xref: /qemu/target/ppc/mmu-hash64.c (revision 7e563bfb)
1 /*
2  *  PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *  Copyright (c) 2013 David Gibson, IBM Corporation
6  *
7  * This library is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2 of the License, or (at your option) any later version.
11  *
12  * This library is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19  */
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "qemu/error-report.h"
25 #include "sysemu/hw_accel.h"
26 #include "kvm_ppc.h"
27 #include "mmu-hash64.h"
28 #include "exec/log.h"
29 #include "hw/hw.h"
30 #include "mmu-book3s-v3.h"
31 
32 //#define DEBUG_SLB
33 
34 #ifdef DEBUG_SLB
35 #  define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
36 #else
37 #  define LOG_SLB(...) do { } while (0)
38 #endif
39 
40 /*
41  * SLB handling
42  */
43 
44 static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
45 {
46     CPUPPCState *env = &cpu->env;
47     uint64_t esid_256M, esid_1T;
48     int n;
49 
50     LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
51 
52     esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
53     esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
54 
55     for (n = 0; n < env->slb_nr; n++) {
56         ppc_slb_t *slb = &env->slb[n];
57 
58         LOG_SLB("%s: slot %d %016" PRIx64 " %016"
59                     PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
60         /* We check for 1T matches on all MMUs here - if the MMU
61          * doesn't have 1T segment support, we will have prevented 1T
62          * entries from being inserted in the slbmte code. */
63         if (((slb->esid == esid_256M) &&
64              ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
65             || ((slb->esid == esid_1T) &&
66                 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
67             return slb;
68         }
69     }
70 
71     return NULL;
72 }
73 
74 void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu)
75 {
76     CPUPPCState *env = &cpu->env;
77     int i;
78     uint64_t slbe, slbv;
79 
80     cpu_synchronize_state(CPU(cpu));
81 
82     cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
83     for (i = 0; i < env->slb_nr; i++) {
84         slbe = env->slb[i].esid;
85         slbv = env->slb[i].vsid;
86         if (slbe == 0 && slbv == 0) {
87             continue;
88         }
89         cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
90                     i, slbe, slbv);
91     }
92 }
93 
94 void helper_slbia(CPUPPCState *env)
95 {
96     int n;
97 
98     /* XXX: Warning: slbia never invalidates the first segment */
99     for (n = 1; n < env->slb_nr; n++) {
100         ppc_slb_t *slb = &env->slb[n];
101 
102         if (slb->esid & SLB_ESID_V) {
103             slb->esid &= ~SLB_ESID_V;
104             /* XXX: given the fact that segment size is 256 MB or 1TB,
105              *      and we still don't have a tlb_flush_mask(env, n, mask)
106              *      in QEMU, we just invalidate all TLBs
107              */
108             env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
109         }
110     }
111 }
112 
113 static void __helper_slbie(CPUPPCState *env, target_ulong addr,
114                            target_ulong global)
115 {
116     PowerPCCPU *cpu = ppc_env_get_cpu(env);
117     ppc_slb_t *slb;
118 
119     slb = slb_lookup(cpu, addr);
120     if (!slb) {
121         return;
122     }
123 
124     if (slb->esid & SLB_ESID_V) {
125         slb->esid &= ~SLB_ESID_V;
126 
127         /* XXX: given the fact that segment size is 256 MB or 1TB,
128          *      and we still don't have a tlb_flush_mask(env, n, mask)
129          *      in QEMU, we just invalidate all TLBs
130          */
131         env->tlb_need_flush |=
132             (global == false ? TLB_NEED_LOCAL_FLUSH : TLB_NEED_GLOBAL_FLUSH);
133     }
134 }
135 
136 void helper_slbie(CPUPPCState *env, target_ulong addr)
137 {
138     __helper_slbie(env, addr, false);
139 }
140 
141 void helper_slbieg(CPUPPCState *env, target_ulong addr)
142 {
143     __helper_slbie(env, addr, true);
144 }
145 
146 int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
147                   target_ulong esid, target_ulong vsid)
148 {
149     CPUPPCState *env = &cpu->env;
150     ppc_slb_t *slb = &env->slb[slot];
151     const struct ppc_one_seg_page_size *sps = NULL;
152     int i;
153 
154     if (slot >= env->slb_nr) {
155         return -1; /* Bad slot number */
156     }
157     if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
158         return -1; /* Reserved bits set */
159     }
160     if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
161         return -1; /* Bad segment size */
162     }
163     if ((vsid & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
164         return -1; /* 1T segment on MMU that doesn't support it */
165     }
166 
167     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
168         const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
169 
170         if (!sps1->page_shift) {
171             break;
172         }
173 
174         if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
175             sps = sps1;
176             break;
177         }
178     }
179 
180     if (!sps) {
