xref: /qemu/target/ppc/machine.c (revision 727385c4)
1 #include "qemu/osdep.h"
2 #include "cpu.h"
3 #include "exec/exec-all.h"
4 #include "sysemu/kvm.h"
5 #include "helper_regs.h"
6 #include "mmu-hash64.h"
7 #include "migration/cpu.h"
8 #include "qapi/error.h"
9 #include "qemu/main-loop.h"
10 #include "kvm_ppc.h"
11 
12 static void post_load_update_msr(CPUPPCState *env)
13 {
14     target_ulong msr = env->msr;
15 
16     /*
17      * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
18      * before restoring.  Note that this recomputes hflags.
19      */
20     env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
21     ppc_store_msr(env, msr);
22 }
23 
24 static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
25 {
26     PowerPCCPU *cpu = opaque;
27     CPUPPCState *env = &cpu->env;
28     unsigned int i, j;
29     target_ulong sdr1;
30     uint32_t fpscr, vscr;
31 #if defined(TARGET_PPC64)
32     int32_t slb_nr;
33 #endif
34     target_ulong xer;
35 
36     for (i = 0; i < 32; i++) {
37         qemu_get_betls(f, &env->gpr[i]);
38     }
39 #if !defined(TARGET_PPC64)
40     for (i = 0; i < 32; i++) {
41         qemu_get_betls(f, &env->gprh[i]);
42     }
43 #endif
44     qemu_get_betls(f, &env->lr);
45     qemu_get_betls(f, &env->ctr);
46     for (i = 0; i < 8; i++) {
47         qemu_get_be32s(f, &env->crf[i]);
48     }
49     qemu_get_betls(f, &xer);
50     cpu_write_xer(env, xer);
51     qemu_get_betls(f, &env->reserve_addr);
52     qemu_get_betls(f, &env->msr);
53     for (i = 0; i < 4; i++) {
54         qemu_get_betls(f, &env->tgpr[i]);
55     }
56     for (i = 0; i < 32; i++) {
57         union {
58             float64 d;
59             uint64_t l;
60         } u;
61         u.l = qemu_get_be64(f);
62         *cpu_fpr_ptr(env, i) = u.d;
63     }
64     qemu_get_be32s(f, &fpscr);
65     env->fpscr = fpscr;
66     qemu_get_sbe32s(f, &env->access_type);
67 #if defined(TARGET_PPC64)
68     qemu_get_betls(f, &env->spr[SPR_ASR]);
69     qemu_get_sbe32s(f, &slb_nr);
70 #endif
71     qemu_get_betls(f, &sdr1);
72     for (i = 0; i < 32; i++) {
73         qemu_get_betls(f, &env->sr[i]);
74     }
75     for (i = 0; i < 2; i++) {
76         for (j = 0; j < 8; j++) {
77             qemu_get_betls(f, &env->DBAT[i][j]);
78         }
79     }
80     for (i = 0; i < 2; i++) {
81         for (j = 0; j < 8; j++) {
82             qemu_get_betls(f, &env->IBAT[i][j]);
83         }
84     }
85     qemu_get_sbe32s(f, &env->nb_tlb);
86     qemu_get_sbe32s(f, &env->tlb_per_way);
87     qemu_get_sbe32s(f, &env->nb_ways);
88     qemu_get_sbe32s(f, &env->last_way);
89     qemu_get_sbe32s(f, &env->id_tlbs);
90     qemu_get_sbe32s(f, &env->nb_pids);
91     if (env->tlb.tlb6) {
92         /* XXX assumes 6xx */
93         for (i = 0; i < env->nb_tlb; i++) {
94             qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
95             qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
96             qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
97         }
98     }
99     for (i = 0; i < 4; i++) {
100         qemu_get_betls(f, &env->pb[i]);
101     }
102     for (i = 0; i < 1024; i++) {
103         qemu_get_betls(f, &env->spr[i]);
104     }
105     if (!cpu->vhyp) {
106         ppc_store_sdr1(env, sdr1);
107     }
108     qemu_get_be32s(f, &vscr);
109     ppc_store_vscr(env, vscr);
110     qemu_get_be64s(f, &env->spe_acc);
111     qemu_get_be32s(f, &env->spe_fscr);
112     qemu_get_betls(f, &env->msr_mask);
113     qemu_get_be32s(f, &env->flags);
114     qemu_get_sbe32s(f, &env->error_code);
115     qemu_get_be32s(f, &env->pending_interrupts);
116     qemu_get_be32s(f, &env->irq_input_state);
117     for (i = 0; i < POWERPC_EXCP_NB; i++) {
118         qemu_get_betls(f, &env->excp_vectors[i]);
119     }
120     qemu_get_betls(f, &env->excp_prefix);
121     qemu_get_betls(f, &env->ivor_mask);
122     qemu_get_betls(f, &env->ivpr_mask);
123     qemu_get_betls(f, &env->hreset_vector);
124     qemu_get_betls(f, &env->nip);
