xref: /qemu/target/ppc/machine.c (revision 93c9aeed)
1 #include "qemu/osdep.h"
2 #include "cpu.h"
3 #include "exec/exec-all.h"
4 #include "sysemu/kvm.h"
5 #include "helper_regs.h"
6 #include "mmu-hash64.h"
7 #include "migration/cpu.h"
8 #include "qapi/error.h"
9 #include "qemu/main-loop.h"
10 #include "kvm_ppc.h"
11 #include "power8-pmu.h"
12 
13 static void post_load_update_msr(CPUPPCState *env)
14 {
15     target_ulong msr = env->msr;
16 
17     /*
18      * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
19      * before restoring.  Note that this recomputes hflags.
20      */
21     env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
22     ppc_store_msr(env, msr);
23     pmu_update_summaries(env);
24 }
25 
26 static int get_avr(QEMUFile *f, void *pv, size_t size,
27                    const VMStateField *field)
28 {
29     ppc_avr_t *v = pv;
30 
31     v->u64[0] = qemu_get_be64(f);
32     v->u64[1] = qemu_get_be64(f);
33 
34     return 0;
35 }
36 
37 static int put_avr(QEMUFile *f, void *pv, size_t size,
38                    const VMStateField *field, JSONWriter *vmdesc)
39 {
40     ppc_avr_t *v = pv;
41 
42     qemu_put_be64(f, v->u64[0]);
43     qemu_put_be64(f, v->u64[1]);
44     return 0;
45 }
46 
47 static const VMStateInfo vmstate_info_avr = {
48     .name = "avr",
49     .get  = get_avr,
50     .put  = put_avr,
51 };
52 
53 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v)                       \
54     VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
55 
56 #define VMSTATE_AVR_ARRAY(_f, _s, _n)                             \
57     VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
58 
59 static int get_fpr(QEMUFile *f, void *pv, size_t size,
60                    const VMStateField *field)
61 {
62     ppc_vsr_t *v = pv;
63 
64     v->VsrD(0) = qemu_get_be64(f);
65 
66     return 0;
67 }
68 
69 static int put_fpr(QEMUFile *f, void *pv, size_t size,
70                    const VMStateField *field, JSONWriter *vmdesc)
71 {
72     ppc_vsr_t *v = pv;
73 
74     qemu_put_be64(f, v->VsrD(0));
75     return 0;
76 }
77 
78 static const VMStateInfo vmstate_info_fpr = {
79     .name = "fpr",
80     .get  = get_fpr,
81     .put  = put_fpr,
82 };
83 
84 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v)                       \
85     VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
86 
87 #define VMSTATE_FPR_ARRAY(_f, _s, _n)                             \
88     VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
89 
90 static int get_vsr(QEMUFile *f, void *pv, size_t size,
91                    const VMStateField *field)
92 {
93     ppc_vsr_t *v = pv;
94 
95     v->VsrD(1) = qemu_get_be64(f);
96 
97     return 0;
98 }
99 
100 static int put_vsr(QEMUFile *f, void *pv, size_t size,
101                    const VMStateField *field, JSONWriter *vmdesc)
102 {
103     ppc_vsr_t *v = pv;
104 
105     qemu_put_be64(f, v->VsrD(1));
106     return 0;
107 }
108 
109 static const VMStateInfo vmstate_info_vsr = {
110     .name = "vsr",
111     .get  = get_vsr,
112     .put  = put_vsr,
113 };
114 
115 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v)                       \
116     VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
117 
118 #define VMSTATE_VSR_ARRAY(_f, _s, _n)                             \
119     VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
120 
121 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
122 {
123     PowerPCCPU *cpu = opaque;
124 
125     return cpu->pre_2_8_migration;
126 }
127 
128 #if defined(TARGET_PPC64)
129 static bool cpu_pre_3_0_migration(void *opaque, int version_id)
130 {
131     PowerPCCPU *cpu = opaque;
132 
133     return cpu->pre_3_0_migration;
134 }
135 #endif
136 
137 static int cpu_pre_save(void *opaque)
138 {
139     PowerPCCPU *cpu = opaque;
140     CPUPPCState *env = &cpu->env;
141     int i;
142     uint64_t insns_compat_mask =
143         PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
144         | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
145         | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
146         | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
147         | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
148         | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
149         | PPC_64B | PPC_64BX | PPC_ALTIVEC
150         | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
151     uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
152         | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
153         | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
154         | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
155         | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
156         | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
157 
158     env->spr[SPR_LR] = env->lr;
159     env->spr[SPR_CTR] = env->ctr;
160     env->spr[SPR_XER] = cpu_read_xer(env);
161 #if defined(TARGET_PPC64)
162     env->spr[SPR_CFAR] = env->cfar;
163 #endif
164     env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
165 
166     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
167         env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
168         env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
169         env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
170         env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
171     }
172     for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
173         env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
174         env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
175         env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
176         env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
177     }
178 
179     /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
180     if (cpu->pre_2_8_migration) {
181         /*
182          * Mask out bits that got added to msr_mask since the versions
183          * which stupidly included it in the migration stream.