181         error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
182                      " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
183                      slot, esid, vsid);
184         return -1;
185     }
186 
187     slb->esid = esid;
188     slb->vsid = vsid;
189     slb->sps = sps;
190 
191     LOG_SLB("%s: " TARGET_FMT_lu " " TARGET_FMT_lx " - " TARGET_FMT_lx
192             " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, esid, vsid,
193             slb->esid, slb->vsid);
194 
195     return 0;
196 }
197 
198 static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
199                              target_ulong *rt)
200 {
201     CPUPPCState *env = &cpu->env;
202     int slot = rb & 0xfff;
203     ppc_slb_t *slb = &env->slb[slot];
204 
205     if (slot >= env->slb_nr) {
206         return -1;
207     }
208 
209     *rt = slb->esid;
210     return 0;
211 }
212 
213 static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
214                              target_ulong *rt)
215 {
216     CPUPPCState *env = &cpu->env;
217     int slot = rb & 0xfff;
218     ppc_slb_t *slb = &env->slb[slot];
219 
220     if (slot >= env->slb_nr) {
221         return -1;
222     }
223 
224     *rt = slb->vsid;
225     return 0;
226 }
227 
228 static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
229                              target_ulong *rt)
230 {
231     CPUPPCState *env = &cpu->env;
232     ppc_slb_t *slb;
233 
234     if (!msr_is_64bit(env, env->msr)) {
235         rb &= 0xffffffff;
236     }
237     slb = slb_lookup(cpu, rb);
238     if (slb == NULL) {
239         *rt = (target_ulong)-1ul;
240     } else {
241         *rt = slb->vsid;
242     }
243     return 0;
244 }
245 
246 void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
247 {
248     PowerPCCPU *cpu = ppc_env_get_cpu(env);
249 
250     if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
251         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
252                                POWERPC_EXCP_INVAL, GETPC());
253     }
254 }
255 
256 target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
257 {
258     PowerPCCPU *cpu = ppc_env_get_cpu(env);
259     target_ulong rt = 0;
260 
261     if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
262         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
263                                POWERPC_EXCP_INVAL, GETPC());
264     }
265     return rt;
266 }
267 
268 target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb)
269 {
270     PowerPCCPU *cpu = ppc_env_get_cpu(env);
271     target_ulong rt = 0;
272 
273     if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
274         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
275                                POWERPC_EXCP_INVAL, GETPC());
276     }
277     return rt;
278 }
279 
280 target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
281 {
282     PowerPCCPU *cpu = ppc_env_get_cpu(env);
283     target_ulong rt = 0;
284 
285     if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
286         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
287                                POWERPC_EXCP_INVAL, GETPC());
288     }
289     return rt;
290 }
291 
292 /* Check No-Execute or Guarded Storage */
293 static inline int ppc_hash64_pte_noexec_guard(PowerPCCPU *cpu,
294                                               ppc_hash_pte64_t pte)
295 {
296     /* Exec permissions CANNOT take away read or write permissions */
297     return (pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G) ?
298             PAGE_READ | PAGE_WRITE : PAGE_READ | PAGE_WRITE | PAGE_EXEC;
299 }
300 
301 /* Check Basic Storage Protection */
302 static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
303                                ppc_slb_t *slb, ppc_hash_pte64_t pte)
304 {
305     CPUPPCState *env = &cpu->env;
306     unsigned pp, key;
307     /* Some pp bit combinations have undefined behaviour, so default
308      * to no access in those cases */
309     int prot = 0;
310 
311     key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
312              : (slb->vsid & SLB_VSID_KS));
313     pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
314 
315     if (key == 0) {
316         switch (pp) {
317         case 0x0:
318         case 0x1:
319         case 0x2:
320             prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
321             break;
322 
323         case 0x3:
324         case 0x6:
325             prot = PAGE_READ | PAGE_EXEC;
326             break;
327         }
328     } else {
329         switch (pp) {
330         case 0x0:
331         case 0x6:
332             break;
333 
334         case 0x1:
335         case 0x3:
336             prot = PAGE_READ | PAGE_EXEC;
337             break;
338 
339         case 0x2:
340             prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
341             break;
342         }
343     }
344 
345     return prot;
346 }
347 
348 /* Check the instruction access permissions specified in the IAMR */
349 static int ppc_hash64_iamr_prot(PowerPCCPU *cpu, int key)
350 {
351     CPUPPCState *env = &cpu->env;
352     int iamr_bits = (env->spr[SPR_IAMR] >> 2 * (31 - key)) & 0x3;
353 
354     /*
355      * An instruction fetch is permitted if the IAMR bit is 0.