125     qemu_get_sbetl(f); /* Discard unused hflags */
126     qemu_get_sbetl(f); /* Discard unused hflags_nmsr */
127     qemu_get_sbe32(f); /* Discard unused mmu_idx */
128     qemu_get_sbe32(f); /* Discard unused power_mode */
129 
130     post_load_update_msr(env);
131 
132     return 0;
133 }
134 
135 static int get_avr(QEMUFile *f, void *pv, size_t size,
136                    const VMStateField *field)
137 {
138     ppc_avr_t *v = pv;
139 
140     v->u64[0] = qemu_get_be64(f);
141     v->u64[1] = qemu_get_be64(f);
142 
143     return 0;
144 }
145 
146 static int put_avr(QEMUFile *f, void *pv, size_t size,
147                    const VMStateField *field, JSONWriter *vmdesc)
148 {
149     ppc_avr_t *v = pv;
150 
151     qemu_put_be64(f, v->u64[0]);
152     qemu_put_be64(f, v->u64[1]);
153     return 0;
154 }
155 
156 static const VMStateInfo vmstate_info_avr = {
157     .name = "avr",
158     .get  = get_avr,
159     .put  = put_avr,
160 };
161 
162 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v)                       \
163     VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
164 
165 #define VMSTATE_AVR_ARRAY(_f, _s, _n)                             \
166     VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
167 
168 static int get_fpr(QEMUFile *f, void *pv, size_t size,
169                    const VMStateField *field)
170 {
171     ppc_vsr_t *v = pv;
172 
173     v->VsrD(0) = qemu_get_be64(f);
174 
175     return 0;
176 }
177 
178 static int put_fpr(QEMUFile *f, void *pv, size_t size,
179                    const VMStateField *field, JSONWriter *vmdesc)
180 {
181     ppc_vsr_t *v = pv;
182 
183     qemu_put_be64(f, v->VsrD(0));
184     return 0;
185 }
186 
187 static const VMStateInfo vmstate_info_fpr = {
188     .name = "fpr",
189     .get  = get_fpr,
190     .put  = put_fpr,
191 };
192 
193 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v)                       \
194     VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
195 
196 #define VMSTATE_FPR_ARRAY(_f, _s, _n)                             \
197     VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
198 
199 static int get_vsr(QEMUFile *f, void *pv, size_t size,
200                    const VMStateField *field)
201 {
202     ppc_vsr_t *v = pv;
203 
204     v->VsrD(1) = qemu_get_be64(f);
205 
206     return 0;
207 }
208 
209 static int put_vsr(QEMUFile *f, void *pv, size_t size,
210                    const VMStateField *field, JSONWriter *vmdesc)
211 {
212     ppc_vsr_t *v = pv;
213 
214     qemu_put_be64(f, v->VsrD(1));
215     return 0;
216 }
217 
218 static const VMStateInfo vmstate_info_vsr = {
219     .name = "vsr",
220     .get  = get_vsr,
221     .put  = put_vsr,
222 };
223 
224 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v)                       \
225     VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
226 
227 #define VMSTATE_VSR_ARRAY(_f, _s, _n)                             \
228     VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
229 
230 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
231 {
232     PowerPCCPU *cpu = opaque;
233 
234     return cpu->pre_2_8_migration;
235 }
236 
237 #if defined(TARGET_PPC64)
238 static bool cpu_pre_3_0_migration(void *opaque, int version_id)
239 {
240     PowerPCCPU *cpu = opaque;
241 
242     return cpu->pre_3_0_migration;
243 }
244 #endif
245 
246 static int cpu_pre_save(void *opaque)
247 {
248     PowerPCCPU *cpu = opaque;
249     CPUPPCState *env = &cpu->env;
250     int i;
251     uint64_t insns_compat_mask =
252         PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
253         | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
254         | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
255         | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
256         | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
257         | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
258         | PPC_64B | PPC_64BX | PPC_ALTIVEC