184          */
185         target_ulong metamask = 0
186 #if defined(TARGET_PPC64)
187             | (1ULL << MSR_TS0)
188             | (1ULL << MSR_TS1)
189 #endif
190             ;
191         cpu->mig_msr_mask = env->msr_mask & ~metamask;
192         cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
193         /*
194          * CPU models supported by old machines all have
195          * PPC_MEM_TLBIE, so we set it unconditionally to allow
196          * backward migration from a POWER9 host to a POWER8 host.
197          */
198         cpu->mig_insns_flags |= PPC_MEM_TLBIE;
199         cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
200         cpu->mig_nb_BATs = env->nb_BATs;
201     }
202     if (cpu->pre_3_0_migration) {
203         if (cpu->hash64_opts) {
204             cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
205         }
206     }
207 
208     /* Used to retain migration compatibility for pre 6.0 for 601 machines. */
209     env->hflags_compat_nmsr = 0;
210 
211     return 0;
212 }
213 
214 /*
215  * Determine if a given PVR is a "close enough" match to the CPU
216  * object.  For TCG and KVM PR it would probably be sufficient to
217  * require an exact PVR match.  However for KVM HV the user is
218  * restricted to a PVR exactly matching the host CPU.  The correct way
219  * to handle this is to put the guest into an architected
220  * compatibility mode.  However, to allow a more forgiving transition
221  * and migration from before this was widely done, we allow migration
222  * between sufficiently similar PVRs, as determined by the CPU class's
223  * pvr_match() hook.
224  */
225 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
226 {
227     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
228 
229     if (pvr == pcc->pvr) {
230         return true;
231     }
232     return pcc->pvr_match(pcc, pvr);
233 }
234 
235 static int cpu_post_load(void *opaque, int version_id)
236 {
237     PowerPCCPU *cpu = opaque;
238     CPUPPCState *env = &cpu->env;
239     int i;
240 
241     /*
242      * If we're operating in compat mode, we should be ok as long as
243      * the destination supports the same compatibility mode.
244      *
245      * Otherwise, however, we require that the destination has exactly
246      * the same CPU model as the source.
247      */
248 
249 #if defined(TARGET_PPC64)
250     if (cpu->compat_pvr) {
251         uint32_t compat_pvr = cpu->compat_pvr;
252         Error *local_err = NULL;
253         int ret;
254 
255         cpu->compat_pvr = 0;
256         ret = ppc_set_compat(cpu, compat_pvr, &local_err);
257         if (ret < 0) {
258             error_report_err(local_err);
259             return ret;
260         }
261     } else
262 #endif
263     {
264         if (!pvr_match(cpu, env->spr[SPR_PVR])) {
265             return -EINVAL;
266         }
267     }
268 
269     /*
270      * If we're running with KVM HV, there is a chance that the guest
271      * is running with KVM HV and its kernel does not have the
272      * capability of dealing with a different PVR other than this
273      * exact host PVR in KVM_SET_SREGS. If that happens, the
274      * guest freezes after migration.
275      *
276      * The function kvmppc_pvr_workaround_required does this verification
277      * by first checking if the kernel has the cap, returning true immediately
278      * if that is the case. Otherwise, it checks if we're running in KVM PR.
279      * If the guest kernel does not have the cap and we're not running KVM-PR
280      * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
281      * receive the PVR it expects as a workaround.