356      * If the bit is set, return PAGE_READ | PAGE_WRITE because this bit
357      * can only take away EXEC permissions not READ or WRITE permissions.
358      * If bit is cleared return PAGE_READ | PAGE_WRITE | PAGE_EXEC since
359      * EXEC permissions are allowed.
360      */
361     return (iamr_bits & 0x1) ? PAGE_READ | PAGE_WRITE :
362                                PAGE_READ | PAGE_WRITE | PAGE_EXEC;
363 }
364 
365 static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
366 {
367     CPUPPCState *env = &cpu->env;
368     int key, amrbits;
369     int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
370 
371     /* Only recent MMUs implement Virtual Page Class Key Protection */
372     if (!(env->mmu_model & POWERPC_MMU_AMR)) {
373         return prot;
374     }
375 
376     key = HPTE64_R_KEY(pte.pte1);
377     amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
378 
379     /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
380     /*         env->spr[SPR_AMR]); */
381 
382     /*
383      * A store is permitted if the AMR bit is 0. Remove write
384      * protection if it is set.
385      */
386     if (amrbits & 0x2) {
387         prot &= ~PAGE_WRITE;
388     }
389     /*
390      * A load is permitted if the AMR bit is 0. Remove read
391      * protection if it is set.
392      */
393     if (amrbits & 0x1) {
394         prot &= ~PAGE_READ;
395     }
396 
397     switch (env->mmu_model) {
398     /*
399      * MMU version 2.07 and later support IAMR
400      * Check if the IAMR allows the instruction access - it will return
401      * PAGE_EXEC if it doesn't (and thus that bit will be cleared) or 0
402      * if it does (and prot will be unchanged indicating execution support).
403      */
404     case POWERPC_MMU_2_07:
405     case POWERPC_MMU_3_00:
406         prot &= ppc_hash64_iamr_prot(cpu, key);
407         break;
408     default:
409         break;
410     }
411 
412     return prot;
413 }
414 
415 const ppc_hash_pte64_t *ppc_hash64_map_hptes(PowerPCCPU *cpu,
416                                              hwaddr ptex, int n)
417 {
418     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
419     hwaddr base = ppc_hash64_hpt_base(cpu);
420     hwaddr plen = n * HASH_PTE_SIZE_64;
421     const ppc_hash_pte64_t *hptes;
422 
423     if (cpu->vhyp) {
424         PPCVirtualHypervisorClass *vhc =
425             PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
426         return vhc->map_hptes(cpu->vhyp, ptex, n);
427     }
428 
429     if (!base) {
430         return NULL;
431     }
432 
433     hptes = address_space_map(CPU(cpu)->as, base + pte_offset, &plen, false);
434     if (plen < (n * HASH_PTE_SIZE_64)) {
435         hw_error("%s: Unable to map all requested HPTEs\n", __func__);
436     }
437     return hptes;
438 }
439 
440 void ppc_hash64_unmap_hptes(PowerPCCPU *cpu, const ppc_hash_pte64_t *hptes,
441                             hwaddr ptex, int n)
442 {
443     if (cpu->vhyp) {
444         PPCVirtualHypervisorClass *vhc =
445             PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
446         vhc->unmap_hptes(cpu->vhyp, hptes, ptex, n);
447         return;
448     }
449 
450     address_space_unmap(CPU(cpu)->as, (void *)hptes, n * HASH_PTE_SIZE_64,
451                         false, n * HASH_PTE_SIZE_64);
452 }
453 
454 static unsigned hpte_page_shift(const struct ppc_one_seg_page_size *sps,
455     uint64_t pte0, uint64_t pte1)
456 {
457     int i;
458 
459     if (!(pte0 & HPTE64_V_LARGE)) {
460         if (sps->page_shift != 12) {
461             /* 4kiB page in a non 4kiB segment */
462             return 0;
463         }
464         /* Normal 4kiB page */
465         return 12;
466     }
467 
468     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
469         const struct ppc_one_page_size *ps = &sps->enc[i];
470         uint64_t mask;
471 
472         if (!ps->page_shift) {
473             break;
474         }
475 
476         if (ps->page_shift == 12) {
477             /* L bit is set so this can't be a 4kiB page */
478             continue;
479         }
480 
481         mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
482 
483         if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
484             return ps->page_shift;
485         }
486     }
487 
488     return 0; /* Bad page size encoding */
489 }
490 
491 static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
492                                      const struct ppc_one_seg_page_size *sps,
493                                      target_ulong ptem,
494                                      ppc_hash_pte64_t *pte, unsigned *pshift)
495 {
496     int i;
497     const ppc_hash_pte64_t *pteg;