259         | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
260     uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
261         | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
262         | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
263         | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
264         | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
265         | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
266 
267     env->spr[SPR_LR] = env->lr;
268     env->spr[SPR_CTR] = env->ctr;
269     env->spr[SPR_XER] = cpu_read_xer(env);
270 #if defined(TARGET_PPC64)
271     env->spr[SPR_CFAR] = env->cfar;
272 #endif
273     env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
274 
275     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
276         env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
277         env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
278         env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
279         env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
280     }
281     for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
282         env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
283         env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
284         env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
285         env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
286     }
287 
288     /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
289     if (cpu->pre_2_8_migration) {
290         /*
291          * Mask out bits that got added to msr_mask since the versions
292          * which stupidly included it in the migration stream.
293          */
294         target_ulong metamask = 0
295 #if defined(TARGET_PPC64)
296             | (1ULL << MSR_TS0)
297             | (1ULL << MSR_TS1)
298 #endif
299             ;
300         cpu->mig_msr_mask = env->msr_mask & ~metamask;
301         cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
302         /*
303          * CPU models supported by old machines all have
304          * PPC_MEM_TLBIE, so we set it unconditionally to allow
305          * backward migration from a POWER9 host to a POWER8 host.
306          */
307         cpu->mig_insns_flags |= PPC_MEM_TLBIE;
308         cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
309         cpu->mig_nb_BATs = env->nb_BATs;
310     }
311     if (cpu->pre_3_0_migration) {
312         if (cpu->hash64_opts) {
313             cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
314         }
315     }
316 
317     /* Retain migration compatibility for pre 6.0 for 601 machines. */
318     env->hflags_compat_nmsr = (env->flags & POWERPC_FLAG_HID0_LE
319                                ? env->hflags & MSR_LE : 0);
320 
321     return 0;
322 }
323 
324 /*
325  * Determine if a given PVR is a "close enough" match to the CPU
326  * object.  For TCG and KVM PR it would probably be sufficient to
327  * require an exact PVR match.  However for KVM HV the user is
328  * restricted to a PVR exactly matching the host CPU.  The correct way
329  * to handle this is to put the guest into an architected
330  * compatibility mode.  However, to allow a more forgiving transition
331  * and migration from before this was widely done, we allow migration
332  * between sufficiently similar PVRs, as determined by the CPU class's
333  * pvr_match() hook.
334  */
335 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
336 {
337     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
338 
339     if (pvr == pcc->pvr) {
340         return true;
341     }
342     return pcc->pvr_match(pcc, pvr);
343 }
344 
345 static int cpu_post_load(void *opaque, int version_id)
346 {
347     PowerPCCPU *cpu = opaque;
348     CPUPPCState *env = &cpu->env;
349     int i;
350 
351     /*
352      * If we're operating in compat mode, we should be ok as long as
353      * the destination supports the same compatibility mode.