282      *
283      */
284     if (kvmppc_pvr_workaround_required(cpu)) {
285         env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
286     }
287 
288     env->lr = env->spr[SPR_LR];
289     env->ctr = env->spr[SPR_CTR];
290     cpu_write_xer(env, env->spr[SPR_XER]);
291 #if defined(TARGET_PPC64)
292     env->cfar = env->spr[SPR_CFAR];
293 #endif
294     env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
295 
296     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
297         env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
298         env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
299         env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
300         env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
301     }
302     for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
303         env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
304         env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
305         env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
306         env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
307     }
308 
309     if (!cpu->vhyp) {
310         ppc_store_sdr1(env, env->spr[SPR_SDR1]);
311     }
312 
313     post_load_update_msr(env);
314 
315     return 0;
316 }
317 
318 static bool fpu_needed(void *opaque)
319 {
320     PowerPCCPU *cpu = opaque;
321 
322     return cpu->env.insns_flags & PPC_FLOAT;
323 }
324 
325 static const VMStateDescription vmstate_fpu = {
326     .name = "cpu/fpu",
327     .version_id = 1,
328     .minimum_version_id = 1,
329     .needed = fpu_needed,
330     .fields = (VMStateField[]) {
331         VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
332         VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
333         VMSTATE_END_OF_LIST()
334     },
335 };
336 
337 static bool altivec_needed(void *opaque)
338 {
339     PowerPCCPU *cpu = opaque;
340 
341     return cpu->env.insns_flags & PPC_ALTIVEC;
342 }
343 
344 static int get_vscr(QEMUFile *f, void *opaque, size_t size,
345                     const VMStateField *field)
346 {
347     PowerPCCPU *cpu = opaque;
348     ppc_store_vscr(&cpu->env, qemu_get_be32(f));
349     return 0;
350 }
351 
352 static int put_vscr(QEMUFile *f, void *opaque, size_t size,
353                     const VMStateField *field, JSONWriter *vmdesc)
354 {
355     PowerPCCPU *cpu = opaque;
356     qemu_put_be32(f, ppc_get_vscr(&cpu->env));
357     return 0;
358 }
359 
360 static const VMStateInfo vmstate_vscr = {
361     .name = "cpu/altivec/vscr",
362     .get = get_vscr,
363     .put = put_vscr,
364 };
365 
366 static const VMStateDescription vmstate_altivec = {
367     .name = "cpu/altivec",
368     .version_id = 1,
369     .minimum_version_id = 1,
370     .needed = altivec_needed,
371     .fields = (VMStateField[]) {
372         VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
373         /*
374          * Save the architecture value of the vscr, not the internally
375          * expanded version.  Since this architecture value does not
376          * exist in memory to be stored, this requires a but of hoop
377          * jumping.  We want OFFSET=0 so that we effectively pass CPU
378          * to the helper functions.
379          */
380         {
381             .name = "vscr",
382             .version_id = 0,
383             .size = sizeof(uint32_t),
384             .info = &vmstate_vscr,
385             .flags = VMS_SINGLE,
386             .offset = 0
387         },
388         VMSTATE_END_OF_LIST()
389     },
390 };
391 
392 static bool vsx_needed(void *opaque)
393 {
394     PowerPCCPU *cpu = opaque;
395 
396     return cpu->env.insns_flags2 & PPC2_VSX;
397 }
398 
399 static const VMStateDescription vmstate_vsx = {
400     .name = "cpu/vsx",
401     .version_id = 1,
402     .minimum_version_id = 1,
403     .needed = vsx_needed,
404     .fields = (VMStateField[]) {
405         VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
406         VMSTATE_END_OF_LIST()
407     },
408 };
409 
410 #ifdef TARGET_PPC64
411 /* Transactional memory state */
412 static bool tm_needed(void *opaque)
413 {
414     PowerPCCPU *cpu = opaque;
415     CPUPPCState *env = &cpu->env;
416     return msr_ts;
417 }
418 
419 static const VMStateDescription vmstate_tm = {
420     .name = "cpu/tm",
421     .version_id = 1,
422     .minimum_version_id = 1,
423     .needed = tm_needed,
424     .fields      = (VMStateField []) {
425         VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
426         VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
427         VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
428         VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
429         VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
430         VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