498     target_ulong pte0, pte1;
499     target_ulong ptex;
500 
501     ptex = (hash & ppc_hash64_hpt_mask(cpu)) * HPTES_PER_GROUP;
502     pteg = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
503     if (!pteg) {
504         return -1;
505     }
506     for (i = 0; i < HPTES_PER_GROUP; i++) {
507         pte0 = ppc_hash64_hpte0(cpu, pteg, i);
508         pte1 = ppc_hash64_hpte1(cpu, pteg, i);
509 
510         /* This compares V, B, H (secondary) and the AVPN */
511         if (HPTE64_V_COMPARE(pte0, ptem)) {
512             *pshift = hpte_page_shift(sps, pte0, pte1);
513             /*
514              * If there is no match, ignore the PTE, it could simply
515              * be for a different segment size encoding and the
516              * architecture specifies we should not match. Linux will
517              * potentially leave behind PTEs for the wrong base page
518              * size when demoting segments.
519              */
520             if (*pshift == 0) {
521                 continue;
522             }
523             /* We don't do anything with pshift yet as qemu TLB only deals
524              * with 4K pages anyway
525              */
526             pte->pte0 = pte0;
527             pte->pte1 = pte1;
528             ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
529             return ptex + i;
530         }
531     }
532     ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
533     /*
534      * We didn't find a valid entry.
535      */
536     return -1;
537 }
538 
539 static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
540                                      ppc_slb_t *slb, target_ulong eaddr,
541                                      ppc_hash_pte64_t *pte, unsigned *pshift)
542 {
543     CPUPPCState *env = &cpu->env;
544     hwaddr hash, ptex;
545     uint64_t vsid, epnmask, epn, ptem;
546     const struct ppc_one_seg_page_size *sps = slb->sps;
547 
548     /* The SLB store path should prevent any bad page size encodings
549      * getting in there, so: */
550     assert(sps);
551 
552     /* If ISL is set in LPCR we need to clamp the page size to 4K */
553     if (env->spr[SPR_LPCR] & LPCR_ISL) {
554         /* We assume that when using TCG, 4k is first entry of SPS */
555         sps = &env->sps.sps[0];
556         assert(sps->page_shift == 12);
557     }
558 
559     epnmask = ~((1ULL << sps->page_shift) - 1);
560 
561     if (slb->vsid & SLB_VSID_B) {
562         /* 1TB segment */
563         vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
564         epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
565         hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
566     } else {
567         /* 256M segment */
568         vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
569         epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
570         hash = vsid ^ (epn >> sps->page_shift);
571     }
572     ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
573     ptem |= HPTE64_V_VALID;
574 
575     /* Page address translation */
576     qemu_log_mask(CPU_LOG_MMU,
577             "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
578             " hash " TARGET_FMT_plx "\n",
579             ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu), hash);
580 
581     /* Primary PTEG lookup */
582     qemu_log_mask(CPU_LOG_MMU,
583             "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
584             " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
585             " hash=" TARGET_FMT_plx "\n",
586             ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu),
587             vsid, ptem,  hash);
588     ptex = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
589 
590     if (ptex == -1) {
591         /* Secondary PTEG lookup */
592         ptem |= HPTE64_V_SECONDARY;
593         qemu_log_mask(CPU_LOG_MMU,
594                 "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
595                 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
596                 " hash=" TARGET_FMT_plx "\n", ppc_hash64_hpt_base(cpu),
597                 ppc_hash64_hpt_mask(cpu), vsid, ptem, ~hash);
598 
599         ptex = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
600     }
601 
602     return ptex;
603 }
604 
605 unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
606                                           uint64_t pte0, uint64_t pte1)
607 {
608     CPUPPCState *env = &cpu->env;
609     int i;
610 
611     if (!(pte0 & HPTE64_V_LARGE)) {
612         return 12;
613     }
614 
615     /*
616      * The encodings in env->sps need to be carefully chosen so that
617      * this gives an unambiguous result.