354      *
355      * Otherwise, however, we require that the destination has exactly
356      * the same CPU model as the source.
357      */
358 
359 #if defined(TARGET_PPC64)
360     if (cpu->compat_pvr) {
361         uint32_t compat_pvr = cpu->compat_pvr;
362         Error *local_err = NULL;
363         int ret;
364 
365         cpu->compat_pvr = 0;
366         ret = ppc_set_compat(cpu, compat_pvr, &local_err);
367         if (ret < 0) {
368             error_report_err(local_err);
369             return ret;
370         }
371     } else
372 #endif
373     {
374         if (!pvr_match(cpu, env->spr[SPR_PVR])) {
375             return -EINVAL;
376         }
377     }
378 
379     /*
380      * If we're running with KVM HV, there is a chance that the guest
381      * is running with KVM HV and its kernel does not have the
382      * capability of dealing with a different PVR other than this
383      * exact host PVR in KVM_SET_SREGS. If that happens, the
384      * guest freezes after migration.
385      *
386      * The function kvmppc_pvr_workaround_required does this verification
387      * by first checking if the kernel has the cap, returning true immediately
388      * if that is the case. Otherwise, it checks if we're running in KVM PR.
389      * If the guest kernel does not have the cap and we're not running KVM-PR
390      * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
391      * receive the PVR it expects as a workaround.
392      *
393      */
394     if (kvmppc_pvr_workaround_required(cpu)) {
395         env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
396     }
397 
398     env->lr = env->spr[SPR_LR];
399     env->ctr = env->spr[SPR_CTR];
400     cpu_write_xer(env, env->spr[SPR_XER]);
401 #if defined(TARGET_PPC64)
402     env->cfar = env->spr[SPR_CFAR];
403 #endif
404     env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
405 
406     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
407         env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
408         env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
409         env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
410         env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
411     }
412     for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
413         env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
414         env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
415         env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
416         env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
417     }
418 
419     if (!cpu->vhyp) {
420         ppc_store_sdr1(env, env->spr[SPR_SDR1]);
421     }
422 
423     post_load_update_msr(env);
424 
425     return 0;
426 }
427 
428 static bool fpu_needed(void *opaque)
429 {
430     PowerPCCPU *cpu = opaque;
431 
432     return cpu->env.insns_flags & PPC_FLOAT;
433 }
434 
435 static const VMStateDescription vmstate_fpu = {
436     .name = "cpu/fpu",
437     .version_id = 1,
438     .minimum_version_id = 1,
439     .needed = fpu_needed,
440     .fields = (VMStateField[]) {
441         VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
442         VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
443         VMSTATE_END_OF_LIST()
444     },
445 };
446 
447 static bool altivec_needed(void *opaque)
448 {
449     PowerPCCPU *cpu = opaque;
450 
451     return cpu->env.insns_flags & PPC_ALTIVEC;
452 }
453 
454 static int get_vscr(QEMUFile *f, void *opaque, size_t size,
455                     const VMStateField *field)
456 {
457     PowerPCCPU *cpu = opaque;
458     ppc_store_vscr(&cpu->env, qemu_get_be32(f));
459     return 0;
460 }
461 
462 static int put_vscr(QEMUFile *f, void *opaque, size_t size,
463                     const VMStateField *field, JSONWriter *vmdesc)
464 {
465     PowerPCCPU *cpu = opaque;
466     qemu_put_be32(f, ppc_get_vscr(&cpu->env));
467     return 0;
468 }
469 
470 static const VMStateInfo vmstate_vscr = {
471     .name = "cpu/altivec/vscr",
472     .get = get_vscr,
473     .put = put_vscr,
474 };
475 
476 static const VMStateDescription vmstate_altivec = {
477     .name = "cpu/altivec",
478     .version_id = 1,
479     .minimum_version_id = 1,
480     .needed = altivec_needed,
481     .fields = (VMStateField[]) {
482         VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
483         /*
484          * Save the architecture value of the vscr, not the internally
485          * expanded version.  Since this architecture value does not
486          * exist in memory to be stored, this requires a but of hoop
487          * jumping.  We want OFFSET=0 so that we effectively pass CPU
488          * to the helper functions.