431         VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
432         VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
433         VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
434         VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
435         VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
436         VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
437         VMSTATE_END_OF_LIST()
438     },
439 };
440 #endif
441 
442 static bool sr_needed(void *opaque)
443 {
444 #ifdef TARGET_PPC64
445     PowerPCCPU *cpu = opaque;
446 
447     return !mmu_is_64bit(cpu->env.mmu_model);
448 #else
449     return true;
450 #endif
451 }
452 
453 static const VMStateDescription vmstate_sr = {
454     .name = "cpu/sr",
455     .version_id = 1,
456     .minimum_version_id = 1,
457     .needed = sr_needed,
458     .fields = (VMStateField[]) {
459         VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
460         VMSTATE_END_OF_LIST()
461     },
462 };
463 
464 #ifdef TARGET_PPC64
465 static int get_slbe(QEMUFile *f, void *pv, size_t size,
466                     const VMStateField *field)
467 {
468     ppc_slb_t *v = pv;
469 
470     v->esid = qemu_get_be64(f);
471     v->vsid = qemu_get_be64(f);
472 
473     return 0;
474 }
475 
476 static int put_slbe(QEMUFile *f, void *pv, size_t size,
477                     const VMStateField *field, JSONWriter *vmdesc)
478 {
479     ppc_slb_t *v = pv;
480 
481     qemu_put_be64(f, v->esid);
482     qemu_put_be64(f, v->vsid);
483     return 0;
484 }
485 
486 static const VMStateInfo vmstate_info_slbe = {
487     .name = "slbe",
488     .get  = get_slbe,
489     .put  = put_slbe,
490 };
491 
492 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v)                       \
493     VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
494 
495 #define VMSTATE_SLB_ARRAY(_f, _s, _n)                             \
496     VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
497 
498 static bool slb_needed(void *opaque)
499 {
500     PowerPCCPU *cpu = opaque;
501 
502     /* We don't support any of the old segment table based 64-bit CPUs */
503     return mmu_is_64bit(cpu->env.mmu_model);
504 }
505 
506 static int slb_post_load(void *opaque, int version_id)
507 {
508     PowerPCCPU *cpu = opaque;
509     CPUPPCState *env = &cpu->env;
510     int i;
511 
512     /*
513      * We've pulled in the raw esid and vsid values from the migration
514      * stream, but we need to recompute the page size pointers
515      */
516     for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
517         if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
518             /* Migration source had bad values in its SLB */
519             return -1;
520         }
521     }
522 
523     return 0;
524 }
525 
526 static const VMStateDescription vmstate_slb = {
527     .name = "cpu/slb",
528     .version_id = 1,
529     .minimum_version_id = 1,
530     .needed = slb_needed,
531     .post_load = slb_post_load,
532     .fields = (VMStateField[]) {
533         VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
534         VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
535         VMSTATE_END_OF_LIST()
536     }
537 };
538 #endif /* TARGET_PPC64 */
539 
540 static const VMStateDescription vmstate_tlb6xx_entry = {
541     .name = "cpu/tlb6xx_entry",
542     .version_id = 1,
543     .minimum_version_id = 1,
544     .fields = (VMStateField[]) {
545         VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
546         VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
547         VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
548         VMSTATE_END_OF_LIST()
549     },
550 };
551 
552 static bool tlb6xx_needed(void *opaque)
553 {
554     PowerPCCPU *cpu = opaque;
555     CPUPPCState *env = &cpu->env;
556 
557     return env->nb_tlb && (env->tlb_type == TLB_6XX);
558 }
559 
560 static const VMStateDescription vmstate_tlb6xx = {
561     .name = "cpu/tlb6xx",
562     .version_id = 1,
563     .minimum_version_id = 1,
564     .needed = tlb6xx_needed,
565     .fields = (VMStateField[]) {
566         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
567         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
568                                             env.nb_tlb,
569                                             vmstate_tlb6xx_entry,
570                                             ppc6xx_tlb_t),
571         VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
572         VMSTATE_END_OF_LIST()
573     }
574 };
575 
576 static const VMStateDescription vmstate_tlbemb_entry = {
577     .name = "cpu/tlbemb_entry",
578     .version_id = 1,
579     .minimum_version_id = 1,
580     .fields = (VMStateField[]) {
581         VMSTATE_UINT64(RPN, ppcemb_tlb_t),