618      */
619     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
620         const struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
621         unsigned shift;
622 
623         if (!sps->page_shift) {
624             break;
625         }
626 
627         shift = hpte_page_shift(sps, pte0, pte1);
628         if (shift) {
629             return shift;
630         }
631     }
632 
633     return 0;
634 }
635 
636 static void ppc_hash64_set_isi(CPUState *cs, CPUPPCState *env,
637                                uint64_t error_code)
638 {
639     bool vpm;
640 
641     if (msr_ir) {
642         vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
643     } else {
644         switch (env->mmu_model) {
645         case POWERPC_MMU_3_00:
646             /* Field deprecated in ISAv3.00 - interrupts always go to hyperv */
647             vpm = true;
648             break;
649         default:
650             vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
651             break;
652         }
653     }
654     if (vpm && !msr_hv) {
655         cs->exception_index = POWERPC_EXCP_HISI;
656     } else {
657         cs->exception_index = POWERPC_EXCP_ISI;
658     }
659     env->error_code = error_code;
660 }
661 
662 static void ppc_hash64_set_dsi(CPUState *cs, CPUPPCState *env, uint64_t dar,
663                                uint64_t dsisr)
664 {
665     bool vpm;
666 
667     if (msr_dr) {
668         vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
669     } else {
670         switch (env->mmu_model) {
671         case POWERPC_MMU_3_00:
672             /* Field deprecated in ISAv3.00 - interrupts always go to hyperv */
673             vpm = true;
674             break;
675         default:
676             vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
677             break;
678         }
679     }
680     if (vpm && !msr_hv) {
681         cs->exception_index = POWERPC_EXCP_HDSI;
682         env->spr[SPR_HDAR] = dar;
683         env->spr[SPR_HDSISR] = dsisr;
684     } else {
685         cs->exception_index = POWERPC_EXCP_DSI;
686         env->spr[SPR_DAR] = dar;
687         env->spr[SPR_DSISR] = dsisr;
688    }
689     env->error_code = 0;
690 }
691 
692 
693 int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
694                                 int rwx, int mmu_idx)
695 {
696     CPUState *cs = CPU(cpu);
697     CPUPPCState *env = &cpu->env;
698     ppc_slb_t *slb;
699     unsigned apshift;
700     hwaddr ptex;
701     ppc_hash_pte64_t pte;
702     int exec_prot, pp_prot, amr_prot, prot;
703     uint64_t new_pte1;
704     const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
705     hwaddr raddr;
706 
707     assert((rwx == 0) || (rwx == 1) || (rwx == 2));
708 
709     /* Note on LPCR usage: 970 uses HID4, but our special variant
710      * of store_spr copies relevant fields into env->spr[SPR_LPCR].
711      * Similarily we filter unimplemented bits when storing into
712      * LPCR depending on the MMU version. This code can thus just
713      * use the LPCR "as-is".