489          */
490         {
491             .name = "vscr",
492             .version_id = 0,
493             .size = sizeof(uint32_t),
494             .info = &vmstate_vscr,
495             .flags = VMS_SINGLE,
496             .offset = 0
497         },
498         VMSTATE_END_OF_LIST()
499     },
500 };
501 
502 static bool vsx_needed(void *opaque)
503 {
504     PowerPCCPU *cpu = opaque;
505 
506     return cpu->env.insns_flags2 & PPC2_VSX;
507 }
508 
509 static const VMStateDescription vmstate_vsx = {
510     .name = "cpu/vsx",
511     .version_id = 1,
512     .minimum_version_id = 1,
513     .needed = vsx_needed,
514     .fields = (VMStateField[]) {
515         VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
516         VMSTATE_END_OF_LIST()
517     },
518 };
519 
520 #ifdef TARGET_PPC64
521 /* Transactional memory state */
522 static bool tm_needed(void *opaque)
523 {
524     PowerPCCPU *cpu = opaque;
525     CPUPPCState *env = &cpu->env;
526     return msr_ts;
527 }
528 
529 static const VMStateDescription vmstate_tm = {
530     .name = "cpu/tm",
531     .version_id = 1,
532     .minimum_version_id = 1,
533     .minimum_version_id_old = 1,
534     .needed = tm_needed,
535     .fields      = (VMStateField []) {
536         VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
537         VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
538         VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
539         VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
540         VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
541         VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
542         VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
543         VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
544         VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
545         VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
546         VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
547         VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
548         VMSTATE_END_OF_LIST()
549     },
550 };
551 #endif
552 
553 static bool sr_needed(void *opaque)
554 {
555 #ifdef TARGET_PPC64
556     PowerPCCPU *cpu = opaque;
557 
558     return !mmu_is_64bit(cpu->env.mmu_model);
559 #else
560     return true;
561 #endif
562 }
563 
564 static const VMStateDescription vmstate_sr = {
565     .name = "cpu/sr",
566     .version_id = 1,
567     .minimum_version_id = 1,
568     .needed = sr_needed,
569     .fields = (VMStateField[]) {
570         VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
571         VMSTATE_END_OF_LIST()
572     },
573 };
574 
575 #ifdef TARGET_PPC64
576 static int get_slbe(QEMUFile *f, void *pv, size_t size,
577                     const VMStateField *field)
578 {
579     ppc_slb_t *v = pv;
580 
581     v->esid = qemu_get_be64(f);
582     v->vsid = qemu_get_be64(f);
583 
584     return 0;
585 }
586 
587 static int put_slbe(QEMUFile *f, void *pv, size_t size,
588                     const VMStateField *field, JSONWriter *vmdesc)
589 {
590     ppc_slb_t *v = pv;
591 
592     qemu_put_be64(f, v->esid);
593     qemu_put_be64(f, v->vsid);
594     return 0;
595 }
596 
597 static const VMStateInfo vmstate_info_slbe = {
598     .name = "slbe",
599     .get  = get_slbe,
600     .put  = put_slbe,
601 };
602 
603 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v)                       \
604     VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
605 
606 #define VMSTATE_SLB_ARRAY(_f, _s, _n)                             \
607     VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
608 
609 static bool slb_needed(void *opaque)
610 {
611     PowerPCCPU *cpu = opaque;
612 
613     /* We don't support any of the old segment table based 64-bit CPUs */
614     return mmu_is_64bit(cpu->env.mmu_model);
615 }
616 
617 static int slb_post_load(void *opaque, int version_id)
618 {
619     PowerPCCPU *cpu = opaque;
620     CPUPPCState *env = &cpu->env;
621     int i;
622 
623     /*
