
2600 }
2601 
2602 static int kvm_ppc_register_host_cpu_type(void)
2603 {
2604     TypeInfo type_info = {
2605         .name = TYPE_HOST_POWERPC_CPU,
2606         .class_init = kvmppc_host_cpu_class_init,
2607     };
2608     PowerPCCPUClass *pvr_pcc;
2609     ObjectClass *oc;
2610     DeviceClass *dc;
2611     int i;
2612 
2613     pvr_pcc = kvm_ppc_get_host_cpu_class();
2614     if (pvr_pcc == NULL) {
2615         return -1;
2616     }
2617     type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2618     type_register(&type_info);
2619     /* override TCG default cpu type with 'host' cpu model */
2620     object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE,
2621                          false, NULL);
2622 
2623     oc = object_class_by_name(type_info.name);
2624     g_assert(oc);
2625 
2626     /*
2627      * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2628      * we want "POWER8" to be a "family" alias that points to the current
2629      * host CPU type, too)
2630      */
2631     dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2632     for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
2633         if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
2634             char *suffix;
2635 
2636             ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
2637             suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
2638             if (suffix) {
2639                 *suffix = 0;
2640             }
2641             break;
2642         }
2643     }
2644 
2645     return 0;
2646 }
2647 
2648 int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2649 {
2650     struct kvm_rtas_token_args args = {
2651         .token = token,
2652     };
2653 
2654     if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2655         return -ENOENT;
2656     }
2657 
2658     strncpy(args.name, function, sizeof(args.name) - 1);
2659 
2660     return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2661 }
2662 
2663 int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
2664 {
2665     struct kvm_get_htab_fd s = {
2666         .flags = write ? KVM_GET_HTAB_WRITE : 0,
2667         .start_index = index,
2668     };
2669     int ret;
2670 
2671     if (!cap_htab_fd) {
2672         error_setg(errp, "KVM version doesn't support %s the HPT",
2673                    write ? "writing" : "reading");
2674         return -ENOTSUP;
2675     }
2676 
2677     ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2678     if (ret < 0) {
2679         error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
2680                    write ? "writing" : "reading", write ? "to" : "from",
2681                    strerror(errno));
2682         return -errno;
2683     }
2684 
2685     return ret;
2686 }
2687 
2688 int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2689 {
2690     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2691     uint8_t buf[bufsize];
2692     ssize_t rc;
2693 
2694     do {
2695         rc = read(fd, buf, bufsize);
2696         if (rc < 0) {
2697             fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2698                     strerror(errno));
2699             return rc;
2700         } else if (rc) {
2701             uint8_t *buffer = buf;
2702             ssize_t n = rc;
2703             while (n) {
2704                 struct kvm_get_htab_header *head =
2705                     (struct kvm_get_htab_header *) buffer;
2706                 size_t chunksize = sizeof(*head) +
2707                      HASH_PTE_SIZE_64 * head->n_valid;
2708 
2709                 qemu_put_be32(f, head->index);
2710                 qemu_put_be16(f, head->n_valid);
2711                 qemu_put_be16(f, head->n_invalid);
2712                 qemu_put_buffer(f, (void *)(head + 1),
2713                                 HASH_PTE_SIZE_64 * head->n_valid);
2714 
2715                 buffer += chunksize;
2716                 n -= chunksize;
2717             }
2718         }
2719     } while ((rc != 0)
2720              && ((max_ns < 0) ||
2721                  ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2722 
2723     return (rc == 0) ? 1 : 0;
2724 }
2725 
2726 int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2727                            uint16_t n_valid, uint16_t n_invalid, Error **errp)
2728 {
2729     struct kvm_get_htab_header *buf;
2730     size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
2731     ssize_t rc;
2732 
2733     buf = alloca(chunksize);
2734     buf->index = index;
2735     buf->n_valid = n_valid;
2736     buf->n_invalid = n_invalid;
2737 
2738     qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
2739 
2740     rc = write(fd, buf, chunksize);
2741     if (rc < 0) {
2742         error_setg_errno(errp, errno, "Error writing the KVM hash table");
2743         return -errno;
2744     }
2745     if (rc != chunksize) {
2746         /* We should never get a short write on a single chunk */
2747         error_setg(errp, "Short write while restoring the KVM hash table");
2748         return -ENOSPC;
2749     }
2750     return 0;
2751 }
2752 
2753 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2754 {
2755     return true;
2756 }
2757 
2758 void kvm_arch_init_irq_routing(KVMState *s)
2759 {
2760 }
2761 
2762 void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
2763 {
2764     int fd, rc;
2765     int i;
2766 
2767     fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
2768 
2769     i = 0;
2770     while (i < n) {
2771         struct kvm_get_htab_header *hdr;
2772         int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2773         char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
2774 
2775         rc = read(fd, buf, sizeof(buf));
2776         if (rc < 0) {