714      */
715 
716     /* 1. Handle real mode accesses */
717     if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
718         /* Translation is supposedly "off"  */
719         /* In real mode the top 4 effective address bits are (mostly) ignored */
720         raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
721 
722         /* In HV mode, add HRMOR if top EA bit is clear */
723         if (msr_hv || !env->has_hv_mode) {
724             if (!(eaddr >> 63)) {
725                 raddr |= env->spr[SPR_HRMOR];
726             }
727         } else {
728             /* Otherwise, check VPM for RMA vs VRMA */
729             if (env->spr[SPR_LPCR] & LPCR_VPM0) {
730                 slb = &env->vrma_slb;
731                 if (slb->sps) {
732                     goto skip_slb_search;
733                 }
734                 /* Not much else to do here */
735                 cs->exception_index = POWERPC_EXCP_MCHECK;
736                 env->error_code = 0;
737                 return 1;
738             } else if (raddr < env->rmls) {
739                 /* RMA. Check bounds in RMLS */
740                 raddr |= env->spr[SPR_RMOR];
741             } else {
742                 /* The access failed, generate the approriate interrupt */
743                 if (rwx == 2) {
744                     ppc_hash64_set_isi(cs, env, SRR1_PROTFAULT);
745                 } else {
746                     int dsisr = DSISR_PROTFAULT;
747                     if (rwx == 1) {
748                         dsisr |= DSISR_ISSTORE;
749                     }
750                     ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
751                 }
752                 return 1;
753             }
754         }
755         tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
756                      PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
757                      TARGET_PAGE_SIZE);
758         return 0;
759     }
760 
761     /* 2. Translation is on, so look up the SLB */
762     slb = slb_lookup(cpu, eaddr);
763     if (!slb) {
764         /* No entry found, check if in-memory segment tables are in use */
765         if ((env->mmu_model & POWERPC_MMU_V3) && ppc64_use_proc_tbl(cpu)) {
766             /* TODO - Unsupported */
767             error_report("Segment Table Support Unimplemented");
768             exit(1);
769         }
770         /* Segment still not found, generate the appropriate interrupt */
771         if (rwx == 2) {
772             cs->exception_index = POWERPC_EXCP_ISEG;
773             env->error_code = 0;
774         } else {
775             cs->exception_index = POWERPC_EXCP_DSEG;
776             env->error_code = 0;
777             env->spr[SPR_DAR] = eaddr;
778         }
779         return 1;
780     }
781 
782 skip_slb_search:
783 
784     /* 3. Check for segment level no-execute violation */
785     if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
786         ppc_hash64_set_isi(cs, env, SRR1_NOEXEC_GUARD);
787         return 1;
788     }
789 
790     /* 4. Locate the PTE in the hash table */
791     ptex = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
792     if (ptex == -1) {
793         if (rwx == 2) {
794             ppc_hash64_set_isi(cs, env, SRR1_NOPTE);
795         } else {
796             int dsisr = DSISR_NOPTE;
797             if (rwx == 1) {
798                 dsisr |= DSISR_ISSTORE;
799             }
800             ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
801         }
802         return 1;
803     }
804     qemu_log_mask(CPU_LOG_MMU,
805                   "found PTE at index %08" HWADDR_PRIx "\n", ptex);
806 
807     /* 5. Check access permissions */
808 
809     exec_prot = ppc_hash64_pte_noexec_guard(cpu, pte);
810     pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
811     amr_prot = ppc_hash64_amr_prot(cpu, pte);
812     prot = exec_prot & pp_prot & amr_prot;
813 
814     if ((need_prot[rwx] & ~prot) != 0) {
815         /* Access right violation */
816         qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
817         if (rwx == 2) {
818             int srr1 = 0;
819             if (PAGE_EXEC & ~exec_prot) {
820                 srr1 |= SRR1_NOEXEC_GUARD; /* Access violates noexec or guard */
821             } else if (PAGE_EXEC & ~pp_prot) {
822                 srr1 |= SRR1_PROTFAULT; /* Access violates access authority */
823             }
824             if (PAGE_EXEC & ~amr_prot) {
825                 srr1 |= SRR1_IAMR; /* Access violates virt pg class key prot */
826             }
827             ppc_hash64_set_isi(cs, env, srr1);