624      * We've pulled in the raw esid and vsid values from the migration
625      * stream, but we need to recompute the page size pointers
626      */
627     for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
628         if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
629             /* Migration source had bad values in its SLB */
630             return -1;
631         }
632     }
633 
634     return 0;
635 }
636 
637 static const VMStateDescription vmstate_slb = {
638     .name = "cpu/slb",
639     .version_id = 1,
640     .minimum_version_id = 1,
641     .needed = slb_needed,
642     .post_load = slb_post_load,
643     .fields = (VMStateField[]) {
644         VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
645         VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
646         VMSTATE_END_OF_LIST()
647     }
648 };
649 #endif /* TARGET_PPC64 */
650 
651 static const VMStateDescription vmstate_tlb6xx_entry = {
652     .name = "cpu/tlb6xx_entry",
653     .version_id = 1,
654     .minimum_version_id = 1,
655     .fields = (VMStateField[]) {
656         VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
657         VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
658         VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
659         VMSTATE_END_OF_LIST()
660     },
661 };
662 
663 static bool tlb6xx_needed(void *opaque)
664 {
665     PowerPCCPU *cpu = opaque;
666     CPUPPCState *env = &cpu->env;
667 
668     return env->nb_tlb && (env->tlb_type == TLB_6XX);
669 }
670 
671 static const VMStateDescription vmstate_tlb6xx = {
672     .name = "cpu/tlb6xx",
673     .version_id = 1,
674     .minimum_version_id = 1,
675     .needed = tlb6xx_needed,
676     .fields = (VMStateField[]) {
677         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
678         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
679                                             env.nb_tlb,
680                                             vmstate_tlb6xx_entry,
681                                             ppc6xx_tlb_t),
682         VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
683         VMSTATE_END_OF_LIST()
684     }
685 };
686 
687 static const VMStateDescription vmstate_tlbemb_entry = {
688     .name = "cpu/tlbemb_entry",
689     .version_id = 1,
690     .minimum_version_id = 1,
691     .fields = (VMStateField[]) {
692         VMSTATE_UINT64(RPN, ppcemb_tlb_t),
693         VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
694         VMSTATE_UINTTL(PID, ppcemb_tlb_t),
695         VMSTATE_UINTTL(size, ppcemb_tlb_t),
696         VMSTATE_UINT32(prot, ppcemb_tlb_t),
697         VMSTATE_UINT32(attr, ppcemb_tlb_t),
698         VMSTATE_END_OF_LIST()
699     },
700 };
701 
702 static bool tlbemb_needed(void *opaque)
703 {
704     PowerPCCPU *cpu = opaque;
705     CPUPPCState *env = &cpu->env;
706 
707     return env->nb_tlb && (env->tlb_type == TLB_EMB);
708 }
709 
710 static bool pbr403_needed(void *opaque)
711 {
712     PowerPCCPU *cpu = opaque;
713     uint32_t pvr = cpu->env.spr[SPR_PVR];
714 
715     return (pvr & 0xffff0000) == 0x00200000;
716 }
717 
718 static const VMStateDescription vmstate_pbr403 = {
719     .name = "cpu/pbr403",
720     .version_id = 1,
721     .minimum_version_id = 1,
722     .needed = pbr403_needed,
723     .fields = (VMStateField[]) {
724         VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
725         VMSTATE_END_OF_LIST()
726     },
727 };
728 
729 static const VMStateDescription vmstate_tlbemb = {
730     .name = "cpu/tlb6xx",
731     .version_id = 1,
732     .minimum_version_id = 1,
733     .needed = tlbemb_needed,
734     .fields = (VMStateField[]) {
735         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
736         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
737                                             env.nb_tlb,
738                                             vmstate_tlbemb_entry,
739                                             ppcemb_tlb_t),