2777             hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2778         }
2779 
2780         hdr = (struct kvm_get_htab_header *)buf;
2781         while ((i < n) && ((char *)hdr < (buf + rc))) {
2782             int invalid = hdr->n_invalid, valid = hdr->n_valid;
2783 
2784             if (hdr->index != (ptex + i)) {
2785                 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2786                          " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2787             }
2788 
2789             if (n - i < valid) {
2790                 valid = n - i;
2791             }
2792             memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
2793             i += valid;
2794 
2795             if ((n - i) < invalid) {
2796                 invalid = n - i;
2797             }
2798             memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
2799             i += invalid;
2800 
2801             hdr = (struct kvm_get_htab_header *)
2802                 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2803         }
2804     }
2805 
2806     close(fd);
2807 }
2808 
2809 void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
2810 {
2811     int fd, rc;
2812     struct {
2813         struct kvm_get_htab_header hdr;
2814         uint64_t pte0;
2815         uint64_t pte1;
2816     } buf;
2817 
2818     fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
2819 
2820     buf.hdr.n_valid = 1;
2821     buf.hdr.n_invalid = 0;
2822     buf.hdr.index = ptex;
2823     buf.pte0 = cpu_to_be64(pte0);
2824     buf.pte1 = cpu_to_be64(pte1);
2825 
2826     rc = write(fd, &buf, sizeof(buf));
2827     if (rc != sizeof(buf)) {
2828         hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2829     }
2830     close(fd);
2831 }
2832 
2833 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2834                              uint64_t address, uint32_t data, PCIDevice *dev)
2835 {
2836     return 0;
2837 }
2838 
2839 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2840                                 int vector, PCIDevice *dev)
2841 {
2842     return 0;
2843 }
2844 
2845 int kvm_arch_release_virq_post(int virq)
2846 {
2847     return 0;
2848 }
2849 
2850 int kvm_arch_msi_data_to_gsi(uint32_t data)
2851 {
2852     return data & 0xffff;
2853 }
2854 
2855 #if defined(TARGET_PPC64)
2856 int kvm_handle_nmi(PowerPCCPU *cpu, struct kvm_run *run)
2857 {
2858     uint16_t flags = run->flags & KVM_RUN_PPC_NMI_DISP_MASK;
2859 
2860     cpu_synchronize_state(CPU(cpu));
2861 
2862     spapr_mce_req_event(cpu, flags == KVM_RUN_PPC_NMI_DISP_FULLY_RECOV);
2863 
2864     return 0;
2865 }
2866 #endif
2867 
2868 int kvmppc_enable_hwrng(void)
2869 {
2870     if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2871         return -1;
2872     }
2873 
2874     return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2875 }
2876 
2877 void kvmppc_check_papr_resize_hpt(Error **errp)
2878 {
2879     if (!kvm_enabled()) {
2880         return; /* No KVM, we're good */
2881     }
2882 
2883     if (cap_resize_hpt) {
2884         return; /* Kernel has explicit support, we're good */
2885     }
2886 
2887     /* Otherwise fallback on looking for PR KVM */
2888     if (kvmppc_is_pr(kvm_state)) {
2889         return;
2890     }
2891 
2892     error_setg(errp,
2893                "Hash page table resizing not available with this KVM version");
2894 }
2895 
2896 int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2897 {
2898     CPUState *cs = CPU(cpu);
2899     struct kvm_ppc_resize_hpt rhpt = {
2900         .flags = flags,
2901         .shift = shift,
2902     };
2903 
2904     if (!cap_resize_hpt) {
2905         return -ENOSYS;
2906     }
2907 
2908     return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2909 }
2910 
2911 int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2912 {
2913     CPUState *cs = CPU(cpu);
2914     struct kvm_ppc_resize_hpt rhpt = {
2915         .flags = flags,
2916         .shift = shift,
2917     };
2918 
2919     if (!cap_resize_hpt) {
2920         return -ENOSYS;
2921     }
2922 
2923     return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2924 }
2925 
2926 /*
2927  * This is a helper function to detect a post migration scenario
2928  * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2929  * the guest kernel can't handle a PVR value other than the actual host
2930  * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2931  *
2932  * If we don't have cap_ppc_pvr_compat and we're not running in PR
2933  * (so, we're HV), return true. The workaround itself is done in
2934  * cpu_post_load.
2935  *
2936  * The order here is important: we'll only check for KVM PR as a
2937  * fallback if the guest kernel can't handle the situation itself.
2938  * We need to avoid as much as possible querying the running KVM type
2939  * in QEMU level.
2940  */
2941 bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2942 {
2943     CPUState *cs = CPU(cpu);
2944 
2945     if (!kvm_enabled()) {
2946         return false;
2947     }
2948 
2949     if (cap_ppc_pvr_compat) {
2950         return false;
2951     }
2952 
2953     return !kvmppc_is_pr(cs->kvm_state);
2954 }
2955 
2956 void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
2957 {
2958     CPUState *cs = CPU(cpu);
2959 
2960     if (kvm_enabled()) {
2961         kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
2962     }
2963 }
2964 
2965 void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
2966 {
2967     CPUState *cs = CPU(cpu);
2968 
2969     if (kvm_enabled()) {
2970         kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);
2971     }
2972 }
2973 
2974 bool kvm_arch_cpu_check_are_resettable(void)
2975 {
2976     return true;
2977 }
2978 
2979 void kvm_arch_accel_class_init(ObjectClass *oc)
2980 {
2981 }
2982