828         } else {
829             int dsisr = 0;
830             if (need_prot[rwx] & ~pp_prot) {
831                 dsisr |= DSISR_PROTFAULT;
832             }
833             if (rwx == 1) {
834                 dsisr |= DSISR_ISSTORE;
835             }
836             if (need_prot[rwx] & ~amr_prot) {
837                 dsisr |= DSISR_AMR;
838             }
839             ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
840         }
841         return 1;
842     }
843 
844     qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
845 
846     /* 6. Update PTE referenced and changed bits if necessary */
847 
848     new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
849     if (rwx == 1) {
850         new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
851     } else {
852         /* Treat the page as read-only for now, so that a later write
853          * will pass through this function again to set the C bit */
854         prot &= ~PAGE_WRITE;
855     }
856 
857     if (new_pte1 != pte.pte1) {
858         ppc_hash64_store_hpte(cpu, ptex, pte.pte0, new_pte1);
859     }
860 
861     /* 7. Determine the real address from the PTE */
862 
863     raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
864 
865     tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
866                  prot, mmu_idx, 1ULL << apshift);
867 
868     return 0;
869 }
870 
871 hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
872 {
873     CPUPPCState *env = &cpu->env;
874     ppc_slb_t *slb;
875     hwaddr ptex, raddr;
876     ppc_hash_pte64_t pte;
877     unsigned apshift;
878 
879     /* Handle real mode */
880     if (msr_dr == 0) {
881         /* In real mode the top 4 effective address bits are ignored */
882         raddr = addr & 0x0FFFFFFFFFFFFFFFULL;
883 
884         /* In HV mode, add HRMOR if top EA bit is clear */
885         if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
886             return raddr | env->spr[SPR_HRMOR];
887         }
888 
889         /* Otherwise, check VPM for RMA vs VRMA */
890         if (env->spr[SPR_LPCR] & LPCR_VPM0) {
891             slb = &env->vrma_slb;
892             if (!slb->sps) {
893                 return -1;
894             }
895         } else if (raddr < env->rmls) {
896             /* RMA. Check bounds in RMLS */
897             return raddr | env->spr[SPR_RMOR];
898         } else {
899             return -1;
900         }
901     } else {
902         slb = slb_lookup(cpu, addr);
903         if (!slb) {
904             return -1;
905         }
906     }
907 
908     ptex = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
909     if (ptex == -1) {
910         return -1;
911     }
912 
913     return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
914         & TARGET_PAGE_MASK;
915 }
916 
917 void ppc_hash64_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
918                            uint64_t pte0, uint64_t pte1)
919 {
920     hwaddr base = ppc_hash64_hpt_base(cpu);
921     hwaddr offset = ptex * HASH_PTE_SIZE_64;
922 
923     if (cpu->vhyp) {
924         PPCVirtualHypervisorClass *vhc =
925             PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
926         vhc->store_hpte(cpu->vhyp, ptex, pte0, pte1);
927         return;
928     }
929 
930     stq_phys(CPU(cpu)->as, base + offset, pte0);
931     stq_phys(CPU(cpu)->as, base + offset + HASH_PTE_SIZE_64 / 2, pte1);
932 }
933 
934 void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, target_ulong ptex,
935                                target_ulong pte0, target_ulong pte1)
936 {
937     /*
938      * XXX: given the fact that there are too many segments to
939      * invalidate, and we still don't have a tlb_flush_mask(env, n,
940      * mask) in QEMU, we just invalidate all TLBs
941      */
942     cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH;
943 }
944 
945 void ppc_hash64_update_rmls(CPUPPCState *env)
946 {
947     uint64_t lpcr = env->spr[SPR_LPCR];
948 
949     /*
950      * This is the full 4 bits encoding of POWER8. Previous
951      * CPUs only support a subset of these but the filtering
952      * is done when writing LPCR
953      */
954     switch ((lpcr & LPCR_RMLS) >> LPCR_RMLS_SHIFT) {
955     case 0x8: /* 32MB */
956         env->rmls = 0x2000000ull;
957         break;
958     case 0x3: /* 64MB */
959         env->rmls = 0x4000000ull;
960         break;
961     case 0x7: /* 128MB */
962         env->rmls = 0x8000000ull;
963         break;
964     case 0x4: /* 256MB */
965         env->rmls = 0x10000000ull;
966         break;
967     case 0x2: /* 1GB */