582         VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
583         VMSTATE_UINTTL(PID, ppcemb_tlb_t),
584         VMSTATE_UINTTL(size, ppcemb_tlb_t),
585         VMSTATE_UINT32(prot, ppcemb_tlb_t),
586         VMSTATE_UINT32(attr, ppcemb_tlb_t),
587         VMSTATE_END_OF_LIST()
588     },
589 };
590 
591 static bool tlbemb_needed(void *opaque)
592 {
593     PowerPCCPU *cpu = opaque;
594     CPUPPCState *env = &cpu->env;
595 
596     return env->nb_tlb && (env->tlb_type == TLB_EMB);
597 }
598 
599 static const VMStateDescription vmstate_tlbemb = {
600     .name = "cpu/tlb6xx",
601     .version_id = 1,
602     .minimum_version_id = 1,
603     .needed = tlbemb_needed,
604     .fields = (VMStateField[]) {
605         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
606         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
607                                             env.nb_tlb,
608                                             vmstate_tlbemb_entry,
609                                             ppcemb_tlb_t),
610         VMSTATE_END_OF_LIST()
611     },
612 };
613 
614 static const VMStateDescription vmstate_tlbmas_entry = {
615     .name = "cpu/tlbmas_entry",
616     .version_id = 1,
617     .minimum_version_id = 1,
618     .fields = (VMStateField[]) {
619         VMSTATE_UINT32(mas8, ppcmas_tlb_t),
620         VMSTATE_UINT32(mas1, ppcmas_tlb_t),
621         VMSTATE_UINT64(mas2, ppcmas_tlb_t),
622         VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
623         VMSTATE_END_OF_LIST()
624     },
625 };
626 
627 static bool tlbmas_needed(void *opaque)
628 {
629     PowerPCCPU *cpu = opaque;
630     CPUPPCState *env = &cpu->env;
631 
632     return env->nb_tlb && (env->tlb_type == TLB_MAS);
633 }
634 
635 static const VMStateDescription vmstate_tlbmas = {
636     .name = "cpu/tlbmas",
637     .version_id = 1,
638     .minimum_version_id = 1,
639     .needed = tlbmas_needed,
640     .fields = (VMStateField[]) {
641         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
642         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
643                                             env.nb_tlb,
644                                             vmstate_tlbmas_entry,
645                                             ppcmas_tlb_t),
646         VMSTATE_END_OF_LIST()
647     }
648 };
649 
650 static bool compat_needed(void *opaque)
651 {
652     PowerPCCPU *cpu = opaque;
653 
654     assert(!(cpu->compat_pvr && !cpu->vhyp));
655     return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
656 }
657 
658 static const VMStateDescription vmstate_compat = {
659     .name = "cpu/compat",
660     .version_id = 1,
661     .minimum_version_id = 1,
662     .needed = compat_needed,
663     .fields = (VMStateField[]) {
664         VMSTATE_UINT32(compat_pvr, PowerPCCPU),
665         VMSTATE_END_OF_LIST()
666     }
667 };
668 
669 const VMStateDescription vmstate_ppc_cpu = {
670     .name = "cpu",
671     .version_id = 5,
672     .minimum_version_id = 5,
673     .pre_save = cpu_pre_save,
674     .post_load = cpu_post_load,
675     .fields = (VMStateField[]) {
676         VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
677 
678         /* User mode architected state */
679         VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
680 #if !defined(TARGET_PPC64)
681         VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
682 #endif
683         VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
684         VMSTATE_UINTTL(env.nip, PowerPCCPU),
685 
686         /* SPRs */
687         VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
688         VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
689 
690         /* Reservation */
691         VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
692 
693         /* Supervisor mode architected state */
694         VMSTATE_UINTTL(env.msr, PowerPCCPU),
695 
696         /* Backward compatible internal state */
697         VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU),
698 
699         /* Sanity checking */
700         VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
701         VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
702         VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
703                             cpu_pre_2_8_migration),
704         VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
705         VMSTATE_END_OF_LIST()
706     },
707     .subsections = (const VMStateDescription*[]) {
708         &vmstate_fpu,
709         &vmstate_altivec,
710         &vmstate_vsx,
711         &vmstate_sr,
712 #ifdef TARGET_PPC64
713         &vmstate_tm,
714         &vmstate_slb,
715 #endif /* TARGET_PPC64 */
716         &vmstate_tlb6xx,
717         &vmstate_tlbemb,
718         &vmstate_tlbmas,
719         &vmstate_compat,
720         NULL
721     }
722 };
723