740         /* 403 protection registers */
741         VMSTATE_END_OF_LIST()
742     },
743     .subsections = (const VMStateDescription*[]) {
744         &vmstate_pbr403,
745         NULL
746     }
747 };
748 
749 static const VMStateDescription vmstate_tlbmas_entry = {
750     .name = "cpu/tlbmas_entry",
751     .version_id = 1,
752     .minimum_version_id = 1,
753     .fields = (VMStateField[]) {
754         VMSTATE_UINT32(mas8, ppcmas_tlb_t),
755         VMSTATE_UINT32(mas1, ppcmas_tlb_t),
756         VMSTATE_UINT64(mas2, ppcmas_tlb_t),
757         VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
758         VMSTATE_END_OF_LIST()
759     },
760 };
761 
762 static bool tlbmas_needed(void *opaque)
763 {
764     PowerPCCPU *cpu = opaque;
765     CPUPPCState *env = &cpu->env;
766 
767     return env->nb_tlb && (env->tlb_type == TLB_MAS);
768 }
769 
770 static const VMStateDescription vmstate_tlbmas = {
771     .name = "cpu/tlbmas",
772     .version_id = 1,
773     .minimum_version_id = 1,
774     .needed = tlbmas_needed,
775     .fields = (VMStateField[]) {
776         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
777         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
778                                             env.nb_tlb,
779                                             vmstate_tlbmas_entry,
780                                             ppcmas_tlb_t),
781         VMSTATE_END_OF_LIST()
782     }
783 };
784 
785 static bool compat_needed(void *opaque)
786 {
787     PowerPCCPU *cpu = opaque;
788 
789     assert(!(cpu->compat_pvr && !cpu->vhyp));
790     return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
791 }
792 
793 static const VMStateDescription vmstate_compat = {
794     .name = "cpu/compat",
795     .version_id = 1,
796     .minimum_version_id = 1,
797     .needed = compat_needed,
798     .fields = (VMStateField[]) {
799         VMSTATE_UINT32(compat_pvr, PowerPCCPU),
800         VMSTATE_END_OF_LIST()
801     }
802 };
803 
804 const VMStateDescription vmstate_ppc_cpu = {
805     .name = "cpu",
806     .version_id = 5,
807     .minimum_version_id = 5,
808     .minimum_version_id_old = 4,
809     .load_state_old = cpu_load_old,
810     .pre_save = cpu_pre_save,
811     .post_load = cpu_post_load,
812     .fields = (VMStateField[]) {
813         VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
814 
815         /* User mode architected state */
816         VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
817 #if !defined(TARGET_PPC64)
818         VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
819 #endif
820         VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
821         VMSTATE_UINTTL(env.nip, PowerPCCPU),
822 
823         /* SPRs */
824         VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
825         VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
826 
827         /* Reservation */
828         VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
829 
830         /* Supervisor mode architected state */
831         VMSTATE_UINTTL(env.msr, PowerPCCPU),
832 
833         /* Backward compatible internal state */
834         VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU),
835 
836         /* Sanity checking */
837         VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
838         VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
839         VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
840                             cpu_pre_2_8_migration),
841         VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
842         VMSTATE_END_OF_LIST()
843     },
844     .subsections = (const VMStateDescription*[]) {
845         &vmstate_fpu,
846         &vmstate_altivec,
847         &vmstate_vsx,
848         &vmstate_sr,
849 #ifdef TARGET_PPC64
850         &vmstate_tm,
851         &vmstate_slb,
852 #endif /* TARGET_PPC64 */
853         &vmstate_tlb6xx,
854         &vmstate_tlbemb,
855         &vmstate_tlbmas,
856         &vmstate_compat,
857         NULL
858     }
859 };
860