968         env->rmls = 0x40000000ull;
969         break;
970     case 0x1: /* 16GB */
971         env->rmls = 0x400000000ull;
972         break;
973     default:
974         /* What to do here ??? */
975         env->rmls = 0;
976     }
977 }
978 
979 void ppc_hash64_update_vrma(CPUPPCState *env)
980 {
981     const struct ppc_one_seg_page_size *sps = NULL;
982     target_ulong esid, vsid, lpcr;
983     ppc_slb_t *slb = &env->vrma_slb;
984     uint32_t vrmasd;
985     int i;
986 
987     /* First clear it */
988     slb->esid = slb->vsid = 0;
989     slb->sps = NULL;
990 
991     /* Is VRMA enabled ? */
992     lpcr = env->spr[SPR_LPCR];
993     if (!(lpcr & LPCR_VPM0)) {
994         return;
995     }
996 
997     /* Make one up. Mostly ignore the ESID which will not be
998      * needed for translation
999      */
1000     vsid = SLB_VSID_VRMA;
1001     vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
1002     vsid |= (vrmasd << 4) & (SLB_VSID_L | SLB_VSID_LP);
1003     esid = SLB_ESID_V;
1004 
1005    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
1006         const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
1007 
1008         if (!sps1->page_shift) {
1009             break;
1010         }
1011 
1012         if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
1013             sps = sps1;
1014             break;
1015         }
1016     }
1017 
1018     if (!sps) {
1019         error_report("Bad page size encoding esid 0x"TARGET_FMT_lx
1020                      " vsid 0x"TARGET_FMT_lx, esid, vsid);
1021         return;
1022     }
1023 
1024     slb->vsid = vsid;
1025     slb->esid = esid;
1026     slb->sps = sps;
1027 }
1028 
1029 void helper_store_lpcr(CPUPPCState *env, target_ulong val)
1030 {
1031     uint64_t lpcr = 0;
1032 
1033     /* Filter out bits */
1034     switch (POWERPC_MMU_VER(env->mmu_model)) {
1035     case POWERPC_MMU_VER_64B: /* 970 */
1036         if (val & 0x40) {
1037             lpcr |= LPCR_LPES0;
1038         }
1039         if (val & 0x8000000000000000ull) {
1040             lpcr |= LPCR_LPES1;
1041         }
1042         if (val & 0x20) {
1043             lpcr |= (0x4ull << LPCR_RMLS_SHIFT);
1044         }
1045         if (val & 0x4000000000000000ull) {
1046             lpcr |= (0x2ull << LPCR_RMLS_SHIFT);
1047         }
1048         if (val & 0x2000000000000000ull) {
1049             lpcr |= (0x1ull << LPCR_RMLS_SHIFT);
1050         }
1051         env->spr[SPR_RMOR] = ((lpcr >> 41) & 0xffffull) << 26;
1052 
1053         /* XXX We could also write LPID from HID4 here
1054          * but since we don't tag any translation on it
1055          * it doesn't actually matter
1056          */
1057         /* XXX For proper emulation of 970 we also need
1058          * to dig HRMOR out of HID5
1059          */
1060         break;
1061     case POWERPC_MMU_VER_2_03: /* P5p */
1062         lpcr = val & (LPCR_RMLS | LPCR_ILE |
1063                       LPCR_LPES0 | LPCR_LPES1 |
1064                       LPCR_RMI | LPCR_HDICE);
1065         break;
1066     case POWERPC_MMU_VER_2_06: /* P7 */
1067         lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_DPFD |
1068                       LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1069                       LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2 |
1070                       LPCR_MER | LPCR_TC |
1071                       LPCR_LPES0 | LPCR_LPES1 | LPCR_HDICE);
1072         break;
1073     case POWERPC_MMU_VER_2_07: /* P8 */
1074         lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV |
1075                       LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1076                       LPCR_AIL | LPCR_ONL | LPCR_P8_PECE0 | LPCR_P8_PECE1 |
1077                       LPCR_P8_PECE2 | LPCR_P8_PECE3 | LPCR_P8_PECE4 |
1078                       LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_HDICE);
1079         break;
1080     case POWERPC_MMU_VER_3_00: /* P9 */
1081         lpcr = val & (LPCR_VPM1 | LPCR_ISL | LPCR_KBV | LPCR_DPFD |
1082                       (LPCR_PECE_U_MASK & LPCR_HVEE) | LPCR_ILE | LPCR_AIL |
1083                       LPCR_UPRT | LPCR_EVIRT | LPCR_ONL |
1084                       (LPCR_PECE_L_MASK & (LPCR_PDEE | LPCR_HDEE | LPCR_EEE |
1085                       LPCR_DEE | LPCR_OEE)) | LPCR_MER | LPCR_GTSE | LPCR_TC |
1086                       LPCR_HEIC | LPCR_LPES0 | LPCR_HVICE | LPCR_HDICE);
1087         break;
1088     default:
1089         ;
1090     }
1091     env->spr[SPR_LPCR] = lpcr;
1092     ppc_hash64_update_rmls(env);
1093     ppc_hash64_update_vrma(env);
1094 }
1095